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Chapter 7 Summary
Reaction Rate Theory

• Collision theory - simple model for
preexponential

• Transition state theory - better model for
preexponential - bimolecular

• RRKM - better model for preexponential -
unimolecular
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All models based on Arrhenius Model

A B→
(7.1)

Cold unreactive molecules
Hot reactive molecules
Assume equilibrium between cold and hot
molecules
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Figure 7.1  The Boltzmann
distribution of molecular velocities.
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Collision theory:  Molecules react whenever
molecules collide with enough total energy

Next derive equation for rate. Consider 
A + BC AB C→ +

(7.9)

A

A

B B

C

C

AA

B B

CC

Figure 7.2  A collision between an
A molecule and BC molecules.
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Equilibrium between hot and cold molecules

C C eA A

G
T† u

†

B=
−












∆
±

(7.2)

Derivation shows
r Z PA BC ABC reaction− =

(7.10)

 P ereaction
- G T†

B= ∆ /±

(7.11)

 r = Z eA BC ABC
- G T†

B
→

∆ /±

(7.12)

Z v C CABC A BC A BC A BC
c= → →σ

(7.22)

where vA BC→  is the average velocity of A
toward BC.  Equation (7.22) gives the total rate
of collisions between hot A molecules and hot
BC molecules.
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Substituting equations (7.5) and (7.19) into
equation into equation (7.12) yields:

r = v e e C CA BC A BC A BC
c S / H T

A BC
†

B
†

B
→ → →

−

 




 


σ ∆ ∆± ±/

(7.23)

where vA BC→  is the average velocity of A
moving toward BC.

k = v e0 A BC A BC
c S  †

B
→ →σ ∆ /±

(7.25)

Equation 7.25 is the a classical version of
Tolman's equation.  It is an excellent
approximation.
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Collision theory and collision theory
approximate †S∆  and †H∆

Collision
Theory

Transition
state theory

Approximation
to †S∆

0 Transition
state entropy

Approximation
to †H∆

??? Transition
state energy

Approximation
to  v BCA→

2
1

ABC

T8









πµ
± 2

1

ABC

T8









πµ
± 

Note:

1 1
m

1
m mABC A B Cµ

= +
+

(7.28)

and mA, mB and mC are the masses of A, B and
C in atomic mass units (1 AMU = 1.66 × 10-

24g).
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I find it convenient to rewrite equation (7.27)
as:

v 2.52 10 Å
sec

T
300K

1AMU
ABC

13
1/2

ABC

1/2

= × 

















µ
(7.29)
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Example 7.A  A Collision Theory Calculation

Use collision theory to calculate the
preexponential for the reaction:

H+CH3CH3→H2+CH2CH3
(7.A.1)

at 500K.

Solution:  According to collision theory:

k d v0 coll

2

ABC= π
(7.A.2)

First let us calculate VABC

According to equation (7.26):

v 2.4 10 Å / sec T
300K

1AMU
ABC

13
1/2

ABC

1/2

= × 

















µ
(7.A.3)
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with

BCA

ABC

M
1

M
1

1

+
=µ

(7.A.4)

For reaction (7.A.1):

µA-BC
1

1
1AMU

1
30AMU

0.968AMU=
+

=

(7.A.5)

Plugging in the numbers shows that at 500K:

v 2.4 10 500K
300K

1AMU
.968AMU

3.15 10 Å / secABC
13

1/2
13= × 














 = ×

(7.A.6)

There is some question about what values of
dcoll to use in the calculation.  Hydrogen has a
Van der Waals diameter of 1.5Å, while ethane
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has a Van der Waals diameter of 3.5 Å.  One
approximation to dcoll is:

d 1.5Å 3.5Å
2

2.5Åcoll = + =

(7.A.7)

Substituting (7.A.5) and (7.A.6) into equation
(7.A.2) yields:

( ) ( )k
2.5Å

molecule
3.15 10 Å / sec 6.18 10 Å

molecule - sec0

2
3 14

3
= × = ×π

(7.A.8)
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Predictions of collision theory

Table 7.1  Molecular Velocities and Collision Diameters for a
Number of Molecules at 273 K.

Molecule Molecule Velocity
Å/sec

Collision Diameter Å

He 1.2 × 1013 2.2
N2 4.5 × 1012 3.5
O2 4.2 × 1012 3.1

H2O 5.6 × 1012 3.7
C2H6 4.37 × 1012 3.5
C6H6 2.7 × 1012 5.3

ko=(4×1012Å/sec) × (π(3Å)2) = 1.1 × 1014 Å3/sec
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Table 7.2  A selection of the preexponentials reported by Wesley[1980].
Reaction Preexponential

Å3/molecule Sec
Reaction Preexponential

Å3/molecule
Sec

H+C2H6→C2H5+H2 1.6 × 1014 O+C2H6→OH+C2H5 2.5 × 1013

H+CH→H2+C 1.1 × 1012 O+C3H8→(CH3)2CH+OH 1.4 × 1010

H+CH4→H2+CH3 1 × 1014 O2+H→OH+O 1.5 × 1014

O+H2→OH+H 1.8 × 1013 OH+OH→H2O+O 1 × 1013

O+OH→O2+H 2.3 × 1013 OH+CH4→H2O+CH3 5 × 1013

O+CH4→CH3+OH 2.1 × 1013 OH+H2CO→H2O+HCO 5 × 1013

O+CH3→H+CH3O 5 × 1013 OH+CH3→H+CH3O 1 × 1013

O+HCO→H+CO2 5 × 1012 OH+CH3→H2O+CH2 1 × 1013

Table 7.3  Preexponentials calculated from equation (7.30) for a
number of reactions compared to experimental data.

Reaction Calculated
Preexponential

assuming bcoll=van
Der Waals radius

Å3/molec sec

Calculated
Preexponential

assuming
bcoll=covalent radius

Å3/molec sec

Experimental
Preexponential

H C H C H H2 6 2 5 2+ → 6.2 ×1014 2.0 ×1014 1.6 ×1014

H CH H C2+ → + 4 ×1014 2.0 ×1014 1.1 ×1012

O C H OH C H2 6 2 5+ → + 1.9 ×1014 7.6 ×1013 2.5 ×1013

OH OH H O+O2+ → 1.25 ×1014 5.8 ×1013 1 ×1013

H O OH O2+ → + 4.0 ×1014 2 ×1014 1.5 ×1014
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CH CH CH O: CH CHCH + OH3 2 3 3 3+ → •
•

(7.30)

ko=1.4×1010 Å3/molecule-sec

2O 2O O2 2→ • +
(7.31)

ko=5.8×1015 Å3/molecule-sec

Reaction 7.30 requires a special collision
geometry:

CH CH CH O: CH C HCH OH
 CH CH CH OH

    
(a)
(b)

3 2 3 3 3

2 3

+ → + •
→ • + •

•

(7.32)

( )configurations exp S / B= ±

(7.33)

( )exp S / configurations which lead to reaction
average number of configurations of the reactants

†
B∆ ± =

(7.34)
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Summary:

Collision theory: reaction occurs whenever
reactants collide.

Gives correct order of magnitude or slightly
high pre-exponential

Some spectacular failures
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Next Transition state theory Next Transition
state theory - also called
conventional transition state theory (CTST)

Collision
Theory

Transition
state theory

Approximation
to †S∆

0 Transition
state entropy

Approximation
to †H∆

??? Transition
state energy

Approximation
to  v BCA→

2
1
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








πµ
± 2

1
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T8
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







πµ
± 
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‡

Figure 7.5  Polanyi’s picture of
excited molecules.
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Again this is an approximation:

Activation energy not exactly TST energy:
Recall: activation energy = the average energy
of the molecules which react.

• Hot molecules have higher reaction
probability - this raises the average energy
of the molecules which react to something
above the top of the barrier

• Cold molecules have some probability of
reacting due to a quantum mechanical effect
called tunneling.  This lowers the average
energy of the molecules which react.

TST assumes that these two effects exactly
cancel.
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Entropy of activation = the average entropy of
the species which react relative to the reactants -
this is not exactly the transition state entropy.

Again there are two effects:
• In the reaction A +BC → AB + C TST

assumes that only collisions where the
incoming A molecule collides C  lead to
reaction.  In fact the A molecule can collide
with B, push B out of the way and then get
C to leave.  This effect raises the rate of
reaction

• Conversely, when A - BC collide, you might
not deposit enough momentum into the BC
bond to carry C away.  This effect leads to a
lowering of the rate of reaction.

Again TST assumes that these two effects
exactly cancel.

In reality, the two effects rarely exactly cancel
so TST is an approximation.
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( )k T
h

q
q q

exp - E / TA BC
P

T
‡

A B
T
‡

→ =










±
±B

B

(7.43)

Example 7.C   A True Transition State Theory
Calculation

Use TST to calculate the rate of the reaction.
F H HF H2+ → +

(7.C.1)
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Table 7.C.1  Parameters used to calculate the
transition state theory rate constant for
F + H2 → HF + H.  The exact parameters are
also shown for comparison.

Transition State Reactants
Exact Used for

transition
state

calculations

F H2

rHF 1.34Å 1.602Å
rHH 0.801Å 0.756Å 0.7417Å

υH-H stretch about
3750cm-1

4007cm-1 4395.2cm-1

υFH2 Bend ? 397.9 cm-1

υFH2 Bend ? 397.9 cm-1

Curvature
barrier

? 310 cm-1

E‡ 5.6 kcal/mole 1.7 kcal/mole
M 21 AMU 21 AMU 19 AMU 2 AMU
I 5.48AMU-

Å2
7.09AMU-Å2 0.275AMU-Å2

ge 4 4 4 1
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According to transition state theory:

T/E

FH

T‡

HF

P

B

HF

B
‡
T

2

2

2
e

qq
q

h
Tk ±

± −−

→ 






=

(7.C.2)

It is useful to divide up the partition functions in
equation (7.C.2) into the contributions from the
translation, vibration, rotation and electronic
modes, i.e.,:

k
T

h
l

q
q q

q
q q

q
q q

q
q q

eF H
B

P

‡
‡

H F trans

‡

H F vibration

‡

H F rotation

‡

H F elect

E T
2

2 2 2 2

T
‡

B
→

−=
















































± ±/

(7.C.3)

where l‡ is an extra factor of 2 that arises
because there are two equivalent transition
states, one with the fluorine attacking one
hydrogen, and the other with one fluorine
attaching the other hydrogen.

Now it is useful to use the results in Chapter
6 to calculate the various terms in equation
(7.C.3).  According to Table 6.5:
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q
m T
ht

B

P
2=











2
1 2

π ±
/

(7.C.4)

where qt is the translational partition function
for a single translational mode of a molecule, m
is the mass of the molecule, ±B is Boltzman’s
constant, T is temperature, and hP is Plank’s
constant.  For our particular reaction, the
fluorine can translate in three directions; the H2
can translate in three directions; the transition
state can translate in three directions.
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Consequently,:

q

q q

m T
h

m T
h

m T

h

‡

H F trans

‡ B

P
2

F B

P
2

H B

P
2

2 2















=































2

2 2

3 2

3 2 3 2

π

π π

±

± ±

/

/ /

(7.C.5)

where mF, 
2H

m  and m‡ are the masses of
fluorine, H2 and the transition state.
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Performing the algebra:

q

q q
m

m m
h

T

‡

F H trans

‡

F H

P
2

B2 2















=




















3 2 3 2

2

/ /

π ±

(7.C.6)

Let’s calculate the last term in equation (7.C.6).
Rearranging the last term shows

h
T

300K
T

h
(300 K)

P
2

B

P
2

B2 2

3 2 3 2 3 2

π π± ±









 = 


















/ / /

�

(7.C.7)

Plugging in the numbers yields:

( )( )
( )( )( )

h
T

300K
T

kg m
Å

m
AMU

kg

2 1.381 10 kg m / sec - K K
P
2

B

2

-23 2 22

6 626 10
10

166 10

300

3 2 3 2
34

2
10 2

27

3 2

π π±









 =









×










×










×





















−
−/ /

/

. / sec .
� �

(7.C.8)
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Doing the arithmetic yields:

h
T

300K
T

Å AMUP
2

B

3

2
1024

3 2 3 2
3 2

π ±









 = 








/ /
/.

(7.C.9)

Combining equations (7.C.6) and (7.C.9) yields:

( ) ( )2/33

2/32/3

HF

‡

transHF

‡

AMUÅ024.1K300
M

M
qq

q

22










Τ










Μ
=











(7.C.10)

Setting T = 300K M‡ = 21AMU, MF = 19AMU,

2H
M  = 2AMU yields:

( )
q

q q
AMU
U AMU

Å AMU Å
‡

F H trans

3 3

2















=








 =21

2
1024 0 42

3 2
3 2

19ΑΜ

/
/. .

(7.C.11)
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Next, let’s calculate the ratio of the rotational
partition functions.  The fluorine atom does not
rotate so:

q

q q

q

q

‡

H F rot

‡

H rot2 2 2















=














(7.C.12)

According to equation (6.5)

q 8K T I
hr

B

P
3= ±

(7.C.13)

where ±B is Boltzmann’s constant, T is
temperature, hp is Plank’s constant and I is the
moment of inertia of the molecule.  Combining
(7.C.12) and (7.C.13) yields

q

q
8 T I / h

8 T I / h
I

I

‡

H rot

B
‡

P
2

B H P
2

‡

H2 2 2















=










 =π

π
±

±

(7.C.14)
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Substituting in the adjusted value of I‡ and IH2

from Table 7.C.1 yields:

q

q
I

I
7.011AMU Å
0.275AMU Å

‡

H rot

‡

H

2

2
2 2















= = −
−

= 258.

(7.C.15)

Next, let’s calculate the vibrational partition
functions.  According to Table 6.5:

q
h

T

v
p

B

=
− −











1

1 exp
υ

±

(7.C.16)

Let’s first get an expression for the term in
exponential in equation (7.C.16):
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It is easy to show

h U
T

h (1CM
K

300 K
T

U
1CM

p

B

p
1

B
1± ±

=




























−

−

)
( )( )300�

�

(7.C.17)

Plugging in values at hp and ±B from the
appendix yields.

( )( )
( )( )

h
T

2.85 10 kcal / mole - cm 1cm

1.980 10 kcal / mole K 300 K
300 K

T 1cm
P

B

3 1 1

3 1
υ υ

±
=

×

×


















− − −

− −� �

�

(7.C.18)

Note we actually used hPC/Na and ±B/Na in
equation (7.C.16), and not hP where Na is
Avargado’s number and C is the speed of light,
to get the units right.  Doing the arithmetic in
equation 7.C.18 yields:

( )h
T

4.784 10 300K
T

U
1CM

P

B

3
-1

υ
±

= × 














−

(7.C.19)
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Table 7.C.2  The vibrational partition function.
Mode υ hPυ/±BT qv

q HH
‡ 4395.2 cm-1 21. 1.0

(q HH H2
) 4007 cm-1 19.2 1.0

q Bend
‡ 379.9 cm-1 1.82 1.19

Table 7.C.2 shows numerical values for various
values of υ.  The vibrational partition function
ratio equals:

( )
( )( )( )q

q
q q q

q
1 1.19 1.19

1
1.42

‡

H vib

HH
‡

Bend
‡

Bend
‡

H H H2 2















= = =
−

(7.C.20)

Next, let’s calculate the ratio of the partition
functions for the electronic state.  Let’s only
consider the ground electronic state:

( ) ( )
q

q q
g

g g 1 4

‡

H F
elec

e
‡

e H e F2 2















= =
×

=4 1

(7.C.21)
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Finally, let’s calculate ±BT/hP:

( )( )
( )

± B

P

23 2

30 2

T
h

1.381 10 Kg M / sec - mole K K
6.626 10 Kg M / sec

I
300 K

T
300K

=
× −

× −






 = × 








−

−

� �

�

300
6 05 1012. / sec

(7.C.22)

Putting this all together, allows one to calculate
a preexponential:

k 1 T
h

q

q q

q

q q

q

q q

q

q qo
‡ B

P

‡

H F trans

‡

H F rot

‡

H F vib

‡

H F elec2 2 2 2

= 
































































±

(7.C.23)

Plugging in the numbers:

( )( )( )( )( )k 6.65 10 / molecule sec 0.42Å 25.8 1.42 1 2.05 10 Å / molecule seco
12 3 14 3= × − = × −2

(7.C.24)

If one uses the actual transition state geometry,
the only thing that changes significantly is the
rotational term.  One obtains:
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( )
( )

q

q

I

I

5.48 AMU Å

0.275 AMU Å

‡

H rot

‡

H rot

2

2
2 2















=














=
−

−
= 19 9.

(7.C.25)

ko becomes:

( )( )( )( )( )k 6.65 10 / molecule sec 0.42Å 18.9 1.4 1 1.56 10 Å / molecule seco
12 3 14 3= × − = × −2

(7.C.26)

One can also calculate the pre-exponential via
old collision theory.  In collision theory, one
considers the translations and rotations, but not
the vibrations., i.e.,:

k l T
h

q

q q

q

q q0
‡ B

p

‡

H F trans

‡

H F rot2 2

=






































±

(7.C.27)

in equation (7.C.26), the rotational partition
function should be calculated at the collision
diameter and not the transition state geometry.
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If we assume a collision diameter of 2.3 C (i.e.,
the sum of the Van der Wall radii) we obtain:

( ) ( ) ( ) ( )( )I r = 2.31Å
2AMU 19AMU

21 AMU
9.57Å AMU‡

F H
2

FH
2 2

2 2
= 







 =− µ

(7.C.28)

Plugging into equation 7.C.25 using the results
above:

( )( )k 6.65 10 / mole sec 0.42Å 9.57Å AMU
0.275Å AMU

1.9 10 Å / mole seco
12 3

2

2
14 3= × −









 = × −2

(7.C.29)

Table 7.C.3  A comparison of the preexponential calculated
by transition state theory and collision theory to the
experimental value.
ko Transition state theory with
adjusted transition state geometry

2.05 ×1014 Å3/mole-sec

ko Transition state theory with exact
transition state geometry

1.65 ×1014 Å3/mole-sec

ko Collision theory 1.9 ×1014 Å3/mole-sec
ko Experiment 2.3 ×1014 Å3/mole-sec
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 Transition state theory makes two
corrections to collision theory:

1. Transition state theory uses the transition
state diameter rather than the collision
diameter in the calculation.

2. Transition state theory multiplies by two
extra terms:  the ratio of the vibrational
partition function, and the electronic
partition function for the transition state,
and the reactants.
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Review of PE surfaces

           (a)                                (b)
Figure 7.6  A potential energy surface for the reaction H +
CH3OH → H2 + CH2OH from the calculations of Blowers and
Masel.  The lines in the figure are contours of constant energy.
The lines are spaced 5 kcal/mole apart.
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Example 7.G Understanding contour plots

Consider a potential v defined by:

v(r1, r2, r0, a, w, vp, wa, hr)= w * (Exp(-2 * a * (r1 - r0)) - 2 * Exp(-a * (r1 - r0)))+
(w+hr) * (Exp(-2 * a * (r2 - r0)) - 2 * Exp(-a * (r2 - r0)))+ vp * Exp(-a * (r1 + r2 - 2 * r0))+

w + wa * Exp(-4*a * a * ((r1 - r0) ^ 2 + (r2 - 3 * r0) ^ 2)) +
wa * Exp(-4*a * a * (((r1 - 3 * r0) ^ 2) + ((r2 - r0) ^ 2)))

If (v > 20+abs(hr)) Then
v = 20+abs(hr)

(7.G.1)

Make contour plots for the following function of
r1 and r2 with parmeters r0,a,w, hr, vp,wa given
by:
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PE surface with a saddle point
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PE surface with no saddle point
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Potential with a well
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A more complex case


