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Summary Chapter 9
Reaction Rate Theory Revisited

Key Topics:
• Tolman's equation
• Transition state theory revisited
• RRKM theory
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Transition state theory revisited

Last time we discussed advanced collision theory:

Method
• Use molecular dynamics to simulate the collisions
• Integrate using statistical mechanics

( )
r r (v , E , , b , , v )

D v E , , b , , v dv dE d  db d dv
A BC A BC A BC BC A BC BC

A BC BC A BC BC BC A BC BC A BC BC BC

→ → → →

→ → → →

= ∫∫∫ ×∫∫∫ φ
φ φ

R

R R

(8.20)

key finding - we need energy and momentum to be
correct to get reaction to happen.
• Many molecules which are hot enough do not

make it

Today how does that affect transition state theory?
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Review arrenius' model vs transition state theory.

Arrhenius's model:
• Consider two populations of molecules:
1.  Hot molecules in the right configuration to react

(i.e. molecules moving toward each other with the
right velocity, impact parameter etc to react)

2. Molecules not hot enough or not moving together
in the right configuration

• Assume concentration of hot reactive molecules in
equilibrium with reactants

• Assume reaction occurs whenever hot molecules
collide in right configuration to react



4

Can derive Tolman's equation

( )k T
h

q
q q

exp E / TA BC
B

P

+

A BC

+
B→ = 







 −±

±

(9.2)

where kA→BC is the rate constant for reaction (9.1),
± B is Boltzman’s constant; T is the absolute
temperature; hP is Plank’s constant; qA is the
microcanonical partition function per unit volume of
the reactant A; qBC is the microcanonical partition
function per unit volume for the reactant BC; E+ is
the average energy of the molecules which react and,
q+ is the average partition function of the molecules
which react, divided by the partition function for the
translation of A toward BC.
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Table 9.1  Definitions of the partition functions used in the derivation of Tollman's Equation

qA The partition function of the
reactant A

qBC The partition function of the
reactant BC

q* The partition function of the hot
molecules when energies are
measured relative to the reactants.

qHot The partition function of the hot
molecules when energies are
measured relative to a molecule
with energy E+

qA BC→ The partition function for the
motion of A toward BC

qNot A BCtranslation
Hot

→ The partition function for all of the
normal modes of the hot molecules
except the A→BC translation.  See
equation (9.19).

q+ Another notation for qNot A BCtranslation
Hot

→

Tolman's equation is essentially exact.
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Table 9.2  A comparison of Tolman's equation and Transition State
Theory
Equation Definitions

E+ = Average energy of the hot
molecules before they  react

Tolman's
k

T
h

q
q q

E
TA BC

P A BC
→

+ +

=









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





 −











±

±

B

B
exp q+ = partition function for the hot

molecules before they  react.
The partition function
includes all of the normal
modes of the AB-C complex
except the normal mode
carrying the species over the
barrier

E‡ = Saddle Point energy

TST
k

T
h

q
q q

E
TA BC

P

T

A BC
→ =


















 −











±

±

B
‡ ‡

B
exp

qT
‡ = partition function for

molecules at the saddle point
in the potential energy
surface. The partition function
includes all of the normal
modes of the AB-C complex
except the normal mode
carrying the species over the
barrier

Approximate derivation of TST:

Lets go back to the statistical mechanics definition
of the partition functions
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(9.41)

Need to assume Phot = PTST
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Figure 9.7  A recrossing trajectory.
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We also need to assume q's equal.

Let me examine the assumption that q's are equal

q q q qHot
X Y everything else= _

(9.38)

R
x

Ry

Figure 9.3  The minimum energy
pathway for motion over the barrier as
determined by the trajectory calculations
in Chapter 8.
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At this point, we have only assumed that P PN
Hot

N
TST= .

In order to get to conventional state theory, we
have to make the additional assumptions:

• All the PN
Hot  in equation (9.40) are 0 for states with

energies below the barrier and unity for states with
energy above the barrier so that P PN

Hot
N
TST= .

• Motion along the Rx direction is pure translation.
• Motion perpendicular to the Rx direction is pure

vibration.
• The PN

Hot  are determined only by the properties of the
transition state; this assumption ignores the
findings from chapter 8 that the reaction
probability is higher when the potential energy
surface is smoothly banked than when there is a
sharp turn in the potential energy surface.  It also
ignores the fact that the vibrational levels of the
reactants might not match the vibrational levels of
the transition state.
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HNC HCN→
(9.46)

H
/ \

C N=
(9.47)

( )( )( )( )q q q q q q qHNC t
3

r
2

sym asym BendA BendB=
(9.48)

( ) ( )q = q q q q qT
‡

t
‡ 3

r
‡ 2

sym
‡

asym
‡

BendB
‡

(9.50)

TST assume that the bending mode is pure
translation, the other modes are pure vibration.

Cancellation of error
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Successes of Transition State Theory

• Transition state theory generally gives
preexponentials of the correct order of
magnitude.

• Transition state theory is able to relate
barriers to the saddle point energy in the
potential energy surface;

• Transition state theory is able to consider
isotope effects;

• Transition state theory is able to make
useful prediction in parallel reactions like
reactions (7.27) and (7.29).

Experimentally, anything one does to lower the
energy of the transition state

for a reaction lowers the activation energy for
the reaction.



12

Table 9.5  The relative rates of a series of reactions at 300K.
Reaction Experimental

Relative Rate
CTST Relative Rate

D+H2→DH+H 6 12.3
H+H2→H2+H 4 6.7
D+D2→D2+D 2 1.7
H+D2→HD+D 1 1

Table 9.6  The various contributions to the relative rate of the
reactions in Table 9.5at 300K.

Reaction Symmetric
Stretching
Frequency,

cm-1

Bending
Frequen

cy
cm-1

∆ Zero
Point

Energy
kJ/Mole

Relative
Rate
300K

D + H2 →DH
+ H

1732 924 4.79 12

H + H2 → H2
+ H

2012 965 6.96 6.7

D + D2 → D2
+ D

1423 683 7.60 1.7

H + D2 →
HD + D

1730 737 10.16 1
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Limitations of TST

Often gives too low of a rate due to tunneling.
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Figure 9.6  A plot of the results in Table 9.7.  If the
simple formation of transition state theory with
constant transmission coefficients had worked, the
results should have scatted around the line in the
figure.
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Figure 9.9  A diagram showing the extent of the wavefunction for a molecule.  In A the molecule
is by itself.  In B the molecule is near a barrier.  Notice that the wavefunction has a finite size
(i.e. there is some uncertainty in the position of the molecule.)  As a result, when a molecule
approaches a barrier, there a component of the molecule on the other side of the barrier.

Fail miserably for unimolecular reactions:
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Table 9.8  The preexponential for a series of unimolecular
reactions, as you change the collision partner.  Data of

Westley[1980].
reaction k0 when X =

Argon
k0 when X =

Water
k0 when X =

N2

NO2 + X → OH
+ H + X

1.7 × 1014

cm6/mole2 sec
6.7 × 1015

cm6/mole2 sec
1.57 × 1015

cm6/mole2 sec
H2O + X → OH

+ H + X
2.1 × 1015

cm6/mole2 sec
3.5 × 1017

cm6/mole2 sec
5.1 × 1016

cm6/mole2 sec
HO2 + X → O2 +

H + X
1.5 × 1015

cm6/mole2 sec
3.2 × 1016

cm6/mole2 sec
2 × 1015

cm6/mole2 sec
H2 + X → H + H

+ X
6.4 × 1017

cm6/mole2 sec
2.6 × 1015

cm6/mole2 sec
O2 + X → 2O +

X
1.9 × 1013

cm6/mole2 sec
1.0 × 1014
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Figure 9.13  An Arrhenius plot for the
reaction H+H2→H2+H.
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Modern versions of transition state theory:

Variational transition state theory

Key idea:  TST is saddle point in the free energy
plot, not the energy plot

X H CH HCH X3 3+ + → +
(9.99)

Distance Over the Potential Energy Surface

En
er

gy

Zero Point Of
  Reactants

Zero Point
  Energy

∆
Zero Point Of
Transition state

Figure 9.4  The activation barriers for the reactions in Table 9.6.
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Figure 9.17  The vibrational frequency, zero point energy potential energy and the sum of
poential and zero point energy for reaction (9.51) as a function of the C-H bond length.  After
Hase [1997].
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Tunnelling corrections:

Barrier
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Tail of 
Wavefunction
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Center of 
Wavefunction
before barrier

Wavefunction

Figure 9.9  A diagram showing the extent of the wavefunction for a molecule.  In A the molecule
is by itself.  In B the molecule is near a barrier.  Notice that the wavefunction has a finite size
(i.e. there is some uncertainty in the position of the molecule.)  As a result, when a molecule
approaches a barrier, there a component of the molecule on the other side of the barrier.

Barrier

Hydrogen
Wavefunction

Figure 9.8  Tunneling through a barrier.
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An equation for tunnelling"

�
2

2m
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dX
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A
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
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Figure 9.11  A plot of the square-well
barrier.
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2

K
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







 −
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




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 (9.81)

Potential
Barrier

Total
Wavefunction

Incident
Wavefunction

Scattered
Wavefunction

X A

Figure 9.12  The real part of the incident
(ψi) scattered (ψr) and total wavefunction
(ψT) for the square-well barrier.
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Square wells are not good assumptions:

( )k = kT
h

q
q q

exp - E TA BC T

‡

A BC
B

‡

→






κ / ±

(9.63)

( )κ
ν

T
h

T
1

T
E

P i

B

B
‡= + 







 +






1 1

24

2

±

±

(9.89)
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Figure 9.14  The Eckart potential.
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Example 9.A  Tunneling Corrections Using the
Eckart Barrier.

In problem 7.C we calculated the preexponential for
the reaction:

F+H2 → HF+H
(9.A.1)

How much will the pre-exponential change at 300 K
if we consider tunneling?

Solution

From Equation 9.69

( ) ( )k T
T

h
q

q q
exp - E TA BC

B

p

‡

A BC

‡
B→ =



























κ
±

±/

(9.A.2)

We already evaluated the term in brackets in
Equation (9.A.1) in Example 7.C.  Substituting that
result:
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( ) [ ]k T Å molecule-secA BC
3

→ = ×κ 2 1014 /
(9.A.3)

According to Equation (9.101)

( )κ
ν

T
h

T
p i

B

B
‡= +









 +








1

1
24

1
2

±

± T
E

(9.A.4)

Where according to Table 7.C.1 ν i  =310 cm-1.
Equation (7.C.17) says:

( )h
T

4.784 10 cm
300K

T
p i

B

-3ν
ν

±
= × 








(9.A.5)

Substituting ν i  = 310 cm-1 at T=300K into Equation
(9.A.5) yields

( ) ( )h
T

cm cm
K

300K
p i

B

-1ν
±

= × 





 =−310 4784 10

300
1483. . .

(9.A.6)
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Substituting into Equation (9.A.4) yields

( ) ( ) ( )
κ T = + +









 =1

1
24

148 1
00198 300

56
1102.

. /
. /

.
kcal mole K K

kcal mole

�

.
(9.A.7)

Therefore the rate will only go up by 10% at 300K.
At 100K

( )( )h
cm cm

300K
100K

p i -1ν
κΤ

= × 





 =−310 4784 10 4453. . .

(9.A.8)

Substituting into Equation (9.A.4) yields

( ) ( )κ T = + +
×






 =1

1
24

445 1
00198 100

56
1852.

.
.

. .
(9.A.9)

The tunneling correction in this example is smaller
than normal, because the barrier has such a small
curvature.  A typical number would be 1000 cm-1.
Still it illustrates the point that tunneling becomes
more important as the temperature drops.
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Finally, it is interesting to note that if we replace the
hydrogen with a deuterium in the reaction

F+DH → FD+H
(9.A.10)

the curvature drops to 215 cm-1.  In that case

( ) ( )h
T

cm cm
300K
100K

p i

B

-1
ν

±
= × 






=−215 4784 10 3083. .

(9.A.11)

( )κ
ν

T
h

T
T

E
p i= +









 +









 =1

1
24

1 1 41
2

±

±

B

B
‡ .

(9.A.12)

so the tunneling correction for deuterium is half that
of hydrogen.
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Key assumptions in TST
1) no recrossing trajectories
2) qhot=qtst
3) no tunnelling
OK to factor of 20 for bimolecular reactions -
usually low because of missed tunneling, improper
dynamics

Fails miserably for unimolecular reactions:

Table 9.8  The preexponential for a series of unimolecular
reactions, as you change the collision partner.  Data of

Westley[1980].
reaction k0 when X =

Argon
k0 when X =

Water
k0 when X =

N2

NO2 + X → OH
+ H + X

1.7 × 1014

cm6/mole2 sec
6.7 × 1015

cm6/mole2 sec
1.57 × 1015

cm6/mole2 sec
H2O + X → OH

+ H + X
2.1 × 1015

cm6/mole2 sec
3.5 × 1017

cm6/mole2 sec
5.1 × 1016

cm6/mole2 sec
HO2 + X → O2 +

H + X
1.5 × 1015

cm6/mole2 sec
3.2 × 1016

cm6/mole2 sec
2 × 1015

cm6/mole2 sec
H2 + X → H + H

+ X
6.4 × 1017

cm6/mole2 sec
2.6 × 1015

cm6/mole2 sec
O2 + X → 2O +

X
1.9 × 1013

cm6/mole2 sec
1.0 × 1014



28

RRKM model

Try to fix unimolecular reactions:

Why does transition state theory fail?
qhot >> qTST

Recall Transition state theory assumes qhot= qTST

qhot=partition function for molecules poised to react
qTST=partition function for TST

TST has energy localized in the bond which breaks.

Unimolecular reactions, energy does not have to be
localized.
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Physically - bimolecular reactions last 10-13 seconds.
Reaction occurs only if energy localized in the
correct bonds.

Unimolecular reactions different.
• First form a hot complex
• hot complex reacts

Hot complex lasts for 10-8 seconds.  As a result,
there is time for energy to get localized in a key
bond.

Tolman's equation still works for unimolecular
reactions - the big change is that the partition
function is different than the TST partition function.
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Next derive an equation for the rate of a
unimolecular reaction initiated with a laser

CD CO h CD CO * CD CO *2 2
2

2+  →  → +ν 1

(9.107)

Derive expression by considering reverse reaction:
CD * CO * CD CO *2

2
2+  →−

(9.108)

k
k

K
q q

q
2

2
2
eq CD CO2

−
= =

∗
(9.109)

From before

( )k 1
2d

v d q q
q q2

ABC
ABC ABC A BC

‡

CD CO2

− →=

(9.110)

Lots of algebra:
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k 1
h

q
q q2

P

‡

CD CO2

− =

(9.117)

k 1
h

q
q2

P

‡

A*
=

(9.118)
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Change notation:

q gA* n
n

= ∑

(9.122)

N(E*) q *=

(9.123)

N(E*)=number of states with energy E

q‡ = G(E*)

G(E*)= number of states with vibrational/rotational
energy between TST and E*

k (E ) 1
h

G (E )
N(E )2

P

T
∗ = ∗

∗
 (9.127)
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RRKM model

• N(E*) δE* is the number of vibrational modes
of the reactants with an vibrational energy
between E* and E* + δE*

• GT(E*) is the number of vibrational modes of
the transition state with a vibrational energy
between E‡ and E* independent of whether the
mode directly couples to bond scission.
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( ) ( )
( )

k E * 1
h

q
q

G E *
N E *2

P

R
‡

A*

V
T

V
=











(9.128)

where ( )G E *V
T  is the number of vibrational states at

the transition state, with an energy between  E‡and
E*.  ( )N E *V  δE* is the number of vibrational states
of the reactants with an energy between E* and
(E * + E*)δ ; q R

‡  is the rotational partition function for
the transition state and q A* is the rotational partition
function for the excited products.

Note

( )G E * N (E*)dE *T T

E

E*

‡
= ∫

(9.129)
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Qualitative results:

( )G E gO
n

n
∗ = ∑

(9.130)
GO(E) is the number of states, not just number with
enough energy to get over TST
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Figure 9.19  The vibrational levels of methyl
chloride.  From Pearson, Rabonowitz and Whitten,
J.Phys Chem 42 2470 (1965).
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CD CO h CD CO*2 2
2+  → ν 1
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Figure 9.20GO(E*) for the vibrations of methane.
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Figure 9.21  A plot of GT(E∗) and K2(E∗)
for reaction (9.107).
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(9.107)

H C CO H C CO2
13 12

2
12 13→

(9.131)

Example 9.B. AN RRKM CALCULATION

In Section 8.9 we noted that RRKM calculations
are often used to model photolysis reactions.  In this
example we will calculate k A BC→  for the reaction

C2H5 →C2H4+H
(9.B.1)

Energy, Kcal/mole

R
at

e

Data

RRKM 
Trend

1.50

Figure 9.22  A plot of K2(E∗) for reaction
(9.131).
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for ( ) ( )E cm kcal mole and cm kcal mole* . / /between13046 373 15046 431 1− − .

Table 9.B.1 Data for the reaction C2H5
 →C2H4+H from Gilbert and

Smith [1990]

Reactants Transition State

Vibrational
Frequencies

cm-1

111
409
851
1007
1099
1295
1527
1589
1618
1625
3123
3193
3229
3268
3373

409
432
863
895
996
1026
1305
1328
1583
1682
3278
3365
3302
3392

Rotational Modes
cm-1

0.713 (1,2)
3.44 (1,1)

0.769 (1,2)
2.68 (1,1)

E‡ 13046 cm-1 (37.3
kcal/mole)

Note:  The notation 0.769 (1,2) means that the
rotational mode has a degeneracy of 2 and a σ of 1
and a frequency of 0.769 cm-1.
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Solution:
According to Equation 9.129

( )
( )k

G E
h N E

q
A BC

V

p V

r
→ =

1 ‡ ‡

rAq
*

*
(9.B.2)

There are two common ways to calculate
( ) ( )G E and N EV V

‡ * * :  the Beyer-Swinehart direct count
algorithm, and the semi-classical approximation of
Marcus-Rice and Whitten-Rabinovich.  The
following is a computer program to do the direct
count.

Computer Program for Problem 9.B
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Program Beyer_Swinehart
C! density of vibrational states by
C! Beyer-Swinehart algorithm

implicit none
integer(2), parameter ::

MODES=15
integer(2), parameter ::

points=5000
integer(2)::  vibr_freq(MODES)
integer(2)::

vibr_degen(MODES)
integer i, j
integer(2):: start_frequency=0
real(8) n(0:points)
real(8) g(0:points), x, y
real :: energy_scale=2.

c!energy_scale equals spacing for
energy bins IN cm-1

data vibr_freq
/111,409,851,1067,1099,

1
1295,1527,1589,1618,1625,3123,

2 3193,3229,3268,3373/
data vibr_degen/ 15*1/
do 5 i=1,MODES
vibr_freq(i)=vibr_freq(i)/energy

_scale
    5 enddo

start_frequency=start_frequenc
y/
                energy_scale
C! next initialize arrays

do 2 i=1,points
n(i)=0
g(i)=1

   2 enddo
n(0)=1
g(0)=1

c! count the number of modes
do 10 j=1,MODES
 do 9 i=vibr_freq(j),points
  n(i)=n(i)+n(i-

vibr_freq(j))*vibr_degen(j)
  g(i)=g(i)+g(i-

vibr_freq(j))*vibr_degen(j)

if(mod(i,500).eq.0)write(*,*)i,n(i)
  9 enddo
   10 enddo

n(0)=0.
c! next write data in format for
microsoft Excel, lotus

open(unit=8,file="statedens.csv
",status=

"replace",action="write")
write(8,101)
write(8,102)

  101format("'E', 'E','N(E)','G(E)'")
  102 format("'cm-
1/molecule','kcal/mole','/cm-
1','dimensionless'")

do 20
I=start_frequency,points,100

x=I*energy_scale
y=x*2.859e-3
n(i)=n(I)/energy_scale
g(i)=g(I)-1.0
write(8,100)x,y,n(i),g(i)

  20 enddo
 100 format(f9.1,', ',f9.3,',  ',e15.7,',
',e15.7)

stop
end
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The program calculates n(E*) by dividing the energy
scale into a series of cells and counting how many
vibrational bands are in each cell.  The algorithm
goes through with the lowest frequency and puts a 1
in each cell where the frequency or its overtone
arise.  It then goes through with the second
frequency and adds one to the cell if the cell is an
overtone, or if some combination of the previous
frequencies are in the cell.  The effect is a complete
count of the number of frequencies contributing to
the cell.  The algorithm only takes 15 seconds on a
Pentium PC, so it is quite robust.  I recommend that
you use the direct count method for RRKM
calculations.

Still, I want to note that there are several analytical
approximation for n(E*) and G(E*).  There are
several in the literature.  The simplest approximation
comes from classical mechanics

( ) ( )
( )G E

E
S h

S

p i
*

*
!

=
∏ ν



42

(9.B.3)

( ) ( ) ( )
( )N E

dG E
dE

E
S h

S

p i
*

*
*

*
!

= =
− ∏

−1

1 ν
(9.B.4)

Marcus and Rice showed that a better approximation
is

( ) ( )
G E

E E
S h

Z
S

p i
*

*
!

+
∏

α
ν

(9.B.5)
Where α is a constant between 0 and 1, and EZ is the
zero point energy

E
h

Z
p

i= ∑
2

ν

(9.B.6)

Marcus and Rice assume that α is a constant:  typically 1.0.
Whitten and Rabinovich proposed different approximations where
it is assumed that α varies via the following formula:
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(9.B.8)
I do not like any of these approximations so I always
use the direct count method.  Getting back to problem
9.B, first I ran the program and picked out the values
of n(E*) for energies between 13046 cm-1 and 15046
cm-1.  Then I re-ran the program, put in the vibrational
modes of the transition state and looked at the region
between 0 and 2000 cm-1.  (Note:  the barrier is 13046
cm-1, so if the total energy is 14046 cm-1, the transition
state will only have 1000 cm-1 of vibrational energy.
Table 9.B.2 shows some of these results.
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Table 9.B.2 – Calculated Values of n(E*) and G(E*)

E*, cm-1 Nν(E), cm-1 E* - E‡, cm-

1
GT

V(E*-E‡) K, sec-1

13046
13246
13446
13646
13846
14046
14246
14476
14696
14846
15046

3818
4286
4807
5388
6044
6758
7485
8443
9439

10513
11715

0
200
400
600
800
1000
1200
1400
1600
1800
2000

0
0
0
2
2
8
9
19
24
43
55

0
0
0

1.17×107

1.04×107

3.73×107

3.79×107

7.10×107

8.02×107

1.29×108

1.48×108

Next, let’s calculate k.  First let’s calculate

q
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(9.B.9)

Where IA, IB and IC are the three moments of inertia,
σA, σB and σC are the symmetry factors, hp is Plank’s
Constant, ±B is Boltzman’s constant and T is
temperature.

The rotational frequency ωr satisfies
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Where ω ω ωr
A

r
B

r
Cand, are the rotational frequencies of the

reactants.  Plugging equation (9.B.11) and an equivalent
equation for q r

‡  into equation (9.B.3) yields
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(9.B.12)

Next, let’s substitute numbers in the equation (9.B.12) for
E*=15046 cm-1.  Taking numbers from Table 9.B.2 and noting
hp=3.33 × 10-11 (cm-1)-sec. yields
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(9.B.13)

doing the arithmetic shows, k2=1.48 × 108/sec.
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Does RRKM always work?
No - it assumes all states with enough energy to

cross barrier contribute with unity reaction
probability - actually some states have higher
probability than others

RRKM

Data

300020001000
Energy, cm-1

R
at

e 
co

ns
ta

nt
, /

na
no

se
c

20

30

10

Figure 9.23  A comparison of the experimental rate
of isomerization of stilbene to the predictions of the
RRKM model.
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Also fails for barrierless reactions:

O O X O X2+ + → +
(9.132)

( )( )k v 2 bA BC ABC crit
2

→ = π

(9.137)

O h 2O2 P+ ν�
(9.140)

( )k 2 b136 crit
2= π
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Figure 9.25  A plot of Veff as a function of
bA→BC, for EKE = 1kcal/mole.
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(9.141)

Quantum effects also matter (rotations quantized)
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