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Summary

The coupling between kinematics and kinetics and the invariance requirements under
superposed rigid body rotations, determine unambiguously the proper general form of
the elastoplastic rate constitutive equations, in terms of the values of the| state variables
and their rates in reference to the current and any choice of the unstressed configuration.
Topics such as the effect of changing the stress rate, small elastic deforqlat-ions with or
without large volumetric elastic strains, rate effects and viscoplasticity, an example on
single slip, the effect of the plastic spin constitutive relations and the concept of an effec-
tively unstressed configuration, are addressed in detail. Issues and different approaches

debated in the past are discussed, compared and clarified. ‘

1. Introduetion

In the first part [1] the kinematics were analyzed and the way paved for
the development of the kinetics in the constitutive formulation of elastoplasticity

: o . . N "
at large deformations. The important coupling between kinematics and kinetics

had already been implicitly introduced in the first part, by definin!g the meaning
of the different corotational and corodeformational rates of the structure variables.
This coupling is of utmost importance for a realistic const-itutive! development.
The notation here will be the same as in the first part.

The constitutive equations can be formulated in reference to any one of
the different configurations, the reference zx, (Lagrangian description), the
current » (Bulerian description) or any one of the unstressed configurations
%4, %o, #; (Intermediate or semi-Eulerian description). It must be stated at the
outset that whether Lagrangian, Eulerian or semi-Eulerian, the% description is
always material in the sense that the constitutive statements refer to the material
neighborhood of a specific material point considered in any one oﬁ the aforemen-
tioned configurations, and not to a control-volume element occupied by different

material points at different times (spatial description). Hence, 'th% term Eulerian
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must be interpreted here as implying a description in terms of !tlle true current
values of the related quantities.

One important point is that whichever may be the configuration choice,
the corresponding constitutive statements automatically im’pl.y!r, via the kine-
matics, some equivalent statements in relation to all other ccninfiigumtions, since
a physical phenomenon cannot depend on the mode of des:;criiption. What is
at stake, however, is the proper accounting of the physies <:3fit11e phenomena,
described by the constitutive relations. Although in principle one can make

constitutive statements at the reference configuration i,, he runs the danger
of obscuring the physics of the constitutive reality by the intervention of plastic
kinematical variables such as P, P or F?, geometrical entities which are “inert”
for the most part in relation to the on-going evolution of the sf;m%cture variables.
The physies of the phenomena involved, can be better understood and realistically
describred if one works in terms of the current “true” values of the different
quantities, i.e. in a Bulerian description. Then, of course, the Eulerian formulation
can be properly transported at s, yielding the corresponding Lagrangian descrip-
tion.

In an Eulerian type of description one is faced with the multiple choice
of configurations, that is the current » or one of the intermediate zx,, =, and z;,
with the requirement of course that the final result must be the same. Again
the physics of the sitnation dictates that some of the phenomena, such as the
clastic relations, lend themselves to an initial constitutive statement at one
of the unstressed configurations, while others, such as the yield criterion, are
better described initially at the current configuration x. The elastic embedding
will always serve as a link between current and unstressed configurations, and
will be used in order to have finally everything expressed in terms of current
values at x (purely REulerian description). Along the lines of development a
number of particular topics such as the effect of changing the stress rate, small
elastic deformations with or without a large elastic volumetric strain, rate effects
and viscoplasticity, an example on single slip, the plastic spin constitutive
relations and the concept of an effectively unstressed configuration, are all
addressed in detail. '

2. Mathematical Preliminaries and General Conciepts

It will be expedient to discuss some mathematical generalities pertaining
to certain properties of constitutive functions in general, so that repetition
can be avoided in the sequel. These functions can represent yield criteria, elastic
potentials, rates of deformation and spins, etc. Hence, such a representative
function will be denoted by f(IT, S) being scalar, vector or tensor valued; equiv-
alently the arguments could be ¢ and s in the current configuration (recall
that 77, S or &, s are the stress and structure variables in reference to an un-
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stressed or the current configuration, respectively). The tenso
variables S can be either purely orientational, such as the unit
their tensor produets thereof) along the axes of orthotropy, or ca
tensors with variable eigenvalues and eigenvectors, such as the |
a measure of plastic deformation. Tt will be seen that no distinctio
from the point of view of mathematical representation, and only
evolution will distinguish the purely orientational variables fror
These other structure variables, in addition to their hardening ¢
which distinguish them from the purely orientational ones, have also
characteristics (e.g. their eigenvectors).
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material is and remains isotropic. If § = 0 initially (which means they cannot
|

be purely orientational, because the latter are non-zero a,hx{ay!rs) but become

non-zero subsequently, the material is isotropic in reference | to its initial un-
stressed configuration, but anisotropic in reference to subseqt ent relaxed con-
figurations. If all S are purely orientational, the initial symme[tries persist in
reference to subsequent unstressed configurations. The general! case of purely
and non-purely orientational or hardening S, the latter being| zéro or non-zero
at the initial unstressed configuration, describes initial and evo!vilflg anisotropies.
Hence, everything is taken care by the proper choice of S, and the Told-fashioned”
way of thinking in terms of groups of orthogonal transformations which define
symmetries can be abandoned, since it is already incorporated in the isotropic
dependence of f on IT and S according to the modern theorems on!represantation
[2], [3]. These theorems provide the general framework for tl}e dependence
of f on its arguments in terms of proper generators and isotropic scalar invari-
ants [9].

As it was shown in the Appendix of [10], the 1sotropy of f allows us to write
the relation

Df  of DI of DS

DT D TS i &
for corotational rates according to Eq. (4) of [1] in relation to any &, including
L2 = 0, and with the understanding that D/Dt implies the ma.ter:ial time deriv-
ative for scalar valued quantities. Eq. (1) will be proved very useful in the
sequel.

Although it will be assumed in the following that the material substructural
characteristics can be described by S, which will imply the isotropy of f, it is
instructive to briefly discuss the case where such a description is not possible.
In other words, the f can assume a particular analytical form valid only in ref-
erence to a particular coordinate system, the director vectors [11], defined
by & = 3,"x from the fixed cartesial coordinate system @, if one decides to
use x, as the intermediate configuration (equivalently in what follows, the
3 or 3; = I would substitute for 3, if the configurations x, or \;, respectively,
were chosen.) Thus, one has f(I7, S), where II, $ are the state variables in ref-
crence to &, related to their representation in reference to z by I = 8,713,
S = B.7[S]. Notice that the use of S (or part of them) must not| be any more
such as to define initial symmetries, because then the mathematical theorems
in [3] will render f isotropic function of its arguments. The quantity represented
by f in &, will become B3,f(3.7 113, 8.7[S]) 8.7 in @, and it can immediately be
seen that if f were isotropic, the B, would disappear in the @ representation,
retrieving the previous results [12]. If f is not isotropic, the ex?sténce of B8, in
the x representation is necessary, and f8, must be calculated by the integration
of w, = 3,8.”. Notice that under a superposed rigid body rotation expressed
by Q. the fact that B.* = Q,8,, II* = Q.11Q,” and S* = Q,[S], [1],
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validates the form invariance of f(I1, S). In other words, mvamance requirements
under superposed rigid body rotations do not impose any restnctlon on the
form of f(IT, 8) because everything is referred to a rotating cooridmate system
and such invariance is automatically satisfied. This type of descripltion is compli-
cated because of the presence of 3,, and has been advocated in general by Mandel
[11]. Fortunately for almost all materials of interest one can make the assumption

that the S can account for initial and subsequent symmetries, I'lA which case f
becomes finally an isotropic function of IT and S without the p:resence of 3.,

result not forseen by Mandel. The latter approach was proposed by Onat et al.
[6], [7].

3. Rate Equations for the Plasfic Kinematical Variaples
With J7T, S defined at », the constitutive equations for the I')lastic rate of

deformation and plastic spin at x, are given by [10]
|

DP = (D NPT, S at =); WP = (1) QP S at x,)  (2.1;2)
|

where 7 is a scalar loading index associated with a yield criterion, both to be
defined subsequently, and () are the Macauley brackets such that (2) = 1 if
4> 0and () =0if 2 < 0. Based on [1, Eq.(24.2)] and the fact that [7*= QI Q"
and S* = Q[S] upon a superposed rigid body rotation it follows that necessarily
N,? and £,7 are isotropic functions of their arguments IT and S Recall now
the discussion following [1, Egs. (13)] whereby referring to [1, Eqs (3)] it can
be shown that the IT, S at the relaxed configurations differ only by rotations
defined in terms of R,” and R. Hence, based on the isotropy of the N,? and
using [1, Eq. (12.1)] and (2.1), it follows that D, = (i) R,*'N, p(H S at z,) R
= (2) N’(IT, S at x,), where R,® “IT (at x,) RS = IT at x,, and R[S at x,] =
at x,, were used. Employing similar arguments at both », and »; in con]unctlon
with [1, Egs. (12)] and (2) we have

DP =M NFUIT,S at #); WP =)L, S at| x,) (3)
D? = (&) NP(II, S at =x;); Wif =) LP(IT, S at| x;). (4)

Eqgs. (2), (3), (4) represent the equivalent constitutive statements about the
plastic rate of deformation and spins in reference to x,, %, and %iy respectively.
Notice the important fact that the same functional forms N,” and Q,” are used

in all three configurations, the difference being only that the awlrument-s I, S

enter by their representation in the corresponding configuration. 1
In order to transport Egs. (2), (3), (4) to the current conflguratwn %, one

can define first symmetric and antlsvrnmetx ic tensor NP and £7, rqspectwely, by
N? L QP = V[N (II,S at x,) + (I, S at »,)] 1
= F [N, S at x,) + (1T, S at =,)] E* (3)

= FfINP(II, S at ;) + LI, S at ;)] I'; jo=t
|
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|
where the above equivalent definitions are based on the isoti*clpy of N,?, 2.7
and the relations among the I, I, F;°, [1, Eq. (3.1)], and among !the I, S at the
different configurations. Hence, choosing the proper definitiiox!l from Eq. (5),
each one of the Egs. (2), (3), (4) in conjunction with [1 Egs. (lq.é), (10.4), (11.1),

(11.2)] yields
D?P = () NV(II, S at x,); WP = (& VI, S at z,). (6.1, 2)
|

The NP and £7 are isotropic functions of I, S at %, because V (éxs it will be shown
later), N,? and 2,7 are also isotropic functions. Recall now that|the elastic en-
bedding relates the IT, S at %, to g, s at ». For example, one has g=|V[1viv
and @ = |V|™" VAV according to [1, Eq. (13.1)] with ¥V substitiu?ing for I’*. The
above relations express fully a, « as isotropic functions of 7, A, since 1™ is iso-
tropic function of 77, A. Thus, in principle, they can be inverted and express
IT, A (or more generally 1T, S), asisotropic functions of g, @ (or more generally
G, s). Hence, Eq. (6) can be rewritten with N? and .Q” being 510w (different)
isotropic functions of the state variables ¢, s at the current con'figumtion.

4. Rate Equations for the Structure Variables

The procedure for obtaining the rate equations of evolution for the structure
variables at any one of the three intermediate configurations is the same as
for the plastic rate of deformation and spin. The important fact is to remember
that these equations of evolution must be expressed in terms of rates which
are corotational with the substructure. i.e. the corresponding director vectors at
the chosen relaxed configuration, Hence, one can equivalently state

S =y S(IT, S at %), or (7.1)
L -

= () S(I1, S at =,), or (7.2)
S = (7) ST, S at »;) (7.3)

where S is an isotropic funetion of its arguments; such isotropy follows from
the form invariance requirement for S under superposed rigid| body rotations,
and the transformation of S and its corotational rates under such rotation as
shown for a second order tensor A in [1, Egs. (27)].

In order to transport Egs. (7) from the corresponding intermediate configuration
to the current configuration x, one must refer to [1, Eqgs. (14)—(17)] and the
discussion thereof. From [1, Eq. (14)], exemplifying the situation for a second
order relative tensor contravariantly embedded, it is seen that any constitutive
statement on the corotational rate of A implies automatically a corresponding

m]
statement for the corodeformational rate @ of a at ». In addition, (1, Egs. (16)
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and (17)] can be used in conjunction with Egs. (6) in order to change the consti-

, . o ; .y
tutive statement made in terms of @, to an equivalent constitutive statement

made in terms of &. The following express analytically the foregoilng equivalence

o 4

A or A or A={()A(,S at », or #u OF z;, respectively) (8.1)

(]
a = (A a(l, s at x,) (8.2)
& = (2) (@ — (aN? + NPa) 4 (a QP — Q%) 1 wa trV?) (8.3)
@ =|VIT"VA(ILS at x,) V = [F|~" F'A(IT, S at x,) F*

(8.4)

= |F|"" FLA(I, S at x;) F~.
|
In reference to Eq. (8.1) it can be shown, as done in [1, Eq. (12)] for the kine-

. A .
matical variables, that A = R AR, — RSAR®", where of course A is being
referred to the corresponding unstressed configuration for each member. It is
important to emphasize that whatever is the choice of the inte!rmediat-e con-

figuration (to which 4 refers), and the corresponding corotational rate in Eq. (8.1),
one single constitutive statement is made at the current configuration x in terms

O
of @ or a, The @ is an isotropic function of its arguments as it follows from its
equivalent three definitions, Eq. (8.4), and the isotropy of A andi V, F°, F¥ in

reference to I7, S. Following similar arguments to the ones a,pplield to N7, QF,
the @ can also be expressed as an isotropic (different) function of ¢ and s. For

later use, observe that Eq. (8.2) applied to any kind of stmcturei variable can

be expressed as . = (1) 8. |

Eq. (8) show clearly the full effect of the elastic embedding arlld the use of
rates corotational with the director vectors. They are by far the most important
and influencial contribution of the whole theory, with the most novel feature
being the presence of the plastic spin via 27, which explicitly enters Eq. (8.3)
and implicitly the rest. Egs. (8) render irrelevant all past and on-goiﬂg discussions
about the proper choice of corotational and convected rates for the structure
variables. For example, Eq. (8;1) is a very clear statement that the constitutive

change of 4 at any intermediate configuration must be corotatio!nal with the

substructure and not with the continuum aspect of the material. Similarly,
the equivalent Eq. (8.2) states that the constitutive change expres!sed from the
viewpoint of the current value @, must account not only for the corotation of
the transported 4 at the intermediate configuration, but also for the influence

of the elastic embedding occuring from intermediate to current configuration,

hence, the use of 3, Eq. (8.3) is simply the result of mathematical manipulation
based on kinematics.

The meaning of these equations can also be understood when ne considers
the case of unloading, i.e. 2 <0 and (2) = 0. Eq. (8.1) will simpliy state that

9 Acta Mech. 73/1—4
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4 changes only by rotation since its corotational rate becomes fv,ero, which implies
that while 4 == 0, the isotropic invariants of A will remain stationary. With

VI|

(%) = 0, one can see from [1, Eq. (17)] and (8.2, 3) that g = @ = 0, which implies
not only that @ == 0, but also that the isotropic invariants of a‘are not stationary.
Viewed from a different but equivalent perspective, during unloading the A
remains fixed but the @ changes due to its elastic embeddingﬂ if one refers their
components to the director vectors coordinate system. |

It is pertinent to discuss here the issue raised by Prager [13] on the appro-
priateness of using the Jaumann rates (corotational with W) in evolution equa-
tions, from the point of view of preserving the stationarity Dif the isotropie in-
variants under rigid body motion. In fact, Prager referred to stress rates, but
within our general framework the requirement for stationa.rityi of invariants can
extend his arguments to the choice of rates for the structure variables, as well. To
begin with, Prager did not consider the concept of elastic embs dding, but it will
be shown that Prager’s point of view is retrieved anyway. Indeed, under a rigid
body motion one has not only D = 0, but also D* = D” — 0. This implies 2 = 0,

o
hence, according to Egs. (15) of [1] and (8.2) one has @ = @& — 0. But also e
= IW” = 0 under rigid body motion, which in combination with [1, Egs. (9.2) and

v
(10.2)] yields W* = o = W. Hence, the ¢ = 0 implies @ = Oiwhich guarantees

the stationarity of the invariants of @ (the @ = 0 could do that also), and prompted
Prager to suggest using the Jaumann rates as the appropriate ones in constitutive
cquations. We have seen here that this suggestion is not complete if one considers

- . - - D - -
the physical meaning of elastic embedding; the @ must be used instead, which

v
simply becomes @ under rigid body motion.
Equations similar to Egs. (8) apply to all other kinds of tensors, vectors and
scalars [14]. In particular for scalars one can write

K=|F|"k; EK=Q)E(I,S at xy, %, or =) (9.1)
E=|I"F;  k=F+wktr D = &) (% + wk tr N?) (9.2)
with K (or k) isotropic function of its arguments, and |F°] = |I-'i = [F.

One now can clearly understand the difference between the purely orientational
structure variables and the rest. The former are such that their corotational rates
in the intermediate configurations always vanish, with plastic loading or unloading.
This implies that § =0 in Egs. (7) or A = 0 in Eqgs. (8). The reader can easily
understand this statement imagining that S or 4 represent for example a preferred
vectorial direction M or its tensor product A = M & M in one of the inter-
mediate configurations (e.g. slip plane or orthotropic directions), The 1M is part of
the substructure, it has no constitutive evolution being a pl;.I rely geometrical
(orientational) entity and, therefore, its substructure corotational rate must he
zero for any value of . Hence, the orientation change of M determines the orien-
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tation change of the director vectors (it would not be so if M were a hardening non-
purely orientational variable). The A =0 implies that @ — 0 from Eq. (8.4);

hence, observe that eitherEz = 0, Eq. (8.2),orequivalently @ = (7) ( —(aN? 4+ N7Pa)
+ (af2? — Pa) + wa tr ;\”’), Eq. (8.3). From the last expression it follows that
with or without loading the current value of a purely orientational variable at »
changes not only due to rotation (as its transported value to an intermediate

configuration does), but also due to its elastic embedding. The isotropic represen-
tation of all constitutive functions encountered so far (such as Nn|, 2.7, 8, ete.)
is not effected by the fact that some of the S may be purely orientational; this
will only effect the corresponding equations of evolution for these S, as discussed
above.

It is pertinent at this point to discuss another aspect. In all the previous

|
development (and the one to follow), the isotropy of the different functions were

derived on the basis of invariance requirements under superposed rigid body

rotations in reference to the %, (or #,) intermediate configuration, and the iso-
tropy in reference to »; followed. However, if one wanted to work only in ref-
erence to the isoclinic configuration x; as done in [11], [15], equations such as

|
(24.3) and (27.3) of [1] do not impose explicitly any requirement leading to iso-

tropy. Recalling however, the discussion in a previous section on mathematical
preliminaries for a function f(I7, S), it follows again that such funistion must be
isotropic in relation to its arguments based on the theorems presented in [3]. Also,
the case of explicit dependence on 3, (or ) discussed in the same section applies
to all constitutive functions presented so far, and those to be prulsented in the

sequel.

5. Elastic Relations with Elastoplastic Coupling and/or Damage

This aspect of the constitutive formulation was developed in reference to the
#, configuration in [10], [14]. Here, the development in reference %0 the #, con-
figuration will be presented first, and then its equivalence to the », and x; con-
figuration will be shown.

Defining by E° = (1/2) (FF° — I) the Green elastic strain measure between
#y and z, p, the mass density at x,and ¢ = $(IT, S at z,) the complementary free
energy per unit mass, the elastic relation is obtained from E° = oo(é/eIT).
Invariance requirements under superposed rigid body rotations render i and,
therefore, é/edl isotropic functions of IT and S. Notice also that the full in-
variance requirements, as expressed by [1, Eq. (18.1)] yield E** :1| 0.EQ,", as
expected on physical grounds. Based on the definition of £° in terims of F*, and

of D = (;“3{"”‘1_)3 from [1, Eq.(10.1)], one can show straightforwardly that

¢ — FUDE°. A subtle point of the corresponding analytical manipulation is the
fact that E is isotropic function of £ hence, one can apply the|chain rule in
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taking the corotational rates according to Eq. (1). The use of the same coro-
tational rate in a chain rule operation applied to E¢ = 00(8)/8IT) in conjunction

& |
with Eq. (7.2) and the foregoing relation between E¢ and D°, vields

A A A A :
E°=E +E=5":1T+ (}) NS (10.1)
D'=D LD =516 + () N° . (10.2)

L0 = (00*P[eIT @ 8II)™Y; Ly = |F*1 FEF° FiF 7° (10.3; 4)

ta” jf afiys

N® = F'NSF™ = o, F*"[(8%/o1T & 8S) - §] F —'! A tr NP (10.5)

where 4° = F*"E°F*" is the Almansi elastic strain tensor between x und x,,

the g‘ is related to ﬁ’ by ﬁ' = |I*| If“"h‘:‘jl'J_'?"_T and is defined from [1, Eq. (15)]
with w =1 and ¢ substituting for a, the #° are the increrdéntal elastic moduli
at x, and 7 their transport at x (like a relative forth order tflensor), according to
Eq. (10.4). The D" and D represent the incrementally reversible and elastoplastic

coupling or damage induced components of D¢ at %, counterparts of E and .ﬁlc
at zy,. |

While in all the above the », was used as the intermediate unstressed con-
figuration, a similar development can be presented in reference to x,, as done in
[10], or in reference to ;. It suffices to substitute in the foregoing, the ¥, ¥, E¢,

II or F¢, FeE I, for I, f\?", f-?", I%', respectively, and of course refer the JT and
S to #, or x; instead of x,. The isotropy of § and &p/edT follows again either
because of invariance requirement under superposed rigid body rotations in
reference to »,, or because of the theorems presented in [3] in reference to x;, as

. o .
explained in the mathematical preliminaries section. The values of ¢, N¢ and .#
at the current configuration x will always be the same, whichever is our choice of
the intermediate configuration; the values of .#° differ only by rotation.

6. Yield Criterion and Final Form of the Stress-Strain Rate Equations

When a yield criterion is to be considered, one is faced with the dilemma of
presenting its analytical expression either in the current configuration x in terms
of ¢ and s, (purely Eulerian description), or in any one of the unstressed con-
figurations sy, s, or x;, in terms of the corresponding transpoft-éd values I7 and S
(semi-Eulerian description). Although both formulations will be equivalent, it is
expedient to present the formulation in terms of the current: ‘Itrue" values ¢, s.

This is because one has an immediate association with the experimental data
used to specify the yield criterion, without the necessity to consider an “elastic
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unloading” process before such yield criterion is specified. Hence, we can write

f6,5) =0; N"= (af) (11)

bale3

for the yield criterion / = 0 and its symmetric stress gradient N*, The f and N*
are isotropic function of their arguments due to the invariance requirement under
superposed rigid body rotations. What is interesting about Eq. (11), is that the
f = 0 does not define in the stressspace ¢ a fixed “yield surface” for given values

of s in the usual sense, because the s themselves change when ¢ d;oes, due to the
elastic embedding of s. Of course, if one expresses the ¢, s in terms Pf II, S and F*
(or V, F{), with the elastic deformation gradient being also a function of IT, S, the

f=0 will become a different function f(J71,S)= 0 in the cor[%esponding un-
stressed configuration. In this case the f = 0 defines a fixed yieldi surface in the
stress space [T for given values of S. Nevertheless, Eq. (11) defines a yield cri-
terion (rather than a “yield surface”), in the sense that when the value of ¢ and
the ensuing values of s satisfy f = 0, yield is imminent. The result Of the foregoing
arguments is that the loading direction is diverted from N, ina w ay which will be
specified subsequently.

Since f = 0 is isotropic, Eq. (1) applies for any choice of corotational rates,
which here is chosen to be the ones in reference to W*. Hence, the consistency
condition f = 0 yields

f=N":6+ (ges)-$ = 0. | (12)

(m]
The next step is to express § in terms of the corodeformational rate s (recall

Eq. (8.2) for a second order tensor), on order to specify the loading index 4 which
o l
appearsin § = {4 8. To this extent, an equation similar to [1, Eq. (15)] can relate

=] |
the § to s (it is presented only for a second order tensor a in Eq. (?5)) depending

on the elastic embedding and tensorial nature of s; the D* wh1ch appears in
Eq. (15) of [1] can be expressed in terms of 0’ and 4 from Eq. (10. 9} In addltlon

the ¢ and 0' can be interrelated in a similar manner. While the t;flefinition of G
follows [1, Eq. (15)] with w = 1, one can use a number of other s;tress rates (in-
cluding the &) by introducing appropriately modified elastic moduli #’ instead of
+ (the latter defined by Eq. (10.3; 4)). To this extent, denoting by {? any one of
these stress rates and with ¥’ the associated moduli (to be precisely defined in the
sequel), we have

D= 116 4 (B £ 7 N (13)

|
instead of Eq. (10.2). Of course, for the choice of g as given by [1, Eq. (15)] with
@ = ¢ and w = 1, one has ¥' = ¥ and Eq. (13) becomes Eq. 1(|5 .2). Using the

m] =]
foregoing for changing the § and & to s and &, respectively (notice that Eq. (13)
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rather than Eq. (10.2) is used now in order to express the I)Ci:, Eq. (12) can be

rewritten as ;

o
(N® i 01 i e 1 ((af/g-s) 8 —Z":. ¥ ¥ _ﬂr*-') =

(14)

where Z" isdefined in the following equations. Eq. (14) is very important because

o |
it specifies the loading index 7 in terms of the stress rate ¢ and associated quanti-

. a3 . . D
ties, such as 4" and Z" which depend on the choice of 6 (sce later how); the #

is always given by Eq. (10.3; 4).

We have reached now the point where combining [1, Eq% (9.1)] and (6.1),

(10.2), and (14), the final form can be expressed by

O
D=D +D°+-D"=5"1:6 L () (N° 4+ 2'1: 1

¥

=F""L:6F+ON =4":§
= I:i - w
N:o : N:o

: X

CTHIZ T 7N HLIN Z L Zrg 7N

|
N:ZT:D
H+ N ¥ :Ne+ N7 :Ne
- Ly N (N o P
A:_’/'—ﬁ;()’) : ( >C( v ) =
HL+N:% :Ne L N7 N¢

N =N L P-1. . Ne—F'-1, 7¢
4:\:' f— i\.“ . ZI’! : ji’-'
H = —(¢f/os) - 5.

Giving the definitions

1
e
Dis = 5 a0ty + Ougy; + ducix -+ 0j304)
1
i
53;;“ = 9 (——é”_.rr” e *’5:';0';.-; + 0o + ajx.-ﬂ'u)

"= is(aT —(i - = (!-T) + (1 — &) (a’ —f e ft

o

oa ca ada aa |

+ (nc‘j 59 'm) + 1w (ii;- . .~;) I |
an 4 ‘s

with - when the s is transported according to [1, Egs. (13.2), (13.]

¢ = 1 when the a is transported according to [1, Eqgs. (13.1}.1_‘;, (13.2.1)]

)

e = 0 when the @ is transported according to [1, Eqgs. (13.3)]

3.2)]
5.1)]

|
|H
— when the s is transported according to [1, Egs. (13.1), (13.3

(16)
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the following sets of conjugate quantities enter Egs. (15)—(20) laccording to the

stress rate used (more sets could be defined).

Set I (contravariant; corresponds to IT = |[I*| F* 6F*™)

(23.2)

a v

6 =6—6D'—D6c+6trD;: 66=06—06D— Do +otrD (23.1)
=5

7P = —(6N? + N?g) - (627 — QPG) L 6 tr N?

7" = —(GN" - N"G) - (N": 6) I +-
Set 2 (covariant; corresponds to IT — |[F*| F*"GF*)

o % v
G + 6D’ - D% - G tr D*; 0=0 +0D + Do +o6trD

G
=1 +2
2P = (6N” 4~ N76) + (682" — 2%6) + ¢ tr NP

Z" = (6N" - N6) + (N*:6) I + T,

Set 3 (mixed 1; corresponds to JT = |F°| F¥6F"")

— oD + Do - 6trD

v

gz(')’——rjf)"+l)"’a~,'—0‘trne; G=06
L' =74+ D — D" ‘
Z” = —(6N? — N7%6) + (627 — 27G) 1 ¢ tr N? |
Z'"=(N":6)I5-T.

Set 4 (mixed 2; corresponds to IT = |F°| F*'GF*)

=] ‘\? |

0 =6+6D"— D +¢gteD: 6=06+06D —D6-+aocltrD
:{.‘.r _— f JI_ -c'gt'. + -clam !
ZP = (6N? — N*?6) + (082" — R276) + ¢ tv N?

ZH s ( ’\;’ﬂ i | lr‘

Set 5 (corotational rates of Cauchy stress ¢)

o v ) N
6 —0; =0 =L+ —0c®1
727 = g2 — OPg . 7Z"=1T,

Set 6 (corotational rates of Kirchhoff stress ¥ — ¢ but ¥ == G)

v v

(23.3)
(23.4)

(24.1)
(24.2)
(24.3)
(24.4)

(26.1)
(26.2)
(26.3)
(26.4)

(27.1)
(27.2)

o , : :
6 =1t =06 -1+ ¢trD°; 6—+1t=06-4+o0trD; =5 +D9 (28.1;2;3)

P = 022P _ QPg | gtr NP: Zh—(N": @) I T,

(28.4)
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The foregoing relations generalize the ones presented in [10|', where only the
sets 1 and 6 were used (for set 1 observe that ¥’ — ¥, hence #-1: #: N° = N°*
in all previous equations), and the term of I" which is premulfiplied by 1 — e,
Eq. (22), was not included. The Z7 is introduced as a result of cHangfng the stress

rate from 6 to &. The Z" consists of two groups of terms; the jgroup defining I'
which reflects the effect of the elastic embedding of s and is the same for any set,
and the group of the remaining terms which reflect the choiceipf the stress rate
and are different for each set. The Z” is responsible for dive'xrting the loading
direction from N" to N, Eq. (19); this is the analytical statement of the dis-
cussion in the paragraph preceding Eq. (12). In reference to the expression for I,
Eq. (22), it is implied that each term is repeated so many times as many different
@, M or s enter f = 0; the w is the weight of their elastic embedding. The elasto-
plastic moduli A4, Eq. (17), possess the summetries 17 <> kl (the so-called “‘nor-
mality structure”) if the corresponding ¥’ do, and N’ is proportional to N. The
former occurs for the 4’ of the sets 1, 2 and 6, based on the definition of %,
Kq. (10.3; 4), and of 2°, D™, Egs. (21). The latter occurs for the set 1 (for which
recall that ' = ¥) if N? + N° and Z” are similarly proportional to N* and 2",
respectively, or for any set with N° = 0 if N? and Z? are similarly proportional to
N" and Z". The novel aspects here are the generalization of the final form of the
rate equations in comparison to the one presented in [10], and the rigorous proof

of obtaining the same result no matter what is the choice of the intermediate
unstressed configuration.

7. Particular Topies
7.1 The Single Stip

One of the simplest and best understood mechanisms of large elastoplastic
deformations is that of the single slip of a monocrystal. It Wiill be used as an
example on the effect of elastic embedding and other aspects of the theory de-
veloped so far. If m and n are two orthogonal (but not necessarily unit) vectors
at » along the slip and normal to the slip plane directions, respectively, let the
orthonormal vectors M = V-'m and N = |V|-1 nV be their transported counter-
parts at %,, according to the elastic embedding first proposed by Rice [16]. Observe
that while M transforms elastically exactly as a material line segment does at
#q, IV does not. This is related to the statement made before Eq. /(1) of part 1 [1],
that the elastic transformations of the continuum and its substructure are deter-
mined by the elastic part of F (here the V), but are not necessari;]y identical. The
structure variables can be defined at », as the asymmetric or;ientation tensor
A =M @ N, and a scalar measure 7, of the resolved shear stress yield threshold.
With 7, denoting the slip rate at x,, the hardening law i, = h,}, is assumed,
h, being the slip hardening modulus. Then, the following relations can be estab-
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lished on the basis of the general formulation, at an order which is indicative of
the way calculations were made. ‘

A=MQ3E N; a=m X n; A=|V[1ViaV | (29.1;2; 3)
f=a":6 —1,=AT: 11 —2,=0; I =|V|Vel1 (30)
N'=N=a,, R°=aqa, trN'=0 | (31)
NP+ QF =V NP+ Q) V =|V|A; trNFS=0 ‘ (32)
N?:6=1; (9[ea)-a=my; (8ffore) o= —75 | (33)
r = —(a“" C—f — d—f aT) —— (f']z . u.) I=02" — Q°¢ — 1,1 (34)
oa ca i~ oa

Z' = (N":6)1 + T = QP — Q%6 = 27 ‘ (33)
A = |V V-1aV =0=>a = é + aD* + D'a — atr D= 0 (36.1)
@ —d — W + aW? = —aD + Da - atr D l (36.2)
PP 1= (i) (NP + 27 = () |V]|A=p,A=> 5, = |V| (A (37)
Ty = (D) To = hoPo=> H = —(8f]67,) To = To = |V| o (38)

- i T = T e, == ¥ . e e e
Hi=t,=AT:I = A": V| Vo V-1 = a’: (6 — 6D° + D' + o tr D)
- |
—a:(# 46D —D%)—a:(r + 6D — Do) (39)

where the set 6, Eqgs. (28), was chosen for the stress rates and the expressions of
Z? and Z". In deriving some of the foregoing results, intermediate steps were

often not shown for simplicity; for example, in going from + and D° to g and D
at the end of Eq. (39), useof D° =D — D?, W¥ = W — W? and Eq. (31) was
made. Perhaps the most interesting calculation is that of I', Eq. (34); the role of
the mixed embedding of @ with weight w = —1 according to Eq. (29.3), played
an instrumental role when Eq. (22) for the derivation of I' w:'as applied. The
resulting value of I' rendered Z" = Z°, Eq. (35); hence, with N" = N? and the
choice of ¥’ as given in Eq. (28.3), the “normality structure* of .1 is achieved
(recall discussion at the end of previous section). Egs. (36) vield the evolution
of the purely orientational structure variable @ in different but equivalent ways.

v
In Eq. (39) the loading index 4 is expressed in terms of ¥ or 7 in clombination with
D* or D, respectively, in order to show the similarity of the pre|s,ent formulation
with that in [17] were the single slip was analyzed. In fact the results of [17] can

be obtained exactly if a few more steps are taken, as shown in [518] where the m

: : -y
and n, instead of a, were equivalently used as structure variables. But of course
|

v . - -
the A could be expressed in terms of % or r only, which would inyolve a diversion
of the loading direction from N" = a, to N = N" — Z": ¥'"1, ;according to the
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general theory, Eqgs. (16) and (19). Finally notice the important fact that it is the
transport of Ny? 4 2.7 which defines N7 + £27, Eq. (32), and !nob the separate
transport of N,? and £,” which define N? and 07, respectively. This point has
been discussed in the general development presented in the f#rst part of this

work [1].

7.2 Small Blastic Deformations
|

Much of the complexity of the foregoing equations is due to the large elastic
deformations. For many materials the assumption of small elastic strains is a
realistic one, and considerably simplifies the formulation. Analy_i‘%ically it implies
V =~ I and the omission of terms of the order stress/elastic moduli compared to

unity. As a result the basic kinematical decomposition, Egs. (9) of [1], becomes
D=D'+D" W=qu+wnr. (40.1; 2)

The elastic embedding looses its meaning, and in referenced ta|x, one can set
s =S and ¢ =~ JI, while in reference to i, and #; the s and g differ only by
rotation from S and I7, respectively, because F* ~ R, and Ff ~ R, Since
D = D? and W,? ~ W7 at ,, the kinematical constitutive Eqgs.|(2) and (6) are
identical, while the D,? and WP, or D and Wp, Egs. (3) and (4)] differ from D?
and W? only by the rotation RS or R/, respectively. Eqs. (7) for the structure
variables can be rewritten as:

§ = (1)8(0, 5 at %) = RA(S] = R[] (41)

with 8 an isotropic function of its arguments. Infact, restricting attention to the
#y configuration and using Eq. (40.2) to express w — W — W7, the first two
members of Eq. (41) can be written for a tensor @ and a vector m in terms of
Jaumann corotational rates as
a = (A) (@ + a2 — Qrq); 1\;1 = (&) (M — 2"m), (42.1; 2)
Finally, the stress-strain rate equations can be written as

¥ o. AT Tc > . g
v fz“—ﬁw [ : (NP + N9 [V .ﬂJ,

g = :D. 43)
’ H + Nn:7:(N? + Nvo) (

In deriving Eq. (43) from the general expression (17) in association with set 1,
Eqgs. (23), notice that due to the absence of elastic embedding (V ~ Fand 2" — 0)
the elastic moduli are the same at » and oy 1.6. £ =~ ¥;. Also, the N’ ~ N7 -+ N\°
if the term .#-1: Z7 is neglected compared to unity, being of the Io:f'der of stress/
elastic moduli (which occurs if 7 is of the same order in ¢ as N7 is, according
to the definition of Z?). The 2 is obtained from Eqs. (16) incorporating the ahove

- v 3 " a w - | .3 5 .
modifications, with & and ¢ substituting for ¢ and &, respectively, The 77 is
always given hy Eq. (20).
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Since the term ZP?, whlch includes the £2?, has been neglected, the elasto-
plastic moduli relating 6 and D in Eq. (43) become independent of an explicit
expression for the plastic spin; in fact, Eq. (43) is the classical form used in many
theories and their numerical implementation. This apparent absence of 27 from

the stress-strain rate relation is misleading. The reason is that all the entities
which enter the elastoplastic moduli in Eq. (43) (such as the N? and N") depend
on the structure variables s (or @, m and k), whose law of evolutiin, Egs. (41) or

(42), strongly depend on L7, In fact, it can be said that by far the nost important
practical aspect of the present theoretical development, is the use Pf Eqgs. (42) for
the evolution of @ and m, with 27 determined by constitutive relations.

7.3 Small Deviatoric but Large Volumetric Elastic Deformation

Often the volumetric part of the elastic deformation is finite while the de-
viatoric is small, as it would occur under high pressures on metals In this case
the ¥ becomes approximately a spherical tensor, but not the unit one as in the
previous subsection. If » is the unique eigenvalue of T, the effect on the kinematics
is analytically described by

V=|V'BTI=2l;, TV'=@nI=D trD* = 3(/v) ‘ (44.1;2;3)
DP=DP; WP=WpP: W:'=({TT"1,=0 (44.4;5; 6)
D=D'4+D";, W=w-1LW,; Wt=qw, (44.7;8; 9)

In relation to the elastic embedding and the associated rates, [1,| Eqgs. (13) and
(14)], one can state the following in reference to z,

_ . =l O . 1 4
S=1"s; S=t"s; s ‘:5—}—'?? rstr D’ | (45.1:2:3)
where the @ takes the values © = 3w — 2, 3w L 2, Sw, 3w, 30 — 1, 3w + 1, 3,

for the embedding expressed by [1, Egs. (13.1.1), (13.2.1), (13.3.1), (13.3.2), (13.1.2),
(13.2.2), (13.4)], respectively, with ¥ substituting for I*. A direct consequence of
the kinematical relations (45), is that the constitutive rate equation for the struc-
ture variables take the equivalent forms

- — o » .
S={8; s={§ with = "8 (46.1; 2)

and w defined as before. Expressions in terms of convected ratls, such as in
2q. (8.3), do not change, or based on Egs. (44.8), (45.3) and (46.2)
recasted into the form (for the @ defined in Egs. (8))

they can be

I
v 1 _ . { ~
a | 3 tr D = (2} (a + a2 — QPq —}— atr N “)I (47)
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Observe the difference of Eq. (47) from Eq. (42.1), where the e]a;lstic volumetric
strain is small. Based on the foregoing assumptions, the elastic relations in

reference to x, are given from Eqgs. (10) with v substituting for F‘E, yielding

1 1|
SO —1L 2= N“’:Z_—;No‘. (48)
118

Il =v6; E®~

The elastoplastic rate equations are given from Eqs. (15)—(28) with the following
differences:

F:E(a—-s)f; Z"=eN": )T+ T; G =6+ ¢6trD* (49.1; 2; 3)

where % is defined asafter Eq. (45) and ¢ = 1/3, 5/3, 1, 1, 0, 1 for the sets 1—6,
respectively. |
As an example of the foregoing consider an isotropic elastic relation given by

1
E“:.@f—'o~l;n=;§n'+—_(trﬂ)f (50)
|
with JT' the deviator of JT = v, and G, K constant shear and bulk moduli (from
Eq. (50) it is straightforward to obtain the §, quadratic in IT). Using Eqs. (44),
(48) and (49.2) one can establish the relations

2 1f2 1 tr g\212 ,
i-‘.-':'jl -r‘g-EtI'HJ :@tl‘ﬁ—;—[l—f-(*g?):, (011)
trg 1 tr g\271/2
trDf= —; B=Ko——tro=|K2+ (O} | 51.2
1 55 v 5 ra [ (9 )J (51.2)

The tr D® which enters many of the foregoing relations is expressed in terms of
tr 6 and a variable bulk modulus B, Eq. (51.2).

7.4 Elastoviscoplasticity

Rate dependent response can be described macroscopically within the frame-
work of elastoviscoplasticity. All the kinematics developed in [1] apply again, and
the only, but important difference from plasticity, is that what cauées the plastic
rate of deformation and spin, as well as the evolution of the structure variables,
is not any more the loading index 1, but a positive scalar valued furfction ¢ of an
overstress measure [19]. Hence, it suffices to substitute (¢) for (i) in Egs. (2), (3),
(4), (6)—(8.3), (10.1, 2), (13) and (15), in order to obtain the correspanding elasto-
viscoplastic general formulation. Similarly for Egs. (37), (41), (42), (46) and (47).
The overstress measure is usually defined as the norm of the distance in stress
space between the current stress point and a properly defined reference stress
point. Such reference stress point is located on a so-called static yield surface by
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’ a of the static yield surfagce may be fixed

a proper mapping rule. The “center’
(e.g. the stress origin) or variable (kinematic hardening). If the static yield surface
“shrinks” towards its center and degenerates into one point, the latter becomes
the reference stress; this scheme has been used by Anand [20]|in defining the
overstress (although not explicitly stated as such). The iﬁlportant element again
becomes the evolution law for the internal variables. For example| the “‘center’” @
of the static yield surface evolves according to Eq. (42.1), with {¢) substituting
for (1) at small elastic deformations. One must therefore define|not only the @
(usually along the deviatoric part of ¢ — @), but also the £27 as isgtropic functions
of the state variables ¢ and s (s = a in the simplest case). Theforlm of 27 = y(ac
— ¢a) according to the original suggestion in [21], was followed in [20] for the
viscoplastic formulation. The original viscoplasticity formulation along with
elastoplasticity (in fact in combination with it) for large deformations in the spirit
of the present development, was presented by Mandel [11] a!nd followed by
Halphen [22]. '

In fact the results obtained in [10] by analyzing specific exa;_lmples of homo-

geneous deformations for rate-independent rigid-plastic material response, would

be exactly the same for rate-dependent rigid-viscoplastic respoxflse. Indeed, the
expressions for the stress components (e.g. [10, Eqgs. (43) and (46)]) are normalized
by & which measures the “‘size” of the yield surface. In a viscoplastic consideration
the only difference is in the interpretation of £, which measures now the “‘size” of
the dynamic yield surface passing through the current stress point, and which is
a function of the strain rate according to well known relations based on the

overstress concept [19].

8. Residual Stresses and the Effectively Unstressed Configuration

[

The concept of an intermediate “unstressed” or “relaxed” configuration was
criticized in the case where residual stresses within the macroscopically homo-
geneous (but microscopically inhomogeneous) material elementl for which the
constitutive formulation is being developed, bring the stress 01*ifgin outside the
current yield surface, as shown so often by Phillips et al. [23],' [24], for either
small or large deformations. Then, it is impossible to elastically unload (i.e. to
set ¢ = II = 0) without causing additional plastic def{)rmation|[25], [26], [27],
thereby altering the “unstressed’ configuration from which ela!stic strains are
measured in relation to the current one. Against this criticism the concept of a
“virtual” elastic unloading was proposed [28], [29], wherethe ¢ isibroughb to zero
not actually but virtually, i. e. by “freezing” all the mechanisms of plastic defor-
mation during unloading. In this case, however, the material macroelement at the
intermediate “virtual” configuration will still be subjected to it';s own locked-in
residual stresses, hence, raising the question of how much “unstressed” is the

intermediate configuration. |
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We will propose here a different answer to this problem, v.-hiéch may have some
advantages, and study its consequence on the overall formulation. The con-
stitutive essence of an intermediate unstressed configuration !is that the elastic
strain B2° = (1/2) (F*"F° — I) is related to the stress IT in such :é, way that E° = 0
when 7T = 0 and vice-versa. The elastic strain, however, is oﬁ]y a relative geo-
metrical measure between the eurrent and what is termed f‘unstressed” con-
figuration. It can very well be argued that a configuration which is subjected to a
macroscopic stress ¢ which isexactly the opposite of the residuia.l locked-in stress
Gr,18 more ““unstressed” than the one for which ¢ — 0. The rationale behind this
argument is that the corresponding relative measure of elastic strain is closer to a
physical situation of zero elastic deformation, if the macroscopic and residual
stresses cancel each other on the average over the volume of the macroelement.
Denoting by a the opposite of the residual stress, i.e. @ = —@,, it is the effective
stress 6 — @ which controls the “elasticity” rather than ¢ itself. The intermediate
contiguration for which ¢ — @ = 0 can be called the effec{a'z;ejy unstressed con-
figuration from which E° is measured. In such case no problem of additional
plastic deformation arises upon unloading to 6 = a. '

Considering the same elastic embedding for a as for g, the foregoing have the

following analytical description:
|

A= |FF"al"™, 1T —Ad=|F|F"(¢c—a) k" (52.1; 2)
p=FT—A,8); E=g b _, W (52.3; 4)
clT cAd
¢ é
fl6 —a,s) =0; A = (L_) = — (—i) ; (52.5; 6)
caf, ca

Clearly 2* =0 when I =6 =a = 4, ie. ¢' = a' and trg — tr a, where a
prime denotes the deviatoric part. Eq. (52.5; 6) represents the classical description
of kinematic hardening due to @, in addition to other possible hardening due to
the remaining s. It is worth mentioning, that if all other s and S|in Egs. (52.3; 4)
and (52.5; 6) are scalar valued, the material is e}astica.llyl and plastically isotropic
in reference to the effectively unstressed configuration ¢ = «, and orthotropic in
reference to the unstressed configuration 6 = 0 with the axes of orthotogry along
the eigenvectors of @ [30]. These conclusions are based on the analytical isotropy
of f and ¢ due to invariance requirements.

As to the evolution law for 4 or a, it is given by Egs. (8) setting w = 1 due to
Eq. (52.1). Tt is usually assumed that tr @ = 0 (notice that then tr 4 = 0), as for
example when @ = (2/3) 2.0 — (2/3)'2 ¢,ec, where ¢ — ¢, n is the unit “vector”
along N*,and f=(3/2) (6’ —a): (6' —at) —}2 =0 [10] (for ¢, = 0 this cor-

]
responds to Prager’s kinematic hardening). In such a case, from @ — (4) @,

O |
Eq. (8.2), one has tr @ = 0 whether 2 = 0, which on the basis of Eq. (15) of [1]

yields |
tra = 2tr (adb®) — tratr D°. (53)
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Eq. (533) determines the evolution of tr @ which is always linke.gl to the elastic

rate of deformation only, while the tEa: = (4) @ yields the evolution of (3)'. Observe,
that it is only the @’ = « which enters the f = 0 as defined before, but in general
it is the @ (and its transport A) which enters the elastic relations| Eqs. (52.3: 4).
For small elastic deformations recall that @ = (i) @, Eq. (41), which means
that @ remains always deviatoric when tr@ = 0, since tr@ = ti1 @ = 0. Notice
that all the foregoing observations on the evolution of a, apply to the concept
of kinematic hardening with or without the concept of an effectively unstressed
configuration.

The effect of the residual stress on the general form of Eqs. (15)—(22) can
be presented in two stages. First, the classical definition of the ll‘mstresscd con-
figuration at ¢ = IT = 0 renders ¢ a function of JT but not of IT|— A (although
A could be one of the S). Eqgs. (52.5; 6) holds true, where a could be one of the
s in addition to its presence via ¢ — a. Under these conditions the presence
of a results in changing the H and I', Eqgs. (20) and (22), whic-h!are due to the
presence of s, to H + H, and I' - T',, respectively, where |

|

Hy=N":@ I',=aN"+ N'a— (N":a)I. | (54.1; 2)

Eq. (54) are plausible, since @ becomes one additional structure va,iriab]e effecting
I, via its hardening, and I' via its elastic embedding according to Eq. (52.1).
If now the notion of the effectively unstressed configurationﬁis introduced,
i.e. Egs. (52.3;4) is assumed, a necessary modification in addition to Eqgs. (54)
is to change N° to N° ++ A, where
Nf= —%1:8q. i (53)
Again Eq. (35) is plausible, since a contributes to the elastop&astic coupling
term N°, being introduced in ¢ in addition to S, Egs. (52.3; 4).
Based on Egs. (54) and (535) it is straightforward to identify the changes
which occur in the elastoplastic moduli, Eq. (17). The change of| I" by I',, Eq.
(5+.2), will always effect the N via Z", according to Eq. (19) and the subsequent
definitions of Z" in the six sets. Observe, however, that when both Egs. (54.1)
and (55) are used (i.e. the effectively unstressed configuration is introduced).
the guantity H + N": 7 : N”in the denominator of Eq. (17) remains unchanged

’ . § | - -
since the modification of A by H,, cancels out the modification of N° by N,°.

The effect of the notion of the effectively unstressed configuration can be seen
clearer in Eq. (43) for small elastic deformations (no sense of elastic embedding).
Eqgs. (54.1) and (55) result in one change only; the first bracked in/the numerator
of the right-hand side of Eq. (43) becomes ¥ : (N? - N°) — @. The unpleasant

v !
consequence is that the 4 ino = _1: D, Eq. (43), looses in gﬁ-uerall the normality
structure even if N7 - N¢ is proportional to N”. An exception would be the
case where (1/c)@ = N" = N” (Prager’s kinematic hardening and associated
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flow rule), N°=40, tr@ =0 and ¥ are the isotropic elastic tangent moduli;
then it can be shown that ¥ :(N? 4 N°) — @ = (1 — (0/26')) Ll N* with @
the shear elastic modulus, hence, the normality structure is preserved. In general,
] v |
based on Eq. (42.1) for @ and the definition of 1in terms of D, the use of Eqgs. (54.1)
and (55) in Eq. (43) yields
v Vv
6 —a=4:D (56)

with A being exactly the one defined in the right-hand side of Eq. (43), if terms
of the order of @ (which is of the order of ¢) over elastic moduli are neglected
compared to 1. In Eq. (56) the normality structure is obtained now if- N? 1 N¢
is proportional to N™.

9. The Plastic Spin Effect: Intuition or Definition?

If one would like to single out the most important novel aspect of the theo-
retical macroscopic constitutive framework proposed by Mandel [11], [28] and
Kratochvil [31], it would be the requirement to obtain the plastic spin by con-
stitutive relations, as done for the plastic rate of deformation. A |brief review
of recent achievements in this direction is, therefore, pertinent, and will allow
a clear comparison of Mandel’s and Onat’s approach on the kinetics of the subject,
in addition to the comparison made in the first part [1] on the kinematical aspects.

Kratochvil [31] appears to be the first suggesting the use of representation
theorem for isotropic functions in order to conclude that the plastic spin is
identically zero for isotropic materials, but did not provide and/or investigate
any plastic spin form for anisotropic materials. Hahn [32] actually used the
representation theorems to obtain an explicit plastic spin constitutive relation
in terms of an asymmetric stress tensor, but has not introduced and used the
concept of tensorial structure variables to describe the material substructure.
It was in the work of Dafalias [21] that for the first time a specific form of a
plastic spin constitutive relation appeared in print, and its effect on the simple
shear response discussed in relation to a kinematically hardening constitutive
model. Recalling the notation of the previous sections, Eq. (23) of |[21] can be
written as

(PP, = WP = () 276, ) = (J) (e’ — 6'¢t) s
i

=) :;(a(d' — ) — (6" —«) a) = é o{aD? — | D?q)

where n and p are isotopic scalar valued isotopic functions of ¢”, l« and other
scalar variables. The transition to the last member of Eq. (57) is obtained by
making use of the associated flow rule according to which D? is along ¢' — «.
The key step in Eq. (57) is the expression &7 = y(ac’ — ¢'¢t), as the simplest
possible case obtained from the representation theorems. During the month of
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publication of [21], Loret [15] submitted his own independent !work on the
subject which appeared in print three months later; the suggestion for the plastic
spin in the case of kinematic hardening was identical to Eq. (57). In addition, both
Dafalias [10], [14], [33], [34] and Loret [15] pursued the matter of anisotropies
different than the one induced by kinematic hardening (such » orthotopy),
suggesting corresponding equations for the plastic spin and investigating the

results; the reader can refer to the aforementioned works for furtheL details.
Use of Eqgs. (42.1) and (57) can now provide a very clear compa.ri!Fon of Onat’s
and Mandel’s approach on the general subject of evolution equations for the

structure variables. Onat et al. [6], [7] have reached the conclus%ion that the

evolution of « is given by E — (1) A(0’, @), with A an isotropic second order
symmetric tensor-valued function of ¢’ and « (the interpretation o;f 2 is slightly
different from the one given here). Considering Eq. (42.1) applied to the back-
stress, in which case one has @ = ¢, it can be seen that in Onat’s approach all
the terms of the expression @ -+ a£2” — 27« have been “lumped’ into just A.
Since @ and £2” are isotropic functions of ¢’ & (and so is A), there is no contra-
diction. However, Eq. (42), rseulting from Mandel’s proposition [11], provides
a clear distinction between the constitutive part @ for the st-ructi‘ure variable,
and the remaining terms which involve the constitutive part £2” for the plastic

spin; in Onat’s approach such a distinction has been lost. Nevertheless, Onat

[7] porposed a form for A(¢’, &) which yielded exactly the same‘ result for (vc
obtained by substituting the expression (57) for the plastic spin in Eq. (42.1).
Hence, Onat obtained the evolution equation for « earlier than [Dafalias and
Loret, but one can observe the following difference. While in Onat’s approach
a kind of intuition is necessary in order to obtain the form of A,|in Dafalias’s
and Loret’s approach it is the determination of the plastic spin by a well defined

constitutive relation which yields the final result for {vr'. Such difference can
become even more important in other cases with different anist#t-ropics. The
plastic spin will always be analytically defined by rigorously derive:i constitutive
relations, and no need for intuitive suggestions on the form of rate equations
of evolution of the structure variables is necessary. .

|

Conelusion

It is believed that satisfactory answers were provided to the issues raised
in the introduction of [1, part 1]. It will be a redundancy to repeat tl—l‘e conclusions
here, especially because sometimes it was necessary to provide the answer partially
in each part, being related to both kinematics and kineties. Reference to these
issues should not overshadow, however, other important aspects of the general
theoretical development, some of them quite novel as for example the concept
of the effectively unstressed configuration.

|
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We would like to close this work with one thought. W%hat characterized
the effort in this development, was the desire to account as realistically as possible

for the physics of the situation from a continuum mechanfcs point of -view.
Abstract formulations and/or numerical convenience came si;econdary in this
effort. Still, it was possible to have some problems solved in closed or semi-closed

form [10], [12], [34]. There are other theories in the area of llarge elastoplastic
deformations, which do not take this position. For the follmwlérs of these works,
we would like to present an open challenge; considering the example of single

slip from the continuum point of view, one must be able to obtain the corre-
sponding basic equations as a particular case of the developed theory, (as done
in this paper). If this is impossible, the adopted theory is defeictive in its basis,
because it cannot describe one of the most fundamental mechanisms of elasto-
plastic deformation.
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