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ABSTRACT A viscoplastic self-consistent approach is formulated and used for texture
modelling. At the single crystal level the viscoplasticity is modelled by non-linear viscous gliding
on slip systems. For rolling and compression tests, the results of the self-consistent scheme are
compared with experiments and with former homogenization schemes, i.c., the Taylor and
relaxed Taylor theories. The improvements of the self-consistent approach rely on a better
description of the interaction of a grain with the surroundings, The effects of grain shape are
shown to be very important on the texture development. It is also shown that the self-consistent
modelling tends to validate the relaxed Taylor assumption for large enough deformations.

Introduction

The problem of the determination of the macroscopic constitutive behaviour of
polycrystalline materials, from the microscopic elementary processes of defor-
mation (micro—macro approach) is of considerable interest for practical pur-
poses.

When large deformations are considered, the Taylor (1) and the relaxed
Taylor theories (2), have been used extensively to derive the effective proper-
ties of aggregates.

Recently different self-consistent schemes have been proposed in the frame-
work of large deformations, by Iwakuma and Nemat-Nasser (3), Lipinski and
Berveiller (4) in time independent plasticity, and by Nemat-Nasser and Obata
(5) and Molinari ez al. (6) in viscoplasticity.

The model presented in (6) neglects elasticity since only applications for
large deformations and quasi-proportional loading were considered. At the
single crystal level the viscoplastic behaviour results from non-linear viscous
gliding on the sl:p systems.

The self-consistent model was applied to texture simulations. It was shown to
give some improvements with respect to former homogenization schemes,
specially in the rolling and compression test. This was a result of the smaller
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426 YIELDING, DAMAGE, AND FAILURE OF ANISOTROPIC SOLIDS

interaction between a grain and the surrounding matrix, obtained in the self- s e quasi-threshold
consistent scheme. i | zero. Then the

Another definite improvement of the self-consistent approach relies on the
possibility of taking account for the grain shapes (not the size) and of the
interactions between grains in an n-site formulation. These effects are dis-
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; The single crystal viscoplasticity is formulated in the following section, and J

i the interaction laws between a grain and the surroundings are then discussed
| for the one-site self-consistent, as well as for the n-site self-consistent scheme.
The localization problem, i.e., the calculation of the local strain rates and 2
rotations from the macroscopic corresponding quantities, is then solved, and _ Difl7, = Z ;
: the shape effect is discussed in the subsequent section. b
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taken identical for each slip system, while 7, is a reference stress evolving with
the deformation (hardening).
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appearing in the classical time independent formulation (9). Moreover, a Q= 172(L -

by the tensor «
linked to the t

HH with n = 1/m. ]

: £ and the equatic

Modelling e

(e e _ s

ri i The viscoplastic behaviour of the single crystal is defined below. Elasticity is e 5 = Z Iy

}E Ij-] neglected since only applications for large deformations and quasi-monotonic i g

ﬁl paths of deformation are considered. 2 where r is the

'_;j-_ In order to calculate the effective properties of the aggregate, the localiz- P ,

it ation problem (i.e., the calculation of the local stresses and strain rates) is s = 1/2(m" -

ii i - solved with the aid of the interaction formula presented below. . From the flo
. ii ':‘ : parts: the chan

i ) i while the cha
_ ll i Single crystal < geometrical) h:

i _ 1 At the slip system level a flow law similar to a non-Newtonian viscous law (7)- It i§ usual to

1 1!‘ (9) is considered of a linear rela

} I S shear rates

il : Tty = (7o) | ¢y

ll .‘ 1 The shear rate 7 of the slip system s is related through a non-linear power law To = Z H*;

il to the resolved stress r

ll | |' = m*:S = mS;; = biniS; (2) where H*" is th

i :

|

Since elasticity
resultssolely f1
of the velocity

- e, e

e e e s
T




OLIDS

iined in the self-

ach relies on the
size) and of the
. effects are dis-
ijon are analysed

wing section, and
re then discussed
onsistent scheme.
| strain rates and
s then solved, and

below. Elasticity is
d quasi-monotonic

regate, the localiz-
and strain rates) is
clow.

1ian viscous law (7)-

1)

non-linear power law

(2)

ric stress vector acting
; stress tensor is Tep-
ial product of the unit
reference strain rate,
ce stress evolving with

here is nO threshold in
\e ambiguity problems
tion (9). Moreover, a

A IRTORe = s

'E_Ud:

cxi1 IR R

=a ey

quasi-threshold is obtained when the strain rate sens

zero. Then ther
and 75 is a quasi-threshold.

(where the v;are the components of the velo
coordinates in t

427

EFFECT OF GRAIN SHAPE ON TEXTURE
itivity exponent 7 tends to
elation /7, versus ¥'/Yo, is almost a Heaviside step function,

At the single crystal level, the flow law is 2 non-linear relation linking the

strain rate tensor
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city of particles and x; are cartesian
he laboratory frame) to the deviatoric stress S:

Difte= Y. rifriaSulro)" *)
b

with n = 1/m. This relation results from the combination of equations (1), (2),
and the equation connecting D to the shear rate of all the slip systems

D=2r’;&‘ ©)

where r’ is the symmetrization of m’
¢ = 12(m’° + m’") (6)
From the flow law, equation (4), the hardening appears to rely upon two

parts: the changes in T, represent the microscopic intracrystailine hardening,
while the changes in the orientation factors r’ represent the texture (or

geomctrical) hardening.
ibe to first order, the intracrystalline hardening, by means

It is usual to descri
of a linear relation between the rate of reference stresses and the microscopic

shear rates
.E..fu = z Hﬂ',):’r
>

where H* is the hardening matrix.
The geometrical hardening is related to the lattice rotation which1s governed

by the tensor of rate of lattice rotation £2* defined, for example, in (9). Itis
linked to the total rate of rotation £ and the rate of plastic rotation Q° by:

(8

Since elasticity is neglected in this paper, the lattice is not distorted, and &
results solely froma rigid grain rotation. The tensor {1 is the antisymmetric part

of the velocity gradient L = av/ax.
Q=12(L-L")

M

Q=0"+9"

(9)
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while 27 is related to the microscopic shear rates
0= z 12(m* — m*T)y (10)
5

Therefore 2* can be calculated when (2 and the p* are known.
One of the most interesting points in the present viscoplastic formulation

results from the possibility of inverting the constitutive law (4). That law
expressing D versus S can be written

Dij T %ij(s) = (11)"

The inversion of (11), i.e., the calculation of S versus D
Sy = 5°k](D) (12)

is possible since there exists a convex viscoplastic potential.

Interaction formula

Likewise, at the level of the polycrystalline material, the macroscopic devia-
toric stress S is a non-linear function of the macroscopic strain rate D

S=2(D)

The function ¥ characterizes the unknown effective behaviour of the polycrys-
talline material. Assuming that the macroscopic velocity gradient L = 6v/dx is
given (Vis the macroscopic velocity field), the goalis to calculate the local strain
rate D and rotation £ (localization process). Then the effective properties
follow easily (homogenization process). ,

In Molinari et al. (6), an interaction formula is obtained which is usefu] for
the localization calculation. From the equilibrium equations and the incom-
pressibility condition, integral equations are obtained, in terms of the unknown
strain rate D and the rate of rotation {. Under the assumption of uniformity of
D and {2 in each grain, these integral equations are discretized, leading to a
non-linear system of algebraic equations where the unknowns are the strain
rates D¢ and the rate of rotation €)% in each grain g, as well as the effective
properties of the Homogeneous Equivalent Medium (HEM).

To simplify the resolution of these equations, two approximate self-
consistent schemes can be used. In the one-site self-consistent scheme, each
grain is considered as an inclusion surrounded by the HEM. Then, assuming
that the HEM can be represented by its tangent behaviour at D (first order
Taylor expansion at D), the one-site interaction formula is derived (6)

S8 — S = {(I*)~" + A°} : (D8 — D) (14)

where the : represents a double contracted product.
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In this relation the deviation between the macroscopic stress S and the stress
S¢in the grain g is linked to the deviation between the macroscopic strain rate D
and the local D8. The macroscopic properties are explicitly represented by the
effective tangent modulus at D

gimn(]_j) = agoki‘raﬁmn (ﬁ) (15)

The local behaviour is implicitly present since S# and D? are linked by the local
constitutive law (4).

Finally, the grain morphology is included in the fourth order tensor I'*¥
defined by

rsx=-;—J U r(r—r!)dir']dr?’ (16)
v, Uv,

&

where V, is the volume of the grain. The components of the tensor I' are
defined in terms of the Green functions G,; depending solely on the effective
modulus A° (6)

Tijmn = 3(Gimjn + Gjmin T Ginjm + Gin.im) (17)

The notation ('*¢)~" in (14) is employed for the inverse of the tensor 88,

The way to calculate I'*8 for an ellipsoidal grain is summarized in Appendix
1. In the general case the calculation is performed numerically. For the special
case of a spherical grain and an isotropic tensor A, simple analytical results for
'8 are available.

The interaction formula (14) will be used to calculate the local stress and
strain rates S and D2. When these quantities are known, the local rate of
rotation £2f is obtained using the one-site interaction formula (6)

Of — Q = B&: (%)~ (D¢ — D) (18)
where
BSS = J—J U B(r —r') dr’z‘ldr:‘ (19)
Ve Ve WV

The components of the tensor B, given by
Bijmn = '-]((Gim.jn - Gjrn,in + Gin.jm b Gjn.im) (20)
are calculated in Appendix 1.

It is emphasized that the one-site approach relies upon three main assump-
tions.

(1) The uniformity of strain rates in each grain.

(2) The localization problem is solved by considering a grain as an inclusion
embedded in the HEM.

(3) The behaviour of the HEM is approximated by its tangent behaviourat D.

T
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Actually it is well known that intragranular strain rate non-uniformities
appear, especially at large deformations, but information about these inhomo-
geneities is still insufficient to be taken into account here.

The drawbacks which proceed from the second hypothesis can be reduced by
considering an n-site formulation. Then the inclusion problem is solved for a
grain g embedded in an aggregate constituted by its (n — 1) nearest neighbours,
the aggregate being itself embedded in the HEM (6)(10). Thus the interaction
of a grain with its surroundings is accounted for in a better way. Hypothesis (3)
above is still used for the HEM, but the approximations linked to hypothesis
(3) are viewed to have less effects in the n-site self-consistent scheme.

The one-site scheme can be reasonably used for materials with no large
heterogeneities. Indeed, the approximation of the matrix behaviour by a first-
order Taylor expansion at D is reasonable when the deviations of the strain rate
D from D are not too large. For materials presenting pronounced heterogen-
eities (e.g., strong anisotropies in hexagonal materials, two phase materials,
etc.) the use of the n-site scheme is recommended.

Let us call E, the set of neighbouring grains g’ of the grain g. From results
presented in Molinari et al. (6), the following interaction formulas are obtained

S8 — §={(I'%5)"! + A°}:(Df - D)

— (T#8)~!, Z 88’ (S8 — S + A°:(D — D8)) (21)
yieig

Q8 — {3 = B (€)™ [D# — D)

+ ) (B — BEE(I8)~) T8 {88 — § + A°:(D - D¥))
g'eEg
g'rg

(22)

If E, is reduced to the grain g, the former one-site scheme is obtained. Then
formulas (21) and (22) are reduced to (14) and (18). In the interaction formulas
(21) and (22) the coupling between the grain g and grains g’ is accounted for.
The influence tensors I'*¢" and B#¢ are defined by

B

I o J ) [L T -r) dr’3] dr (23)

B = L [ U B(r—r'}dr’3]dr3 (24)
v, Uy, '

B

The n-site self-consistent scheme is considered to take a better account of the
interactions between neighbouring grains. '
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Scheme of calculation

In order to solve the localization problem in a simple way, we assume here that
the tangent modulus of the HEM is isotropic

A wlin Yy (25)
where I is the fourth order identity tensor on symmetric tensors defined by
L = 3(0ix 6j + O 6ix) (26)

There is no obstacle to solving the general case where A° is anisotropic; the
calculations, somewhat longer, are presented elsewhere.

The scheme of calculation is the following. The macroscopic velocity
gradient L is given. Therefore the macroscopic strain rates D (symmetric part
of L) and the rate of rotation {1 (antisymmetric part) are known. At timef, the
microhardening parameters 75, the orientations and the shapes of all grains are
given. We have to calculate the effective modulus w*, the local strain rates and
stresses D, S, the local lattice rotation Q*, and the shear rates 7*in each grain.

* In the framework of the one-site self-consistent scheme, the interaction law
(14) and the single crystal constitutive law (4) are used to calculate the strain

rate and the stress in each grain g as a function of x* and S

D¢ = D#(u*, S) : 27)
S€ = S&(u*,S) (28)
Then the relations
D = (D) : (29)
S:D=(S:D) (30)

between the macroscopic strain rate (respective rate of plastic work) and the
corresponding volumic average, are used to calculate u™ and §. The values of
D#, S¢, and the 7 follow immediately from (27), (28)and (1), (2). Thelocal rate
of plastic rotation £27¢ is given by (10). The interaction law (18) gives the total
rate of rotation Q€. The lattice rotation *# follows from (8).

Attimer + A, the 75 are updated with (7). The new orientations follow from
Q*8 and the shapes of the grains are updated knowing the local velocity
gradient

Lf = D& + QF

For the n-site self-consistent scheme, the procedure is similar. Let us
consider a cubic representative volume of M grains. This volume is reproduced
by periodicity. For each grain among the M grains in the representative
volume, we consider a cluster of n grains and apply the n-site interaction
formula (21). This, added to the constitutive law (4) of each single crystal,
results in a set of 2M coupled tensorial equations. The 2M tensorial unknowns

i
e ———— L
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D% and S€ can be obtained as functions of n.* and S. These last quantities are
calculated in order to fulfil the conditions (29) and (30).

Results

Applications to the calculation of texture development are considered for
rolling and compression tests. The influence of the grain shape is discussed
here. The effects of the interactions between grains will be presented in a
forthcoming paper. ‘

A polycrystalline FCC material is considered with 100 grains having initial
random orientations. The initial texture is therefore isotropic. We assume an
isotropic linear hardening of the slip systems, as in OFHC copper. Thus the
hardening law for the reference stresses ¥ takes the following form

P .

Lo =01l (31)

0
where 72 is the initial reference stress, identical for each slip system, and

=17 (32)

The microscopic strain rate sensitivity is taken to be
m = 0.02 (33)

The macroscopic equivalent plastic strain rate ch and plastic strain €.q are
defined by

I
ch = v(sDijDij) Ecq = Lj Deq (T) dr (34)
In (6), the proposed viscoplastic self-consistent model was used to predict
texture development in different mechanical tests — tension, compression,
rolling, torsion — with good agreement with respect to experimental results.
The deformations were no larger than £¢q = 1, and the modifications in the
shape of the grains were neglected. Here, the shape effect is accounted for, and
deformations up to €.q = 2 will be explored in the framework of the one-site
self-consistent scheme. The initial shape of grains is assumed spherical. It
appears that the evolution from the spherical shape to an elongated ellipsoid
for large deformations, plays a definite role in the final texture. Two tests are
considered, rolling and compression.

Rolling

For the rolling test, the non-zero components of the imposed macroscopic
velocity gradient are
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Li=% La=-% (35)

Figures 1-3 represent (111) pole figures at different stages of the defor-
mation. For 0 < &, < 0.5, the development of a copper-type texture can be
observed, Fig. 1. One can observe specially that the (111) poles have a peak of
intensity in the rolling direction axis. This corresponds to the so-called copper
component which is observed in experiments. The classical Taylor model,
where the strain rates are assumed uniform in the aggregate, cannot predict this
copper component. The relaxed Taylor theory, which is based on morphologi-
cal arguments, would predict the correct copper component, but this theory is
not relevant here, since the change of shape is small at these stages of
deformation.

The better results obtained here with the self-consistent scheme, are due to
the lower interaction between the grain and the matrix than in the Taylor
theory, as discussed in (6).

The fact that the shape effect is small here, is illustrated in Fig. 1(b) for
Eeq = 0.5, where the shape has not been updated. Compared with Fig. 1(a), the
results are almost identical.

For &4 = 1, the shape effect will be significant. In Fig. 2 it appears that some
S components are developing as well as a little brass component.

If the shape is not updated, the texture at £cq = 2 is quite different: it is
almost a fibre-type texture, Fig. 3.

For €.q > 1.5, the calculations indicate that the local values of the strain rate
components Dy;, Dz, D3, D2 tend to the corresponding macroscopic
quantities. Therefore, for large deformations, we obtain a coincidence with the
relaxed Taylor theory, which assumes these constraints by considering some
heuristic arguments based on the morphology of the grains.

The mixture of copper, S, and brass components appearing in Fig. 2(b) is
observed in experimental results, Bacroix (11).

Compression

A compression test is considered now. The following velocity gradient is
imposed
L E— E = 4y
| 2 1y, (36)
Ly =~%,
The other components are equal to zero. Figures 4(a) and 4(b) are inverse pole
figures representing the orientation of the compression axis in the crystal axis
(for each grain). It appears (Fig. 4(a)) that for £.q = 0.75, there is a concen-
tration of the orientations in the vicinity of the (011) axis. This is predicted
neither by the Taylor nor by the relaxed Taylor theory.

The grain shape effects expected for higher deformations are illustrated in
Fig. 5, where the measures 6; of the deviation of the strain rates between the
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Fig 3 The shape is not updated. At £, =2, a fibre-type texture is obtained

grains and the matrix are represented as a function of the equivalent macro-

scopic von Mises deformation, £.4. The following strain rate vector is defined,
Lequeu et al. (12)

D, = (Dy — Dy;)/V2

111

D, = V3/2 Dj;

Dy = N2 Dy (37
D;=V2Dp

Ds=V2D,

The standard deviation between the local strain rate D; and the macroscopic
strain rate D, is defined by

N
_ i 5 _ n&z
8= . (D= Df) (38)
g=1
where the summation holds on all the grains,
For €4 large enough (i.e., =1) §,, 6,, and 65 tend to zero, Fig. 5. This means

that Dyy, Dy,, D33, Dy, are constrained to take the macroscopic values D,
Dyy, D13, Dy; as in the relaxed Taylor theory. Due to this transition to the
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Fig 5 Evolution versus £, of the standard deviations & between the strain rate in the grains and %
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manifestation of strong morphological effects leading to a transition to the relaxed Taylor ._ PeE Jikiy umn
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. . g - where the Pjjn, are d
relaxed Taylor theory, some orientations are leaving the (011) "axis, for ‘. = 1
Eeq = 1.5, Fig. 4(b), decreasing the (011) relative intensity. The type of texture 5 Piimn = V. - '
represented in Fig. 4(b) has been observed by Hansen and Leffers in the case of I BIVa MY
copper (13). E These quantities are |
= i 1 (=
P = ——J sin
g jmn
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Conclusion = = .
. o . _ _ where the Fourier tra
The improvement of this viscoplastic self-consistent approach with respect to ; following system
the Taylor theory (fully or relaxed constrained, respectively FC or RC) relies
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(1) The lower interaction between the grain and the surroundings in the _
self-consistent approach, even in the absence of strong morphological . The Green functions
anisotropy. ki (6).
(2) The possibility of including, in a continuous way, the evolution of the : In (42), spherical ¢

grain shape, and therefore taking account of morphological texture. o matrix i is defined b
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(3) The possibility of describing, in some way, the interactions between
grains,

The lower interaction (1) has been shown (6) to lead to better results than the
FC or RC theories in rolling and compression. No morphological arguments
(as in RC Taylor) were necessary to predict the copper component in rolling.
FC and RC Taylor theories were unable to predict the concentration of
orientations near (011) in compression.

The grain morphology is shown to have a definite effect on the texture
evolution. To discuss this effect, an initial isotropic morphology was assumed
(spherical grains). At large deformations, the strong anisotropy of the mor-
phology leads to a transition to the RC Taylor theory. The continuous way of
accounting for the grain shape in the calculations, leads to texture predictions
which are in better agreement with experimental results (e.g., in rolling, the
texture at large deformations is a mixture of copper, S, and brass components).

Appendix 1
Calculation of the tensors I'®8 and B8 for an ellipsoidal inclusion

The calculation of the coefficients T'§, and Bf¢,, follows the same lines as in
the elastic problem treated by Tiem et al. (14). The elastic tensor ¢® is replaced
here by the tangent modulus A,. The main results are summarized here (see
also (6) Appendix C). From (16), (17) and (19), (20) it follows that

i = V4(PEE o + Pitan + Pl P (39)
Bﬁin = 1{4(Pﬁi1n - Pjgfnn + Pﬂim - ﬁfbm (40)
where the P;;,,, are defined by integrals over the volume ¥ of the inclusion
T — Gio (r—r')drldr 41
ijmn 7 im,jn r r ) & r ( )
iV VY,
These quantities are given by
1 (" . s
= g [ 0[] bk Cin k) 0] 0 ()
0 0

where the Fourier transform G;,(k) of the Green functions are solutions of the
following system

—Af}mklkjckm(k) + ﬁi"rakiﬂm(k) + éim ={
kkckm(k) =0

The Green functions H,, are linked to the hydrostatic pressure, Molinari e al.

(6).
In (42), spherical coordinates of k are used, k, 8, ® with k3 = kcos @, The
matrix  is defined by

(43)

] o oy g s

. e i e .

o e R A
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10 0
Y=10 a/b 0O (44)
0 0 alc

where a, b, c, are the coefficients defining the form of the ellipsoidal inclusion
x2la* + yHb* + 221t =1 (45)

In the general case of an ellipsoidal inclusion, the calculation of I'®® results from
the numerical integration of (42).

If the matrixis assumed incompressible and-isotropic;A° depends on a single
parameter p*

Af = 17 (03 6) + 631 05)

pd (46)
=2u fijkt
Then the Fourier transform of the Green functions are
" 1 1
Grik) = Wani s kok;

i ‘ 47)
HJ - Clnnkjsz
where & is the norm of the vector k.

If, furthermore, the inclusion is spheroidal, simple analytical expressions are
obtained for the P$8

jmn
P =P =F = 2
1411 = 42222 £23333. ™ 15#.,-
Pigiz= Pysay = Piass = Pyist = Pays = Py = = '
1212 2121 1313 3131 2323 3232 15“, (48)
P22 = Ppaqy = Piy33 = Pagy) = Pogaa = Paspp = Piggy
1
= Py112 = Pi331 = P3113 = Pasn = Pagay = —
- 15

All other coefficients are equal to zero.
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