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.. as compared to 36 in the first telephone cable ...
... as compared to 48 in the first telephone cable ...
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.. a record capacity of 90 bit/s.km
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... for which the rate equations must to be ...
... for which the rate equations must be ...
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... are characterized by indentical cross-sections.
... are characterized by identical cross-sections.
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... The corresponding spontaneous emission power is ...
... The corresponding spontaneous emision power per unit frequency is ...
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 applying to basic multilevel laser systems [30], but for which the transition energy is large in comparison to the Stark splitting. This is not the case for Er :glass, and the relation between the absorption and stimulation emission rates is wavelength-dependent (factor 
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(boxed equation on top)
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(2) the gain medium is inhomogeneously broadened
(2) the gain medium is homogeneously broadened
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(1.160), (1.161) and (1.162)
(1.160a), (1.160b) and (1.160c)

** 49
Equations (1.161)-(1.162) is thus ...

The rapid time variation in Eqs (1.160)-(1.162) ...
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Equations (1.160a-c) is thus ...

The rapid time variation in Eqs (1.160a-c) ...
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... by the kramers-Kronig relations ...
... by the Kramers-Kronig relations ...
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... it is clear that 
[image: image32.wmf])

(

"

w

c

 can bbe ...
... it is clear that 
[image: image33.wmf])

(

"

w

c

 can be ...

59

[image: image34.wmf]þ

ý

ü

î

í

ì

G

=

ò

L

s

dz

)

z

,

(

'

nL

exp

)

(

n

0

2

w

c

w

w

d

     (1.199)

[image: image35.wmf]ò

G

=

L

s

dz

)

z

,

(

'

nL

)

(

n

0

2

1

w

c

w

d

                 (1.199)

69
The uncertainties 
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... from Eq.(2.24) 
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For the single-mode amplifier (M  -1) ...
For the single-mode amplifier (M =1) ...
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For large values of the photon number 
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FIGUREA 2.15 and 2.16
FIGURE 2.15 and 2.16
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135
Figure 2.27, may tempt us to conclude ...
Figure 2.26 may tempt us to conclude ...

136
If the ASE noise power is sufficiently high, random variations of the refractive index are generatedin the fiber, causing random fluctuations of the signal group velocity. For short optical pulses (T<100ps), these fluctuations  are experienced as random walk, and at the detector end, as timing jitter.  
If the ASE noise field is sufficiently high, random variations of optical phase are caused to the signal. While these phase fluctuations have zero mean, their variance is nonzero, which results in random frequency changes in the signal. For short optical pulses (T<100ps), these frequency fluctuations are converted byfiber dispersion into random walk, and at the detector end, into timing jitter.
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* 156
... for coherence detection.
... for coherent detection.

* 157
The detector as a special case of ...
The detector is a special case of ...
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... Figure 3.1, with an exmaple ...
... Figure 3.1, with an example ...
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... H.Kogelnick and A.yariv [38] ...
... H.Kogelnick and A.Yariv [38] ...
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(2.78)
(3.78)
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(no ASE polarizer), while with a Gaussian ...

... calculated from Eqs. (3.62), (3.64), and (3.94) ...
(ASE polarizer), while with a Gaussian ...

... calculated from Eqs. (3.62)-(3.64), and (3.93)-(3.94) ..
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* 227
An experimental meausrement of ...
An experimental measurement of ...

229
D.Desurvire et al. [113]
E.Desurvire et al. [113]

* 230
(Figure 4.9)  EFDA
(Figure 4.9)  EDFA
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...cause vatiation of the crystal field ...
...cause variation of the crystal field ...
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* 245
[4.76]-[4.78] and [4.133]
[76]-[78] and [133]
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... the ratio is weakly indepenent of glass composition ...
... the ratio is weakly depenent of glass composition ...
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Figure 4.22, Type III fiber emission, 
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... small lengths 
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... at any wavelength 
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... the saturation power 
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... the saturation power 
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...the ions are evenely distributed ...
...the ions are evenly distributed ...
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... in the integrand of Eq.(4.112) accounts for ...
... in the integrand of Eq.(4.113) accounts for ...
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... where 
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... where 
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* 303
In RE :glass, the effect of polarized luminescence are ...

A maximum value of P=0.5 or P =1/3 is obtained ...
In RE :glass, the effect of polarized luminescence corresponds to ...

A maximum value of P=0.5 or R=1/3 is obtained ...
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Figure 5.5  Generic example EDFA moule ...
Figure 5.5  Generic example of EDFA moule ...
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... In this example, the folloging parameter ...
... In this example, the following parameter ...
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... uniform medium inversion. using the value ...
... uniform medium inversion. Using the value ...
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Taking the value 
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414
(Y.Maigron and J.F.Marcerou [215])
(Y.Maigron and J.F.Marcerou [215a], E.Desurvire [215b])

* 422
A comprehensive description ... by A.C.Scott et al. [241].
Comprehensive descriptions of the complex mathematics of soliton waves and detailed bibliographies can be found in a 1993 paper by A.C.Scott et al. [241a] (267 references) and in a 1989 paper by Y.Kivshar and B.A.Malomed [241b] (564 references).
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... without change of form or diminuition of speed. 
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... without change of form or diminution of speed. 
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* 424
... higher-order N-solitons (N=3, 3, ...)
... higher-order N-solitons (N=3, 4, ...)
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... we find in the case of standard SMF (
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... we find that near the zero dispersion wavelength with 
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... where 
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is the channel frequency ...
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... with amplifier spacing 
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** 439
Since elecltrostrictive interaction scales ...
Since electrostrictive interaction scales ...

* 446
... extending the operating bandwidth of unrepeated communication systems to include a transmission window near ...

The =1470 nm transmission band also could be also used in the fiber dispersive region for system monitoring applications [361]. 

(E.P.Ippen and RH.Stolen [363] ; R.H.Stolen and E.P.Ippen [364]).
... extending the fiber operating bandwidth with a transmission window near ...

The =1470 nm transmission band also could be used for system monitoring applications [361]. Finally, operation near =1.65µm was also achieved in a 780nm-pumped silica-based TDFA, using the 3F4-3H6 transition (I.Sankawa etal. [363).

(E.P.Ippen and RH.Stolen [364a]; R.H.Stolen and E.P.Ippen [364b]). 
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... is the Raman gain coefficient [364].

For SBS, the emission and absorption coefficients...

... K involves several characteristics of SBS and is related to the Brillouin gain coefficient 
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... is the Raman gain coefficient [364]b.

SRS is also described by the action of these operators, therefore eq.(5.145) applies to SRS. For both SRS and SBS, the emission and absorption coefficients...

... K involves several characteristics of SRS and SBS. For SRS, we have 
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... SRS needs about 700mW pump power while SBS needs about 950µW. [first and second printings]
... the spontaneous emission factors of RFAs and BFAs reach their minimum value 
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... SRS needs about 3W pump power while SBS needs about 4mW.

... the spontaneous emission factors of RFAs and BFAs reach a minimum value of  
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where 
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 is the Brillouin frequency shift. From Eq.(5.154), we find that for fused silica (
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We consider two particular EDFA con-figurations : 
We consider two particular EDFA configurations :

492
The corresponding device is sometimes called a NALM ...
The corresponding device is called a NALM ...

* 493
In an alternate NALM configuration, the EDFA is placed outside the Sagnac loop, in the path of the pump signal ; this onfiguration was used in the first LD-controlled NALM experiments ...

But the configuration with external EDFA ...

Indeed, NOLMs (and their active counterparts, the NALMs) ...

NALMs can be used for instance ...


In an alternate configuration, the EDFA is placed outside the Sagnac loop, in the path of the pump signal ; this active NOLM configuration was used in the first LD-controlled experiments ...

But the NOLM configuration with external EDFA ...

Indeed, NOLMs (and their NALM counterparts) ...

NOLMs can be used for instance ...

NALM 
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 NOLM in the rest of the paragraph
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- 497
NALM (through all page and figure caption)
NOLM (through all page and figure caption)

* 495
NALM (through all page and figure caption)

In this configuration, the NOLM (or NALM) acts ...
NOLM (through all page and figure caption)

In this configuration, the NOLM acts ...

* 496
... is also posible using EDFA-based NALMs with ...

... including a birefringent fiber polarization compensator (N.A.Whitaker et al. [94]).
... is also possible using cascades of NOLMs and EDFAs with ...

... including a fiber polarization compensator (N.A.Whitaker et al. [94a], or a polarization-diversity scheme (K.Uchiyama et al. [94b]).

* 525
Figure 7.1  Maximum capacity of IM-DD lightwave communications systems ...
Figure 7.1  Maximum capacity of IM-DD and coherent lightwave communications systems ...

545
(R.M.Jopson et al. [65])
(S.Watanabe et al. [65a], R.M.Jopson et al. [65b])
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... in the case of SMF systems [65].

... is placed midway in the system.

... with negligible power penalty [65].
... in the case of SMF systems [65b].

... is placed near the system midpoint such that 
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... with negligible power penalty [65b].
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(A.Chraplyvy, [82] and [114])

... where 
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* 560
Figure 7.18

... in straight-line soliton systems is 20.4Tbit/s.km, which corresponds to a transmission distance of 1020km at the total WDM bit rate B=20Gbit/s (M.Nakazawa et al. [160]). 

... BER measurements in soliton systems in 1990 ...
Figure 7.18  2 WDM result at 20Gbit/s, 10,000km is open symbol

... in straight-line soliton systems is 37Tbit/s.km, which corresponds to a transmission distance of 1850km at the total TDM bit rate B=20Gbit/s (M.Nakazawa et al. [175b]).

... BER measurements in soliton systems in 1989-1990 ...

* 561
Table 7.5
line 4 of 1990

Line 29 of 1993, [175]
Table 7.5 (see at end of this erratum)

line 4 of 1990, moved to 1989, total bit rate is 2.8Gbit/s

Line 29 of 1993, [175a]
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... timing jitter (or the Gordon-Haus effect) is due to XPM between solitons and ASE. [or] ... timing jitter (or the Gordon-Haus effect) is due to interaction between solitons and ASE.
... timing jitter (or the Gordon-Haus effect) is due to random frequency changes induced by ASE phase noise on soliton pulses. 
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... due to the Gordon-Hauss effect. 

The principle of this effect, which is known as the guiding-center soliton (A.Hasegawa and Y.Kodama [189]), is to periodically ...

[M.Nakazawa et al., [190] and [191])


... due to the Gordon-Haus effect.

The principle of this effect is to periodically ...

[M.Nakazawa et al., [189][190], H.Kubota and M.Nakazawa [191])
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-565
All references [190], [191]
[189], [190]

574
... existing types of LANs, WANs, MANs ...
... existing types of LANs, MANs, WANs ...

* 578
Assuming negligible excess loss, the net gain required ...
Assuming negligible excess loss, the total gain required ...
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* 598
Figure D.1 (b), top row
Vertical scale is 0.0  to 5.0 by 0.1 increments
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... and signal powers 
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... can be derived also from Eqs. (F.6) and (F.10) ... 
... can be derived also from Eqs. (F.7) and (F.11) ...
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... we find 
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* 667
... and Eqs.(U.4), U.16), (U.25) ...

End of Appendix U
... and Eqs.(U.4), (U.16), (U.25) ...
Insert after eq U.29 :

In Eq.(U.29), the effective mode interaction area 
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