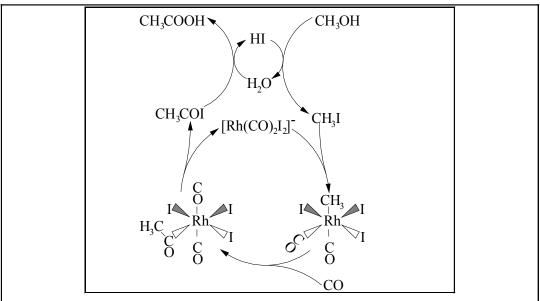
Chapter 12 Summary Introduction to catalysis

Catalysis is very important

- 90% of all chemical processes use catalysts
- Changes in catalysts have a giant influence on rates and selectivity's of reactions.
 More than anything else
- Most real reactor design associated with optimizing performance of catalyst


Ostwald defined a catalyst as a substance which changed the rate of reaction without itself being consumed in the process

Reaction occurs via a catalytic cycle:

reactants + catalyst \Rightarrow complex

 $complex \Rightarrow products + catalyst$

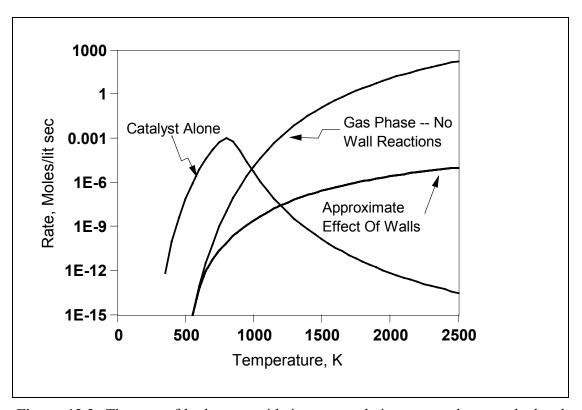

$$CH_3OH + CO \Rightarrow CH_3COOH$$
(12.1)

Figure 12.1 A schematic of the catalytic cycle for Acetic acid production via the Monsanto process.

Printing press analogy

Table 12.1 The rate enhancement of a number of reactions in the presence of a catalyst			
Reaction	Catalyst	Rate	Temperature
		Enhancement	
Ortho $H_2 \Rightarrow Para H_2$	Pt (solid)	10^{40}	300°K
$2NH_3 \Rightarrow N_2 + 3H_2$	Mo (solid)	10^{20}	600°K
$C_2 H_4 + H_2 \Rightarrow C_2 H_6$	Pt (solid)	10^{42}	300°K
$H_2 + Br_2 \Rightarrow 2HBr$	Pt (solid)	1×10^8	300°K
$2NO + 2H_2 \Rightarrow N_2 + 2H_2 O$	Ru (solid)	3×10^{16}	500°K
$CH_3COH \Rightarrow CH_4 + CO$	I ₂ (gas)	4×10^6	500°K
$CH_3CH_3 \Rightarrow C_2H_4 + H_2$	NO ₂ (gas)	1×10^9	750°K
$(CH_3)_3 COH \Rightarrow$	HBr (gas)	3×10^8	750°K
$(CH_3)_2CH_2CH_2+H_2O$			

Figure 12.2 The rate of hydrogen oxidation on a platinum coated pore calculated with a) only heterogeneous (catalytic) reactions, b) only radical reactions, and c) combined radical, homogeneous reactions

Types of catalysts:

Homogeneous Catalysts Heterogeneous Catalysts

Homogeneous catalysts:

- Acids or Bases
- Metal salts
- Enzymes
- Radical initiators

Table 12.2 - Some reactions commonly catalyzed by acids and bases			
Reaction	Example	Typical Application	
Isomerization	$CH_2=CHCH_2CH_3 \Rightarrow$	Octane Enhancement	
(Rearranging the structure	CH ₃ CH=CHCH ₃	Monomer Production	
of a molecule)	CH3CH CHCH3	Paraxylene Production	
Alkylation	CH ₃ CH=CHCH ₃ +	Pharmaceutical	
(Making too little	CH ₃ CH ₂ CH ₂ CH ₃ ⇒	Production	
molecules into a bigger	$(CH_3CH_2)CH(CH_3)(C_4H_9)$	Monomer Production	
one)	2, 2, 3, 1, 3,	Fine Chemicals	
		Butane + olefin⇒	
		octane	
Cracking	$C_{12}H_{24} \Rightarrow C_7H_{14} + C_5H_{10}$	Crude Oil Conversion	
(Taking a big molecule		Digestion	
and making it into two			
littler ones).			

Table 12.2 - Some reactions commonly catalyzed by acids and bases			
Reaction	Example	Typical Application	
Esterfication	CH ₃ CH ₂ OH +CH ₃ COOH	Soap Production	
(Attaching an acid to a	\Rightarrow CH ₃ COOCH ₂ CH ₃ +	Fragrance Production	
base eliminating water)	H_2O		
Aldol Condensation	2 CH ₃ CH ₂ CH ₂ CHO ⇒	Fine Chemicals	
Reactions (combining two	CH ₃ CH ₂ CH ₂ CH=C(CHO)	Pharmaceutical	
aldehydes by eliminating	CH_2CH_3	production	
water)	$+ H_2O$		
Alcohol Dehydration	$CH_3CH_2OH \Rightarrow CH_2=CH_2$	Alternative fuels	
(removing a hydrogen	$+ H_2O$		
and an OH from an			
alcohol, producing a			
double bond)			
Cationic Polymerization	Propylene ⇒	Polymer Production	
	polypropylene		

Acids and Bases as catalysts

Benzene + ethylene
$$\Rightarrow$$
 ethylbenzene (12.2)

a proton reacts with the ethylene to form an ethyl ion:

$$H^+ + CH_2CH_2 \rightarrow [CH_3CH_2]^+$$
(12.3)

The ethyl ion reacts with benzene to yield and ethylbenzene ion:

$$[CH_3CH_2]^+ + C_6H_6 \rightarrow [CH_3CH_2C_6H_6]^+$$

Then the ethylbenzene ion loses a proton:

$$[CH_3CH_2C_6H_6]^+ \rightarrow CH_3CH_2C_6H_5 + H^+$$
(12.5)

Metal atoms:

$$H_2 + 2S \rightarrow 2H(ad)$$

$$C_2H_4 + S \rightarrow C_2H_4(ad)$$

$$C_2H_4 \text{ (ad)} + H(ad) \rightarrow C_2H_5 \text{ (ad)} + S$$

$$C_2H_5(ad) + H(ad) \rightarrow C_2H_6 + 2S$$
(12.9)

Table 12.3 – Examples Of Reactions Catalyzed By Homogeneous Transition Metal catalysts		
Reaction	Catalyst	
Olefin Polymerization	$[\text{TiCl}_2(\text{C}_5\text{H}_5)_2]^{2+}$ or	
	$TiCl_2/Al(C_2H_5)_3$	
	(Ziegler-Natta Catalyst)	
Olefin Hydrogenation	$Rh(P(C_6H_5)_3)_3Cl$	
	Wilkinson Catalyst	
$C_2H_4+H_2O\rightarrow Acetaldehyde$	$PdCl_2(OH)_2$	
(Wacker Process)		
$C_2H_4+H_2+CO \rightarrow propylaldehyde$	HCo(CO) ₄	
(Hydroformylation)		
$CH_3OH + CO \rightarrow CH_3COOH$	$[Rh(CO)_2I_2]^{1-}$	
(Monsanto Carbonylation		
Process)		

 $H_2O_2 + CH_3CH_2OH \rightarrow CH_3CHO + 2 H_2O$

Fe²⁺

Table 12.4 Some Examples Of Enzymes Listed In The Brookhaven National Labs' Protein Data Base

		П		
	Oxidoreductases		Transferases	
(promote oxid	dation reduction	(promote transfer of functional		
reac	etions)	gro	oups)	
NADH	$NADH + H_2O_2$	Dimethylallylci	Dimethylallyl	
peroxidase	\Rightarrow NAD(+) + 2	s-transferase	diphosphate +	
(Oxidizes	H_2O .	(Transfer	isopentenyl	
NADH with		dimethylallyl	diphosphate \Rightarrow	
peroxides)		groups)	diphosphate +	
			dimethylallylcis-	
			isopentenyldipho	
			sphate	
Ferroxidase	$4 \text{ Fe}^{2+} + 4 \text{ H}^{+} +$	Glycoaldehyde	Sedoheptulose 7-	
(Oxidizes	$O_2 \Rightarrow 4 \text{ Fe}^{3+} + 2$	transferase	phosphate + D-	
Iron)	H_2O	(Transfer's	glyceraldehyde 3-	
		Glucoaldeydes)	phosphate \Rightarrow D-	
		Also called	ribose 5-	
		Transketolase	phosphate + D-	
			xylulose 5-	
			phosphate	
Glucose	β-D-Glucose +	Alanine	L-Alanine + 2-	
oxidase	$O_2 \Rightarrow D$ -	aminotransfera	$oxoglutarate \Rightarrow$	
(oxidizes	glucono-1,5-	se	pyruvate + L-	
Glucose)	lactone + H_2O_2	(Transfer	glutamate	
		amino groups		
		from alanine)		
Hyd	rolases	Lyases		
	rolysis/cleavage	$f(x) = \frac{1}{2} (x) + \frac{1}{2}$		
reac	etions)	NH ₃ to double bonds or formation		
		of double bonds via elimination of		
		CO_2, H_2	O or NH ₃)	

Table 12.4 Some Examples Of Enzymes Listed In The Brookhaven National Labs' Protein Data Base			
Carboxylestera se (Promotes hydrolysis of ester linkages)	A carboxylic ester + $H_2O \Rightarrow$ an alcohol + a carboxylic anion	Carbonate dehydratase (Dehydrates carbonates)	$H_2CO_3 \leftrightarrow CO_2 + H_2O$
1,4-ALPHA- D-Glucan glucanohydrol ase (also called ALPHA- Amylase)	Hydrolysis of 1,4-ALPHA- glucosidic linkages in oligosaccharides and polyasaccharides	Citrate dehydratase	Citrate \leftrightarrow CIS- aconitate + H ₂ O
Interleukin 1- beta converting enzyme	Release of interleukin 1-beta by specific hydrolysis at 116-ASP- -ALA-117 and 27-ASP- -GLY-28 bonds	Pyruvate decarboxylase	A 2-OXO acid
	nerases erization reactions	Ligases (promotes formation of bonds - generally used to catalyze endothermic reactions requiring ATP)	
Maleate isomerase (promotes cistrans isomerization of Maleate)	Maleate ⇒ Fumarate	Leucinetrna ligase	ATP + L-leucine + t-RNA(leu) ⇒ AMP + diphosphate + L- leucyl-t- RNA(leu).

Table 12.4 Some Examples Of Enzymes Listed In The Brookhaven National Labs' Protein Data Base			
Cholestenol	5-Alpha-cholest-	Pyruvate	ATP + pyruvate
DELTA-	7-en-3-beta-ol	carboxylase	$+ (HCO_3) \Rightarrow$
isomerase	⇒5-Alpha-		ADP + phosphate
	cholest-8-en-3-		+ oxaloacetate
	beta-ol		
Mannose	D-Mannose ⇒	Aspartate	ATP + L-
isomerase	D-fructose	ammonia ligase	aspartate $+ NH_3$
			\Rightarrow AMP +
			diphosphate + L-
			asparagine

Radical initiators

$$C_2H_6 \Rightarrow C_2H_4 + H_2$$

$$X + I_2 \rightarrow 2I + X$$
(12.11)

Then the iodine can react with ethane to start the reaction:

$$I + CH_3CH_3 \rightarrow HI + CH_2CH_3$$
(12.12)

Free radical initiators are most important for polymerization reactions. Molecules like ethane are hard to decompose into radicals, and you need radicals or ions to start free radical polymerization. Consequently one adds a molecule that is easy to decompose, like benzoyl peroxide. The benzoyl peroxide decomposes into radicals:

$$R - O - O - R \rightarrow 2RO \bullet$$
(12.13)

Then the radical reacts with the ethylene to start the polymerization process:

$$RO \bullet + CH_2CH_2 \rightarrow ROCH_2CH_2 \bullet$$
(12.14)

Free radical processes are also important to atmospheric chemistry. Chlorine atoms produced from photolysis of chlorocarbons catalyze the destruction of ozone via the process:

$$Cl + O_3 \rightarrow ClO + O_2$$
(12.15)

The ClO can then react via a number of processes to reduce the ozone layer. One particular reaction is:

$$ClO + O_3 \Rightarrow Cl + 2O_2$$
(12.16)

Table 12.5 Some examples of reactions initiated or catalyzed by free radicals and similar species			
Reaction	Initiator	Reaction	Catalyst
Olefin	Peroxides,	$2SO_2 + O_2 \Rightarrow$	NO/NO ₂
Polymerization	$(Ph)_3CC(Ph)_3$	SO_3	
		(Lead Chamber	
		Process)	
Hydrocarbon	Iodine, NO ₂	Ozone	C1
Dehydrogenatio	chlorine atoms	Depletion	
n			
Hydrocarbon	$[(CH_3CH_2)_4N][I],$		

 $\left[\left(\mathrm{CH_{3}CH_{2}}\right)_{4}\mathrm{N}\right]\!\!\left[\mathrm{C_{6}H_{5}COO}\right]$

Oxidations

Solvents:

$$CH_3I + NaCl \rightarrow CH_3Cl + NaI$$
(12.17)

Table.12.6 The rate of reaction (12.17) in several solvents. All measurements have been extrapolated to 25 C		
Solvent	Rate const,	
	lit/mole sec	
Gas Phase	about 10 ⁻⁴⁵	
Water 3.5×10^{-5}		
Methol 3×10^{-6}		
Methyl 0.13		
Cyanide		
DMF 2.5		

Heterogeneous catalysis

Examples of heterogeneous catalysts include:

- Supported Metals
- Transition Metal Oxides and Sulfides
- Solid Acids and Bases
- Immobilized Enzymes and Other Polymer Bound Species

Supported metal catalysts

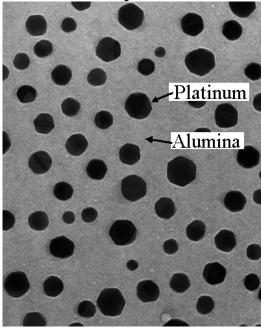


Figure.12.3 A picture of a supported metal catalyst.

Use support because platinum very expensive and only the surface is active.

Spread platinum out on cheap support.

Support also provides strength

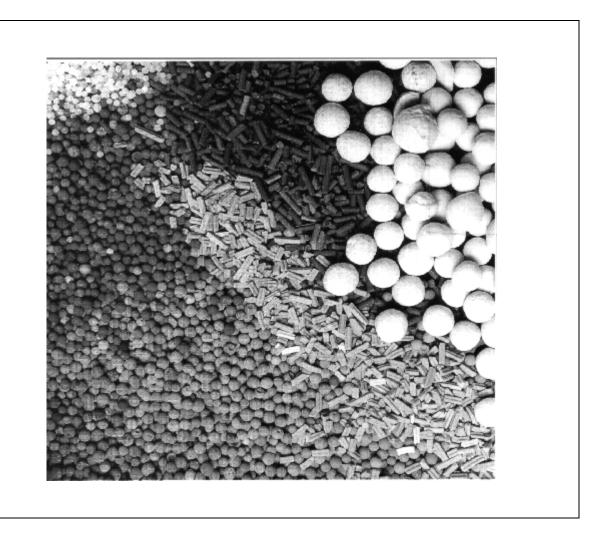


Figure 2.14 Pictures of some heterogenous catalysts. From Wijngaarden et al. Industrial Catalysis, Wiley 1998.

7

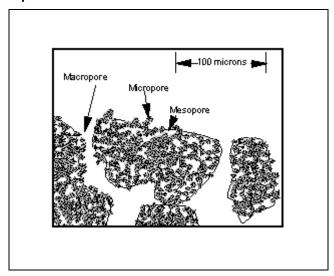


Figure 14.3 A cross sectional diagram of a typical catalyst support.

Advantage of heterogeneous catalysts compared to homogeneous:

- Cheaper separation
- More selective
- Generally cheaper

Disadvantage

 Not quite as active or a per metal atom basis

Table 12.7 A selection of the reactions catalyzed by supported metals			
Reaction	Catalyst	Reaction	Catalyst
Hydrocarbon	Pt, Pd, Ni	$CO + H_2 \Rightarrow$	Fe, Rh
Hydrogenation,		Hydrocarbons	
Dehydrogenation		(Fischer-	
		Tropsch)	
CO oxidation,	Pt, Pd, Cu, Ni,	Steam reforming	Ni plus additives
total oxidation of	Fe, Rh, Ru	for	
hydrocarbons		production of	
		hydrogen	
$CO + 2H_2 \Rightarrow$	Cu/ZnO	Reforming	Pt/Re/Al2O3
CH ₃ OH		(Isomerization of	
		oil)	_
$2 \text{ CO} + 2\text{NO} \Rightarrow$	Pt, Rh, Ru	$2NH_3 + O_2 \Rightarrow$	Pt
$2\text{CO}_2 + \text{N}_2$	(catalytic converter)	$N_2O_5 + 3H_2O$	
$N_2 + 3 H_2 \Rightarrow 2$	Fe, Ru, Rh	Alcohols + $O_2 \Rightarrow$	Ag, Cu
NH_3	1 0, 100, 101	Aldehydes +	115, 04
1 (11)		H_2O e.g.	
		$2 \text{ CH}_3 \text{OH} + \text{O}_2$	
		\Rightarrow	
		$2 H_2CO + H_2O$	
$2 C_2H_4 + O_2 \Rightarrow$	Ag, Cu	$R-R'+H_2 \Rightarrow$	Ni, Co, Rh, Ru
2 ethylene oxide		RH + HR'	
		(Hydrogenolysis)	

$$H_2 + 2S \rightarrow 2 \text{ H(ad)}$$
(12.18)

$$C_2H_4 + S \rightarrow C_2H_4(ad)$$

$$C_2H_4(ad) + H(ad) \rightarrow C_2H_5(ad) + S$$
(12.20)

$$C_2H_5(ad) + H(ad) \rightarrow C_2H_6 + 2S$$
(12.21)

Table 12.8 A selection of the reactions catalyzed by transition metal oxides, nitrides and sulfides Reaction Catalyst Reaction Catalyst $2 SO_2 + O_2 \Rightarrow 2 SO_3$ V_2O_5 FeO, CuO, ZnO $CO + H_2O \Rightarrow$ $CO_2 + H_2$ (Water Gas Shift) Hydrodesulfurization CoS, MoS, WS TiO₂ $2(CH_3)_3COH \Rightarrow$ (CH₃)₃COC(CH $_{3})_{3} + H_{2}O$ $CH_3CH=CH_2+O_2$ (Bi₂O₃)_x(MoO₃)_v2 CH₃CH=CH₂ $(FeO)_x(Sb_2O_3)_y$ (Bismuth $+ 3 O_2 +$ molybate) CH₂=CHCHO + $2NH_3 \Rightarrow$ Uranium H₂O 2CH₂=CHC≡N Antimonate +6 H₂O (aminoxidation) $4 \text{ NH}_3 + 4 \text{ NO} + O_2$ V₂O₅, TiO₂ $(V_2O_5)_x(PO_4)_y$ benzene+ $O_2 \Rightarrow$ \Rightarrow 4N₂ + 6 H₂O maleic (Selective catalytic anhydride + reduction) water naphthylene+O₂ ⇒ phthalic anhydride + water FeO Selective NiO, Fe₂O₃, $CH_3CH_2(C_6H_5) + O_2$ oxidation of V_2O_5 , TiO_2 \Rightarrow CH₂=CH(C₆H₅) + hydrocarbons $CuO, Co_3, O_4,$ H_2O MnO_2 (styrene production)

Hydrodenitroge

nation

NiS,MoS

 Cr_2O_3/Al_2O_3

Aromatiztion

e.g. Heptane \Rightarrow Tolvene H_2 or H_2O

Table 12.9 Some common solid acids and bases			
Material	Type	Material	Type
silica/alumina	solid acid	Mordenite	zeolite
alumina	solid acid	ZSM-5	zeolite
Y-zeolite	zeolite	VFI	large pore
Faugasite			zeolite
Sodalite	zeolite	Offretite	zeolite
HF-SbF ₅	superacid	HSO ₃ F	superacid
$H_2[Ti_6O_4(SO_4)_4($	superacid	Sulfated	superacid
OEt) ₁₀]		Zirconia	
MgO	solid base	Na ₂ O	base

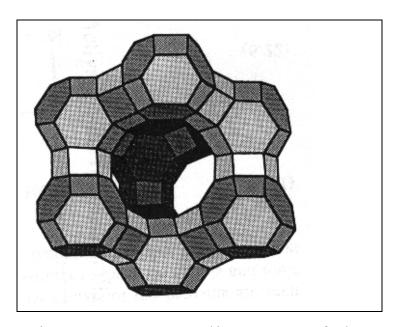


Figure 12.4 A diagram of the pore structure in Faugasite.

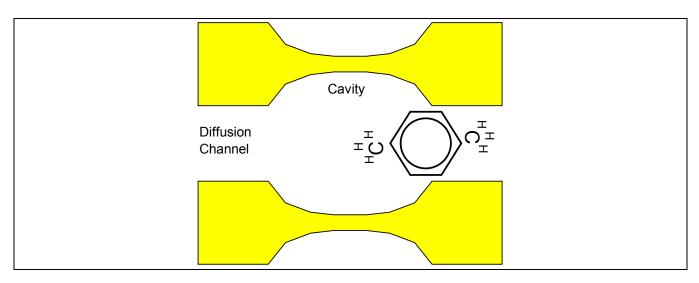


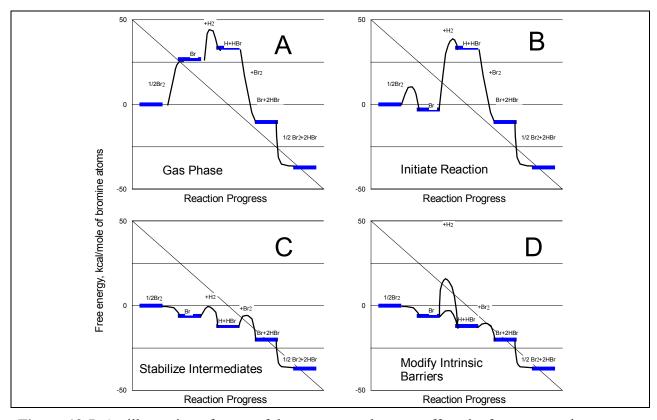
Figure 12.27 An interconnecting pore structure which is selective for the formation of paraxylene.

Next: mechanisms of catalyst action

Catalysts work by:

- Catalysts can be designed to help initiate reactions.
- Catalysts can be designed to stabilize the intermediates of a reaction.
- Catalysts can be designed to hold the reactants in close proximity.
- Catalysts can be designed to hold the reactants in the right configuration to react.
- Catalysts can be designed to block side reactions.
- Catalysts can be designed to sequentially stretch bonds and otherwise make bonds easier to break.
- Catalysts can be designed to donate and accept electrons.
- Catalysts can be designed to act as efficient means for energy transfer.

It is also important to realize that:


- One needs a catalytic cycle to get reactions to happen.
- Mass transfer limitations are more important when a catalyst is present.

The most important effects are

- Catalysts can be designed to help initiate reactions.
- Catalysts can be designed to stabilize the intermediates of a reaction.

$$H_2+Br_2\Longrightarrow 2HBr$$

$$Br_2 \rightarrow 2Br$$
 $Br + H_2 \rightarrow HBr + H$
 $H + Br_2 \rightarrow HBr + Br$
 $2 Br \rightarrow Br_2$
(12.40)

Figure 12.5 An illustration of some of the ways a catalyst can affect the free energy changes during a reaction.

Key principles of catalytic mechanisms

• Catalysts bind intermediates at distinct sites

- Mechanism same as in gas phase & solution
- Initiation much faster in effect do not need initiation reaction

Catalysts initiate reactions

Example

$$C_2H_6 \Rightarrow C_2H_4 + H_2$$

Gas phase mechanism

$$C_2H_6 \rightarrow 2CH_3$$
(12.42)

$$CH_3 + C_2H_6 \rightarrow C_2H_5 + CH_4$$
(12.43)

$$C_2H_5 \rightarrow C_2H_4 + H$$
(12.44)

$$H + C_2H_6 \rightarrow C_2H_5 + H_2$$
(12.45)

$$2CH_3 \rightarrow C_2H_6$$
(12.46)

$$2C_2H_5 \rightarrow C_4H_{10}$$

$$CH_3 + C_2H_5 \rightarrow C_3H_8$$
(12.48)

Now consider adding NO₂
NO₂ + C₂H₆
$$\rightarrow$$
 C₂H₅+ HNO₂
(12.50)

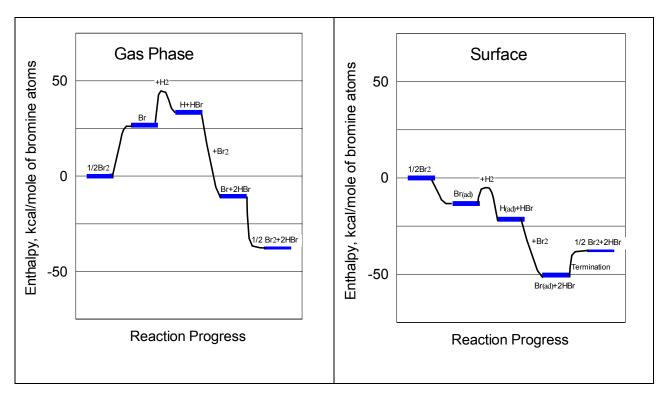
Catalysts can initiate reactions. The mechanisms are similar to the mechanisms without a catalyst, but the initiation process is much faster with the catalyst.

Effect 10⁹ (small for catalysis)

Table 12.10 Some examples of reactions initiated by catalysts			
Reaction	Catalyst	Mechanism of Initiation	
$CH_3 CH_3 \Rightarrow$	NO ₂	$NO_2 + CH_3CH_3 \rightarrow$	
$C_2H_4+H_2$		$HNO_2 + CH_3CH_2 \bullet$	
CH ₃ COH ⇒	I_2	$X+I_2 \rightarrow 2I+X$	
$CH_4 + CO$		$I + CH_3COH \rightarrow HI +$	
		CH ₃ CO•	
Ethylene ⇒	ROOR	$ROOR \rightarrow 2RO \bullet$	
polyethylene		$RO \bullet + CH_2 = CH_2 \rightarrow RO$	
		CH ₂ CH ₂ ●	
$H_2 + Br_2 \Rightarrow$	metalic	$Br_2 + 2S \rightarrow 2Br_{ad}$	
2HBr	platinum		
Propylene ⇒	Ti ⁺	T_1^+ + propylene \rightarrow	
Polypropylene		CH ₃ CHTiCH ₂ ⁺	
$C_2H_5OH \Rightarrow$	H^{+}	$C_2H_5OH + H^+ \rightarrow$	
$C_2H_4 + H_2O$		$\left[C_2H_5OH_2\right]^+$	
		$[C_2H_5OH_3]^+ \rightarrow$	
		$[C_2H_5]^+ + H_2O$	
		$\left[C_2H_5\right]^+ \to C_2H_4 + H^+$	
$2O_3 \rightarrow O_2$	C1	$O_3 + C1 \rightarrow O_2 + C1O$	

$$H_2 + Br_2 \Rightarrow 2HBr$$
(12.51)

$$X + Br_{2} \xrightarrow{1} 2Br + X$$


$$Br + H_{2} \xrightarrow{2} HBr + H$$

$$H + Br_{2} \xrightarrow{3} HBr + Br$$

$$X + 2Br \xrightarrow{4} Br_{2} + X$$

$$H + HBr \xrightarrow{5} H_{2} + Br$$

$$X + Br + H \xrightarrow{6} HBr + X$$
(12.52)

Figure 12.7 The enthalpy changes during the gas phase reaction $H_2 + Br_2 \Rightarrow 2$ HBr assuming that the reaction terminates after one cycle

Figure 12.8 The enthalpy changes during the Rideal-Eley surface reaction $H_2 + Br_2 \Rightarrow 2$ HBr on Pt(111) assuming that the reaction terminates after one cycle

Stabilization of ionic intermediates $RHC = CRH \Rightarrow RRC = CHH$ (12.63)

Possible gas phase mechanism

$$X + RHC = CRH \rightarrow RHC = CH + R \bullet + X$$
(12.64)

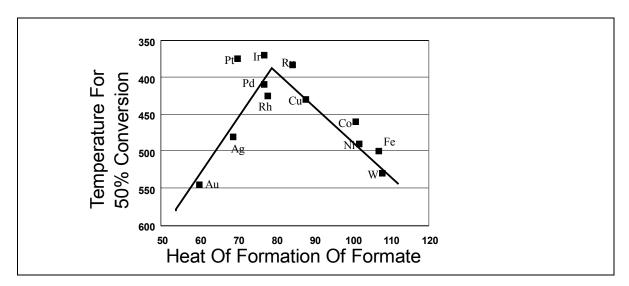
$$R \bullet + RHC = CRH + X \rightarrow R_2HCCRH \bullet + X$$
(12.65)

$$R_2$$
HCCH • +X \rightarrow R_2 C = CH + H • +X
$$(12.66)$$

Acid catalyzed reaction

$$RHC = CRH + H^{+} \rightarrow [RHC = CRHH]^{+}$$
(12.67)

$$[RHC = CRHH]^+ \rightarrow [RRHC = CHH]^+$$
(12.68)


$$[RRHC = CHH]^{+} \rightarrow RRC = CHH + H^{+}$$
(12.69)

Stabilization of intermediates Can we have too much of a good thing?

If we stabilize intermediates we make them less reactive. Increasing the intermediate concentration good. Decreasing reactivity bad. Which wins?

Experimental evidence $HCOOH \Rightarrow H_2 + CO_2$ (12.74)

$$HCOOH \rightarrow HCOO_{(ad)}^{-} + H_{ad}$$
 $H_{(ad)} + HCOO_{ad}^{-} \rightarrow CO_2 + H_2$
(12.75)

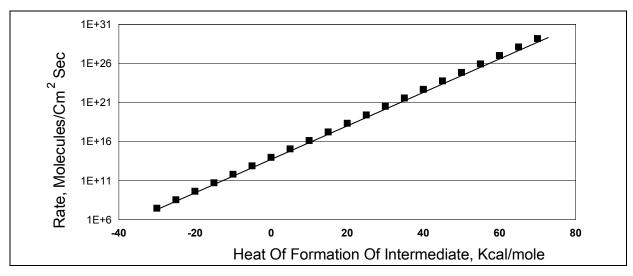
Figure 12.9 The rate of formic acid decomposition changes as a function of the binding energy of the formate intermediate.

Sabatier's principle

The best catalysts are substances which bind the reactants strongly, but not too strongly.

Consider
$$H_2 + Br_2 \Rightarrow HBr$$

Rideal Eley mechanism


$$Br_2 + 2S \rightarrow 2Br_{ad}$$
 $Br_{ad} + H_2 \rightarrow HBr + H_{ad}$
 $H_{ad} + Br_2 \rightarrow HBr + Br$
(12.76)

Complicated derivation (see classnotes)

$$r_{HBr} = 2 k_{Br} exp((1 - \gamma_{p,2})\Delta H_{ad} / k_{B}T) [H_{2}][S][Br_{2}]^{\frac{1}{2}}$$

$$k_{Br} = 2k_2^0 \exp\left(-\left(E_{a,2}^0 - \gamma_{p,2}\Delta H_O + T\Delta S_{ad}\right) / k_BT\right)$$
(12.86)

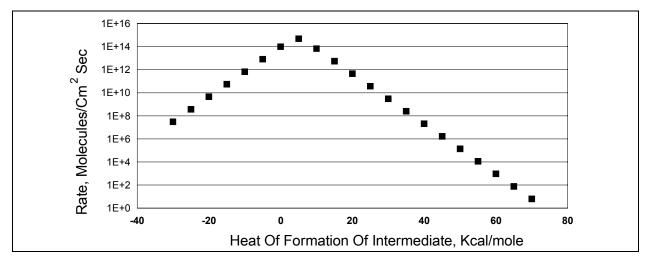

For unlimited sites

Figure 12.10 The rate of HBr formation as calculated from Equation (12.85), with [S] = $1e14/cm^2$ and γ_p = 0.5, T = 500K, $P_{\rm H_2}$ = $P_{\rm Br_2}$ =1atm .

For finite number of sites

[S] =
$$\frac{S_o}{1 + K_{Br_2} \sqrt{P_{Br_2}} + K_{H_2} \sqrt{P_{H_2}}}$$
(12.87)

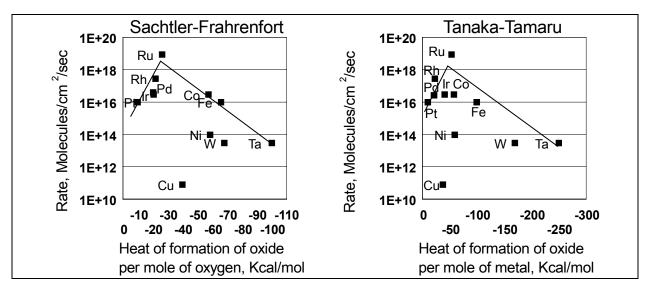
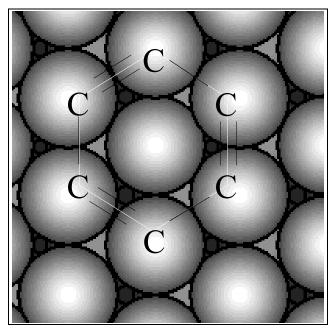


Figure 12.11 The rate of HBr formation calculated from Equation (12.85), with [S] from Equation (12.87) and γ_p = 0.5, T = 500K, $P_{\rm H_2}$ = $P_{\rm Br_2}$ =1 atm.

Sachtler-Frahenfort plots
Use heat of oxidation per mole of oxygen as surrogate for heat of formation of product.

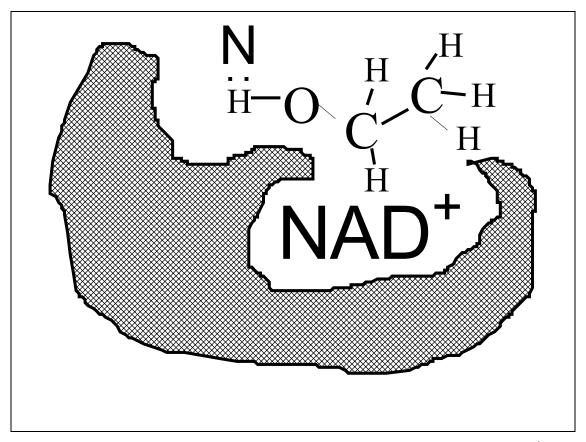
Tanaka-Tamaru plots

Use heat of oxidation per mole of metal as surrogate for heat of formation of product.

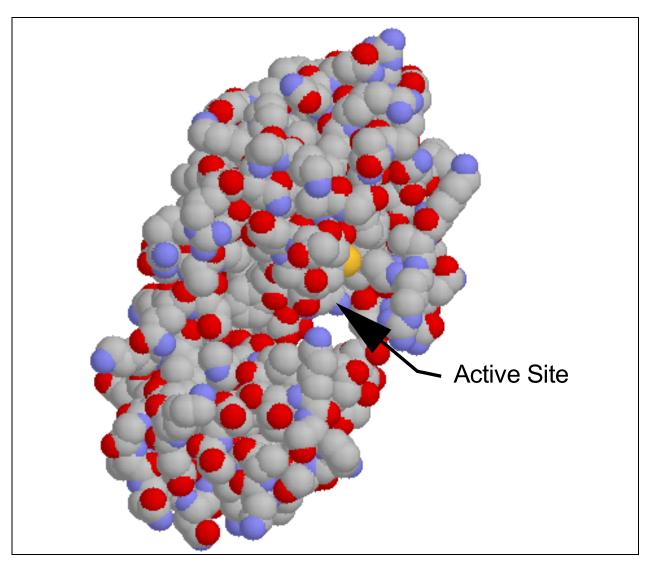

Figure 12.13 A Sachtler-Frahrenfort and Tanaka-Tamaru plot for the hydrogenation of ethylene.

Summary so far

- Catalysts work by initiating reactions, stabilizing intermediates
- Leads to 10^{20} increase in rates
 - need other effects to get to 10^{40}
- Can stabilize too much


• Catalysts can be designed to hold the reactants in the correct configuration to react.

$$3C_2H_2 \Rightarrow C_6H_6$$


Figure 12.15 The active site for reaction (12.91) on a palladium catalyst.

$$NAD^{+} + CH_{3}CH_{2}OH \Rightarrow NADH + [CH_{3}CHOH]^{+}$$
(12.92)

Figure 12.16 A cartoon of the reaction of ethanol and NAD⁺ on the active site of liver alcohol dehydrogenase. Adapted from Oppenheimer and Handlon (1992) (In the Enzyme, vol 20 (1992) 453.

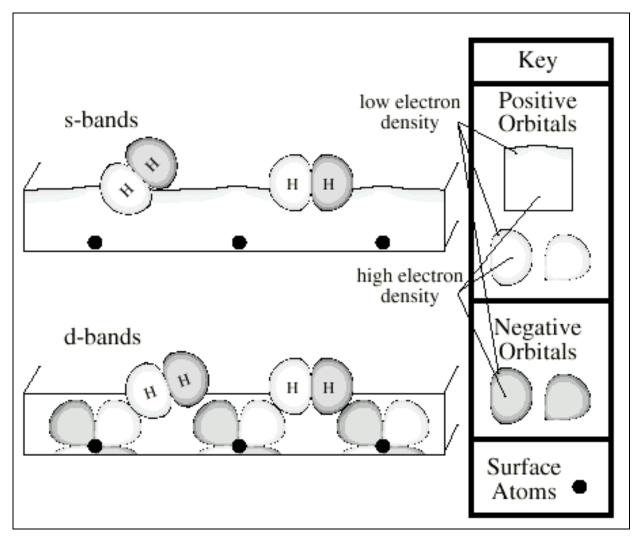

Catalysts make bonds easier to break

Figure 12.17 A Picture of Lysozyme 161L. This figure was generated using a program called RASMOL, using data in the protein data base from an x-ray diffraction spectrum generated by Weaver and Matthews[1987]

Catalytic antibodies

Transition metals - weaken bond by attaching to antibonding orbitals

Figure 12.20 A diagram of the key interactions during the dissociation of hydrogen on platinum.

Acid catalysts: charges simplify reactions

Consider

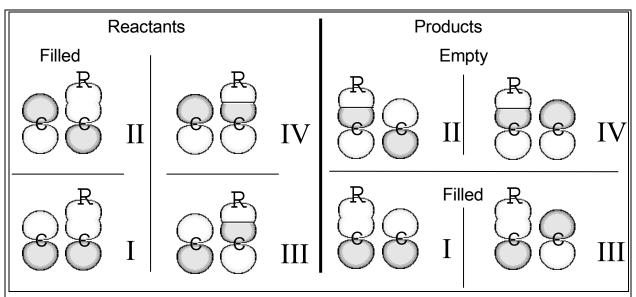
$$RHC = CRH \Rightarrow RRC = CHH$$
(12.96

Possible mechanism: ion

$$RHC = CRH + H^{+} \rightarrow [RHC = CRHH]^{+}$$
(12.97)

$$[RHC = CRHH]^{+} \rightarrow [RRHC = CHH]^{+}$$
(12.98)

$$[RRHC = CHH]^{+} \rightarrow RRC = CHH + H^{+}$$
(12.99)


Possible mechanism radical

$$X + RHC = CRH + H \bullet \rightarrow RHC - CH_2 + X$$
(12.100)

$$X + RHC - CH_2 \rightarrow RHC - CH_2 + X$$
(12.101)

$$X + RH \stackrel{R}{C} - \stackrel{\bullet}{C}H_2 \rightarrow \stackrel{R}{R} \stackrel{\bullet}{C} = CH_2 + H \bullet + X$$
(12.102)

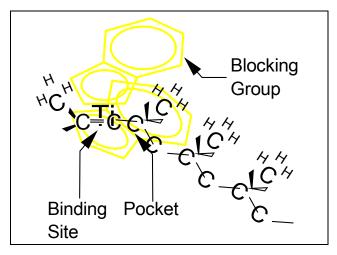

In both cases isomerization is rate determining step

Figure 12.22 A rough diagram of the key MO's during reactions (12.101).

Catalysts can block side reactions:

Figure 12.23 A rough diagram of one step during the production of isotatic polypropylene.

Figure 12.24 A diagram of propylene polymerization in a Ziegler-Natta catalyst.

Catalysts can be designed to donate and accept electrons

$$Cu2O + 1/2O2 \rightarrow 2CuO$$
(12.106)

$$2\text{CuO} + \text{CO} \rightarrow \text{Cu}_2\text{O} + \text{CO}_2$$
(12.107)

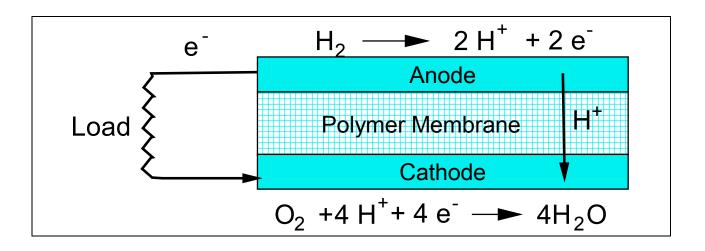


Figure 12.25 A diagram of a polymer fuel cell

Summary:

- Catalysts can be designed to help initiate reactions.
- Catalysts can be designed to stabilize the intermediates of a reaction.
- Catalysts can be designed to hold the reactants in close proximity.
- Catalysts can be designed to hold the reactants in the right configuration to react.
- Catalysts can be designed to block side reactions.
- Catalysts can be designed to sequentially stretch bonds and otherwise make bonds easier to break.
- Catalysts can be designed to donate and accept electrons.
- Catalysts can be designed to act as efficient means for energy transfer.

It is also important to realize that:

- One needs a catalytic cycle to get reactions to happen.
- Mass transfer limitations are more important when a catalyst is present.