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Figure 1.1. Molecular representations comparing the structural complexity of types of

parenteral drugs: aspirin (180 Da), penicillin (334 Da), insulin (5808 Da), erythropoietin (36,000

Da), and a monoclonal antibody (MAB) (150,000 Da).



(a) (b)

Figure 1.2. Ribbon structures of (a) GCSF and (b) GMCSF, illustrating the two major subclasses

of four-helix bundle cytokines. Note the shorter helices and longer crossing angles of GCSF.



Figure 1.3. Superimposition of the ribbon structures of FGF-1 (green), FGF-2 (blue), and

FGF-7/KGF (red). The β trefold is a common structural motif for the FGF family of proteins.



Figure 1.4. Ribbon structure of BDNF, representing the structure of the family of proteins

termed cystine knot cytokines.



TNF Receptor Domain

TNF Receptor Domain

Figure 1.5. Structure of entanercept, a fusion protein with two tumor necrosis factor

receptors fused to the Fc of an IgG1.



Figure 1.6. Examples of therapeutic antibody constructs. Cartoon structural representations

of an intact human IgG1 monoclonal antibody [72] and F(ab′)2 and Fab fragments derived

from it, an scFv [72], and an scFv dimer diabody [74]. The heavy chains are shown in magenta

and green and light chains, in yellow and wheat. The carbohydrate component of the whole

IgG1 molecule is shown as a stick representation and the cystiene residues linking the heavy

and light chains are shown in red. The images were produced from PDB files using Pymol

(DeLano Scientific, LLC).
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acid (RSOH) are also possible. Intermolecular thiol–disulfide exchange has been implicated in

the formation of covalent protein aggregates. (Adapted from Carballal et al. [188].)
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Figure 12.1. Detection of light scattered from a small volume of sample illuminated by a

fine laser source beam.
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Figure 12.8. (a) Two particles have a spatial relation resulting in constructive interference
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causing the scattered light to interfere destructively at the detector. Thus, the intensity viewed

by the detector varies through time.
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Figure 12.12. Data and regularization fits for three samples. Data for (a) and (b) are from

two different monodisperse species, and data for (c) is from a mixture of the two.
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Figure 21.8. Schematic of α and β motions as a function of temperature. (The dashed-line

curve) shows the degradation reaction rate; segment 1 represents the temperature window

when reactivity is correlated with β mobility; segment 2 shows the temperature window when

reactivity is correlated with α mobility [90].
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Figure 23.2. Correlation between chemical stability of hGH and M0 in freeze-dried formula-

tions with different fractions of sucrose. (Figure constructed from data in Constantino et al.

[26] and Pikal et al. [29].)
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Figure 23.17. Correlation of storage stability at 50◦C to protein secondary structure in a 4:1

system of IgG1:sucrose. (Figure constructed from data in Abdul-Fatah et al. [60].)
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Figure 26.13. Schematic drawing of a FreezeContainer (Zeta Holdings) (www.zeta.com/bio-

und-verfahrenstechnik.html).
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at fixed liquid feed rate of 1 mL/min (Unpublished data.)
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Figure 30.2. Depiction of phenomenon of ice dendrites, drying front with retention of

structure and collapse: (a) dendritic ice formation after freezing and before the vacuum is

applied; (b) drying with and (c) without retention of the structure.
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Figure 30.6. (Data from [28, 29]) Sublimation rate versus chamber pressure.



0.00

–0.02

–0.04

–0.06

–0.08

–0.10
–20 0 20 40 60 80 100 120 140

0.02

0.04

0.06

0.08

0.10

[--
-- 

---
-] 

N
on

re
v 

H
ea

t F
lo

w
 (

W
/g

)Run# 93, Annealing 1st for 3 hrs

Comment: modulated,2c/, 0.75C, 100sec

Sample: Mann/Trehal (8:2)
Size: 11.0000 mg DSC File: C:\TA\Data\DSC\fk-29.001

Operator: Feroz
Run Date: 12-Dec-98 21:20

R
ev

 H
ea

t F
Lo

w
 (

W
/g

)

64.65°C(H)

Universal V2.3C TA instrumentsTemperature (°C)Exo Up

61.77°C67.52°C

Figure 30.11. Modulated DSC thermogram of mannitol and trehalose freeze-dried powder

depicting Tg on a reversible component and an exotherm of mannitol crystallization on a

nonreversible component.



2120191817161514.4
2-Theta-Scale

Li
n 

(C
ps

)

8000

7000

6000

5000

4000

3000

2000

1000

0

2T = 17.872
2T = 18.870

2T = 19.276

Figure 30.12. X-Ray powder diffraction of mannitol depicting the presence of hydrates,

which are eliminated through secondary drying at elevated temperature.



Annealed Unannealed

Figure 30.14. Appearance of cake before and after annealing of mannitol and sodium

chloride.
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Figure 31.3. Product temperature profiles: radiation effect on edge vials. The data were
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Figure 32.1. Freeze-drying cycle for rFVIII.
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Figure 32.5. Photo of lyophilized product for all 10 cycles. Pictured from left to right: process

set point, upper freezing, lower freezing, upper primary, lower primary, upper primary with

increased ramping rate, lower primary with decreased ramping rate, upper secondary, lower

secondary, and upper secondary with increased ramping rate.
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Figure 32.6. Product mapping sample locations, potency results, and moisture results for the

top five shelves in a freeze-drier chamber.
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Figure 33.1. Tabletop piston pump filler.
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Figure 33.2. Schematic figure of a rotary piston pump filling system: (a) manifold; (b) fill

pumps; (c) fill needles.
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Figure 33.3. Rotary piston pump assembly.
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Figure 33.5. (a) Disassembled rolling-diaphragm pump; (b) assembled rolling-diaphragm

pump.
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Figure 33.6. Peristaltic pump system: (a) mode of operation; (b) four-head peristaltic filling

system.
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Figure 33.8. (a) Product flow through the pinch valve and orifice.
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Figure 33.9. A disposable filling system showing the disposable reservoir, tubing, and needle

assembly along with hardware for mounting on a filling line [4].
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Figure 36.1. Photo of 0.5-mL staked needle (top), 1-mL-long staked needle (middle), and

2.25-mL luer tip syringe barrels.



(a) (b)

Figure 36.2. Photos of 1-mL-long staked needle syringes in nested, ready-to-fill format (a)

and unprocessed bulk format (b).



(a) (b)

Figure 36.3. Ready-to-use 1-mL-long pistons in nested (a) and bagged (b) formats.



Figure 36.4. A 2-ml vial–stopper–seal system showing materials of construction: borosilicate

glass vial, elastomer stopper (with or without barrier coating), and aluminum crimp overseal.
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Figure 36.5. A 1-mL-long staked needle syringe system showing direct-contact materials.



Liquid

Liquid

Figure 36.6. A 1-mL-long prefilled syringe and 2-ml vial—both with 1 mL fill showing

differences in headspace volume and wetted container surface area.



1.7mm

Figure 36.7. Optical comparator image (20×) of the liquid meniscus of 1-mL-long syringes

with 1 mL fill volume showing the effect of barrel inner diameter on apparent fill level. The

syringe on the left is near minimum specification for barrel inner diameter. The syringe on the

right is near the maximum specification.



Glass tip
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Figure 36.8. A 1-mL-long syringe barrel after breaking off the tip at the shoulder. The

resulting hole in the barrel is large enough that product fluid flow resistance is no longer a

factor when measuring glide force.
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Figure 37.1. Schematic representation of the control, design, and knowledge spaces.



Figure 37.2. Overview of formulation, fill, and finish operations and process conditions that

can impact product quality during manufacturing.
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Figure 37.3. Leverage plots for two key parameters: Temperature and Concentration of

cleaning solution. The two parameters are strongly coupled as shown by the significance of

the cross interaction term.
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Figure 37.4. Design space characterization for cleaning time with respect to two parameters:

Cleaning fluid Temperature and Concentration.


