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AbstractÐThe plastic spin concept in large deformation anisotropic elastoplasticity theories with
tensorial internal variables, is proved to be a necessary constitutive ingredient. Di�erent inaccurate
notions about the plastic spin are dispelled, and its presence in the theory is demysti®ed as some-
thing very simple and straightforward. To this extent it is necessary to disassociate the plastic spin
concept and the conjugate notion of constitutive spin from the foundation of kinematics, which
caused confusion in the past, and de®ne it only in relation to the constitutive equations of evolu-
tion of the tensorial internal variables. There, the plastic spin is related to the orientation aspect of
such constitutive equations, and the multiplicity of the di�erent internal variables suggests the
necessity to have a di�erent spin for each variable. In the process, a straightforward constitutive
framework is developed which is based on classical hyperelasticity, yield criteria and invariance
requirements of the constitutive functions under superposed rigid body rotation. Ad-hoc assump-
tions about stress corotational or convected rates and other fuzzy suggestions for di�erent spins
are not part of this development. Other topics such as the concept and simplifying e�ect of the
spinless unstressed con®guration and its comparison with the isoclinic con®guration, some com-
putational aspects, and the e�ect of small elastic strains are discussed, and all along the signi®cance
of plastic spin in the di�erent equations is evaluated. # 1998 Elsevier Science Ltd. All rights
reserved

I. INTRODUCTION

Despite the historically lengthy development of constitutive formulations for large elas-
toplastic deformations, there are still issues which are being debated at the theoretical
level. While many of these debates are justi®ed, given the uncertainty of some basic
assumptions particularly in relation to anisotropic plasticity, others have resulted in con-
¯icting propositions a�ecting the way formulation and computations are made. One of
the central points of such debates is whether or not constitutive equations are necessary or
redundant for a quantity called the plastic spin in recent publications. The focus of this
work is to clarify this particular issue, explain why it is debated, and in the process pro-
vide a straightforward constitutive formulation without ambiguities and ad-hoc assump-
tions. The assumptions which will be made are widely accepted, such as the multiplicative
decomposition of the deformation gradient (Lee, 1969) or the notion of a set of scalar and
tensor-valued internal variables characterizing the material microstructure in a macro-
scopic way.

The issue at hand seems to be ®rst a matter of proper de®nition. The term plastic spin
was apparently coined by Dafalias (1985) to express initially the di�erence of the material
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and the director vectors spin at an intermediate con®guration in the theory developed by
Mandel (1971). The same term was also used by others to express di�erent spin entities,
such as the antisymmetric part of the velocity gradient at the plastically deforming inter-
mediate con®guration. This created a confusion which persists in recent publications, and
where the necessity of constitutive relation for what is thought to be the plastic spin is
negated, when particular choices of the intermediate con®guration are made (Nemat-
Nasser, 1990, 1992; Obata et al., 1990; Onat, 1991). This confusion is partly justi®ed
because in the original works by Mandel (1971) and Kratochvil (1973), and in other
similar works (Dafalias, 1983, 1985, 1987, 1988; Loret, 1983; Paulun and Pecherski, 1987,
etc.), the plastic spin appears to be always related to the kinematics of the deformation, a
thesis which required some ad hoc assumptions about a rotating frame (the director vec-
tors) representing macroscopically the material substructure. While this is not erroneous
and in general well-understood in cases where the material substructure was represented
by orientation vectors, such as the crystal lattice in polycrystalline materials, it becomes a
bit fuzzy when a more direct macroscopic approach in terms of tensorial internal variables
is adopted.

In parallel, many research works on the subject focused on how to eliminate stress
oscillations appearing in the simulation of ®xed-end torsion experiments, and in the pro-
cess suggesting a plethora of di�erent stress corotational rates associated, one way or the
other, with the notion of plastic or similar kind of spin. Such oscillations, however, do
actually occur in experiments and need to be simulated (Dafalias, 1985; Ning and Aifantis,
1994; Cho and Dafalias, 1996), but the question is how it is done and at the expense of
what kind of ad hoc assumptions.

Pausing for a moment to re¯ect on the foundation of elastoplasticity theory, it is inter-
esting to observe that stress actually appears at the basis of the theory in two ways. First,
in the elastic stress±strain relations, which must be in fact hyperelastic. Second, in the
de®nition of a static or dynamic yield criterion in stress space. Stress rate does not con-
stitute a fundamental constitutive ingredient and it appears only in the process of alge-
braic manipulations associated with the consistency equation (setting the rate of the yield
criterion equal to zero). Thus, works which begin with choices of convected or corota-
tional stress rates at the basis of the theory, do actually make an ad hoc assumption not
necessarily compatible with the notion of hyperelasticity and yield criteria in the classical
sense described above.

It appears, therefore, that the subject matter has not yet been appropriately addressed.
In the present work a fresh look at the subject is proposed, which in several aspects is
related to past works of the author. The correct approach is to disassociate the plastic spin
concept from the foundation of the general kinematics of deformation, and simply intro-
duce it as a necessary orientational ingredient (together with the conjugate notion of
constitutive spin) of the constitutive rate equations of evolution of the internal variables.
In fact, following Dafalias (1993a) where still a spin related to the kinematics was unnece-
ssarily (but not erroneously) maintained, a multiplicity of pairs of plastic and constitutive
spins is introduced, re¯ecting the di�erent orientational characteristics of di�erent internal
variables.

The formulation then takes a very straightforward path of development during which
many issues fall naturally in place. For example, a convenient stress rate naturally arises
from the algebraic manipulations rather than assumed, the concepts of spinless and iso-
clinic (Mandel, 1971) unstressed con®gurations are presented and used for easy formulation,
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particularly in connection with some computational aspects, other details such as elastic
embedding, the reason for using corotational rather than convected rates with plastic
deformation, small elastic strains, etc., are discussed, and all along the presence and
in¯uence of the plastic spin concept on the constitutive formulation is shown and eval-
uated. While the present work is rather abstract because it addresses only the theoretical
foundation and formulation of the theory, its practical signi®cance is corroborated by
reference to other works where speci®c applications and comparisons with experiments at
large plastic strains have been proved successful.

Direct notation will be used for the algebra of tensor-valued quantities, which will be
denoted by bold-face characters if they are vectors or second order tensor, and by italics if
they are fourth order tensors. With the summation convention over repeated indices
accepted (unless otherwise stated), juxtaposition implies summation over two repeated
adjacent indices, i.e. AB! AijBjk. In some cases pre-position of a second order to a fourth
order tensor will require special de®nition of the implied summation. The symbol �between
two tensors implies summation over two pairs of repeated adjacent indices in the same
order, i.e. A�B! AijBij or L�A! LijklAkl, while the often used symbol : implies such
summation in reverse order, i.e. A : B! AijBji or L : A! LijklAlk (trace operation).
Notice that A�B � A : BT (the T signi®es the transpose) and that
A : BC � AB : C � C : AB, while A�BC 6� AB�C, in general. The symbol 
 denotes the
tensor product, i.e. A
 B! AijBkl. A superposed �denotes the material time derivative or
rate. Finally observe that an index used in denoting the multiplicity of tensors may imply
repetition of an operation between tensors if it appears twice, unless otherwise stated. For
example, if Ai and Bi are two families of tensors for i � 1; 2; . . . ; one has that
AiBi � A1B1 � A2B2 � . . . ; with each term implying the corresponding indicial summa-
tion of juxtaposition as de®ned above.

II. KINEMATICS

The kinematics associated with the concepts of a current con®guration �, a reference
con®guration �r and an intermediate unstressed and elastically unstrained con®guration
�u (often called relaxed) will be assumed. Consistent with this assumption the multi-
plicative decomposition of the total deformation gradient F, Lee (1969), yields

F � FeFp �1�

with Fp describing the plastic deformation from �r to �u and Fe the elastic deformation
from �u to �. For given � and �r, the �u can be chosen arbitrarily within a rigid body
rotation. For example for a ��u which is rotated from �u by a rotation described by the
orthogonal tensor Q, it follows that Fe� � FeQT and Fp� � QFp, such that F remains
unchanged since Fe�Fp� � FeFp � F. This arbitrariness of choosing �u requires invariance
of the constitutive relations under rigid body rotation at �u.

The velocity gradient _FFÿ1 at � follows from eqn (1) as

_FFÿ1 � � _FFÿ1�s � � _FFÿ1�a � D�W � _FeFeÿ1 � Fe _FpFpÿ1Feÿ1 �2�

where D and W are the rate of deformation and material spin tensors, respectively, at the
current con®guration �, and subscripts s and a denote symmetric and antisymmetric parts,
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correspondingly. No additive decomposition into elastic and plastic parts of D and W at �
is proposed, since it is not directly required for the present formulation.

In this work the constitutive framework will be set initially at the unstressed con®g-
uration �u, where by de®nition all deformations and rotations are purely plastic in origin,
caused by Fp. Hence, the corresponding plastic velocity gradient at �u is obtained by

_FpFpÿ1 � � _FpFpÿ1 �s � � _FpFpÿ1�a � Dp
o � � _FpFpÿ1 �a �3�

where Dp
o � � _FpFpÿ1�s is the plastic rate of deformation at �u, while � _FpFpÿ1�a is the

material spin at �u (corresponds conceptually to W at �). Due to its derivation from Fp,
the ( _FpFpÿ1�a could be called the plastic material spin, but not the plastic spin in the sense
de®ned subsequently. In connection to notation of other relevant works, it should be
mentioned that the quantity Dp

o here was symbolized as Dp
u in Dafalias (1987).

Under superposed rigid body rotation Q�t� which brings �u to ��u, the new plastic
deformation gradient is Fp� � QFp, which yields

� _Fp�Fp�ÿ1 �s � Dp
o � QDp

oQ
T �4a�

� _Fp�Fp�ÿ1�a � _QQT �Q� _FpFpÿ1 �aQT �4b�

for the corresponding plastic rate of deformation and plastic material spin tensors at ��u.
For future use a kinematical relation is derived between the rate of the elastic Green

strain tensor Ee � �1=2� �Ce ÿ I� where Ce � FeT

Fe, the total rate of deformation tensor
D, and the plastic rate of deformation tensor Dp

o at �u. If one premultiplies by FeT

and
postmultiplies by Fe the last two members of eqn (2) and takes the symmetric part of the
ensuing relation, he obtains the following using eqn (3) and observing that _Ee � �FeT _Fe�s

E
r
e � _Ee ÿ � _FpFpÿ1�aEe � Ee� _FpFpÿ1�a � FeT

DFe ÿ �CeDp
o�s �5�

The superposed symbol r denotes the corotational rate (also known as Jaumann rate)
of Ee in relation to the plastic material spin � _FpFpÿ1�a, as de®ned by the second member of
eqn (5). This symbol will be used henceforth to denote the corotational rate of a tensor in
relation to the spin de®ned by the antisymmetric part of the velocity gradient pertinent
to a con®guration where the tensor is de®ned, e.g. in reference to � _FpFpÿ1�a at �u as done
above, or in reference to � _FFÿ1�a �W at �, etc. Equation (5) involves no approximations
or disputed de®nitions of elastic and plastic rate deformation measures. It takes the place
of the traditional (and often disputed) additive decomposition of D into elastic and plastic
parts.

III. STATE VARIABLES AND HYPERELASTICITY

In the present macroscopic theory, the material state at the current con®guration � is
de®ned in terms of the Cauchy stress � and a set of internal variables ai (the i indicates the
plurality of the variables), encompassing the macroscopic manifestation of the material
microstructure. As such they can represent residual stresses, directions of anisotropy,
directions of max and min of orientation distribution functions of microstructural
aggregates, hardening parameters, etc. Therefore, the ai can be scalar or tensor-valued
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quantities, and it is their orientational properties when they are tensor-valued which yield
anisotropic material characteristics. In the sequel the ai will be considered second-order
symmetric tensors (the most common case) for simplicity of presentation, but it is under-
stood that scalar and vector-valued ai can be similarly incorporated. The proposition of
using ai to de®ne simultaneously the state and orientation of an unstressed material element
was ®rst advanced in the works of Onat, e.g. Fardshisheh and Onat (1974) and Onat (1991).

Since the constitutive framework will be set ®rst at the intermediate con®guration �u,
one must transport the � and ai from � to their counterparts � and Ai at �u. The trans-
port is related to Fe, hence, it was called elastic embedding in Dafalias (1985, 1987, 1988).
The subsequent use of hyperelastic relations with the elastic Green strain tensor Ee, sug-
gests that it is most convenient to de®ne � at �u as the symmetric second Piola±Kirchho�
stress tensor according to

� � jFejFeÿ1�FeÿT �6�

� is the work conjugate to _Ee per unit mass. It is possible to de®ne other stress tensors at
�u, as for example the non-symmetric � � jFjFeÿ1�Fe, Aravas (1994) or a similar one by
Mandel (1971). Such de®nitions, including the one in eqn (6), are done for reasons of
convenience and not because of a fundamental constitutive requirement.

In contrast, the elastic embedding from ai to Ai re¯ects a physical attribute of ai and
becomes a corresponding constitutive assumption, since the Ai remain attached to the
material at �u as entities characterizing macroscopically the material state and orientation
even after the �, and consequently �, has been removed. For example, say that
ai � m
m, where the vector m represents a reinforcing thin short ®ber at � which
becomes M at �u. The plausible physical assumption of a�ne embedding with elastic
deformation for this ®ber is analytically described by m � FeM, which with Ai �M
M
yields the embedding relation Ai � Feÿ1aiF

eÿ1T

. Other types of embedding can similarly be
introduced, Dafalias (1987, 1988), as for example for a residual stress tensor a at � which
becomes A at �u such that A � jFejFeÿ1aFeÿT

, as done for � and � in eqn (6).
Bearing in mind the foregoing for future reference, an elastic strain energy function 	

per unit mass is assumed to depend on the elastic Green strain Ee and the variables Ai, i.e.
	 � 	�Ee;Ai�. The hyperelastic relations are obtained by

� � �o @	�E
e;Ai�

@Ee �7�

where �o is the mass density at �u. Invariance requirements under superposed rigid body
rotation Q�t� at �u and the ensuing change of �, Ee and Ai to Q�QT, QEeQT and
QAiQ

T, respectively, render 	 and, therefore, � or @	=@Ee isotropic functions of their
arguments. However, this does not imply that the material is elastically isotropic due to
the tensorial character of Ai (unless all Ai are scalar-valued, Mandel, 1971), which allows
for the description of di�erent kinds of elastic anisotropy. In fact the possible change of Ai

(scalar or tensor-valued) in the course of plastic deformation describes changing elastic
properties in a process which can be called elastoplastic coupling or damage, the latter if
Ai describes a fracture process in a continuous ``smeared'' sense. Observe also that the
Cauchy stress � is fully speci®ed by eqns (6) and (7) given Fe and Ai at �u, without refer-
ence to any speci®c stress rate.
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IV. RATE CONSTITUTIVE EQUATIONS AND THE PLASTIC SPIN

IV.1. Rate equations and constitutive spins

At the relaxed con®guration �u one must now provide constitutive equations for the
plastic rate of deformation Dp

o and the evolution of Ai. The ®rst task is accomplished in
the usual way be setting

Dp
o �< l > Np

o��;Ai� �8�
with l the scalar-valued plastic loading index or plastic multiplier, to be determined in the
sequel, <> the Macauley brackets de®ning the operation < l >� l if l > 0 and
< l >� 0 if l � 0, and Np

o a symmetric tensor-valued function of the state variables �
and Ai giving the ``direction'' of the plastic ¯ow. Clearly plastic deformation occurs only
when l > 0. Based on eqns (4a) and (8), it follows that under superposed rigid body
rotation Q�t� of �u one has Np

o�Q�QT;QAiQ
T� � QNp

o��;Ai�QT, hence, Np
o is an iso-

tropic function of its arguments � and Ai.
In relation now to the rate equations of evolution of Ai, a few observations are perti-

nent. The physical and, consequently, constitutive meaning of the embedding from ai at �
to Ai at �u as far as the elastic deformation gradient Fe is concerned, discussed in Section
III, depended on the way the ai was attached, so to speak, to the material in the course of
elastic deformation. The corresponding question now arises as to how each Ai is attached
to the material during the plastic deformation Fp which continuously reshapes the inter-
mediate con®guration �u where Ai is referred. Is Ai again embedded in a de®nite way in
the plastically deforming �u, or does it follow its own mode of evolution? A positive
answer to the former question would imply the use of convected with the plastically
deforming continuum rates of covariant, contravariant or mixed type, in describing the
evolution of Ai. Although this cannot be excluded from a general perspective, it is not
likely to re¯ect a physical reality. The reason is that the macroscopic continuous appear-
ance of plastic deformation, is in fact the result of a microscopic intensely discontinuous
velocity ®eld accomplished mostly by slipping and rolling processes of grains or part of
grains relatively to each other, for both crystalline and granular materials. It seems
unlikely then that a short ®ber, for example, will be embedded a�nely in the bulk of such
a discontinuously deforming medium. It will rather evolve in its own way, letting the
continuum ``¯ow'', so to speak, around it. As another example, the vectors of the crystal
lattice of polycrystalline metals follow an orientation quite di�erent from that of the
principal plastic stretch directions, for example, while they are still embedded in the
material in reference to the elastic part of the deformation according to a physically
meaningful rule (Dafalias, 1988). More di�cult is to state exactly what a residual stress Ai

will do, but there is nothing which necessitates its convected change with the medium
during plastic deformation, in general. In other words the Ais follow di�erent orienta-
tional kinematics from that determined by Fp for the continuum, in what has been termed
the kinematics of the substructure (Dafalias, 1987). Of course some connection must be
established between the orientational kinematics of the continuum and its substructure,
and that is where the plastic spin concept will play its role. In addition to its orientational
change associated with the substructure, each Ai has also its evolutionary change expressed
by a rate equation of evolution.

The simplest way to properly account for these two constitutive aspects, the orienta-
tional and the evolutionary, is to consider them separately in the constitutive equations.
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Mandel (1971) suggested the existence of a rotating frame of director vectors, as he called
them, with respect to which the rate equations of evolution for all Ai were written. In
reference to a ®xed frame, the rate form of these equations would be corotational with the
director vectors frame. To accept, however, a common rotating frame with respect to
which the rate equations of evolution for all Ai are written, is too restrictive. The di�er-
ence in nature among the Ais necessitates the introduction of a di�erent rotating frame for
each Ai, in general. Since it may not be possible to always de®ne geometrically this frame
given Fp, it is equivalent to introduce instead the notion of its spin, called the constitutive
spin and symbolized by !i for each Ai. It follows that the constitutive equation for each
Ai in reference to a ®xed frame will be expressed in terms of the corotational rate of Ai in
relation to the constitutive spin!i. Denoting this rate by a superposed c (for constitutive)
and assuming that Ai is a second order tensor, one has

A
c

i � _Ai ÿ!iAi � Ai!i �< l > �Ai��;Ai� �no sum on i� �9�

while if Ai is vector-valued the equation becomes

A
c

i � _Ai ÿ!iAi �< l > �Ai��;Ai� �no sum on i� �10�

Equations (9) and (10) show clearly the two constitutive aspects. The second member
involving !i de®nes the orientational aspect. The last member de®nes the evolutionary
aspect, embodied in the tensor or vector-valued function �Ai premultiplied by the plastic
multiplier l to indicate that it occurs only when plastic deformation takes place according
to eqn (8). Observe also that when Ai represents a purely orientational internal variable,
e.g. a unit vector n or its tensor product n
 n, the corresponding �Ai in eqns (9) or (10) is
identically zero. Thus, A

c

i � 0 which means that Ai simply spins by !i in the course of
plastic deformation, as expected on physical grounds.

Constitutive invariance under superposed rigid body rotation Q�t�, requires that A
c

i

becomes A
c �
i � QA

c

iQ
T if a tensor, and A

c �
i � QA

c

i if a vector. This implies that the con-
stitutive spin !i must obey the transformation

!�i � _QQT �Q!iQ
T �11�

as deduced in Lee et al. (1983). Equation (11) imposes a restriction on the de®nition of!i,
and also yields the relation �Ai�Q�QT;QAiQ

T� � Q �Ai��;Ai�QT for all orthogonal Q (if
Ai is a second order tensor for simplicity), which renders �Ai isotropic function of � and Ai

(Dafalias, 1985).

IV.2. The plastic spin

So far, apart from the general invariance requirement expressed by eqn (11), the con-
stitutive spin !i has not been otherwise restricted or related to the kinematics of the
unstressed con®guration �u described by the plastic velocity gradient _FpFpÿ1 . It is clear
from the reasoning of introducing !i that the latter is not necessarily equal to the anti-
symmetric part � _FpFpÿ1�a, which was termed the plastic material spin at �u. In the absence
of plastic rate of deformation, i.e. when Dp

o � � _FpFpÿ1�s � 0 which implies < l >� 0 from
eqn (8), it follows that �u simply spins by � _FpFpÿ1�a. Simultaneously, it follows from eqns
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(9) and (10) that also A
c

i � 0 (because hli � 0), i.e. that each Ai spins by !i. Since the Ai

are attached to the material at �u, the foregoing necessarily imply that when Dp
o � 0 one

has � _FpFpÿ1�a �!i, i.e. the continuum and the Ais spin together as physically expected
when no plastic rate of deformation occurs.

The foregoing suggest that one can write for each !i the relation

� _FpFpÿ1�a �!i �W
p
i �!i� < l > 
p

i ��;Ai� �12�

where W
p
i �< l > 
p

i is the plastic spin corresponding to the constitutive spin !i, such
that when < l >� 0 one has W

p
i � 0 and !i � � _FpFpÿ1�a. Thus, the plastic spin for

each Ai is de®ned as the di�erence between the plastic material spin � _FpFpÿ1�a and the
constitutive spin !i, this di�erence being of constitutive nature and becoming zero when
Dp

o � 0. The signi®cance of eqn (12) can be best appreciated if compared with the
corresponding equation in crystal plasticity which reads

� _FpFpÿ1�a �!�Wp �!�
X
�

_
��m� 
 n��a �13�

where ! represents the lattice spin, m� and n� the slip and normal to slip plane unit
directions of slip system � at �u, and _
� the corresponding slip shear strain rate. Notice
that researchers in crystal plasticity usually write the right-hand side of eqn (13) without
the ! term, because they tacitly assume lattice co-rotation for � _FpFpÿ1�a in the formula-
tion. The lattice spin is the counterpart of the constitutive spin !i, with the lattice itself
being the rotating frame with respect to which constitutive rate equations are written.
Equations (12) and (13) clearly demonstrate the di�erence between the antisymmetric part
of the plastic velocity gradient � _FpFpÿ1�a (named here the plastic material spin), and the
plastic spin W

p
i in eqn (12) or Wp in eqn (13). Since the Wp is related to the plastic slip

process, and the W
p
i is di�erent than zero only when Dp

o is, the name plastic spin was
introduced (Dafalias, 1985). Much confusion in the literature was created because many
authors called plastic spin the � _FpFpÿ1�a instead of the W

p
i , as observed in Aravas (1994).

This point will be further elaborated in Section V.1.
With the plausible (but not unique) suggestion that 
p

i can be an antisymmetric tensor-
valued function of the state variables � and Ai, it follows from eqns (4b), (11) and (12)
that 
p

i satis®es 
p
i �Q�QT;QAiQ

T� � Q
p
i ��;Ai�QT, i.e. 
p

i is an isotropic function of
its argument. This was the basis for the ®rst suggestion of a de®nite constitutive equation
for W

p
i or 
p

i in the case of one internal variable representing a back-stress, based on the
representation theorems for antisymmetric isotropic functions (Dafalias, 1983, 1985;
Loret, 1983). It is possible, however, in addition to the dependence on the state variable to
have other kinematical entities (e.g. the Eulerian spin) entering directly the de®nition of
the plastic spin (Dafalias, 1993a,b). The foregoing clearly demonstrate that no matter
what is the value of � _FpFpÿ1�a, constitutive equations for the plastic spin W

p
i (or equiva-

lently for the constitutive spin !i) is a necessity, much as it is the provision of the con-
stitutive terms _
��m� 
 n��a in eqn (13) for crystal plasticity.

Equation (12) can now be used to recast the constitutive rate eqns (9) and (10) for each
Ai in the form

A
r

i � _Ai ÿ � _FpFpÿ1�aAi � Ai� _FpFpÿ1�a �< l > �Ai ÿ
p
i Ai � Ai


p
i

� � �no sum on i�
�14�
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for a second order tensor, and

A
r
i � _Ai ÿ � _FpFpÿ1 �aAi �< l > �Ai ÿ
p

i Ai

� � �no sum on i� �15�

for a vector. Equations (14) and (15) show clearly the role played by the plastic spin term

p

i if the classical Jaumann rate in relation to the plastic material spin at �u is used instead
of !i for the evolution of Ai.

Since the original works on equations for the plastic spin were published, many more
followed in a number large enough to prohibit comprehensive reference. It would be
instructive though to comment on some of them. In a similar way to a work by Dafalias
(1993a) for a special case of evolving orthotropic symmetries, Aravas (1994) suggested
that it is often preferable to specify ®rst the constitutive (or substructural) spin !i and
then obtain the plastic spin from eqn (12), given the � _FpFpÿ1�a, and presented di�erent
examples. One interesting example addresses the case whereby an internal variable Ai,
namely a back-stress tensor, develops its principal values along the principal plastic
stretch directions at �u associated with Fp in a scheme appropriate for anisotropic poly-
mers, Parks et al. (1984) and Boyce et al. (1988a). It follows, therefore, that in this par-
ticular case the pertinent choice of the constitutive spin !i for the back-stress is the
Eulerian spin 
E at �u associated with Fp (notice that 
E satis®es the required eqn (11)).
The corresponding plastic spin is obtained according to eqn (12) by Wp � � _FpFpÿ1�a ÿ
E

and can be expressed component-wise in terms of Dp
o � � _FpFpÿ1�s rather than being

de®ned via an isotropic function 
p
i of � and Ai, since the components of 
E at �u can be

expressed in terms of the components of � _FpFpÿ1�a and Dp
o (Biot, 1965; Hill, 1970). Based

on these expressions it follows that Wp � 0 when Dp
o � 0, while under superposed rigid

body rotation one has Wp� � QWpQT, as it should. Hence, the fact that the orientation of
an internal variable is speci®ed directly from the geometry of the kinematics (for example
the principal plastic stretch directions in the previous example), does not eliminate the
existence of plastic spin constitutive relations, but perhaps renders them impractical for
direct use. In many cases, though, the direct geometrical speci®cation of the orientation of
an internal variable is not possible and constitutive relations for either the plastic or the
constitutive spin must be provided.

Notice though, in reference to the previous example and in contrast to it, that in general
the constitutive spin of an internal variable is not necessarily the spin of its eigenvector
triad. For example, in crystal plasticity an internal stress tensor may have eigenvectors
which spin di�erently from the underlying lattice frame, the spin of the latter being the
natural choice of a constitutive spin for the rate evolution equation of such internal stress
tensor. The di�erence between the spin of eigenvectors and the constitutive spin for a
back-stress tensor has been studied analytically in Dafalias (1993a).

Plastic and constitutive spin expressions in a macroscopic formulation were obtained
analytically in 2-dimensional cases by means of exact averaging procedures and use of
orientation distribution functions applied to the assemblage of micro structural elements
in van der Giessen and van Houtte (1992) for single slip elements, and in Rashid (1992),
Dafalias (1993a,b) and Prantil et al. (1993) for double slip elements. The ®ndings in
Dafalias (1993a,b) were subsequently used in multiple spin applications by Cho and
Dafalias (1996), where the importance of using two di�erent !is for the evolution of two
internal variables, the back-stress and the direction of orthotropy induced by texture
development, was demonstrated by successful comparison of the theory with experiments.
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A two-spin formulation for two superposed back-stress tensors was presented in Zbib and
Aifantis (1988) and Ning and Aifantis (1994).

IV.3. Yield criterion and stress-deformation rate relations

The plastic multiplier l which enters all previous constitutive eqns (8)±(10), (12), (14)
and (15) and indicates by its sign the event of plastic deformation must now be speci®ed.
For the case of rate independent plasticity, the concept of a yield surface in stress space is
introduced and together with its stress gradient is de®ned analytically at �u by

f��;Ai� � 0; Nn
o �

@f

@�
�16�

Satisfaction of eqn (16)1 by the state variables � and Ai is a necessary condition for
plastic deformation to occur, given a stress or strain increment of appropriate direction in
relation to the normal to f � 0 represented by Nn

o. Invariance requirements under super-
posed rigid body rotation Q�t� at �u, render f isotropic function of its argument.

Since f in eqn (16) and � � �o�@	=@Ee� in eqn (7) are scalar and tensor-valued isotropic
functions of their arguments, eqns (A4) and (A8) of the Appendix apply to f and �,
respectively, and yield for subsequent use the relations

�Nn
o ÿNn

o�� Ai
@f

@Ai
ÿ @f

@Ai
Ai � 0 �17�

for f, and

Ee @�

@Ee ÿ
@�

@Ee E
e � Ai

@�

@Ai
ÿ @�
@Ai

Ai

� �
: !��!ÿ!� � 0 �18�

for �, in reference to any spin !, accounting for the symmetry of �, Ai and Ee. Recall
from the Introduction that summation over i due to the multiplicity of Ai is implied in
eqns (17) and (18), and observe the interpretation given by eqn (A9) of the Appendix, for
the fourth and second order tensor multiplication together with the trace operation
appearing in eqn (18) and in the following. Equation (A3) of the Appendix from which
eqn (17) can be derived as a corolary, was derived in Dafalias (1985), while eqns (17) and
(18) were reported in a di�erent setting by Onat (1991). Both equations will be used
extensively in the following algebraic operations for simpli®cation reasons.

Returning now to eqn (16), the standard consistency equation of plasticity is obtained
by setting the rate of f equal to zero, which yields

_f � @f

@�
: � @f

@Ai
: _Ai � 0 �19�

were for simplicity the Ai are assumed to be tensor-valued and symmetric. For the use of
the trace operation symbol : in eqn (19) and in subsequent equations, instead of the symbol
� implied by the operation of the rate derivative (see comment in Introduction), the sym-
metry of � and Ai was employed. Using eqn (14) to substitute for _Ai in eqn (19), one has
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@f

@�
: � �Ai

@f

@Ai
ÿ @f

@Ai
Ai� : � _FpFpÿ1 �a� < l >

@f

@Ai
: �Ai ÿ Ai

@f

@Ai
ÿ @f

@Ai
Ai

� �
: 
p

i

� �
� 0

�20�
where summation on i, implying repetition of operation over the indexed quantities, takes
place over all terms where i appears two or three times (same holds true in subsequent
expressions). Using eqn (17) to substitute ÿ��Nn

o ÿNn
o�� for the sum Ai�@f=@Ai�ÿ

�@f=@Ai�Ai in the second term of eqn (20), and observing that ��Nn
o ÿNn

o�� : � _Fp ÿ Fpÿ1�a �
Nn

o : �� _FpFpÿ1�a�ÿ�� _FpFpÿ1�a�, one can then solve eqn (20) for l and obtain

l � Nn
o : �

r

H� Ai
@f

@Ai
ÿ @f

@Ai
Ai

� �
: 
p

i

�21�

with the hardening modulus H given by

H � ÿ @f

@Ai
: �Ai �22�

Observe the natural emergence of �
r

(corotational rate of � in relation to the plastic
material spin � _FpFpÿ1�a in the de®nition of l, together with the plastic spin e�ect portrayed
by the 
p

i in eqn (21). Notice that the di�erent 
p
i in the implied sum over i in the

denominator of eqn (21), prevents one from using eqn (17) to substitute the Ai terms by
the simpler �Nn

o ÿNn
o� term. Only if 
p

i were the same for all i, this would have been
possible, as it will be discussed in the sequel (case of a single constitutive and plastic spin,
as in Mandel, 1971; Dafalias, 1985).

It will be now necessary to express l in terms of the total rate of deformation tensorD, as a
®rst step towards relating a proper stress rate toD. The rate of bothmembers of eqn (7) yields

� @�
@Ee : _Ee � @�

@Ai
: _Ai � _�o

�
� �23�

Using the mass conservation equation _�o � �otrDp
o � 0 at �u together with Dp

o �< l > Np
o,

substituting _Ai from eqn (14) in (23) and using eqn (18) with! � � _FpFpÿ1�a to express the
sum Ai�@�=@Ai� ÿ �@�=@Ai�Ai over i in terms of the other quantities of eqn (18) for the
above choice of !, one has after some algebra that

�
r � @�

@Ee : E
r � < l >

@�

@Ai
: �Ai ÿ Ai

@�

@Ai
ÿ @�
@Ai

Ai

� �
: 
p

i ÿ�trNp
o

� �
�24�

After substituting E
r

from eqn (5) in (24) and using Dp
o �< l > Np

o, one can form the
trace Nn

o : �
r

which can be solved for l accounting for the de®nition of the latter in eqn
(21), and have

l � Nn
o :Lo : �FeT

DFe

H�Nn
o : Lo : CeNp

o

ÿ �
s
��trNp

o ÿ Ci : �Ai � AiCi ÿ CiAi� � : 
p
i

h i
� Ai

@f

@Ai
ÿ @f

@Ai
Ai

� �
: 
p

i

�25�
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where for simplicity the notations

Lo � @�
@Ee � �o

@2	

@Ee 
 @Ee �26a�

Ci � @�
@Ai
� �o @2	

@Ee 
 @Ai
�26b�

were introduced for the fourth order tensors Lo and Ci. The Lo is the usual tensor of
tangent elastic moduli, while the Ci represents the elastoplastic coupling due to the pres-
ence and evolution of the Ais entering 	. Notice that even if some of the Ais are
purely orientational in nature, i.e. �Ai � 0, still corresponding Cis, associated with the 
p

i s,
exist in eqn (25).

Substitution of eqn (25) in (24) and use again of eqn (5) yields ®nally the stress-defor-
mation rate relation as

�
r � � : FeT

DFe �27�
where the fourth order tensor of elastoplastic moduli � is given by

� � Lo ÿ
Lo : CeNp

o

ÿ �
s
��trNp

o ÿ Ci : �Ai � AiCi ÿ CiAi� � : 
p
i

h i

 Nn

o :Lo

� �
H�Nn

o : Lo : CeNp
o

ÿ �
s
��trNp

o ÿ Ci : �Ai � AiCi ÿ CiAi� � :
p
i

h i
� Ai

@f

@Ai
ÿ @f

@Ai
Ai

� �
: 
p

i

�28�

The reason for the considerably complex form of � in eqn (28) is on the one hand the
fact that Ci 6� 0 because of the inclusion of Ais in 	, and on the other hand the existence
of multiple 
p

i . In relation to eqn (28) and all subsequent equations where di�erent forms
of � appear, it is implied that when elastic unloading occurs and l � 0 (see de®nition of l
in eqn (25)), it follows that � � Lo.

Often elastic isotropy is assumed, even if plasticity is anisotropic. In this case all the Ais
which may enter the strain energy density function 	 must be scalar-valued, portraying a
change of elastic properties which does not alter their isotropy (e.g. isotropic damage).
Then, the corresponding �Ais are also scalar-valued (recall eqns (9) and (10) with !i � 0),
and the associated Cis become second order tensors (eqn (26b)). As a result, the
Ci : �Ai terms in eqn (28) yield scalar multiplications of tensors such as �AiCi, while the
(AiCi ÿ CiAi� : 
p

i terms disappear. In fact 
p
i has no meaning for a scalar-valued Ai.

Notice, however, that the Ais and 
p
i s associated with the @f=@Ai terms remain in general

in eqn (28), since the Ais entering eqn (16) of the yield surface are not necessarily the same
as the ones entering 	, and can be tensor-valued. In the simpler case of unchanged iso-
tropic elastic properties, no Ai scalar or tensor-valued enters 	, hence, all the Cis are zero
(eqn (26b)) and eqn (28) simpli®es accordingly.

If the material remains elastically and plastically isotropic, it follows that all the Ais
entering 	, f and Np

o are scalar valued, which implies that 
p
i � 0 for all i, and that Ce, Nn

o

and Np
o commute having the same eigenvectors as � (recall their isotropic dependence on

� and the now scalar-valued Ai). If in addition 	 depends only on Ee (no isotropic
damage) and the plastic rate of deformation is traceless, one has Ci � 0 and trNp

o � 0,
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respectively. Hence, the elastoplastic tangent moduli � of eqn (28) simpli®es considerably,
with the numerator of the right-hand side of eqn (28) becoming Lo : Np

oC
e 
Nn

o : Lo, and
the denominator H�Nn

o : Lo : Np
oC

e.
Consider now the particular case where all !i are equal to a common !o, hence,


p
i � 
p

o for all Ai. Recalling the de®nition of Lo and Ci from eqn (26), using the key eqns
(17) and (18) and the relation �Ee�@�=@Ee� ÿ �@�=@Ee�Ee� : 
p

o � ÿ�@�=@Ee� : �Ce
p
o�s in

the expressions (21), (25) and (28), one ®nally has

l � Nn
o : �

r

H�Nn
o : ��
p

o ÿ
p
o�� �

Nn
o : Lo : FeT

DFe

H�Nn
o : Lo : Ce Np

o �
p
o

ÿ �ÿ �
s
��trNp

o ÿ Ci : �Ai

h i �29�

� � Lo ÿ
Lo : Ce Np

o �
p
o

ÿ �ÿ �
s
��trNp

o ÿ Ci : �Ai � 2 
p
o�

ÿ �
s

h i

 Nn

o : Lo

� �
H�Nn

o : Lo : Ce Np
o �
p

o

ÿ �ÿ �
s
��trNp

o ÿ Ci : �Ai

h i �30�

with eqn (27) still being valid. Observe that now the Cis appear in conjunction with
hardening Ais only, i.e. when �Ai 6� 0. If one symbolizes by a superposed o the corotational
rate in relation to !o, it easily follows based on � _FpFpÿ1�a �!o� < l > 
p

o that
�
r ÿ �

� �< l > ��
p
oÿ
p

o��. Hence, instead of eqn (27) one can have the relation

�
� � �o : FeT

DFe �31�

where �o is given by eqn (30) without the term 2�
p
o��s in the ®rst bracketed quantity of

the numerator. Also in this case the expression for l in eqn (29) in terms of the new stress
rate becomes l � �Nn

o : �
� �=H, while the second expression in terms of D remains as is.

The rate independence of eqns (27) and (28) is based on the derivation of l in eqn (21)
or eqn (25) in association with a yield surface, eqn (16). In rate dependent theories, the
plastic multiplier l represents simply a scalar-valued overstress isotropic function of �
and Ai, related to a so-called ``dynamic'' yield criterion in stress space without the need of
satisfying the consistency eqn (19) (Dafalias, 1990). Denoting then by z the < l >, the
relation between stress rate and rate of deformation is obtained from eqn (24) with the
substitution of E

r
e from eqn (5) to yield

�
r � Lo : FeT

DFe ÿ z Lo : �CeNp
o�s ��trNp

o ÿ Ci : �Ai � �AiCi ÿ CiAi� : 
p
i

� � �32�

It is important to emphasize that z substitutes < l > in all other pertinent equations, such
as eqns (8)±(10), (12), (14) and (15). A properly chosen form of z, whereby the overstress
concept uses a zero stress as reference, can accommodate smoothened out yield con-
ditions, e.g. the power law which is useful in practical large strain crystal and polycrystal
plasticity calculations.

Notice ®nally that the FeT

DFe is work-conjugate to � at the unstressed con®guration �u
since with jFej � �o=�, where �o and � are the mass densities at �u and �, respectively, and
the de®nition of � from eqn (6), it follows that

� : �FeT

DFe�
�o

� � : D

�
�33�
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Observe that throughout the preceding development it was not necessary to decompose
a total strain measure or the total rate of deformation D into elastic and plastic parts.
Elasticity was de®ned directly from eqn (7) without the need to introduce any speci®c
stress rate, while the plastic rate of deformation was unambiguously de®ned at �u by eqn
(8), and its presence is expressed by Np

o in the ®nal equations.

V. ISSUES RELATED TO THE CHOICE OF CONFIGURATIONS

V.1. Spinless and isoclinic con®gurations

So far the choice of the intermediate unstressed con®guration �u was left indeterminate
within a rigid body rotation. Equivalent to this indeterminacy is the fact that the plastic
material spin � _FpFpÿ1�a at �u was unspeci®ed, while recall that � _FpFpÿ1�s � Dp

o was given by
the constitutive eqn (8). The arbitrariness in choosing �u or equivalently specifying
� _FpFpÿ1�a, a fact also recognized in Lubarda and Shih (1994), was accounted for in the
formulation by the natural appearance of the corotational rates �

r
and A

r
i in relation to

� _FpFpÿ1�a in all relevant constitutive equations. In other words, one can choose any value
he desires for � _FpFpÿ1�a as long as the key eqn (12) re¯ects this choice onto!i and W

p
i for

each Ai.
The forms of the development for di�erent prescribed values of � _FpFpÿ1�a are entirely

equivalent. The only e�ect the di�erent choices for � _FpFpÿ1�a will have is a rotational dif-
ference in Fp and Fe for the same F, e.g. Fp� � QFp and Fe� � FeQT. As already noticed in
relation to invariance under superposed rigid body rotation at �u, the foregoing will sim-
ply induce a di�erence by rotation compatible with the Fp� � QFp, i.e. �� � Q�QT,
A�i � QAiQ

T, Ee� � QEeQT, etc. The functional form of 	, f, Np
o and 
p

i will remain the
same since they are constitutive functions. But it is of cardinal importance to observe that
it is their isotropic dependence on �, Ai and Ee which makes inconsequential (within a
rotation) which is the choice of the relaxed con®guration or of � _FpFpÿ1�a (Dafalias, 1988;
Aravas, 1994).

Di�erent authors (Nemat-Nasser, 1990, 1992; Obata et al., 1990; Onat, 1991) have
considered special choices of �u which were associated with either a symmetric elastic
deformation gradient Fe � FeT

, or a symmetric plastic deformation gradient Fp � FpT

.
Due to these choices they were able to express the � _FpFpÿ1�a in terms of � _FpFpÿ1�s � Dp

o,
and identifying the � _FpFpÿ1�a with the plastic spin (i.e. calling by the name of ``plastic
spin'' a totally di�erent quantity than what is de®ned as plastic spin here), they concluded
that no constitutive relation is necessary for the latter since it can be expressed in terms of
Dp

o. They totally ignored, in reference to eqn (12), the distinction between the antisym-
metric part of the plastic velocity gradient � _FpFpÿ1�a (here also called the plastic material
spin) and the correct concept of plastic spin W

p
i . Their extensive e�ort to express the for-

mer in terms of Dp
o is but a particular case of choosing any value one desires for � _FpFpÿ1�a,

as mentioned before. Clearly, no matter what the choice for � _FpFpÿ1�a, one is forced to
additionally specify either !i or W

p
i so that eqn (12) is satis®ed, and the proper corota-

tional rate is used for the evolution of Ai in relation to !i.
In fact a natural corollary of this free choice is to opt for the simplest case of setting

� _FpFpÿ1�a � 0, thus, choosing what one can call a ``spinless'' unstressed con®guration. An
allusion to this kind of free choice and its inconsequence for the ®nal formulation was
already made in Boyce et al. (1988b) for a speci®c constitutive model related to glossy
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polymers and a description using principal stretch directions. Moreover, here it is proved
that such arbitrary choice, including the spinless con®guration, can be made incon-
sequentially for any model whose state is de®ned in terms of � and Ai, and which due to
invariance under rotation results in having all constitutive functions isotropic in their
arguments, a case which includes the foregoing suggestion by Boyce et al. (1988b). The
spinless con®guration choice simpli®es eqns (14), (15), (21), (27) and (29) by changing the
corotational rates �

r
and A

r
i to regular rates and _Ai. Then, together with eqns (3) and (8)

it follows that

_FFpÿ1 �< l > Np
o �34�

_Ai �< l > �Ai ÿ
p
i Ai � Ai


p
i

� � �no sum on i� �35�

� � : FeT

DFe �36�

Equations (34)±(36) are in fact all that is needed for the implementation of the theory. The
� is still given by eqn (28) while eqns (34) and (35) are used for the updating of Fp and Ai,
the former because � _FpFpÿ1�a � 0.

Mandel (1971) introduced another unstressed con®guration, the isoclinic, by setting the
constitutive spin !i � 0 in eqn (12), with two consequences. First, the � _FpFpÿ1�a �
W

p
i �< l > 
p

i as a result of the choice !i � 0. Second, eqns (9) and (10) yield
_Ai �< l > �Ai, i.e. the frame of reference for Ai which spins by !i remains ®xed, hence,
the name isoclinic which based on its greek root means ``of equal inclination'' (with time).
In the case of multiple spins, though, presented in this work, one is faced with the neces-
sity to introduce as many isoclinic con®gurations as there are Ais and associated !is,
hence, to use di�erent values for � _FpFpÿ1�a for each !i � 0. This is of course impractical
and, in fact, Mandel introduced the notion of the isoclinic con®guration because in his
theory only one common constitutive spin, the spin of the director vectors!o �!i for all
i was considered and set equal to zero. Then, indeed, the notion of the isoclinic con®g-
uration is a useful one, while for multiple spins the spinless con®guration is the simplest
choice, appropriate also for a single spin theory.

The analytical description of the isoclinic con®guration can easily be retrieved from
eqns (3), (8)±(10), (12) and (31). Since all !i �!o � 0, it follows that A

c

i in eqns (9) and
(10) becomes _Ai and that all W

p
i �Wp

o �< l > 
p
o � � _FpFpÿ1�a. In addition, eqn (31)

which was derived on the basis of !i �!o for all i, is also valid for the particular case
!o � 0 which changes �

�
to . Hence, for the isoclinic con®guration one has

_FFpÿ1 �< l > Np
o �
p

o

ÿ � �37�

_Ai �< l > �Ai �38�

� �o : FeT

DFe �39�
A comparison of the sets of eqns (34)±(36) and (37)±(39) shows the similarities and dif-
ferences between the choice of the spinless and the isoclinic unstressed con®guration
(notice di�erence in � and �o). Remember, however, that the isoclinic con®guration
choice requires a common constitutive and plastic spin quantity (Mandel, 1971), while the
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spinless choice is valid in the presence of di�erent constitutive and plastic spins for dif-
ferent Ais. Finally, it is instructive to show with an example the invariance of the plastic
spin expression while the � _FpFpÿ1�a can be chosen in di�erent ways. If n is a unit vector
which remains along a material line element at �u during plastic deformation, its rate is
given by a standard continuum mechanics derivation as

_n � � _FpFpÿ1 �a �Dp
o�n
 n� ÿ �n
 n�Dp

o

h i
n �!in �40�

where !i equals the bracketed quantity of the second member of eqn (40) and is the
constitutive spin for n. For the spinless con®guration choice, � _FpFpÿ1�a � 0, and it follows
from eqns (12) and (40) that W

p
i � ÿ!i � ÿ Dp

o�n
 n� ÿ �n
 n�Dp
o

� �
. For the isoclinic

con®guration choice, one has !i �!o � 0, and from eqn (12) it follows that
W

p
i �Wp

o � � _FpFp�a � ÿ Dp
o�n
 n� ÿ �n
 n�Dp

o

� �
, same as before. This is because any

choice of � _FpFpÿ1�a, or equivalently of the relaxed con®guration, re¯ects into !i and vice
versa, letting the plastic spin W

p
i maintain the same functional form. The signi®cance of

eqn (40) in applications can be seen in relation to a ®nite plastic deformation theory for
®brous metal matric composites by Fares and Dvorak (1991), where n is along a ®ber and
no shear can occur in directions normal to it.

V.2. Computational aspects

A tangent sti�ness matrix numerical approach can be obtained as a straightforward
application of the set of eqns (34)±(36) or eqns (37)±(39) in the particular cases of spinless
and isoclinic con®gurations, respectively. Alternatively one can consider l as an unknown
to be speci®ed by the satisfaction of the yield criterion with the updated variables, and is
closely related to the previous subsection on the choice of the relaxed con®guration. Fol-
lowing the method of Aravas (1992, 1994) which was applied to the isoclinic con®gura-
tion, the statement of the problem and its solution in relation to eqns (7), (34) and (35) for
the spinless, instead of the isoclinic, relaxed con®guration is as follows.

At a material point the solution ��n�, A�n�i , Fp
n and Fn at time tn is known. For given

Fn�1 at time tn�1 � tn ��t, one must determine ��n�1�, A�n�1�i and F
p
n�1. The starting

point is eqn (34) for the spinless choice which yields

_Fp �< l > Np
oF

p �41�
Assuming the plastic ¯ow direction Np

o constant over the increment and equal to
�Np

o�n � Xn, eqn (41) can be integrated to yield:

F
pÿ1
n�1 � Fpÿ1

n exp�ÿ�lXn� � Fpÿ1
n Iÿ �lXn � 1

2
��l�2X2

n � 0��l�3
� �

�42�

which truncated yields

F
pÿ1
n�1 � Fpÿ1

n Iÿ �lXn � 1

2
��l�2X2

n

� �
�43�

The algorithm then becomes

Fe
n�1 � Fn�1Fpÿ1

n Iÿ �lXn � 1

2
��l�2X2

n

� �
�44a�
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F
p
n�1 � Fn�1Feÿ1

n�1 �44b�

Ee
n�1 �

1

2
FeT

n�1F
e
n�1 ÿ I

� �
�44c�

��n�1� � �0�@	=@Ee�n�1 �44d�

A
�n�1�
i � A

�n�
i � �l �A

�n�
i ÿ
p�n�

i A
�n�
i � An

i 

p�n�
i

h i
�44e�

f ��n�1�;A�n�1�
ÿ � � 0 �44f�

where �A
�n�
i and 


p�n�
i are functions of ��n� and A

�n�
i of the nth step. The last eqn (44f) is in

fact the one that provides the value of �l, necessary for the construction of the algorithm.
If the same approach were applied in the case of the isoclinic con®guration for a single spin
in relation to eqns (7), (37) and (38), the di�erence would be that now Xn � Np

o �
p
o

ÿ �
n
and

the 

p�n�
i � 


p�n�
o terms would be absent from eqn (44e), according to eqn (38) (Aravas,

1994).
It is clear from the foregoing that no stress rate was used in the process, and elasticity

was introduced straightforwardly via the hyperplastic relation, eqn (44d). Notice also that
incremental objectivity requirements were not necessary due to the choice of the spinless
con®guration and absence of corotational rates from eqns (34) and (35). However, a more
careful consideration of eqn (35) and its numerical counterpart eqn (44e) together with the
observation that W

p�n�
i � �l
p�n�

i , shows that eqn (44e) incorporates in the updating pro-
cess a corotational rate of Ai in relation to the corresponding plastic spin, and implies that
the 


p�n�
i is considered constant over the increment. But also one must observe that the

order of magnitude of W
p
i is the same as Dp

o, hence the same applies for 
p
i and Np

o (recall
eqns (8) and (12)). If one then considers Np

o constant over the increment, it must allow the
same approximation for 
p

i . It would have been a di�erent matter if the spin in eqn (44e)
was not the plastic spin, but the plastic material spin � _FpFpÿ1�a which can be of much
larger order than Dp

o hence, not accurate to be considered constant over the increment, in
which case one must seek the satisfaction of incremental objectivity. It is exactly this point
that one avoids by choosing the spinless con®guration.

V.3. Yield surface from current to unstressed con®guration

One aspect of the formulation which simpli®ed the formulation is the consideration of
the analytical expression, eqn (16), for the yield surface at the unstressed con®guration in
terms of � and Ai. In Dafalias (1985, 1987, 1988) the yield surface was ®rst de®ned in the
current con®guration by f��; ai� � 0 and the formulation accounted for the elastic
embedding of the ai, e.g. ai � jFejÿ1FeAiF

eT

, hence, became much more complex. If the
question was just one of convenience, then certainly eqn (16) is the most convenient. What
is at stake, though, is the physical signi®cance of stating for example an equation like eqn
(16) for a Mises type yield condition with kinematic and isotropic hardening, directly at
the unstressed con®guration as

f � 3

2
tr��0 ÿ A0�2 ÿ k2 � 0 �45�
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where tr means the trace, in terms of the deviatoric part �0 of � and the deviatoric part
A0 of a back-stress tensor A. If eqn (45) is accepted, the rest follows in a very straightfor-
ward manner. If, on the other hand, one must state the Mises type yield condition in terms
of the deviatoric Cauchy stress �0 and the deviatoric part � of a back-stress a de®ned at
the current con®guration, it takes some algebra and the way �0 and � are related to �
and A, e.g. �0 � jFejÿ1Fe��ÿ �1=3�Ceÿ1 tr�Ce���FeT

and similarly for � and A, to have
instead of eqn (45) the expression

f � 3

2
tr��0 ÿ ��2 ÿ k2 � 3

2
jCejÿ1 tr Ce �ÿ A� �� �2ÿ 1

3
tr2 Ce �ÿ A� �� �

� �
ÿ k2 � 0 �46�

The main complexity arising from eqn (46) is not just the appearance of Ce, but the fact
that if one wants to use eqn (46) as a particular case of eqn (16) together with the
mechanism of formulation that follows, he must express f exclusively in terms of � and A.
It means that Ce must also be considered a function of � and A, in general, found by
inverting the dependence of � on Ee � �1=2��Ce ÿ I� and possibly A. Then, the expres-
sions for @f=@� and @f=@Ai must include also the @Ce=@� and @Ce=@Ai terms, which indeed
complicates the actual application. It is complex but not impossible. As an approxima-
tion, particularly when elastic deformations are small, one can either use directly eqn (45)
or eqn (46) with Ce a constant quantity when considering the @f=@� and @f=@Ai. In the
latter case it is straightforward to show that Nn

o � @f=@� � jFejÿ1FeT

NnFe, with
Nn � @f=@� � 3��0 ÿ ��.

V.4. Small elastic strains

In the case of small elastic strains of order ", one has that Fe � VeRe �
�I� "V0�Re ' Re with V0 being of order 1, if terms of order " are neglected in comparison
to 1 (a more detailed consideration of small elastic strain linearization can be found in
Aravas (1992)). It then follows that � � ReT

�Re and from eqn (27) that

�
r � � : ReT

DRe �47�

with � obtained from eqn (28) as

� � Lo ÿ �Lo : Np
o� 
 �Nn

o : Lo�
H�Nn

o : Lo : Np
o

�48�

The simpli®ed form of � in eqn (48) is obtained by neglecting in eqn (28) all terms of
order " in comparison with 1 (recall that Lo is of the order �="), and using Ce � I.
Equations (14) and (15) remain, since they are not a�ected by the elastic part of the
deformation.

The choice of spinless relaxed con®guration changes �
r

to in eqn (47), while eqn (35)
substitutes for eqn (14). Also, one can choose the current con®guration as relaxed within
order ". In this case Re � I,� � �, and since F ' Fp within order " it follows
that � _FpFpÿ1�a �W, hence, �

r � �r the �
r

being the classical Jaumann corotational rate
of � in reference to W. Then, eqn (47) becomes �

r � � : D with � given by eqn (48),
which is the classical result obtained in Dafalias (1988, 1993a with a change of notation).
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Along the same line of reasoning, and with Ai ' ai and �Ai ' �ai for the choice of
Fe ' Re � I, one has in lieu of eqn (14)

a
r
i �< l > ��ai ÿ
p

i ai � ai

p
i � �no sum on i� �49�

where again the corotational rate a
r

i is understood in relation toW, and the 
p
i depends on

� and ai at the current con®guration �Fe ' I�, as it did on � � ReT

�Re and Ai � ReT

aiR
e

at the unstressed con®guration for Fe � Re (recall isotropy of 
p
i ). It is interesting to

observe that no trace of plastic spin appears in the elastoplastic moduli � of eqn (48) for
small elastic strains, while the plastic spin via 
p

i is part of the constitutive rate equations
of evolution (49) (and (14), (15)) for the internal variables. This is where ®nally the plastic
spin plays its signi®cant role, since the updating of ai through eqn (49) (and (14), (15) and
(35) for large elastic strains) depends on it, and ai in turn determines Np

o, N
n
o, H, etc. in eqn

(48).

VI. CONCLUDING REMARKS

The underlying motivation for this work was to show the necessity of considering con-
stitutive equations for the plastic spin in a large deformation elastoplasticity theory. To
achieve this, it was necessary to dispel with di�erent inaccurate notions about the plastic
spin and, in fact, to demystify its presence as something rather simple. It was clari®ed that
a plastic spin term is introduced not at the foundation of the kinematics of the deforma-
tion, but simply as a term associated with the orientation part of a rate constitutive
equation of evolution for tensorial internal variables. In this respect the plastic spin
appears as a conjugate notion to the constitutive spin, the latter used in the corotational
rate equation of evolution of an internal variable, such that their sum equals the anti-
symmetric part of the velocity gradient at the con®guration where they are de®ned. Since
each tensorial internal variable evolves in a di�erent way, it was theoretically necessary to
introduce as many pairs of constitutive and plastic spins as the number of internal vari-
ables. This multiple spin formulation proved to be very useful in the practical sense of
matching theory and experiments (Cho and Dafalias, 1996) where the orientation of
kinematic hardening and orthotropic symmetries tensors evolved according to di�erent
and appropriately chosen constitutive spins.

Once the signi®cance and proper place in the theory for the plastic spin was established,
it was straightforward to present a comprehensive formulation of rate-independent, pri-
marily, and rate-dependent constitutive theory for large elastoplastic deformations
accounting for possible change of elastic properties with plastic deformation. The for-
mulation is set ®rst at the plastically deformed relaxed con®guration, where the plastic
rate of deformation is unambiguously de®ned. No additive decomposition of the total rate
of deformation at the current con®guration in elastic and plastic parts was constitutively
necessary (an issue of debate in the past). One important aspect of the development was
that the emerging stress rate was not a-priori decided to be one or the other kind of coro-
tational or convected time derivatives, whose arbitrary choice characterizes a plethora of
recent works. Rather a straightforward and classical approach was followed, whereby
stress is introduced from the hyperelastic relations without reference to any stress rate. As
a result of the isotropic functional dependence of the yield criterion and the elastic strain
energy on the state variables due to invariance requirements at the relaxed con®guration
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�u, eqns (17) and (18) apply. Use of these equations in the consistency equation provides a
formulation where a stress rate corotational with the antisymmetric part of the plastic
velocity gradient, called the plastic material spin (not the plastic spin) emerges. It is
important to emphasize that such stress rate appears necessarily in the course of algebraic
manipulations, and is not a-priori chosen. While one can always subsequently change to
other stress rates with proper accommodation for the tangent moduli (Dafalias, 1988),
the foregoing stress rate o�ers a simple computational environment if combined with the
choice of the so-called spinless unstressed con®guration in reference to which it becomes a
simple rate. Thus, the need to maintain incremental objectivity in a corresponding
numerical scheme is eliminated. During the formulation the plastic spin terms associated
with di�erent internal variables appear in the tangent moduli relating stress rate and rate
of deformation, in addition to their presence in the equations of evolution of the corre-
sponding internal variables. For small elastic strains it is the latter equations only which
depend directly on the corresponding plastic spin, and it is there where one can ®nd its
signi®cance.

Additional issues are also brie¯y addressed in an e�ort to clarify further aspects of large
elastoplastic deformation theories, such as the elastic embedding of internal variables, the
reason for using corotational rather than convected rates at the plastically deformed
relaxed con®guration, and the simplifying e�ect of choices such as the spinless and iso-
clinic con®gurations. All along the importance of the isotropic dependence of the di�erent
constitutive functions 	, f, Np

o, 
p
i on the state variables � and Ai, due to invariance

requirements at �u, cannot be overstated. This is the reason why one can state the for-
mulation at any arbitrarily chosen relaxed con®guration �u, and still maintain the same
form of the constitutive functions, since the state variables' orientation will account for
such choice automatically. For example, with Np

o isotropic in � and Ai one has
Np

o�Q�QT;QAiQ
T� � QNp

o��;Ai�QT for two con®gurations which di�er by a rotation
Q.

The freedom of choosing a relaxed con®guration �u at any orientation, should not be
confused with the additional freedom of choosing a reference observer's frame which may
spin di�erently from �u and with respect to which one can write the equations and express
corotational rates. In this paper such frame was a ®xed cartesian one, but could as well be
one that spins by any chosen spin ! and associated plastic spin Wp �< l > 
p, not
necessarily associated with a constitutive requirement for the evolution of a speci®c
internal variable. In this case one has that � _FpFpÿ1�a �!� < l > 
p, in a parallel notion
to eqn (12). The theory then can be developed in a way that the relative constitutive and
plastic spin terms !i ÿ! and 
p

i ÿ
p appear instead of !i and 
p
i in the equations of

evolution of internal variables Ai and all that follows (Dafalias, 1993a). The corotational
rates with respect to!, re¯ect what the spinning observer sees in the process. In fact, this
last observation is relevant to Mandel's (1971) original work and Dafalias' subsequent
development (1985, 1987, 1988), where the substructural or director vector's spin !o was
used also as an observer's frame spin in an e�ort to show the independence of the ®nal
formulation from such a choice. Recall that in this case !o is also the common con-
stitutive spin!i of all Ais, hence, the relative spins!i ÿ!o � 0. In the process, the rates
of Fe and Fp were expressed corotationally with !o de®ned at di�erent relaxed con®g-
urations (for the isoclinic !o � 0), and this perhaps may have been an additional reason
for the confusion related to the plastic spin and its incorporation into kinematics. No
compelling reason, however, exists, to introduce a spinning observer's frame, since any
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constitutive requirement can be accounted for by the constitutive and plastic spins!i and
W

p
i for each variable Ai, and can be expressed in reference to a ®xed observer's frame in

association with an arbitrarily chosen relaxed con®guration (the simplest choice of which
is the spinless).

In conclusion one may re¯ect on the signi®cance of the plastic spin issue vis-a-vis other
elements of a constitutive formulation. It is certain that such signi®cance is not necessarily
superior to, say, the hardening aspects under cyclic loading or the characterization of
initial anisotropy, but constitutes an integral part of the formulation. The importance
of the plastic and constitutive spins in the formulation will increase with the magnitude of
plastic deformation which induces new or alters existing anisotropic properties due
to microscopic texture formation. The sensitivity of the material response to the orienta-
tional evolution aspects portrayed by the plastic spin has been proved to be an important
feature in the analysis of localization phenomena (Tvergaard and van der Giessen, 1991;
Zbib, 1993; Lee et al., 1995; Kuroda, 1996), in addition to the important role of the plastic
spin in the realistic simulation of the response of anisotropic materials (orthotropic) under
large plastic deformations for monotonic and reversed loading conditions (Cho and
Dafalias, 1996; Kuroda, 1997). From this perspective the present work o�ers a theoretical
clari®cation of the plastic spin concept and an associated convenient constitutive frame-
work which may be proved useful in analyses of the foregoing nature.
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APPENDIX

Relations for isotropic functions

If Q�t� is any orthogonal tensor �QQT � I� function of time t, one can associate a spin
! � _QQT (observe !T � ÿ!) and de®ne the corotational rate a

�
i of a second order

tensor ai by

a
�
i � _ai ÿ!ai � ai! �A1�

If f is a scalar-valued isotropic function of ai it follows by de®nition

f�ai� � f�QTaiQ� �A2�

From the rate of both members of eqn (A2) and use of eqn (A1) together with the obser-
vation of �@f=@ai�� _ai � �@f=@ai� : _aT

i , it follows
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_f �ai� � @f

@ai
: _aT

i �
@f

@�QTaiQ�
:

_�QTaT
i Q� � QT @f

@ai
Q : QT a

�T
i Q

� @f

@ai
: a
�T
i �

@f

@ai
: �_aT

i � aT
i !ÿ!aT

i � �
@f

@ai
: aT

i ÿ �aT
i

@f

@ai
ÿ @f

@ai
aT
i � : !

�A3�

Since ! is arbitrary, it follows from the second and last member of eqn (A3) that:

aT
i :

@f

@ai
ÿ @f

@ai
aT
i � 0 �A4�

If now f is a tensor-valued isotropic function of ai, by de®nition one has

QTf�ai�Q � f�QTaiQ� �A5�

Taking again the rate of both members of eqn (A5) one has

_�QTf�ai�;Q� � QT f
�
Q � @f

@�QTaiQ�
:

_�QTaT
i Q� � QT @f

@ai
Q : QT a

�T
i Q �

@f

@ai
: a
�T
i �A6�

Choosing Q � I it follows from the second and last member of eqn (A6) and from eqn
(A1) with f substituting for ai, that

f
� � @f

@ai
: _aT

i ÿ!f� f! � @f

@ai
: _aT

i �
@f

@ai
: �_aT

i � _aT
i !ÿ!aT

i � �
@f

@ai
: _aT

i ÿ �aT
i

@f

@ai
ÿ @f

@ai
aT
i � : !

�A7�

From the second and last member of eqn (A7) follows then

�aT
i

@f

@ai
ÿ @f

@ai
aT
i � : !� f!ÿ!f � 0 �A8�

for any!. The multiplication of aT
i and @f=@ai as well as the trace operation with! takes

place over the indices of aT
i and @=@ai, without involving the indices of f. To make it clear,

eqn (A8) is written in indicial notation as (observe sum over i for multiplicity of ai, in
addition to standard indicial sum)

�aT
i �mn

@frs
@�ai�nk

ÿ @frs
@�ai�mn

�aT
i �nk

� �
!km � fra!as ÿ!rafas � 0 �A9�

The arbitrariness of ! allows one to write eqn (A8) as follows

aT
i

@f

@ai
ÿ @f

@ai
aT
i � �; !fÿ f! � � : ! �A10a�

�ijkl � 1

2
�fik�jl � fjk�il ÿ fjl�ik ÿ fil�jk� �A10b�
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