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Summary

The kinematies at large elastoplastic deformations are analyzed within the framework
of a general macroscopie constitutive theory with tensorial structure varviables. The key
concept is the distinetion between the kinematics of the continuum and itz underlying
substructure. The proper definition of physically plausible corotational and corodefor-
mational rates tor the kinematical and state variables. shows the equivalence of the effect
that the choice of an unstressed configuration has, on the transformation of these variables
and their rates under superposed rigid body rotations. Along these lines. issues debated
in the past are given definitive answers. and comparisons of different approaches ave
presented.

1. Introduction

The macroscopic constitutive formulation at large elastoplastic deformations
has been a much debated subject in the mechanies community. To understand
the fundamental reasons for this debate, one must first distineuish the two
important aspects of the subject matter: the kinematies and the kineties. The
kinematics pertain to the geometrical aspects of the elastic and plastic mech-
anisms of deformation. and their effect on the values of the structure variables
which characterize the material substructure. The kineties address the question
of the constitutive rate equations of evolution for both the kinematical and
structure variables. Thus the principal reasons for the aforementioned debate,
in our opinion. are two. First. the analysis of kinematics in most theories does
not distinguish between the kinematics of the continuum and the kinematies of
the underlying substructure. The absence of distinetion is du¢ to the influence
of the elasticity theory. where the kinematies of the continuum and its sub-
structure are determined by the same transformations. The second reason is the
incomplete way the coupling between kinematies and kineties has been accounted
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for. in order to reflect physical reality. Hence. the present work can naturally
be divided in two parts, the kinematies in part 1 and the kineties i part 2.
However. this section must be considered as an introduction to hoth parts.
because they are intimately interrelated.

The debate on the subject matter has been related in the past with a number
of specific issues on which different researchers disagree or follow different ap-
proaches. The present work attempts to offer an answer to these issues. But the
presentation does not focus on that aspect only: rather a general theory is
developed systematically. mostly influenced by Mandel’s work [1]. [2]. and along
the lines of development answers to the different issues are provided. ("onse-
quently, a number of other aspects of the general theory which have not been
discussed in the past are examined. Nevertheless. as an indication of the points
of interest. the following are among the issues to be addressed. not necessarily
in the order presented. in both parts of this work.

1. The effect of the choice of the unstressed configuration: is there any/

2. The effect of “full” or “partial " invariance requirements under superposed
rigid body rotation at the current and unstressed configurations.

3. The additive decomposition of the elastic and plastic parts of the velocity
gradient.,

4. The effect of the rate choice for the stress and the structure variables.

5. Prager’s preference for Jaumann rates. based on the stationarity of ixo-
tropic invariants.

G. Differences and similarities between Mandel's and Onat’s approach.

7. The notion of director vectors in Mandel's work: are they necessary !

8. Difference between hardening and purely orientational structure vari-
ables.

0. Distinetion between material isotropy and analytical isotropy of consti-
tutive functions.

10. Residual stresses and their role on a physically acceptable definition of
the unstressed configuration.

Although answers to some of these issues have been presented in the past.
they were either incomplete or not viewed within the general and complete
constitutive framework presented here. Furthermore, some issnessuch as number
10 for which Aris Phillips has so much contributed with his experimental work.
require the introduction and investigation of the effect of novel concepts. such
as the effectively unstressed configuration.

In reference to notation. tensors will be denoted usually by boldface char-
acters in direct notation. Assuming the summation convention over repeated
indices, the following symbolic operations are implied: ac=>«;;6;, a:6=>a;;0;;.

a 6= ;0. a® o=>a;oy. with proper extension to different order tensors. The
prefix tr indicates the trace. a superscript 7' the transpose and a —1 the inverse,
subscripts s and « the symmetric and antisymmetric parts, and a superposed

dot the material time derivative or rate. Under an orthogonal transtormation
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Q. the notation @[b] implies the corresponding transformation of the tensor b.
e.g. @b]=QbQ" if b is of second order, and Qb)= @b is b is of first order
(vector). I

2. General Concepts

The mapping of the neighborhood of a material point from a reference con-
figuration K, to a current x. is determined by the deformation gradient F ac-
cording to dx= Fd X. where d X and dx are material line segments at x, and «x,
respectively. While this conclusion is merely geometrical in nature. it requires
further elaboration in order to become useful in a constitutive theory. In elas-
toplasticity the distinctly different kinematical mechanisms of the elastic and
plastic deformation processes, can be best described by the multiplicative de-
composition F= F'F' formally introduced in continuum mechanics by Lee and
Liu

3]and Lee [4]. In reference always to an infinitesimal material neighborhood.
it states that the x, is mapped first into an unstressed (relaxed or intermediate)
configuration by the plastic part F', which reflects the kinematies associated
with plastic deformation only: subsequently the unstressed configuration is
carried into the current . by the elastic part F'. embodying the kinematies
associated with the elastie deformation. Hence. a geometrical decoupling between
elastic and plastic kinematies is achieved. providing the proper framework for
the development of realistic constitutive relations reflecting the different physical
characteristics of elasticity and plasticity.

However, the situation is not as simple as it may appear at first. While the
definition of K, and x is unequivocal. the multiplicity of the possible unstressed
configurations from the point of view of their orientation and the corresponding
effect on invariance requirements. gave rise to lengthy discussions. arguments
and counterarguments [5]-[8]. Mandel [1]. [2] addressed this problem by intro-
ducing a triad of director vectors embedded in the material substructure, whose
orientation in reference to a fixed cartesian coordinate system defines the ori-
entation of the relaxed configuration. whichever it may be. The concept of
director vectors has been eriticized because while it may be well defined in cases
such as a single erystal, it is not well defined for polyerystals or other complex
material structures. Assuming that the material substructure can be macro-
scopically defined by a collection s of tensorial structure variables. Onat and
co-workers [9]. [10] have very simply stated that the orientation of s defines as
well the orientation of the corresponding configuration. and material symmetries
are direct consequence of the symmetries conveyed by the tensorial nature of
s. Note that Mandel [T]. [2] has also introduced tensorial structure variables s
in defining material symmetries. but preferred to use the director vectors conecept
as the primary orientation tool. In fact Mandel’s and Onat's approaches of
defining the orientation are not in conflict. Assuming the possihility to describe
the material symmetries by s in reference to the director vectors, and using the
representation theorems for isotropic functions [11]. Dafalias [12].[13] has shown
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that the explicit presence of the director vectors in the constitutive functions
of Mandel's theory disappears, and the Onat’s definition of orientation is re-
trieved. While this may suggest that the director vectors are redundaney..
recall that the foregoing is valid only if it is possible to reasonably well describe
the material substructure by means of s, which is the case for most materials.
If the material substructure is so defined that does not conform with specific
symmetries describable by orthogonal transformations which leave certain s
imvariants. it is necessary to introduce a triad of director vectors in reference
to which all constitutive functions can have a specific analytical description.
not withstanding the elusiveness of the definition of such triad. The concept of
director vectors will be reexamined in the sequel from a slightly different per-
spective than that of Mandel's.

3. Continuum Versus Substructural Kinematics

Mandel’s great contribution in setting up a kinematical macroscopic frame-
work in relation to the multiplicative decomposition of F. is not <o much the
introduction of the director veetors (it has already been seen how one can in
general dispense with the direct definition of them [12]. [13]). but the underlyving
cause for such introduction. Motivated by single ervstal plasticity, Mandel
wanted to emphasize the difference of the kinematics of the continuum from
the kinematies of its underlying substructure in elastoplasticity. It is in this
sense that Mandel’s work parts from the work of Onat and co-workers [9]. [10].
and in fact converges with corresponding suggestions made by Kratochvil [14].
[15]. Havner | 16] describes this concept of velative kinematices for metals as “the
movement of the macroscopic material relative to the underlving crvstalline
structure”. and the same theme underlines the work of Nemat-Nasser and Mehr-
abadi [17] in defining the fabric and related kinematies for eranular media. The
key novel quantity emerging from such a distinetion of kinematies/is the concept
ol plastic spin which has been the primary focus of recent papers by Dafalias
[1Z]. [13]. [18]=[21] and Lovet [22]. Simply put. the plastic spin is the difference
of the rate of rotation (spin) of the substructure from the rate of rotation of the
continuum (material spin). This ix in direet analogv to the definition of the
plastic rate of deformation as the difference of the substructural rate of defor-
mation (elastic) from the rate of deformation of the continuum. The plastic spin
is determined by proper constitutive relations, as does the plastic rate of de-
formation. During the elastic deformation, the kinematics of the continuum and
its substrueture are determined by the elastic part of F. but are not necessarily
identical to each other. The definition of the spin of the substructure as the
difference between the material and plastic spins is very important bheeause the
law ol evolution of the structure variables s (which in fact define the substructure)
must. therefore, be expressed in terms of rates involving corotation with the
substructural spin in reference to a fixed cartesian coordinate system. To he
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precise, the embedding of s with the elastic deformation introduces the so-called
corodeformational rates [20], [21]. used in their evolution equations. which in-
clude both the corotation with the substructural spin and the conveetion with
the elastic deformation. These concepts have already been presented and will
be further elaborated.

The question of the non-uniqueness of the unstressed configuration, however.
has not been answered vet. The authors in [1], [2]. [18]-[22] presented their
development utilizing different such configurations. and it may appear as if they
followed fundamentally ditferent approaches. Tt is one of the major objectives
of this section to show that the same final result is obtained. whichever choice
of the relaxed configuration is made. To this extent. the following important
concept must be developed. One can integrate the spin of the substructure
(defined before as the difference between material and plastic spins) to obtain
an orthogonal tensor. This tensor can be thought as representing the rotation
of a director-vectors triad from the reference to the current unstressed config-
uration. whose spin reflects in a global sense the substructural spin. Notice the
important conceptual difference from Mandel’s original suggestion: here the
director-vectors triad is not defined by being related to some specific substrue-
tural characteristics (although it may be in particular cases/ such as the single
slip mechanism or orthotropic symmetries). but has been analytically derived.
Henceforth. this definition of the director-vectors triad will be used only as an
auxiliary tool in defining the corresponding spins at the different unstressed
configurations.

At the risk of becoming redundant. it is thought important to comment once
more on the following. One may question the necessity to define such a triad of
director vectors since. after all. the orientation of the unstressed configuration
can be defined by the orientation of s ([9]. [10]). This line of thoucht. however.
neglects the fact that is not just the orientation which is of importance. but
even more are the relative spins of the continuum and its substructure as dis-
cussed carlier: the so-defined divector vectors will help us to visualize and an-
alytically describe these spins. Along the same lines one also can propose to
consider the rotation of s from the reference to the unstressed configuration as
a measure of the substructural rotation. This is true and coincides with the
rotation of the director vectors as defined above. only if the s are purely ori-
entational in nature, e.g. the normal to the slip plane or the principal axes of
persisting orthotropy. In the general case. however. the s arelevolving tensorial
structure variables whose principal directions (eigenvectors) change not only
due to the substructural spin (a rigid body spin). but also due to the appearance
of “shear™ rate components along the existing principal divections which alter
their eigenvectors and eigenvalues (a “constitutive spin™). A tvpical example is
the case of a backstress tensor in kinematic hardening, considered as a tensorial
structure variable. Only the analytically “induced™ by integration. rotation of

the director vectors can globally account for a meaningful substructural rotation.
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with the s being purely orientational or not ([13], [19]. [21]). At this point the
reader should not form the idea that the rotation of the director vectors is the
primary focus: this is only a conceptual derivation, while the key to the devel-
opment is the constitutive equations for the plastic spin. Once the plastic spin
is 50 determined. it will automatically provide the substructural spin by sub-
traction from the total material spin, without even being necessary to define
explicity the director vectors. The concept of relative continuum-substructure
spin (i.e. the plastic spin) is relevant only for anisotropic materials with preferred
disrections: for isotropic materials the plastic spin is zero, as it can be easily

shown ([1]. [2], [15]). [18]. [19]).

4. Analytical Description of Deformations and Rotations

The foregoing will be described analytically and illustrated by the schematic
diagrams of Fig. 1 a, b, Figure 1 a shows the reference configuration K,. the current
K and three unstressed configurations x,. k,. and K;. On each one of theses
configurations the director-vectors triad. obtained by the intearation of the
substructural spin, is schematically shown by two orthogonal axes with arrows.
Notice that in all but the current con ficuration k the axes are shown us straight
line segments indicating their rotation. while in the axes are “hended™ (but
still may be orthogonal in a curvilinear sense) indicating their elastic embedding
which takes place during the transformation from each one of the unstressed to
the current conficuration. The configuration x, is the most general having an
arbitrary orientation: the elastic part F* of the deformation gradient Fincludes
both rotation and elastic stretehing. The configuration x, (used primarily in | 6].
71 (9L 101 [12].113]. IS=[21]). is such that the elastic part Vot Fis symmetric,
=yl including only elastic stretehing. The configuration ; (nsed primarily
in |22]) is the so-called isoclinic configuration [1]. |2] and is so detined that {he
cdirector vectors at k; have a fixed orientation in reference to a global systen.
conveniently chosen if desired to be the same as the corresponding orientation
ol the director vectors in K. Henee, the substructures at K, and K; may have
the same orientation (although the s defining the substructure have in general
evolved from K, to k; by constitutive laws). The concept of the isoclinic confie-
uration has been reinvented in a recent paper by Dashner 23], called the reference
cell. The elastic part FS of Fincludes both rotation and stretching. The plastic
part of Fin reference to k. x, and «; is represented by F¥, Pand F!'| respectively,
The principal streteh directions are shown as orthogonal line-segments (withont
arrows). discontinuous for the plastic part of Fat x,. x,. K, and k;.|and =olid for
the total Fat x and k, (notice their different orientation). None of the foregoing
principal streteh directions are the ones associated with the elastic part of F
(not shown for simplicity).

While Fig. 1 a illustrates the kinematies of the continuum, Fig, 1h represents
schematically the kinematies of the substructure via the transformation of the
divector vectors, FFrom x, to K, K, and K. the substructural transformation is
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(a) CONTINUUM

K

i (b} SUBSTRUCTURE

Fig. 1a.b. Schematie diagram of the kinematics of the continuum and the substructure

represented by a rotation expressed by the orthogonal tensors B,. B and B;.
respectively (BT =,p,T = BB = I(identity)): notice that B; = Ilconsistent with
the definition of the isoclinic configuration k,. From x,. x, and k; to x. the
substructural transformation is properly determined by the continuum elastic
transtformation given by F*. Vand F, respectively. but is not identical to it in
the sense that the transformations of material and subst ructural line segments
are, in general, differently related to the elastic part of F. An example is the
transtormation of the slip and the normal to the slip-plane directions in single

crystals [20].
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Employing now the polar decomposition for the elastic an plastic parts of
F. with a self-evident notation, one has for the continuum (Fig. 1 a)

F=FFr=VR,R:U=F:F'= VR R U= VR*"[I= VP. (1)

The Vand U are the elastic left and the plastic right stretch tensors. re-
spectively. In a similar way. denoting by F, the deformation graclient applied

to the substructure, one can write (Fig. 1b)
F,=F'p,=VR,p,=F;= VR = V. (2)

Given x and k,, and the specific definition of «, and ;. clearly the V. U,
R''= R, R, = R;R!. R;. R! are unique, and consequently so are the P= R [
F;=R/'Uand F; = VR!: but the F'= VR and F*= R U are not unique due
to the arbitrariness of k. Tt is of utmost importance now to realize the fact that
in each configuration the substructural rotation is different from the continuum
plastic rotation. the latter expressed analytically by the orthogonal part of the
polar decomposition of the plastic part of F. It means that B,#= Ry PR and
Pr=1I# R for x,. x, and k.. respectively. This observation may be considered
the single most important one among the kinematical concepts developed =o
far: it is illustrated in Fig. Ta where the pairs of solid seements with arrows
(substructure) and discontinuous segments (principal plastic streteh directions
of the continuum) have a ditferent relative orientation at K, and any one of k.
K- K (where they have the same). A very simple example has heen presented
i [ 19]: considering a deck of cards Iying on the table one ¢an “shear™ them
inducing a large “plastic rotation”™ of the continuum aspect (the deck of cards).
but the underlying substructure. expressed by the normal to the plane of the
cards. has not rotated at all. Tn fact. it follows casily from Eqgs. (1) and (2) that

. . i _ ) o .
V=FR,=FR" p=R:=R'p,=R"R (3)
Notice that in all the preceding elaboration it was never necessary to refer

to the polar decomposition of the total deformation gradient F,

5. Analytical Description of Rates of Deformations and Rotations (Spins)

[n this subsection the definition and interrelation among the different rates
of deformation and spins will be established. To thisextent. the general definition
of the corotational rate of a representative second order tensor a and vecelor m

with respeet to a spin Q is given by

E_ DDm

=4—0Da+ald: =m— Qm. (+.1-2)
i

Based on the definition of B,. B. and B,. the corresponding substructural spins
(rates of rotation of the director-vector triads) in the configuration x,. k, and

K; are given by

m, = I-iu a{ W= BBT: W; = Bf' ﬁ:ﬂ =0 ("h)
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respectively, where clearly @; = 0 since by definition f; = I always. The rates of
deformation and rotation and the rates of the structure variables used in the
constitutive relations at the unstressed configurations. must be thought as taking
place in reference to the existing substructure since the [latter. and not the
continuum, is the supporting element [21]. Hence, it is necessary to define the
corresponding corotational with the substructure rates for these quantities. re-
ferred to any fixed cartesian coordinate system. Here, these rates for the ki-
nematical quantities will be introduced. In order to avoid the general but cum-
bersome notation D/Dt, Eq. (4), the corotational rates with respect to @, and
@ will be denoted by a superposed 2 and o, respectively: the corotational rates
in reference to the director vectors in the isoclinic configuration are simply the
usual material time derivatives because @, =0. On the basis of the foregoing
definitions, in particular the way of attachment of the different (quantities with
the substructure at the different configurations, it follows that

Fr=F+Fouo, F=F-quF (6.1-2)
V=V-0V+ Va: P=P—oP (6.3-4)
R,=R;+ R0, o=R,R=RR"+R o R (6.5-6)

Notice that the form of corotational rates for the second order tensors entering
gs. (6) do not conform exactly with the definition, . (4.1). This is because
these are two-point tensors with their two indices attached to different config-
urations. Hence. since the spin @, or @ applies to the director vectors in one
configuration (k, or k). it is only the corresponding index attached to the spinning
triad which brings-in the corotational aspect (the + or — i;n Kgs. (6) depends
on whether the relevant index is the first or second). Nntaiinlv exception is the

corotational rates for V. Eq. (6.3). because when the directar vectors at ¥ spin

., 8
by @. so do also at k given the fact that by definition the lJl'ilI'l.R])Hl't from ¥, to
K involves only distortion (elastie embedding) without rotation: hence, both
indices of ¥V bring-in the corotation of V in reference l'ql a fixed cartesian
coordinate system. Using Egs. (2) and (6), it can be shown that

F‘_ If’:‘:“l — F: };1,: b F(, F: | — o + ‘,r‘_r—|_ (T]}

- T r— R — LT o i
FeFrFr F =F.F'F! F'=vyvpp~l W, (72)
It is interesting to observe that Kq. (7.1) represents the \'elm}'it}' vradient of the
substructure, F,F7 ', hence. no plastic rate of deformation Or spin appears.

Based on Kqgs. (1). (6), and (7) the total velocity gradient FF™! can be
decomposed as tollows
FF~'=FF '+ FPrFpr'pol = F"F“__J + ﬁ“’ﬁ"’_F*”_]F" (8.1
=FF "+ F P F =0+ VW' + VPP VL,



128 Y. . Dafalias:

Observe that Iiq. (8) can be obtained by adding the corresponding terms of
[Egs. (7.1) and (7.2). i.e. adding the plastic velocity graclient (IEq. (7.2)). to the
velocity gradient of the substructure (Eq. (7.1)). Taking the svmmetric anc

antisymmetric parts of Fe. (8) one has
(FF~'),= D= D"+ D’ (9.1)
(FF~ '), = W= Wi+ Wr=0+ W'+ W (9.2)

with the definitions for the elastic and plastic rates of deformation and Spins

D¢, Dr, W*and W’ at the current configuration x given by

D= (FF), = (R, = (V- b (10.1)
W= (F* F*™), = (FYF7'), = o + (VY1) =0 4 W (10.2)

Dr=(FPrF Bl = (RE R R = (VPP V). (103)

~ S .'

Wr = (F R ), = (PR R ), = (VPP - s (104

It is interesting to observe four points in relation to s (8)-(10). First. that
the rates of deformation and spins are expressed in three cquivalent ways using
the elastic and plastic deformation gradients pertaining to the three intermediate

unstressed configurations. Second. that these expressions involve the corre-

sponding corotational rates F*. FP. V. P in reference to K, and K. and not the
usual material time derivatives: this is based on the concept bf the spinning
substructure as discussed earlier. and it will be of fundamental importance in
studying the constitutive invariance under superposed rvigid hody rotation. No-
tice that for Fy and FY' the material time derivatives and the cofotational rates
coineide since 0; = 0. Despite the apparent similarity. the pairlof F£ F¢ " and
Ff’F‘:’_] express totally different concepts from the pair of F*F " and Free '
the former, but not the latter. are properly invariant due to theldefinition of k;
as it will be shown subsequently. A third interesting point. which CNPresses o
personal preference of the author and has been pursned in [ 1214131, | 19]-121].
is that the decomposition of the rates using the configuration &, offers creater
clarity. especially in reference to the spin terms, From Eq. (9.2) it follows that
the total material spin 1 in additively decomposed into the tigid-hody sul)-

structural spin @. the elastic spin FF* caused by the antisvmmetrie part (PV 1,
of the substructural elastic rate of distortion. and the plastic|spin WP, The
appearance ol @ as a part of B is explicit only in reference to x,. while it ix
implicit (hidden) in the second and thivd members of Eq. (10.2)if one uses the
K, and &, The W# =+ " has been often called the elastic spin. Tn addition.
the use ol K, makes easier the study of small elastic deformations hy setting

V=T[13]. [20H21]. while by using Kk, or k; one must set F*~ R or FS~ RY.
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The fourth point of interest is that the definition of the plastic rate of deformation
D" and plastic spin W? at ., involves the corresponding elastic deformation
gradients F*, F{ and V in reference 1o x,. k; and x,. This has been a point of
considerable concern in the literature [6]. [7], [24]-[26], with arguments and
counterarguments on the validity of the additive decomposition of D, Eq. (9.1).
However, the intervention of the elastic deformation gradients is expected since
the plastic rate of deformation and spin occur first in the intermediate config-
uration (whichever it may be). and the elastic deformation gradients simply
transport the plastic kinematical rates to the current configuration. This point
of view has been assumed in Mandel’s work [1], [2] and made explicit by Nemat-
Nasser [26]. The “purity™ of D” (and WP”) as only plastic, has been correctly
debated by Lee et al. [6]. [7]. [24]. but as long as the foregaing arguments on
elastic transport are understood and incorporated in the constitutive relations,
there is no other but semantic reason in continuing this debate. In fact. the
“purely plastic” definitions of the plastic rates of deformation and plastic spins
in reference to the three intermediate configurations k. K, ahd k; are given by

D= (Ff’ Fr Y. D= (PP—I)_\.: D! = (F'Fy Y (11.1)

-

Wr= (FrFrYy,. We=(PP™"),: W'=(F'R l),, (11.2)
where the used notation is self-evident. Based on the polar decomposition and
Eqs. (6) and (7). one can interrelate the above quantities according to

D;=R,D,R,=R;D{R": W, =R,WiR =Ry W/R"  (12)

[t must be pointed out however from Eq. (10.3). that it is/not the transport

of D} alone from K, to k. but the symmetric part of the transport of DY + W

which yields the D”. The fact that the W7 at K, contributes viia its transport to

the value of D7 at x. must not be surprising: it occurs in the fundamental

mechanism of single slip. as it will be seen in the second part of this work [27].

The foregoing point applies also for the W?”. and in reference to any other
intermediate configuration.

6. The Elastic Embedding

In what follows the procedure developed in [20]. [21] is presented, but instead
of restricting the presentation in reference to x,. all three intermediate config-
urations will be examined with emphasis on x,. as being the most general. It
will be shown that identical results are obtained at the end. irrespective of the
choice of the intermediate configuration.

The material state will be defined at the current configuration x in terms of
the Cauchy stress o (temperature is omitted for simplicity) and a collection
s={a.m.k} of structure variables. which for the sake simplicity will be restricted

to be second order tensors a. vecetors m and scalars L. The ¢ and s are the actual
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current values of the state variables. The s are transported by the elastic de-
formation gradient to the corresponding unstressed vonﬁgtlmtiun in a number
of different ways, depending on their physical meaning. This elastic transport
is called elastic embedding [20], [21], and the transported structure variables
will be symbolized by §= {A.M K} for tensors, vectors and scalars. respectively.
For example, in reference to x, one may have the following transports of s:

Contravariant: A= |Flepe g M= |F|"F 'm (13.1)
Covariant: A= |F|"F"'aFe; M= |F'|"mF" (13.2)
Mixed: A=|F|"F aF"; A=|F|"F aF" (13.3)
Sealar: N=|F|"k (13.4)

where w is the weight. if s1s a relative tensor. and |F¢| denotes the determinant
of F*. Similarly the transport of ¢ will be denoted by Il and can be obtained
from Lqgs. (13) by substituting ¢ and IT for a and A, respectively. The most
common stress transport used in relation to the elastic constitutive laws. is the
2nd Piola-Kirchhoff stress tensor. defined by TT=|F|F* " '6 F*7" in reference to
k,. If the transport is in reference to x, and ;. it suffices to substitute Vand
F¢_vespectively, for F* in Eqgs. (13) and in the transport of ¢ (the use of 7 wax
tollowed in [20]. [21]). Hence the transported A. Mand ITin the three unstressed
configurations differ only by rotation and can be interrelated bazed on Kqgs. (3).
F'l =T¥]=|E:

There is. however. a difference of physical importance between the embedding
(or transport) of a structure variable. such as A= |F'["F* 'aF ' and that of
the stress tensor IT=|F|F "6 F"~". When the stress ¢ varies in the current

while the A is the same since

configuration ¥ without causing any plastic loading (which would imply plastie
constitutive changes). the F* also varies due to the clastic deformation change
following the ¢ variation. This simultancous change of ¢ and] F* will cause a
change of T1. consistent with the elastic relations (to be presented in [27]. part
2). However, due to its elastic embedding the a will vary in snch a way. that
in combination with the variation of F© will keep the 4 unchanged (apart from
possible rotations). This is in fact the full meaning of the elastic embedding
which transports the a into A. and will be reflected in their constitutive rate
equations.

Anticipating the formulation of the rate constitutive relations tor the strue-
ture variables, consider a typical example for the corotational with the sub-
structure rates of a contravariantly elastically embedded second order tensor,
in reference to all three unstressed configurations. ITn what follows. a superposed
# and 7 denote corotational rates with respect to W* and PL rexpectively. a
superposed v denotes the convected derivative of relative tensors (for w =T and
contravariant embedding it vields the Truesdell derivative). and a superposed
20].

0 denotes the so-called corodeformational rate 21]. Then. based on Lgs.
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(4). (6), (9). and (10), one has for

Ko A=|F|"F'aF"; A=|peprpe g peit (14.1)
Kyt A=|Vry-lgy!. A=|yry-1§ p-1 (14.2)
Kii A=|F"F'aFe™'. 4= |Fs| Fe~' 3R (14.3)
K: B=d—a F"_Ti}"'ljl = F“ Felat watr D
=a—av- ! f- yy- a+watrD" (15)
=d—aF "F'-FF 'atwatr D

= ;"’f— aD'"— D'a+ watrD®

and with
2=d—aFTF —FP-'3+4 vatrD= a—aD-Da+watrD (16)

the subtraction of Kq. (15) from Eq. (16) yields. using Eqs. (9) and (10).

Yy 0 . ) N
Aa=a=—(@D'+D'a)+ (aWr— Wra) + watr D, (17)

Similar expressions can be obtained for the rates of the stress tensors. with
¢ and IT substituting for a and 4. respectively, and w=1. in Eqs. (14)~(17).
What is really important in the above equations can be seen in the second part

of Eqs. (14): it shows that the corotational rates A. A. A in reference to the
corresponding substruetural spins (@, for k,. @ for x,, ®; =0 for k;) are related

; . a . . _
to the corodeformational rate 3. in the same wav as 4 is related to a. Hence.

= A % z . . ;
when a=0=4=A4=4=0 and vice-versa. reflecting analytically the content
of the discussion following Eqs. (13) on the meaning of the elastic embedding.

Fhe name corodeformational stems from the fact that any value ot @ will rep-
resent a change of a apart from the changes due to the corotation with the
substructure and the elastic embedding with it, i.e. a true constitutive change.
This will be a key point in the subsequent formulation of constitutive relations.
; “ 0 ; . | . ,
Observe from Eq. (15) that the 2 can be expressed in a variety of equivalent

al

ways. but it is unique. It is also interesting to observe in Eq.|(15). that while

|
the corotational rate a is used in conjunction with Vat x,. it is the usual rate
d and not a which must be used in conjunction with F* at x,. The explanation

of this seemingly inconsistent point must he sought in Igs. (14.1) and (14.2).

When 3 is related to A at K,. Eq. (14.2). one must recall that the substructural
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spin @ applied to A at k, must also apply to a at k. due to the very definition
of k, (V= V7 ie. the substructures at k and K, spin by the same amount): hence
the appearance of 2 in Eq. (15). But when 3 is related to 4 at K. 8. (14.1).
the substructural spin @, applied to 4 at K, does not effect|a at k., due to the
independent spinning of the substructures in K, and x; hence. the appearance
of d. Of course in reference to K; all corotational rates are the usual rates since
®; = 0. Based on the definition (16). which in fact can be derived from 4 =

|FI"F~'aF~T = 4 = IF""F"::F_"", Eq. (17) will allow tg relate & and § in
the following. Similar relations to Eqs. (14)=(17) can be obtained for all other
kinds of embedding of tensors. vectors and scalars hut are not presented for
hrevity.

A point which is worth mentioning is that in the develapment no explicit
appearance of a plastic strain measure arises as a primary variable of the theory:,
Clearly one can define Almansi plastic strain measures A7, A IoAT in reference
K, Kk, k. by A} = RIAIR) = RIAIR" = (1/2)|1- P~ TP~ =t
2)R"P[I— U 2R (the equalities follow from Bq. (1)), and consider them s

one of the 8 Subsequently. such a plastic strain measure can|be transported at

ne

the current configuration k as one of the s, For example. cansidering the A7
one candefineat k thea?= V=42 y—1 = (2 V>=F T Tt is interesting
now to observe that in a Lagrangian description the s will be transported from
K to k.. Along these lines the a” can be transported at x, as 4/ = FlarF= (1
2)|PTP—1I|=(1)2)[F" Fr—J= (1/2)[U* = I]. which is nothing else but the
(ireen plastic strain measure hetween K, and any one of the intermediate con-
figurations. Notice that such Green measure was not introduced as a primary
variable of the general theory. as done in other works. but simply followed the
initial introduction of an Almansi measure (appropriate for an Eulerian descrip-
tion) and its subsequent transports to the current and the teference configu-
rations. Whether or not, however, such a plastic strain measure in any one of
the aforementioned forms can play an important role in definingithe substructure.
i.e. can be considered as one of the 8. is a debatable question. Nevertheless, if
such a conclusion can be reached. the use of an Almansi plastic strain measure
is recommendled as one of the S [20]. because it is referred tol an intermediate
configuration where also all other § are referred to (semi-Eulerian description).

It can be shown that its corotational rate is given by Al = DI — (ArDr +
DiAL) — (APWE — WPAY). it one chooses the K, configuration: hence. its

evolution depends on the constitutive equations for D? and Wr [207, [21].

7. Transformation Under Superposed Rigid Body Rotations
In proposing a constitutive relation it is necessary to impose the restrictions
derived from invariance requirements under superposed rigid body rotation.
henceforth abbreviated as s.e.b.r. Therefore, one must know how the different
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quantities and their rates transform under s.v.b.r.. and this will be the objective
of the present section. The question whether invariance requirements must be
imposed at the current configuration only, or at both the durrent and inter-
mediate, has been debated in the literature [5]-[8]. [23]. Tt will be shown that
such a question does not arise if one uses the concept of substructural orientation

and spin. In fact the problem will be studied in each one of the three unstressed
configurations. vielding the same results at the end.

Henceforth. assume that the current configuration k is subjected to a s.r.b.r.
described analytically by the orthogonal tensor @(f). The arbitrariness of the
orientation of the configuration ¥, allows us to assume that it is subjected to a
s.r.b.r. deseribed by a different orthogonal tensor @, (1) [5] (in| the following the
notation for the dependence of @ and @, on t will be suppressed). By its very
detinition the isoclinic configuration x; is not affected by a @ occurring at the
current configuration x. i.e. the corresponding rotation @ = I Similarly. the
definition of x,. linked by Vwith k. necessitates that when x|is subjected to @
so does x, in order to maintain the symmetry relation V= ¥7|7]. Bea ring these
physical observations in mind and denoting by a superscript *|a (uantity trans-
formed by s.r.bor.. the following relations can be stated

For the continuum at

K, F"=@QF Q" Fr=g,Fr (18.1)
K, V= QVQ": P*= QP (18.2)
K. Fi5 = QF:: FY = F’ (18.3)

IFor the substructure at

Ij: = erBH . (19.1)
K, B*= QB (19.2)
pi=8=1 (19.3)

For the substructural spins at

Koeoor=Bib = Q0,0+ @,Q! (20.1)
Ko of =f " = QuQ" + QT (20.2)
K;: @ =ao;=0, (20.3)

Next. based on Eqs. (6). (18) and (20) and the relation Q_QT-% Q" =0 for
QQ" =1 the transformation under s.r.b.r. of the elastic and plastic rates of
deformation and spins will be derived in relation to the use of each one of the

three intermediate configurations,
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In relation to x,

M

B

=P+ Pl = QR T+ QF QT + QFe Q' + QF: Q7 (@, T+ Q0,Q"

= QIF +F'0,]Q] + QF Q" = QF Q" + gF: o7 (21.1)
BV = B = ) P = QUEY+ 0,F0~ (4,07 + 0,0, Q1) @,
=@q,(F" - o,Fr) =g, o (21.2)
PP = qF Q1 Q1 @7 + GFe @l g, ! o (21.3)
= QF' P Q" + QT
Frpre = g vy gr (21.4)

Fpr prt Pl = QEeQl Q ket @7 @, Bl QT (21.5)
— QP P Fr BT

In relation to k,

i;’:i:

P

= P — WF P P gy

=0T QVQT+ QYO — (0Q" + Q™) QYT + RQVR"(QQ" + Qo)

RIV—oV+ Vo]Q" = QveT (22.1)
= P'“ —i@* PR = QP+ QP— (QQT + Qm(g?) QP
=Q(P-oP)= QP (22.2)

VEVT = QuQT Qu-1 @F = @iy @7 (22.3)
PeP = Qpp-1 @7 (22.4)

VEPEPTIV = QVQT QPPT QT QU1 QT = QVEP-1 11 @7, (225

In relation to x;

P = QF; + QFy; PV = p (23.1)
JfIJ:n—I I

FF™™ = QF;F;7' Q" + g@", FU R = FrEr (23.2)
D A A ) 9 4 v Fel QT (23.3)

It follows now from Egs. (21)=(23) and the definitions given by Eqgs. (10)
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and (11), that for the unstressed configurations

K Di'=Q.DiQl: Wi=q,wiQ! (24.1)
K, D= QDT Wi =Qwr@r | (24.2)
Kio DPFf =Dy W= wr (24.3)
and for the current configuration
k: D"=@QDQ"; W= QW Q" (25.1)
D’ =QDrQT. wrr=Qwr@’. (25.2)

-

Hence. we have reached the im portant conelusion represented by Eqgs. (25).
that whicheveris the choice of the unstressed configuration the elastic and plastic
rates of deformation and spins at the current coonfiguration are properly in-
variant. Le. they transform only by the corresponding rotation @, This was based
on the physical requirement for full invariance under s.a.b.r. [3] for the choice
Ky. or partial invariance for the choice k, [6]. [7] or k; [1]. [2]. The equivalence
of the final result. Eqgs. (25). should therefore put aside all the arguments and
counterarguments presented in [5]-[8] because it shows that each one is correct
it viewed from a proper perspective. Equally important is the conclusion rep-
resented by Eqgs. (24). namely that the plastic rate of deformation and spin at
the unstressed configurations are properly invariant in reference to the corre-
sponding rotations. that is @, for x,. @ for K, and I for ;. These conclusions.
and the ones represented by Ks. (18) and (19). play a fundamental role in the
formulation of the constitutive relations, as it will be seen subsequently.

The importance of the foregoing conclusions can be hettor appreciated if one
attempts to define the elastic and plastic rates of deformation an spin without
using the proper corotational with the substructure rates of the different de-
formation gradients, as erroncously has been often sugeested inl the literature.
Indeed. referring to Kq. (8.2). it is straightforward to show nsingllﬂq. (I18.1) (full

invariance requirement [5]) that

|
F[.'-? F,.s;—l = .F"F"_ 1 Q’F‘ = QQ /A (JFl Qe{ Q.” F ! (.”‘Ir (2{)1}
B = QR QT+ 4] 26

FOFPrpr F' = QF FrFr ' F' Q" + @F- QT g, P Q7. (26.3)

Identifying now the elastic and plastic rate of deformation and spin in reference
to K as the symmetric and antisymmetric parts of the velocity gradients of Eqs.
(26.1) and (26.3). and the plastic rate of deformation and spin in reference to
K, similarly from Eq. (26.2). it i< seen that the proper invariance under s..b.r.
is not satisfied (compare with Bgs, (24.1) and (25)). Similar conclusion negating

proper invariance is reached using 1q. (18.2). if one works in reference to K,

with PV~ PP~ and vPpP—'y—! instead of VW ~!. PP~V and VPP 'V 1,
Fgs. (10). .
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Next, the transformation of the structure variables and their rafes uncler
s.bor will be studied. The computations are straightforward and are based on
S¢s. (18) and (20)=(25). and the fact the 4 and a rotate with the substructure
unders.r.b.r.. Hence. omitt ing superfluous algebra one can sliow that in reference
to |

ki A¥=Q,4Q0: A= dqr (27.1)
K A*=QAQT: 1= gdg” (27.2)
Kii A*¥=Ad: Ax= 4 (27.3)
K: a%=@QaQT. Fr=gdgT. Y= Q297 (27.4)

O o
Forexample, the a* = QaQ" can be casily obtained by the |last expression for
Q. & . G g . ; ;
ain Iiq. (15). and Eqs. (25.1). Similar transformation under sir.h.r. are obtained
for vector valued structure variables and their rates. e.g.inrefl to k, M* = QM.

(8] . - . - - O & 0 v o ]
M* = QM. and in reference to x m*=@Qm. m* = Qm and m* = QOm.

8. Conclusion

The first part of this work has addressed in detail the analysis of the kine-
matics of hoth the continuum and jte substructure in large deformation elas-
toplasticity. Emphasis was placed on formulating the analytical deseription of
the kinematics in reference to cach one of three possible definitions of {he un-
stressed conficuration. ang showing that a unigue analytical formulation i
obtained in reference to the current configuration. as physically expected., Ty
particular the transformation of the difforent kinematical and structure variahles
and their rates under superposed rigid hody rotation was studjed i detail. The
obtained results will he strumental in obtaining restrictionk on the form of
the constitutive equations to be presented in the second part of this work. dealing
with the kineties of the problem. Although a number of the issies listed in the
introduction were addressed. the complete answer to all of them will be given
i the development of the second part. This is because many ol these issuoes
cannot be answered. or their effect cannot be fully understood, unless they are

considered from both the Kinematies and kineties points of view :-‘irn|1H‘u|w<m.~'-'i_\'.
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