Compare and contrast gas phase and surface/catalytic reactions

Compare and contrast gas phase and surface/catalytic reactions		
771	Gas phase	catalytic reactions
Kinetics	1. Usually simple overall rate law	4. Usually complex kinetics
	(first order, second order, half	5. often zero order
	order)	6. sometimes negative order
	2. Often first order	7. curved arrhenius plots
	3. Usually follows Arrhenius's law or	8. Individual steps follow arrhenius' law
	Perin's equation	9. Overall does not follow arrhenius's
		law
Mechanisms	10. Initiation propagation mechanism	21. Initiation propagation mechanism
	11. Reactive species are radicals	22. Reactive species are radicals bound to
	12. Reaction occur throughout the	surfaces
	phase	23. Reactions occur only near the catalyst
	13. Usually only single radicals	24. Can be di or tri-radicals
	14. Initiation step - bond in reactants	25. Initiation step - create an active site
	break	26. Propagation steps where radicals
	15. Propagation steps where radicals	products form
	products form	27. Require a catalytic cycle
	16. Require a catalytic cycle	28. Require low barriers
	17. Require low barriers	29. Ea < 0.15T for initiation
	18. Ea < 0.15T for initiation	30. Ea < 0.07 T for propagation
	19. Ea < 0.07 T for propagation	31. No Termination needed
	20. Usually Termination	
Relative rates	32. Low rates except at high	34. Much higher rates (10^10 to 10^40
	temperatures	higher)
	33. Low selectivity	35. Much higher selectivity's
	•	36. Possible to form different products
		(because of di radicals)
Activation barriers	37. High	44. Low
	38. Often determined by initiation step	45. Usually determined by propagation
	39. Can estimate with Polayni	steps
	equation of Blowers-Masel	46. Can estimate with Blowers-Masel
	40. Eao=1 for initiation	47. Polayni usually does not work
	41. Eao=12 for atom transfer	48. Eao=1 for initiation
	42. Eao=45 for ligand transfer to	49. Eao=12 for atom transfer
	hydrogen	50. Eao=45 for ligand transfer to
	43. Eao=50 for ligand transfer to	hydrogen
	hydrogen	51. Eao=50 for ligand transfer to
		hydrogen
		52. Extra 15 kcal/mole for proximity
		effect.
		1