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Jiodeling of the Plastic Anisotropy of Texiured Sheet

PH. LEQUEU and J.J. JONAS

An alternative is proposed to the classical crystallographic and continuum techniques for representa-

tion of polycrystal anisotropy. It involves the use o
behavior of a collection of disoriented grains display

f continuum yield criteria to reproduce the yielding

ng typical expenimental spreads. It is shown that

the anisotropic properties pertaining (o single ideal orientations are readily assessed. Yield surfaces as
well as strain rate R(6) and vyield stress o(6)/o(0) ratios are calculated for polycrystalline materials
displaying several texture components. The Taylor, Sachs, and Kochenddrfer grain interaction models
are used for this purpose, the last of which leads to the fastest computations because it permits the
texture/plastic properties relationship to be described analytically. Such methods are particularly well
suited to FEM and CAD-CAM calculations. The predictions obtained from the present analysis are
compared to experimental observations reported in the literature.

I. INTRODUCTION

I'uE anisotropic properties of sheet metals have generally
seen described by two different methods, i.eLeither a crys-
allographic approach such as that based on the Bishop and
Hill yield surface or'a macroscopic analysis employing vari-
yus continuum yield functions. According to the former, the
jeformation of a polycrystalline aggregate is assumed to be
sccommodated by the activation of slip systems, the type of
which depends on the metal under consideration. The crys-
tallographic nature of plastic deformation is thus directly
accounted for. The necessary transition from a single crystal
to a polycrystal is then carried out on the basis of knowledge
of the orientation distribution of the crystals (i.e., from the
texture) as well as from the definition of a grain interaction
model. By contrast, the analysis used in the continuum
methods is completely different in spirit. In this case, no
reference is made to the orientations of the individual grains,
so that the approach remains essentially macroscopic. The
yield locus of the polycrystal under consideration (from
which the stress and strain rate characteristics are readily
deduced) is described instead by an assumed analytical func-
tion, the parameters of which are determined experimen-
tally. The anisotropic behavior of the aggregate is thus
accounted for only through the characteristics of the yield
surface and not by means of the crystallographic texture of
the material which is recognized to be the primary source of
plastic anisotropy.

The validity and limitations of these two approaches are
discussed in detail in Reference 1, with particular attention
being paid to their use in the control of metal forming
processes. The crystallographic methods are generally un-
suitable for the rapid assessment of macroscopic properties,
whereas the continuum techniques, because of their simple
formulations, frequently fail to reproduce adequately some
significant features of the plastic anisotropy.

Recently, Montheillet e al. ? have proposed an alternative
method, known as the continuum mechanics of textured
polycrystals or CMTP, which combines aspects of both the
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previous approaches. This treatment is based on a modi-
fication of Hill’s anisotropic continuum theory which per-
mits the observed ideal orientations to be linked directly
with the consequent plastic anisotropy of the material. The
macroscopic stress and strain rate characteristics can thus be
readily obtained from knowledge of the texture components
displayed by the polycrystal. In this paper, the various grain
interaction models used in such modeling are first discussed,
followed by a description of the basic principles of the
method. Some CMTP vyield surfaces, as well as the strain
rate and yield stress ratios calculated from them, are then
presented and compared with experimental observations
taken from the literature.

II. LOADING CONDITIONS AND
GRAIN INTERACTION MODELS

The principal problem associated with the definition of a
grain interaction model consists of determining the kind of
averaging technique which should be used over the complete
grain orientation distribution to assess the mean value of a
given property. In this section, the mean yield stress and
strain rate ratio, as assessed by a tensile test carried out at
an angle 6 to the sheet rolling direction (Figure 1), will first
be considered. The following assumptions and notations are
employed:

(i) The polycrystal, designated by the superscript (p), is
constituted of single crystals grouped in N ideal orien-
tations, each of which is represented by the superscript (g).

(ii) The volume fraction of crystals having a given orien-
tation g is denoted a,, such that E;;I a, = 1.

(iii) The tensile specimen and crystal (100) axes are re-
ferred to as the (S) and (C) reference frames, respectively.

(iv) The transformation matrix from the (C) to the (S)
axes is named P and is a function of the angle 6 as well
as of the orientation {hkl}{uvw) of the crystal orienta-
tion of interest (where {hkl} and (uvw) are crystallographic
directions parallel to the normal and rolling directions,
respectively).

(v) The yield surface of a single crystal is represented by
the function F(oy0) = 0, where oy refer to the stress
components expressed in the (100) crystal axes.

The tensile test carried out to measure the yield stress and
strain rate ratio is assumed to be represented by the follow-
ing uniaxial stress tensor:
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Fip. 1 —Svsiem of coordinate axes for rolled sheet.

(1]

The associated strain rate tensor is of the general form:
— (AP

('E‘-J_}?S} [2]
However, in the particular case of specimens cut from a
sheet plane, the two additional conditions €{f)s, = €%, = 0
can be prescnbcd as long as the Z-axis (or normal direction;
see Figure 1) is an axis of mirror symmetry. 34 The E(m'g
component is furthermore imposed as a test condition, say

o]
Es)

£fls; = 1 s7'. Recalling that the R-value is defined as
R = Ez"’rs:/-?[:agfs; (3]
and that
E\is) T Ews‘: i) 5{3’;351 =0 (4]

because of the assumed conservation of volume during p]as-
tic deformauon Eq. [2] can be rewritten as:

————

1 s, -0
Ef = |es —R/(1 +R) 0 (5]
0 0 -1/(1 + R)

The quantities of interest here are o{f)s, and R, which have
to be calculated under the assumptions listed above. As
they pertain to a macroscopic reference frame (§) and as
the crystallographic behavior is assumed to be known only
through the function F (o) = 0, a grain interaction
model, such as one of the following, must be used.

— A Um{orm Strain (Taylor) Model

l L In this case, each grain is assumed to undergo the same
(PRT'T strain rate state as the polycrystal,’
.\;;_ :J;j- E(_g] = E(f] [6]
: J o1 A i(5) %)
4 V" The stress state pertaining to the aggregate is then de-
fined as:
N
{ e
oify = 2 el (7]
=1

Here or:f,}, is the point on the yield surface pertaining to the
orientation g whose normal is €[5. The two unknowns in
Eq. [5], R and £{%s,, must be varied until the requiremems
of the loading conditions, i.e., o5 = 0 for (i,7) # (1,1)
are fulfilled. For this purpose, the strain rate tensor must be
transformed into the (C) axes

£8 = PERP (8]
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where P is the transpose of P. The flow rule expressed by
:ﬁjf_"} = )‘aF(UUtC? fagulﬂ [H_

must then be inverted in order to obtain the stress state o - .
Finally, the averaging procedure specified by Eq. |7] is
applied to the stress components transformed back into the
specimen axes, ok,

Ag indicated above, when the uniform strain modez] is
applied to the uniaxial tensile test, strain rate space must be
swept by nve parameters, and the computations that resul
are unreasonably long (see, for example, Reference 6).
As an alternative, the testing conditions can be somewha
modified, an expedient which has been employed in crys-
tallographic calculations as well.? For this purpose, the £ 55,
component in Eq. [5] is assumed to be zero. As a con-
sequence, the corresponding stress component oifs, can
take on non-zero values, which are then incompatible with
the boundary conditions at the free surface of the specimen.
Such an approach, which utilizes a non-uniaxial tesuing
representation, is valid only at the interior of the sample
where the deformation is not generally homogeneous.
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B. UM!TESS Dzrecuon {Sachs) Model ‘.

Whereas the Taylor assumption is etpreaqed cmlre’h m
terms of strain uniformity, the Sachs’ model refers to the
relation between the state of stress of an aggregate and its
constituent grains. In this representation, the stress compoe-
nents pertaining to a given crystal are assumed to be pro-
portional to the ones associated with the polycrystal: i.e..
the stress direction is assumed to be uniform across the
various grains:

aiis * ol (10
When Eq. [10] is employed in conjunction with the uniaxia
tension loading conditions of Eq. [1], it is readily seen tha:
only one unknown has to be determined in each grain. i.e..
o'fls. This component is readily found by requiring the
stress vector to lie on the yield surface as expressed in the
specimen (S) axes. The overall yielding behavior is then
derived from Eq. [7].
It is evident that the Sachs model permits only the mean

_stzcss state to be ca}culated The mean strain rate, by con-

trast, remains unknown until some further assumptmns are
made. One possible way of calculating the R -value® consists
of estimating the shape of the polycrystalline yield locus in
the neighborhood of the uniaxial tensile direction, and ther.
employing the normality rule to assess the corresponding
strain rate. It should be noted, however, that the yield sur-
face determined by this means (i.e., at constant stress 12710/
can be locally non-convex, so that the flow rule is no:
rigorously valid in these regions.

C. Law of Mixtures (Kochendérfer) Model

Another way of calculating the strain rate componaais
pertaining to a textured polycrystal tested in uniaxial tensior.
has been described by Kochendérfer.® Here the stress szt
is assumed to be the same as the one calculated from D=
Sachs model. The further hypotheses that are required Zor
R-value calculations’ are:

gyl — Mph - -
Efusy = Eis IMposed iea



and

g = 3 el [12]

Py

g=1

The normality rule expressed by Eg. [9] provides only the
direction and not the magnitude of the strain rate vector, For

this reason, it is necessary to impose an additional condition
on the strain rate components for averaging purposes. This
is done in the Kochendérfer analysis through the specifica-
tion that the &4}, must be the same for all the grains.

The Kochendorfer hypothesis provides a ready way of
calculating the R-value pertaining to a textured aggre-
gate. This is dene by applying the normality rule (Eq. [9])
at the various loading points o) (Sachs stress state) and
using Eq. [11] for normalization purposes. The R-value is
then evaluated from the averaging technique specified by
Eq. [12] applied to the strain rate components which have
been transformed back into the specimen axes.

III. BA\S[C PRINCIPLES
OF THE CMTP METHOD

The classical crystallographic approach to yield surface ,

prediction is based on the Bishop and Hill polyhedron,
which pertains to single crystals displaying {111} (110) or
{110} ¢111) slip. If the operation of additional slip systems
is assumed, other similar polyhedra are obtained, which also
display faces, edges, and vertices.'® As these yield func-
tions are not readily differentiable, the normality principle
(Eq. [9]) cannot be employed to give an analytical descrip-
tion of the stress/strain rate relationship. Furthermore, the
yield surfaces defined from crystallographic considerations
pertain only to perfect single crystals; thus the complete
orientation distribution has to be considered for averaging
purposes. Such an approach leads to extensive computa-
tions, and is unsuitable for on-line measurements or other
rapid calculations.

The alternative model presented here considers that a
polycrystal consists of collections of disoriented grains,
each group being described by its own orientation and vol-
ume fraction. This is in turn related to the observation that
a spread is generally found around the various texture
components detected experimentally. The misorientation
around a given ideal orientation is simulated® by means of a
Gaussian distribution of scatter width ay, illustrated in
Figures 2(a) through (c) for the wy = 0 deg (single crystal),
wy = 15 deg, and random orientation distributions, re-
spectively. The corresponding yield surfaces are calculated
by the Bishop and Hill method, the 7r-plane and shear stress
plane sections of which are given in Figures 2(d) through
(i). It can be seen that, for typical experimental spreads of
around 15 deg, the 7-plane section is approximately circu-
lar, whereas the yield locus in shear stress space remains
somewhat angular. Because of the circular nature of the
7r-plane section, the yielding behavior of such disoriented
grains can be represented by analytical functions of the near
quadratic type."

The CMTP approach involves the following steps:

(i) The yield surface pertaining to a collection of disori-
ented grains is considered to be represented by an analytic
function with parameters a;

METALLURGICAL TRANSACTIONS A
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Fig. 2—(a-c) {100} pole figures; (d-f) cross-sections of the polycrystal
yield locus containing two of the shear stress axes; and (g-f) w-plane
sections of the polycrystal locus, corresponding to a *perfect’ single crystal
with a scatter width w, = 0 deg, a *disoriented” single crystal with a scatter
width wy = 15 deg, and a random polycrystal, respectively.

F(Sjenon) = 0 (13]

The latter is expressed in the (100) axes of the ideal ori-
entation of interest and Syc, are the components of the
stress deviator tensor normalized by the critical resolved
shear stress.

(ii) The parameters o, of this yield criterion are estimated
by means of a fitting procedure applied to the crystal-
lographic loci. The details of this procedure are given in
References 2,8, 11, and 12.

A. CMTP Yield Functions

In the present work, two categories of yield function
are used:

Fi(S) = a{|Si — Sl + |Sy — S| + [S22 — S3l"
+ 2}81{|S|2|"1I i ’SzzrJT + |53!Im} = ] [14]

FiS) = ﬂ:{(su — 8z)* + (Su|— 553)2 + (S — 533)2}
+ 2B,{Sh + S5 + Si} + 29{[SkSy|
+ [SiSy| + [SuSxl} = 1 [15]

In the first case, the two different exponents n and m
are introduced to take account of the different behaviors
observed in the normal and shear stress sections (see Fig-
ure 2). The four parameters «,|3,, n, and m were calculated
so that Eq. [14] gives a good fit to the Bishop and Hill yield
surface pertaining to a collection of disoriented grains dis-
playing a dispersion wy = 15 deg about the (100) axes of the
ideal orientation. Such a procedure leads to:
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n =26 m = 1.5;

o, = 0,49 and S, = 0.62 [16]

If the exponents n and m are prescribed to be equal so as
to keep the vield function homogeneous in stress as well as
to simplify the application of the Taylor hypothesis," the
following result is obtained:

n=m=17,

a; =047 and B = 0.54 [17]

The form of Eg. [15] is based on a development of the
Bishop and Hill polyhedron, as discussed in more detail in
Reference 8. The parameters (a,, [3;, ¥2) were estimated in
a manner similar to the one described above and a ‘best’ fit
was obtained for:

=054 B,=060 and v,=020 [I8]

B. Comparison of the CMTP and Crystallographic Yield
Surfaces for a Disoriented Crystal

The validity of the present analytical representation will
now be tested in two different ways:
(1) by comparing the CMTP and crystallographic yield sur-
face sections pertaining to the crystal (100) axes; and
(ii) by comparing the corresponding stress and strain rate
characteristics.

The shapes of the 7r-plane and shear stress plane yield
surface sections are shown in Figures 3(a) and (b), re-
spectively, for the three criteria described above. For com-
parison purposes, the crystallographic results corresponding
to the w, = 15 deg orientation distribution are also given.
It can be seen that there is fairly good agreement between
the two types of loci. Nevertheless, the shear stress plane
section corresponding to the n = m = 1.7 criterion is
too rounded.

Plots such as those of Figure 3 give only limited informa-
tion on the complete shape of the yield surface in the full

Alm=n=17 F(n=26,m=t5) Fp

SO0

Fig. 3—(a) m-plane and (b) shear stress plane cross-sections of the crys-
tallographic yield surface corresponding to a disoriented grain (wo =
15 deg)andofthe Fy (n = m = 1.7),F (n = 2.6,m = 1.5)and F; yield
functions.

yield surf.
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five- or six-dimensional stress space. In particular, theyv do
not throw any light on the yielding behavior in the mixed
spaces where both normal and shear stresses are involved.
For this purpose, more complex two- or three-dimensional
sections have to be plotted. However, whereas such calcu-
lations are feasible in the case of the CMTP functions, they
lead to lengthy computations when the Taylor/Bishop and
Hill method is employed.

C. Comparison of the CMTP and Crystallographic Stress
and Strain Rate Ratios for a Disoriented Crystal

A complementary way of comparing the CMTP represen-
tation of a disoriented grain to the crystallographic model is
to calculate the yield stress o;(8)/c,(0) and strain rate
R(8) ratio curves for the two cases. The latter properties are
obtained in tensile tests carried out along different directions
6 in a {100} plane of the polycrystal under investigation.

For this purpose, the uniform strain assumption was ap-
plied.-to a set of 400 crystals representing a Gaussian dis-
tribution of scatter width w, = 15 deg about the reference
orientation. The associated loading conditions were speci-
fied by the ‘not-strictly-uniaxial’ stress tensor (g, ¥ 0)
(see Section II-A). The results of the R(f) computations
are shown in Figure 4(a) for the F\ (n = m = 1.7), F:
(Eq. [15]), and crystallographic yield criteria. For com-
parison purposes, some experimental R-values reported by
Viana and co-workers,” which pertain to a strong cube
textured copper sheet, are also given. It can be seen that
excellent agreement is observed with all three theoretical
analyses.

The predicted stress ratio curves are illustrated in Fig-
ure 4(b). The CMTP and crystallographic approaches
predict the same trends, i.e., an increase followed by a
decrease as the angle 8 is increased from 0 to 90 deg.
although the former representation calls for more variation
than the latter. Some experimental values of ¢y,(8)/0,(0)
taken from the work of Viana er al.'™'" are also presented.
The first set of values™ (A) is related to a very sharp cube
texture (severity parameter* = 8.57); the specimen in this

*The severity parameter is defined as the standard deviation of the
orientation distribution function with respect to that for a random matenal.

case is almost equivalent to a single crystal, as noted by the
authors. ” The second set of stresses™ (V) refers to a similar
component, but with a texture severity of 5.64: i.e., the
cube orientation is more dispersed, as confirmed by the
experimental pole figures. The stress ratio in the diagonal
direction is observed to be much higher (0.98) than in the
first example (about 0.77). Finally, the A symbols charac-
terize a cube textured sheet with a severity parameter of only
1.72. In this case, some secondary texture components are
also present in the material. Figure 4(b) shows that a still
higher stress ratio (1.05) pertains to a tensile test carried out
at § = 45 deg on this material. The CMTP calculations are
at best in qualitative agreement with the last data. This
indicates that the CMTP criteria are more suitable for stress
ratio predictions in materials with dispersed orientations
(spreads of around 15 deg) than for ‘near single crystal’
components. It can also be seen that the crystallographic
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Fig. 4 — (a) Strain rate R(0) and b) yield stress o (6)/ o (0) ratios calculated

from the Fy, (n = m = 1.7) (—eso—), F; (—sm@—), and crys-
. tallographic (—=+—) yield criteria for a collection of disoriented grains
A Wi(wy = 15 deg). Experimental data (A, ¥, ) from Refs. 13 and 14.
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calculations corresponding to such dispersions are in good
agreement with the last set of experimental values.

L

1V. YIELD SURFACES FOR TEXTURED SHEET

It was shown in the previous section that the strain rate
ratios pertaining to a collection of disoriented grains can be
obtained from simple analytical functions such as Eqgs. [14]
or [15] expressed in the (100) axes of the reference orien-
tation. The trends in the yield stress ratios, on the other
hand, appear to be overestimated. It will now be of interest
to consider how this method can be applied when several
ideal orientations (i.e., several sets of disoriented grains)
are present concurrently in a textured polycrystalline sheet.
Under these conditions, the yield locus can be calculated
as follows: .

(i) Foreach setof grains (i.e., for each ideal orientation),
the analytical yield surface is reoriented into the testpiece
axes by means of the texture information.

(i) The loci recriented in this way for the various texture
components of the aggregate are averaged (on a volume
fraction basis) using a suitable grain interaction model.

For this purpose, the yield surfaces are either combined:
(i) at constant stress ratio (Figure 5(a)). Here the same stress
direction applies to each crystal (Sach’s technique); or (i) at
constant strain rate ratio (Figure 5(b)). In this case, all the
grains are subjected to the same strain rate as the polycrystal
(Taylor model).

In each case, the strain rate or stress ratio has to sweep the
subspace of interest (shear stress plane, normal stress, or
m-plane, etc. ..) by increments, which can be varied de-
pending on the desired accuracy of the solution. Three-
dimensional loci can theoretically be treated in this way.
However, the two-dimensional sweeping which is then nec-
essary (a direction in three-dimensional space is char-
acterized by two parameters) renders the computations
unrealistically lengthy.® For this reason, only planar cross
sections of the yield surfaces were calculated in this study.

A. Contribution from the Randomly Oriented Grains

A polycrystalline texture frequently cannot be real-
istically represented by a limited number of disoriented
texture components. This is because as many as 10 to 20

Fig. 5— (a) Combination of two yield surfaces by the Sachs method. The
crystals associated with each of the loci experience the same stress direction
as the polycrystal. (b)) Combination of two yield surfaces by the Taylor
method. The crystals associated with each of the loci strain at the same rate

as the polycrystal.

pet of the grains remain randomly oriented in many de-
formed materials, as indicated by the more or less uniform
‘background’ observed in pole figures. For the present pur-
pose, it is necessary to incorporate the effect of this random
background by means of an analytic function representing
the yield surface of a random polycrystal.

If the crystallographic loci of Figures 2(f) and 2(i) (ran-
dom aggregate) are compared to the continuum surfaces, the
following comments can be made:

(i) In the shear stress plane (S, Sa) (,j, k = 1,2,3), the
yield locus of a randomly oriented polycrystal can be repre-
sented by a quadratic function

82+ 8k = Y} i,j =3,4,5 [19]
(ii) In the m-plane (Sy;, Sz, S3), the shape of the crys-
tallographic surface suggests a representation of the form

!Su - Sul'| + |Sn - -5‘33|"I + 1333 = Su‘" =Y [20]

It has been shown?® that the above three parameters (Y1, Y2,
and n) can be derived from knowledge of the Taylor factors
in uniaxial (M; = 3.06) and plane strain (Mpsy = 2.86) ten-
sion and from some symmetry considerations. This leads
to Y, = 0.953 \/g'rr, Y, = 1.349 \/g'rc, and n = 9. The
analytical functions derived in this way can be used to
represent the yielding behavior of a random aggregate in
the macroscopic shear stress and normal stress planes,
respectively. Similar exponents (m=n=26and m =
n = 8) were derived by Hosford"*'*"" to fit the yield sur-
faces pertaining to a random aggregate assuming {111} (110}
slip and (111)-pencil glide, respectively.
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B. Comparison of the CMTP and Crystallographic Yield
Surfaees Pericining 1o Textured Polyerystals

CMTP and crystallographic yield loci will now be calcu-
lated for actual textured materials. The two examples se-
Jected pertain to a Cu-20 pct Zn brass and an Al-killed
steel sheet. For the CMTP calculations, the texture only
needs to be decomposed into a small number of disoriented
1deal orientations. The brass sheet, for example, can be con-
sidered'® to consist of the Bs-{011} (211), Goss-{011}(100),
'/ and random components in the volume fraction ratios

< 64.9:17.1:18.0. The steel studied by Parnitre,” on the

other hand, can be estimated to be made up of 46 pct
{111}(110) + 23 pct {554}(225) + 15 pct {310}(001) +
8 pet {111} (112) + 8 pet {100}(011). By contrast, the crys-
tallographic approach requires the complete orientation dis-
tributions of the grains, as noted above. In the present case,
the latter were simulated’ by means of sets of 600 grains
distributed according to the various texture components,
volume fractions, and scatter widths observed experi-
mentally (Figures 6(a) and (b)). The appearance of these
representations i8 jllustrated in Figures 6(c) and (d), from
which it is evident that there is good agreement with the
experimental pole figures.

The #-plane sections pertaining to these aggregates were
calculated using both the Taylor and Sachs assumptions

(c) (d)

Fig. 6—(a) Expenimental {111} pole figure for a Cu-20 pct Zn rolled
sheet;'® (b) experimental {100} pole figure for Al-killed steel.” (c-d) Corre-
sponding pole figures simulated from the texture data (texture compo-
nent + volume fraction + scatter width). .
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(Figcure 5). The method described in the first part of this
section was applied to the F, (n = m = 1.7) and F; con-
tinuum functions. The crystallographic loci, on the other
hand, were evaluated by the classical tangent method
described in References 3,4, and 20. The results of these
computations are presented in Figures 7 and 8 for the brass
and Al-killed steel sheets, respectively.

As expected, the CMTP surfaces are considerably
smoother than the crystallographic loci. Nevertheless, the
F, predictions (Figures 7(¢) and 8(c)) are somewhat less
smooth than the F, loci (Figures 7(b) and 8(b)), and soms
rounded vertices as well as flatter regions can be detected.
It is of interest that the general orientations of the CMTP
surfaces are similar to those displayed in Figures 7(a) and
8(a). This is particularly striking for the case of the Cu-

e

Fig. 7
20 pet Zn sheet of Fig. 6(a). 6 refers to the angle between the §,; an
rolling directions. (a) Crystallographic calculations based on the orientatoz
distribution of Fig. 6(c); (b) and (c) CMTP predictions for the F, tn =
m = 1.7)and F yield criteria, respectively, corresponding to the followinz
distribution:" 64.9 pet {011}(2T1) + 17.1 pet {011}(100) + 18 per re=-
dom components.

w-plane yield surface cross-sections calculated for the Co-
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Fig. 8— m-plane yield surface cross-sections calculated for the Al-killed
steel sheet of Fig. 6(b). @ refers to the angle between the Sy and roll-
ing directions. (a) Crystallographic calculations based on the orientation
distribution of Fig. 6(d); (k) and (c) CMTP predictions for the F,
(n = m = 1.7) and F; yield criteria, respectively, corresponding to the
following distribution:® 46 pet {111} (170) + 23 pet {554} (225) + 15 pet
{310}{001) + 8 pet {111}(112) + 8 pct {100} (001},

20 pet Zn at 8 = 0 deg, where the polycrystalline locus is
oriented close to the S;; = 0 direction. Note also the lack of
convexity of the Sachs combinations (inner loci of Fig-
ures 7(a) and 8(a)), which is incompatible with the thermo-
dynamics of flow.

C. Comparison of CMTP and Experimental Loci
for Textured Polycrystals

We turn now to a comparison between the CMTP predic-
tions and experimentally determined yield surfaces. Here
the experimental results of Viana e al." (shown as tangent
lines) are used together with their CODF data for a 70 pct
cold rolled and annealed Ti-bearing steel. The texture com-
ponents as well as their respective weights are taken from
Reference 13. The results of these computations are shown
in Figures 9(a) and (b) for the Fy (n = m = 1.7) and F,
criteria, from which the good agreement is evident.

@ = ®

Fig. 9— Comparison between the experimental (oy,02) yield surface
cross-sections of Viana et al.™ for a 70 pet cold rolled and annealed
Ti-bearing steel and the predictions obtained from (a) the F, (n =
m = 1.7) and (b) the F; criteria. The curves are normalized by the uniaxial
yield stress a,. Texture data from Ref. 13. Quter locus: Taylor model:

inner locus: Sachs model. =

A similar set of results is presented in Figure 10 for
the recrystallized aluminum tubes tested by Althoff and
Wincierz.?! Here the 1 and 2 axes refer to the tangential and
axial directions, respectively. As suggested by the authors,”
the texture was decomposed into four ideal orientations:
{011}(111), (111) fiber (approximated by equal parts of
{112} (111) + {123}(111) + {134}(111)), {011}(611) and
{001} (310) (where {hkl} and {uvw) are parallel to the radial
and axial directions, respectively) in the volume fraction
ratios 5:3:1:1. The CMTP predictions normalized by the
uniaxial tangential yield stress are again seen to be in good
agreement with the measured loci. The experimental strain
rate ratios (tangents to the locus) are also well approximated
in this case. However, the near plane strain stresses (Eungenual
= () are somewhat overestimated.

V. THE PLASTIC PROPERTIES
OF TEXTURED SHEET

The stress and strain rate characteristics of a metal work-
piece can be readily deduced from knowledge of its yield
surface. More specifically, the locus size gives the ampli-
tude of the stresses, whereas its shape leads to the values of

b=

(a) (®)

an

Fig. 10— Comparison between the experimental (e, o) yield surface
cross-sections of Althoff and Wincierz®' and the predictions obtained from
the (a) F; (n = m = 1.7) and (b) F; criteria for recrystallized Al tubes.
Texture data from Ref. 21. The yield stresses have been normalized by the
uniaxial yield stress a,.



the strain rates, as obtained from the normality rule. In this
way, once the polyerystalline yield surface has been deter-
mined (see Section IV), vield stresses as well as Lankford
coefficients can be assessed geometrically, as illustrated in
Figure 11. The more direct methods described in Section 11
for the Taylor, Sachs, and Kochenddrfer models, because of
their computational simplicity, nevertheless lead to the more
rapid assessment of the stress and strain rate properties.

A. CMTP Prediciions for Selected ldeal Orientations

In this section, the strain rate and yield stress ratios per-
taining to the main ideal orientations observed experi-
mentally are first presented for the F, criterion. These single
component simulations are then compared to experimental
data reported in the literature. The two types of experiment
represented by the ‘not-strictly-uniaxial’ (¢, ¥ 0) and uni-
axial (€,; # 0) tensile tests (see Section II) are considered in
turn. The former will be used in conjunction with the uni-
form strain model, and the latter with the Kochendorfer
assumption. In Figure 12, R(6) predictions are illustrated
for the following ideal orientations: {100}(001) (cube),
{100} (011), {100}(012), {110}(001) (Goss), {110}(112)
(Bs), {111}(110), {111}¢112), {112}110), {112}(111) (Cu),

{123}(634) (S), {146} (211), and {554} (225). By ideal orien-
tation, we refer here_to the group of four sets of Miller
indices {hk} (wvw), {h k I} Gonw), {(hkI} Gevw ), {h k1) (v w)
necessary to account for the symmetry of rolling."**%

It is immediately apparent that some R(&) characteristics
widely observed experimentally are reproduced in these
predictions; i.e., a strong anisotropy is exhibited for the
cube, Goss, Bs, Cu, S, and {554} (225) orientations. Con-
currently, nearly planar isotropy is predicted for the {111}
component. It is also of interest that the_uniform strain
assumption leads to R(8) curves which are much less reg-
ular than those obtained from the Kochenddrfer model
(Figure 12). This is essentially due to the higher sensitivity
to the detailed shape of the yield locus (which can be quite
irregular in the case of the F, criterion; see Figure 3(b))
brought about by the use of the former type of interaction.

S33”

E(-rr.'z-e)

822

Fig. 11 — Caleulation of the yield stress o(8) and strain rate R(8) ratio
from a yield surface. o(8) is the distance from the origin to the locus along
the loading direction 5, and R(8) is deduced from the normal to the surface
at the loading point. o(w/2 — €) and R(sr/2 — @) are derived from the
charactenistics of the yield surface in the ., direction.
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It leads, for example, to the prediction of peaks in the
case of the {111} orientations which do not seem 1o be
observed experimentally. For reference purposes, and for
forecasting properties such as the limiting drawing ratio
(LDR), the values of the average R as well as the planar AR
strain rate ratios (as defined by Meuleman~) associated with
each of the commonly observed ideal orientations are listed
in Table I. It should be noted that certain texture com-
ponents with a common {kkl} plane have identical R and
AR values (e.g., {100}(001) and {100}(011)) and others
have different R and AR values (e.g., {100}(001) and
{100}(012)). The reasons for these two kinds of behavior are
discussed in Appendix 1.

In Figure 13, some R(#) predictions obtained with the F-
function are compared with experimental data pertaining to
highly textured sheet containing only one ideal orientation
(plus the three symmetrical components). It can be seen that
the Taylor and Kochenddrfer analyses alternately give al-
most perfect agreement with these data and that they are
both suitable for the estimation of the amplitudes as well
as the average levels of the experimental R(8) curves.
Comparison of the present F, and two-exponent (n = 2.6,
m = 1.5) F, results with the predictions published pre-
viously for the quadratic (n = m = 2*) and homogeneous
non-quadratic (n = m = 1.7") yield surfaces indicates
that better and better predictions are obtained as the yield
function is permitted to become more complex, i.e., as it
evolves from the quadratic, to the non-quadratic, to the
two-exponent, to the homogeneous F; formulation, the lanar
containing terms with the products of stresses.

B. Strain Rate and Yield Stress Ratio Predictions for
Polycrystalline Materials

The aim of this section is to illustrate the validity as well
as the limitations of the CMTP method for predicting the
R(8) and o(6)/0o(0) curves pertaining to polycrystal-
line sheets. Only the Kochendérfer analysis (Section II-C)
is used, as the uniform strain model involves more com-
putation and leads to similar predictions. The former was
applied to both the F, (n = 2.6, m = 1.5) and F, yield
criteria (Egs. [14] and [15]).

The texture data published by Hirsch er al."®® (texture
component + respective volume fraction) were used as in-
puts in the CMTP procedure. These data pertain to rolled
(R), partially recrystallized (P), and fully recrystallized (F)
Cu, Cu-5 pet Zn and Cu-20 pct Zn sheet. The R(8) predic-
tions are displayed in Figure 14, together with the experi-
mental data of References 18 and 25, shown as bars. It can
be seen that good quantitative agreement is obtained with
the measured anisotropy in the case of the recrystallized
materials. By contrast, the CMTP predictions underestimate
some of the experimental values pertaining to the rolled
sheet by a significant amount.

The copper-zinc system was also studied by Stephens,™
whose experimental R-values are reported in Figure 15. The
CMTP calculations based on the major texture components
given in Reference 26 are seen to reproduce the measured
anisotropy fairly closely. In contrast to the trends displayed
in Figure 14 for similar materials, a slight overestimation of
the Lankford coefficients is observed.

Two sets of data pertaining to bce metals were also chosen
so that the CMTP R-value predictions could be compared
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Fig. 12— Values of R(8) predicted by the CMTP method using the F; criterion for the common ideal
orentations observed experimentally. The symmetry requirements of the rolling process have been taken into
account: (—e-e—) Taylor assumption; (—A—&—) Kochendrfer model.

Table I. Average Strain Rate Ratios R = {R(0) + 2R(5) + ...2R(85) + R(90)}/36 and Planar
Anisotropy Ratios AR = {{R(0) — R| + 2|R(5) — R| + ... + 2|R(85) — R| + |R(90) — R|}/36 Predicted
by the CMTP Method for the Main Ideal Orientations Observed Experimentally

R

AR
Texture Taylor Kochendorfer Taylor Kochendarfer
Component Model Model Model Model
{100} (001) 0.408 0.528 0.288 0.302
{100} (011) 0.408 0.528 0.288 0.302
{100} (012) 0.339 0.460 0.339 0.096
{110}(001) 2.873 2.688 3.041 2.702
{110}(112) 1.240 1.351 0.386 0.464
{111}(110) 1.814 1.913 0.357 0.035
{111}(112) 1.814 1.913 0.357 0.035
{112}(110) 1.400 1.287 0.551 0.341
{112}(111) 1.400 1.287 0.551 0.341
{123}(634) 1:357 1.271 0.372 0.346
{146} (211) 1.195 1.138 0.358 0.332
{554} (225) 1.805 1.891 0.389 0.331

Account is taken of the symmetry requirements of rolling, and the

F, yield criterion is used with both the Taylor and Kochenddrfer grain interaction models.
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Fig. 13— Comparison of CMTP predictions (F; yield function) and ex-
perimental data (@) for various metals displaying the texture companents
indicated. (—8—) Taylor assumption; (—=—) Kochendorfer model. (a) Cop-
per with a strong {100}{001) texture.” (b) Iron single crystal sheet:
{100} (011} orientation.” (¢) Cold rolled and annealed low C steel:
{100} (012) orientation.” (d) lron single crystal sheet: {112}(1T0) orien-
tation.” (e) Cold rolled and annealed low C steel: {411}(148) orientation.”

with experimentally determined R(8) curves. These are dis-
played in Figure 16, where the work of Ito er al.” is dis-
played, and in Figure 17, where the results of Parniére® are
shown. It is evident from Figure 16(c) that the sharp R-value
variation is accurately predicted. However, in the case of the
other steels, the CMTP predictions underestimate the ampli-
tudes of the R(8) curves, although the positions of the R
extrema are well reproduced. The relative inability of the
present yield functions to reproduce the full extent of the
R-variations can be readily explained by their smooth nature
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Fig. 14 —R(8) curves for the following rolled sheets: (a) Cu-R. (b1 Cu-
5 pet Zn-R, (¢) Cu-20 pet Zn-R, (d) Cu-P, (¢) Cu-5 pct Zn-P, (f) Cu-
20 pet Zn-P, (g) Cu-F, (h) Cu-5 pet Zn-F, and () Cu-20 pct Zn-F. @)
Experimental R-values taken from Ref. 18. (—8-=—) F, (n = 2.6,
m = 1.5) and (—=-8—) F; criteria used with the Kochenddrfer model. The
texture data used are those reported in Ref. 18.

(see Figures 7 through 10), which leads to reduced fluct-
ations in strain rate through the normality rule. By contrast.
in crystallographic calculations,'? the R-value variations are
frequently too pronounced.

The results published by Stephens,?® Kallend and
Davies,®* and Svensson®®*! on yield stress measurements
pertaining to cold rolled and annealed sheet are shown in
Figures 18 through 20, respectively. The CMTP calcu-
lations carried out with both the F, (n = 2.6, m = 1.5)and
F; criteria are also illustrated. In the first two cases, famly
good agreement is obtained between the experimental and
theoretical stress ratios. Nevertheless, the anisotropy of
yield strength determined by Svensson in aluminum shezts
cold rolled to various reductions (Figures 20(a) and (b)! is
considerably overestimated by the two criteria used. This
can be attributed to the relative inability of the CMTP func-
tions to reproduce the ‘true’ yield surface in shear swress
space (see above).

VI. DISCUSSION
A. Some Practical Uses of the CMTP Method

The comparisons presented above between the CMTP znd
experimental R(8) curves show that good agreement is oo~
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Fig. 15—R(0) curves for copper and brass sheets; (@) experimental
R-values from Ref. 26. (—e&—) F, (n = 2.6, m = L.5) and (—S5—) F»
criteria used with the Kochendorfer model. The texture components em-
ployed are {311}{T12), {110}(112), and {110} (001} in different volume
fraction ratios.™

served when only a few texture components (say 3 or 4 plus
their rolling symmetries) need to be considered. The proce-
dure can therefore be useful when the effects of the relative
intensities of these 3 or 4 orientations must be assessed
rapidly, such as for on-line applications. For such a purpose,
3 or 4 X-ray facilities oriented along 3 or 4 specific Bragg
directions can be set up,’® linked to a suitable micro-
computer. The assessment of the relative weights of the
texture components is in this case very fast, as is the CMTP
estimation of the corresponding R(#) and/or o(8) curves.
The metallurgical parameters affecting the texture can con-
sequently be adjusted on line until the desired anisotropy
(or absence of anisotropy) is attained. For rolled fcc metals,
the orientations that play a significant role are the Bs-
{110} (172), S-{123}(634), Cu-{112}(111), and cube-
{100} (001) components; by contrast, the {100} and {111}
types of textures have to be investigated in steel sheet.
Some data regarding the time required on an IBM PC AT
microcomputer fitted with a DSI32 acceleration board to
calculate the strain ratio R(8), as well as the uniaxial
o(6) and biaxial o, yield stresses pertaining to a single
ideal orientation (including the four rolling symmetries) are
listed in Table II. The homogeneous F, (n = m = L.7),
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Fig. 16 —R(8) curves for cold rolled steel sheet; (@) experimental R-values
taken from Ref. 27. (—86—) F, (n = 2.6, m = 1.5) and (—&=—) F»
criteria used with the Kochendorfer model for steel sheets displaying
(a) 60 pet {111}3(0T1) + 10 pet {111}{11Z} + 10 pet {110}{001) + 20 pet
random; (b) 10 pet {110}(001) + 20 pet {111}{112) + 70 pet random; and
(c) 60 pet {110}¢001) + 20 pet {112}{1T0) + 20 pet random orientations.
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Fig. 17— R(8) curves for (a) an Al-Killed steel and () a rimming steel: (@)
experimental R-values taken from Ref. I9. (—8-%8—) F, (n = 2.6,
m = 1.5) and (—=-2—) F, criteria used with the Kochendérfer model for
sheets displaying (a) 54 pet {111}¢110) + 16 pet {111}(112) + 30 pet
{554}(223); and (b) 46 pet {111} (110) + 23 pct {554}(225) + 15 pet
{310}{001) + 8 pet {111}{112) + 8 pct {100} (011).
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Fig. 18— Yield stress ratio o(8)/a(0) curves for Cu and brass sheets; (@)
experimental stress ratios taken from Ref. 26. (—85—) F, (n = 2.6,
m = 1.5) and (—==—) F; criteria used with the Kochendérfer model. The
texture components used are the {311}{T12}, {110}{IT2} and {110}{001)
orientations in different volume fraction ratios.

inhomogeneous F;(n = 2.6, m = 1.5), and F, yield
criteria were used in conjunction with the (i) Taylor and
(i1) Kochendorfer grain interaction models. The large dif-
ferences observed are readily explained by the two-
dimensional sweeping of strain rate space necessary in the
case of the Taylor model, as well as by the numerical
(as opposed to analytical) inversion of the normality rule
required for the F; (n = m = 1.7) (as opposed to the F3)
criterion when employed in conjunction with the uniform
strain hypothesis. By contrast, the Kochendérfer method
leads to the rapid assessment of R(6) and o(6)/c(0)
curves and appears to be particularly suitable for on-line
measurements.

Another interesting application of the CMTP method in-
volves the series development of the analytic expressions for
the stress and strain rate components. For this purpose, the
orientation distribution function w(g) is used as a weighting
factor in the calculation of the mean plastic properties per-
taining to a polycrystalline aggregate. For example, the R(6)
value can be calculated according to the following averag-
ing procedure:

_ Iw(g)én(6, 8) dg
R{qupolymfs"a" J'w(g)é33(9. 8) dg

Here £..(6,g) and £33(0, g) are the CMTP expressions
(which can be assessed using the Kochenddrfer hypothesis)
for the strain rate components corresponding to a given
orientation g. A related technique has been employed at the
Alcan Laboratories® in Kingston, Ontario, in which R(6, g)

(21]
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Fig. 19—Yield stress ratio g(#)/c(0) curves for rolled and annezied
Cu and brass; (®) experimental stress ratios taken from Refs. 28 and
29. (—eo—) F, (n = 2.6, m = 1.5) and (—=8—) F; critena used wih
the Kochendorfer model for| (a) Cu rolled to 90 pct reduction with 30
pet {110} (1T2) + 30 pet {123}(633) + 30 pet {112}{I1T) + 10 pet ro-
dom; (b) Cu-10 pct Zn cold rolled to 90 pct reduction with 60 ~ct
{110}¢112) + 10 pct {123} (633) + 10 pet {111}{110) + 20 pct rzo-
dom; (c) Cu-30 pect Zn cold rolled to 90 pet reduction with 62 zct
{110}{112) + 10 pet {123}{639) + 25 pct random; (d) annealed Cu wih
70 pet {100}¢001) + 10 pet {100}(011) + 20 pct random: and (e} a-
nealed Cu-30 pct Zn with 20 pet {111} {112} + 20 pet {100}(011 —
20 pet {110} (112) + 40 pet random.

(instead of £,,(6, g) and £3;(6, g) individually) is expancad
directly and averaged using the OD function w(g).
Finally, it should be noted that the CMTP method is well
suited for FEM calculations. Most of the codes in service ze
based on isotropic, von Mises flow behavior. However.
when an anisotropic starting material is used, or when 2
workpiece undergoes large prior deformation, anisooorc
effects can strongly influence the flow when a further defer-
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Fig. 20—Yield stress ratio a(#)/e(0) curves for aluminum and steel
sheets; (@) experimental stress ratios taken fram Refs. 30 and 31 (—=—)
Fi(n =26 m=15)and (—=c } F> criteria used with the Kochen-
dérfer model for (a) aluminum cold rolled to 80 pet reduction with 40 pet
{(311}1(T12) + 40 pet {110}(1T2) + 20 pct random; (b) aluminum cold
rolled to 10 pet reduction with 40 pet {100}(001) + 60 pet random; and
(c) steel cold rolled 10 80 pet reduction with 50 pet {113} (131) + 30 pet
{001}¢110) + 20 pct random.

mation is applied. The employment of an anisotropic yield
criterion of the CMTP type can considerably improve the
accuracy of FEM calculations under these conditions with-
out adding appreciable computing time.

B. The CMTP Method: Advantages and Limitations

(i) Simplicity and rapidity of the procedure. Once the
main texture components of a deformed material are known,
the CMTP technique provides a rapid way of assessing the
corresponding R(0) or o(6) curves. This is because the
forms of the various functions allow the plastic strain rate
properties to be expressed analytically in most cases. This is
especially true when the Kochendérfer hypothesis is used
(Section II-C), which leads to results comparable to those

Table II.  Comparison of the Computing Times
Necessary to Calculate (@) per Ideal Orientation
(Symmetries Included) and per Angle 8, According to
Different CMTP Criteria and Grain Interaction Models

Yield Taylor Kochendérfer
Criterion Model Model
Fiin=m=17) 6.32 sec 0.12 sec
Fi(n=26,m=1.3) — 0.17 sec
Fa 0.61 sec 0.06 sec

obtained from the considerably less direct Taylor grain inter-
action model.

(i1) Limited number of orientations required to represent
textured maierials, The CMTP functions presented above
describe the yield locus for aset of disoriented grains with
an orientation spread of around 15 deg. For general poly-
crystal predictions, the texture of a given aggregate can be
represented by the superposition of a limited number of such
sets of grains, each with its own CMTP locus. By contrast,
when the crystallographic method is employed, the full
CODF must be used since the Bishop and Hill yield surface
gives only the properties of a single cubic crystal. For the
accurate prediction of R(6), at least 600 grains are therefore
necessary in the crystallographic approach,® whereas less
than 10 (plus the rolling symmetries) are sufficient for the
CMTP procedure.

(iii) Acceprable R(6) and o) predictions. From all the
comparisons carried out to date, it appears that the CMTP
technique leads to good approximations of observed stress
and strain rate ratios, The average R-value (Table I) is gen-
erally better reproduced than the planar AR coefficient;
e.g., the high R(8) variations observed in rolled fcc metals
are frequently underestimated. This is essentially due to the
smooth nature of the CMTP functions, which lead to smooth
loci when the effects of several orientations present concur-
rently are combined.

(iv) Yield surface predictions. No final comment can be
made here regarding the accuracy of the CMTP predictions
of macroscopic yield loci. This is because a yield surface
has five dimensions in stress space, whereas the experi-
mentally determined yield strengths almost always pertain
to two-dimensional sections and provide only a very limited
representation of the overall yielding behavior. Never-
theless, the CMTP functions are unsuitable for reproducing
the strain rate features of the very intensely textured materi-
als which are almost equivalent to single crystals. In these
cases, there is some experimental evidence for the presence
of rounded comners on the yield surfaces, *?' a feature which
is not reproduced by the present CMTP functions. When
dealing with polycrystalline materials displaying larger dis-
persions around their various texture components, much
better agreement is found (Figures 9 and 10).

(V) Sources of error. The analytic nature (and therefore
the intrinsically ovoidal and ellipsoidal shapes of the yield
surfaces) is the most attractive aspect of the present method
as well as a source of error. However, the latter may not be
large. Indeed, when the yield surfaces are compared with
that pertaining to a set of disoriented grains,* a relatively
good fit is observed, although the function is somewhat too
smooth in certain regions, especially for highly textured
aggregates. The determination of the main ideal orientations
produced by rolling, and especially of their respective vol-
ume fractions, is also a source of error. Similarly, the per-
centage of the random component is difficult to estimate and
generally plays a non-negligible role in the prediction of
plastic anisotropy. Finally, errors are also associated with
R-value measurement. These are in part due to the non-
uniformity of the definitions found in the literature. The
initial definition by Lankford et al.* referred to the ratio of
the rotal strains in the width and thickness directions. How-
ever, the R-value expressed as a ratio of the incremental
strains is more relevant to the present analysis, and to plas-
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ticity theory in general. Experimentally, the R ratio depends
on the amount of strain at which it is measured, which often
varies from one investigation to another.*

ViI. CONCLUSIONS

The CMTP (continuum mechanics of textured poly-
crystals) method, first introduced by Montheillet et al.? for
the prediction of axial stresses in torsion testing, has been
generalized to permit the calculation of plastic anisotropy in
rolled sheet. New yield functions have been introduced, and
three different averaging techniques have been employed to
represent the various grain orientation distributions ob-
served in rolled fcc and bece metals. From this work, the
following conclusions can be drawn:

1. Two types of continuum yield functions were derived
according to the trends displayed by the crystallographic
yield surfaces described in an earlier publication.® Of
these, the two-exponent criterion Fy (n = 2.6, m = 1.5)
gives the bestfit to the shear and normal stress behaviors.
A second function F,, based on a partial development of
the equation of the Bishop and Hill polyhedron, gives a
good fit to the 7r-plane and to a lesser degree to the shear
stress plane cross-sections of the yield surface.

2. Yield surfaces as well as R(8) and o(8)/a(0) curves
pertaining to polycrystalline materials were evaluated by
considering three different grain interaction models:
(i) the Taylor approach, in which all the grains are as-
sumed to undergo the same strain as the polycrystal;
(ii) the Sachs model, in which the stress direction is
prescribed to be identical in all the grains of the aggre-
gate; and (iii) the Kochenddrfer hypothesis, in which the
uniaxial stress direction as well as the value of the £
strain rate component are prescribed for all the crystals.
Among these, the lattermost one, which allows for much
faster computation than the Taylor approach because
of an almost completely analytical description of yield-
ing behavior, appears to be the most promising for indus-
trial purposes.

3. Good agreement is observed between-the predicted
CMTP yield surface sections and experimental data for
various metals when the orientations have dispersions of
around 15 deg. However, the present method is unable to
reproduce the rounded comners and flat edges of the ex-
perimental loci pertaining to polycrystals which are so
sharply textured that they can be considered as near sin-
gle crystals.

4. The strain rate R(8) and yield stress o(6)/o(0) ratios
pertaining to rolled sheet were calculated for the common
ideal orientations observed in both fcc and bee metals.
The general features of empirical R(8) curves are given
a ready analytical formulation in this way. When com-
pared to experimental data pertaining to polycrystalline
sheet, the CMTP calculations lead to good estimates of
the R(6) and o(8)/a(0) curves. However, the average R
value is generally better reproduced than its variation
(AR) with angle @, especially in the case of rolled fcc
sheet. The positions of the extrema in the strain rate ratio
curves (which give the locations of the ears in deep
drawn cups) are also well approximated.

Ln

. Finally, it is suggested that the F, and two-exponent F|
(n = 2.6, m = 1.5) criteria can be readily used fer
on-line control purposes when a Kochenddrfer (law of
mixtures) analysis is employed. This is because the plas-
tic anisotropy present in the material can be linked
analytically and in a rapid way to the main texture com-
ponents as well as to their respective weights.

APPENDIX I
Effect of {hk!} of ideal orientation on R and AR

Two ideal orientations {hki}{uvw) and {hkl}(u'v'w")
with a common {kk!} direction parallel to the sheet normal
are generally expected to have similar R and AR values.
There are, however, numerous exceptions to this general
rule, as will be seen below. For demonstration purposes,
it is convenient to compare the R(6) curves for the Goss
({110}(001)) and brass ({110}(112)) texture components.

The R(8) curve pertaining to the Goss {110} (001} orien-
tation, as given by the F, function, is illustrated in Figure
Al(a). This orientation is one for which a single set of Miller
indices is sufficient to respect the orthotropy conditions that
apply to rolled sheet:?

R(-8) = R(6)
R(w-0) = R(6) [Al]

The R(8) curve corresponding to the orientation (110) [112]
is shown in Figure Al(b) (full line). This curve is similar
to the previous one, but is displaced from it by an angle
6, = 35 deg (i.e., the angle between the (001) and {112)
directions). It is evident, however, that the symmetry condi-
tions of Eq. [Al] are not respected in this case. The latter
requirements are generally satisfied by recognizing that an
ideal orientation can consist of as many as four distinct
orientations (hkl) [uvw], (hkl) [uvw], (hkl)[uvw], and
(hkl)[uvw]. Nevertheless, in the case of the brass orien-
tation, only two sets of poles are necessary, i.e., (110) [112]
and (110)[112], whose R(6) plots are displayed in Fig-
ure Al(b) (full and broken lines, respectively).

The R-value corresponding to the orthotropic texture =
(110) = [112] can now be calculated by taking a suitable
weighted (0.50) average over the two equivalent sets. For
simplicity, we employ below the Kochendérfer analysis.
although the Taylor approach could also have been used; this
leads to:

£.{(110) [112]} + £,{T10) [112)}
£{(110) [112]} + £.{(TT0) [112]}

R(8) = [AZ]

The R(8) curve calculated in this way is depicted in Fig-
ure Al(c). It can be seen that the symmetry conditions of
Eq. [Al] are obeyed, but that the shape and maximum am-
plitude of the composite R(8) plot both differ consider-
ably from the ones associated with the Goss componznt
(Figure Al(a)). As a consequence, the R and AR values are
also very different (see Table I). It can thus be concludad
that the average R and planar AR strain rate ratios corre-
sponding to two orthotropic textures having the same (ki)
direction parallel to the sheet are not necessarily similar.
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Fig. Al —(a) R(8) curve for the Goss texture ({110}{001}) as calculated
using the Kochenddrfer assumption and the F; yield function. Note that
R = 2.7. (b) R(8) curve calculated as in (a) for the (110) [172) (full line)
and (TT0) [172] (broken line) components. These are shifted to the left and
to the right, respectively, by about 35 deg with respect to the R(8) curve
in (2). (c) Average R(6) curve for the {110} (112} texture as calculated from
the yield surfaces periaining to the two components required by the sym-
metry conditions. Note that R = 1.35 differs from that obtained in (a) for
the single component texture and that the scale has been changed.

The above reasoning can also be used to clarify the con-
ditions under which different ideal orientations with a com-
mon {hkl} plane are indeed associated with the same values
of R and AR. This applies, for example, to single orien-
tations that are both self symmetric and whose R(8) curves
therefore: (i) can be deduced without performing sum-
mations such as those of Eq. [A2]; and (ii) only differ by
being displaced by the anuln 8, corresponding to the rota-
tion from (vw) to {u'v’'w') (compare {100}(001) and
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{100}{011) in Table I). A variation of the above argument

can be shown to apply to the other two compaonent textures
in Table 1, namely the (111)[110] and (111)[112] textures
on the one hand, and the (112)[110] and (112) [111] on the
other. Here, each member of a particular pair is related to
the other member by a simple rotation of 8, = 90 deg and
the type of summation involved in deducing the R (6) curve
is not changed by the rotation. Although not shown in detail
here, these arguments can be extended to four component
textures, including the ones shown in Table L.

In summary _then, textures with common {hkf} indices
have the same R and AR values as long as (i) they belong
to the same symmetry class (i.e., when they all have either
one, two, or four orientation components), and (i1) when, in
the latter two cases, all the individual components are ro-
tated by the same angle (i.e., in a type of ‘rigid body’
rotation).
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