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Summary Chapter 6
Review of some thermo and

statistical mechanics

Key issues in chapter:

• Bond additivity as a way of estimating
thermodynamic properties
o Simple way to get approximate

thermodynamic properties
• Statistical Mechanics

o More exact, but computationally
expensive way to get approximate
thermodynamic properties

o Needed for next few chapters
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Bond additivity to estimate thermodynamic
properties

• old fashioned idea
• 2-3 kcal/mole of well studied systems
• Good enough for mechanisms
• Not good enough for equilibrium const

The idea is to construct thermodynamic
properties for a molecule as a sum of bond
energies/bond contributions

Total energy= Σ atomic energies + Σ bond
energies

Good to 0.1%.  Ethane
- total energy is 42000 kcal/mole
- accurate to 42 kcal/mole
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People actually use it by calculating relative
properties. e.g heat of formation is total energy
of molecule-total energy of elements.  (small
difference of big numbers).  errors 1-5
kcal/mole

General there are a series of methods:

1) Method based on adding up effects of all
bonds (CH, CC)

2) Method based on adding effects of all bonds
accounting  for the effects of local ligands

3) Method based on adding effects of all bonds
accounting  for the effects of groups

In practice these are the only ways to get
accurate thermo for larger molecules (i.e. cases
where QM takes too much computer time).
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Simple bond additivity - only consider which
bonds form

Table 6.1  The contribution of various bonds to key thermodynamic properties.  Data of
Benson[1976].

Bond Cp,
cal/mole°K

S
cal/mole°K

∆Hf,
kcal/mole

Bond Cp,
cal/mole°K

S
cal/mole°K

∆Hf,
kcal/mole

CH 1.74 12.90 -3.83 CDC 2.6 -14.3 6.7
CC 1.98 -16.40 2.63 CDH 2.6 13.8 3.2
CF 3.34 16.9 -52.5 CDF 4.6 18.6 -3.9
CO 2.7 -4.0 -12.0 CDCD   7.5
OH 2.7 24.0 -27.0 COH 4.2 26.8 -13.9
CN 2.1 -12.8 9.3 CON 3.7 -0.6 -14.4
NH 2.3 17.7 -2.6 CBH 3.0 11.7 3.25

CBCB   10.0 CBC 4.5 -17.4 7.25

For CH4  (4 C-H bonds)
∆H 4 C H)

4 ( 3.83) 15.3kcal / mole
f = × −

= × − = −
H(

(6.1)

experiment -17.9 kcal/mole

For CH3CH3
∆H 6 (C H) (C C)

6 ( 3.83) 2.73 20.3kcal / mole
f = × − + −

= × − + = −
H H

(6.2)
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experiment -20.2 kcal/mole

Gives us OK estimates (almost as good as QM)
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Ligand methods - add up all carbons n a
hydrocarbon

Table 6.2  The contribution of various functional to key thermodynamic properties in the gas.  Data of Benson
Thermochemical Kinetics [1976], with revision due to Cohen, J. Phys. Chem. Ref. Data, 25 (1998) 1411.

Ligand Cp,
cal/mole°K

S
cal/mole°K

∆Hf,
kcal/mole

Ligand Cp,
cal/mole°K

S
cal/mole°K

∆Hf,
kcal/mole

C(H)3C 6.19 30.41 -10.00 O(H)2 8.0 45.1 -57.8
C(H)2(C)2 5.50 9.42 -5.00 O(H)(C) 4.3 29.07 -37.9
C(H)(C)3 4.54 -12.07 -2.4 O(H)(CB) 4.3 29.1 -37.9

C(C)4 4.37 -35.10 -0.1 O(H)(CD) 3.8 24.5 -58.1
CD(H)2 5.10 27.61 6.26 O(C)2 -3.4 8.68 -23.2

CD(H)(C) 4.16 7.97 8.6 CO(H)2 8.5 52.3 26.0
CD(C)2 4.10 -12.70 10.34 CO(H)(C) 7.0 34.9 29.1

CD(CD)(H) 4.46 6.38 6.8 CO(H)(CB) 7.0  29.1
CD(CD)(C) 4.40 -14.6 8.8 CO(C)2 5.6 15.0 -31.4
CD(CB)(H) 4.46 6.38 6.8 CO(C)(O) 6.0 14.8 -35.1
CD(CB)C 4.40 -14.6 8.64 C(H)3(O) 6.19 30.41 -10.8

CD(CT)(H) 4.46 6.38 6.78 C(H)2(O)(C) 4.99 9.8 .-8.1
C(CD)(C)(H)2 5.2 9.80 -4.76 C(H)3(CO) 6.19 30.41 -10.08

C(CD)(H)2 4.7 10.2 -4.29 C(H)2(CO)(C) 6.2 9.6 -5.2
C(CD)(CB)(H)2 4.7 10.2 -4.29 CBO 3.9 -10.2 -0.9
C(CT)(C)(H)2 4.95 10.3 -4.73 C(N)(H)3 6.19 30.41 -10.08

CT(H) 5.27 24.7 26.93 C(N)(C)(H)2 5.25 9.8 -6.6
CT(C) 3.13 6.35 27.55 N(C)(H)2 5.72 29.71 4.8
CT(CD) 2.57 6.43 29.20 N(C)2(H) 4.20 8.94 15.4
CT(CB) 2.57 6.43 29.20 C(H)3(C) 12.7 42.5 -161
CB(H) 3.25 11.53 3.30 C(F)2(H)(C) 9.9 39.1 -102.3
CBC 2.07 -7.69 5.51 C(F)(H)2(C) 8.1 35.4 -51.5
CBCD 3.59 -7.80 5.68 C(F)2(C)2 9.9 17.4 -99

C-(C)(H)3  carbon bound to one carbon and
three hydrogens
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Example CH3CH3

( )∆H 2 C (C)(H) 2 ( 10.0) = -20.0kcal / molef 3= × − = × −H
(6.3)

experiment = -20.2 kcal/mole

Ethylene CH2CH2

( )∆H 2 C (H) 2 (+6.26) kcal / molef D 2= × − = × = +H 12 52.
(6.4)

experiment 12.50
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Table 6.3  The contribution of various functional to key thermodynamic properties of Radicals.
Data of Benson [1976].
Ligand Cp,

cal/mole°K
∆S

cal/mole°K
∆Hf,

kcal/mole
Ligand Cp,

cal/mole°K
∆S

cal/mole°K
∆Hf,

kcal/mole
•C(C)(H)2 5.99 30.7 35.82 C(O•)(C)2(H) 7.7 14.7 7.8
•C(C)2(H) 5.16 10.74 37.45 C(O•)(C)3 7.2 -7.5 8.6

•C(C)3 4.06 -10.77 38.00 •C(H)2(CD) 5.39 27.65 23.2
C(C•)(H)3 6.19 30.41 -10.08 •C(H)(C)(CD) 4.58 7.02 25.2

C(C•)(C)(H)2 5.50 9.42 -4.95 •C(C)2(CD) 4.00 -15.0 24.8
C(C•)(C)2(H) 4.54 -12.07 -1.90 •C(CB)(H)2 4.10 26.85 23.0

C(C•)(C)3 4.37 -35.10 1.50 •C(CB)(C)(H) 5.30 6.38 24.7
C(O•)(C)(H)2 7.9 36.4 6.1 •C(CB)(C)2 4.72 -15.46 25.5

H• 3 52.1 O• 3 59.5

For CH3CH2•

Experiment 26.5 kcal/mole.

(Note benson's rules were 1970 - before
accurate QM).

This produces energies good enough to predict
mechanisms.
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Method does not work for ions

Table 6.4  The heat of reaction of H+ + NH2R ⇒ [NH3R]+ as a function
of the R group.  Data of Bowers [1977].

R ∆H
kcal/mole

R ∆H
kcal/mole

R ∆H
kcal/mole

H -205 CH3 -214.1 C2H5 -217.1
n-C3H7 -218.5 n-C4H9 -219.0 n-C6H13 -220.1
n-C8H17 -220.4 n-C10H17 -220.7 iC4H9 -219.5
s-C4H9 -220.5 t-C4H9 -221.3
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Works for surfaces (dissociative adsorption
only)

Table 6.5  Approximate contributions of metal surface bond to )Hf kcal/mole .
The data in the table is calculated from results in Benziger [1991] and results in
Masel [1996].  Most of the numbers are ±5−10 kcal/mole.  The numbers in brackets
are based on extrapolations.  Consequently, those numbers may have larger errors.

Group
IVA VA VIA VIIA VIII VIII VIII IB

Element Ti V Cr Mn Fe Co Ni Cu
H(M-C) [-62] [-56] -53 -50 -49 -48 -50 -41
H(M-N) [-77] [-61] [-44] [-36] -14 [-1] -10 -3
H(M-O) -68 -55 -58 -44 -45 -40 -38 -30
H(M-H) -19 -15 -14 -12 -11 -12 -12 -5
Element Zr Nb Mo Tc Ru Rh Pd Ag
H(M-C) -62 -59 -53.1 -49 -43 -40 -40 -25
H(M-N) -34 -23 -19 [-12] [-10] [-9] [-7] +10
H(M-O) -78 -58 [-41] -[37] [-36] -28 -24 -22
H(M-H) -20 -13 -13 -12 -11 -10 -10 0
Element Hf Ta W Re Os Ir Pt Au
H(M-C) -65 -81 -72.5 -52.5 -43 -40 -40 -20
H(M-N) -34 -26 -13 -15 [-11] [-8] [-5] +10
H(M-O) -80 -61 -47 -33 -24 -29 -24.5 -19.5
H(M-H) ? -19 -16 -12 -11 -8 -6 +10

Example CH3CH2(ad)

( )∆H C (C)(H ) ( C (C)(H )) + H(Pt - C)
( 10.2) 35.82 + (-40)

14.3kcal / mole

f 3 2= − + • −
= − +
= −

H H

(6.6)
Discussion problem:
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Consider:

CH3CH3 +X1→ 2CH3

CH3 + CH3CH3 2→ CH4 + CH2CH3

CH2CH3 + X 3→ CH2CH2 + H +X
H+ CH3CH3 4→ H2 + CH2CH3

2 CH2CH3 +X 5→ CH3 CH2CH2CH3 + X

a) Estimate the heat of reaction of each step.
Hint: first estimate the heat of formation of all
of the species
b) Estimate activation barriers for each step
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note CH3 left out of table Hf = 34.82

My solution

ethane

( )∆H 2 C (C)(H) 2 ( 10.0) = -20.0kcal / molef 3= × − = × −H
(6.3)

ethyl radical

( )∆H C (C )(H ) ( C (C)(H )) ( 10.08) 35.82 kcal / molef 3 2= − • + • − = − + =H H 257.
(6.5)

CH3CH2CH2CH3
Hf = 2 [C-(C)(H)3] + 2 [C-(C)2(H)2]
= 2*(-10.00)+ 2(-5)= -30.0 kcal/mole

H radical - +52.1 given in table
CH3 - +34.82 (above)
methane - not in table -17.9 (above)
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Reaction 1
∆Hr = 2Hf(CH3)-Hf(CH3CH3)
= 2*(+34.82)-(-20.0)= +89.64

Reaction 2
CH3 + CH3CH3 2→ CH4 + CH2CH3

∆Hr = Hf(CH4)+Hf(CH2CH3) -Hf(CH3CH3)
-Hf(CH3)

= (-17.9) + (+25.7) - (-20.0)-(+34.8)
= -7 kcal/mole
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Statistical Mechanics

• The key concept in statistical mechanics is
that one can calculate all thermodynamic
properties as an average.  For example, the
internal energy of molecules in a box is an
average of the internal energies of each
molecule, which is then also averaged over
time.  The entropy is an average of all of the
entropies of the molecules averaged over time.

• There are alternative ways to compute the
averages. For example instead of computing a
time average, one can compute an ensemble
average, where the ensemble average will be
defined later in this chapter.  If you do
everything right, all of the averages should
come out to be the same value, which is why
statistical mechanics is so valuable.

• When you do statistical mechanics, you use all
of the normal state variables that you learned
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about in thermodynamics: pressure,
temperature, volume, free energy, enthalpy …
In addition there are some special state
variables called partition functions.

• The partition functions are like any other state
variable.  The partition functions are
completely defined if you know the state of
the system.  You can also work backwards, so
if you know the partition functions, you can
calculate any other state variable of the
system.

• The partition functions are defined via
equations (6.15) and (6.16).  These equations
allow the partition functions to be calculated
from the properties of the molecules in the
system (i.e. energy levels, atomic masses etc).
The fact that the partition functions can be
calculated easily makes them particularly
convenient thermodynamic variables.  If you
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know the properties of all of the molecules,
you can calculate the partition functions.  You
can then work backwards and calculate any
thermodynamic property of the system.

• The key variable for the work later in this
book is the equilibrium constant for a reaction.
K, the equilibrium constant for the reaction
A+B � C+D is given by

K q q
q q

C D

A B
=

(6.7)

Important concept due to Gibbs:

Can replace time average with ensemble
average:
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Replace system with a set of systems "identical"
to the first and average over all of the systems.

Identical - same thermodynamic state

Canonical ensemble
grand canonical ensemble
microcanonical ensemble
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Key idea in statistical mechanics: can define a
new state variable called a partition function

Q g ecanon
N

n
n

Un= ∑
−β

(6.15)

• Partition function is easy to calculate if
energy levels are known.

• Partition function just like any other state
variable -
o state known if V, T and composition

known
o state known if Q, T and composition

known
o Q is like a volume (actually the volume

of states)
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• Partition function related to other state
variables via Maxwell relationships

S p Ln p
gB n

n

n

n
= − ∑









±

(6.40)

A TLn(QB canon
N= − ± )

(6.59)

∂
∂β

( )LnQ Ucanon
N

=

(6.60)

S A
T

T LnQ
T

+ LnQ
V,N

B
canon
N

V,N
B canon

N= −





 =











∂
∂

∂
∂

± ±

(6.61)

P A
V

T LnQ
VT,N

B
canon
N

T,N

= −





 =











∂
∂

∂
∂

±

(6.62)
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µ ∂
∂

∂
∂

= 





 =











A
N

T LnQ
NT,V

B
canon
N

T,V

±

(6.63)

S PV
T

T
LnQ

dT
+ Ln(Q

V,
B

grand

V,
B grand= 






 = 









∂
∂

∂

µ µ

± ± )

(6.64)

N PV T
LnQ

T,V
B

grand

V,T

= 







 =











∂
∂µ

∂
∂µ

±

(6.65)
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Key equation for the molecular partition
function:

( ) ( ) ( )q q q q g et
3

r
3

V
3n 6

e
Ua O= − −β

(6.77)
Lets us calculate properties:
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Table 6.6  Equations for the partition function for translational, rotational,
vibrational modes and electronic levels.

Type of Mode Partition Function
Approximate Value of
the Partition Function
for Simple Molecules

Translation of a molecule of
an ideal gas in a one

dimensional box of length ax

q
m T) a

ht
g B

1
2

x

p

=
(2π ±

qt . 1 - 10/C ax

Translation of a molecule of
an ideal gas at a pressure PA

and a temperature T

q
N

m T)
h

T
P

t
3

g B

3
2

p
3

B

A
=











(2π ± ±
q t

3 ≈ −10 106 7

Rotation of a linear molecule
with moment of inertia I

q
I T

S hr
B

n p
2

2
28

=
π ±

where Sn is the symmetry
number

q r
2 ≈ −10 102 4

Rotation of a nonlinear
molecule with a moment of

inertia of Ia, Ib, Ic, about
three orthogonal axes

q
I I I ) (8 T)

S hr
a b c

1/2
B

3/2

n p
3

3 =
π ± q r

3 ≈ −10 104 5

Vibration of a harmonic
oscillator when energy levels
are measured relative to the
harmonic oscillator’s zero

point energy

q
1- exp(-h / TV

p B

= 1
υ ± )

where υ = the vibrational
frequency

q v ≈ −1 3

Electronic Level (Assuming
That the Levels Are Widely

Spaced)

q
E
Te

B
= −









exp

∆
± q E)e = −exp( β∆
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Table 6.7  Simplified expressions for the average velocity and
the translational, rotational, vibrational partition function.
Derivations are given in example 6.B and 6.C.

Type of Mode Partition Function Partition function after
substituting in values of

±±±±B, hp

Average velocity
of a molecule v

T
m

B

g
=










8
1
2π± 2

1

g

2
1

13

m
AMU1

K300
T

sec
Å1052.2v





















×=

Translation of a
molecule in three

dimensions,
(partition function
per unit volume)

( )
( )q

m T

h
t

g B

p

3

3
2

3

2
=

π ± q
T m

t
g3

3
2

3
2

300K 1AMU
= 


















1.16
Å3

Rotation of a linear
molecule ( )q

I T

S h
r

B

n p

2
2

8
=

π ±
q

S
T I

AMUr
n

2 12.4
300K 1Å

=
























-

Rotation of a
nonlinear molecule

( ) ( )
( )q

T I I I

S h
r

B a b c

n p

2

3
2

1
2

3

8
=

π± q
S

T I I I
AMUr

n

a b c3

3
2

3

3
243.7

300K 1Å
=






















3-

Vibration of a
harmonic oscillator

q
1- exp(-h / TV

p B

= 1
υ ± )

q

T

V=
− −























−

1

1
209.2cm

300K
1exp

υ
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Example 6.C  Calculate the partition function
for HBr at 300°K

Data for Example 6.C
υ 2650 cm-1

bond length 1.414Å
mH 1 AMU
mBr 80AMU

Calculate the a) translational, b) rotational, c)
vibrational partition function for HBr.  Data is
given above.

Solution:

Total Modes = 3n
Translations = 3
Rotations = 2 (linear molecule)
Rotations = 3 (non linear molecule)
Whatever left is vibrations
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a) The translational partition function.

From Table 6.6:

( )
q

m T

ht
3 g B

p
3=

2
3 2

π ±
/

(6.3.1)

where qt is the translational partition function
per unit volume, mg is the mass of the gas atom
in AMU, ±B is Boltzmann’s constant, T is
temperature and hp is Plank’s constant.

Equation 6.3.1 is not that convenient so first
I was to derive a simple.  One can rewrite
equation (6.32) as

q
m

1AMU
T

300 K
2 1AMU K

ht
3 g B

p
3= 

















× × ×











3 2 3 2 3 2
300

/ / /

�

�π ±

(6.3.2)
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Next let us evaluate the third term on the right
of equation (6.3.2)

( )

( ) ( )

2 1AMU K
h

1AMU 1.66 10 kg
1AMU

1.381 10 kgM

sec K
300 K

kgM
sec

10
M

1.16

B

27
23

2

2

34
2 10 3

π

π

× × ×
=

×







 ×




















×



















=

−

−

±

C C

300

2

6 626 10

3 2

3

3 3

3 2

/

/

.

�

�

(6.3.3)

Combining 6.3.2 and 6.3.3 yields

q
m

1AMU
T

300 Kt
3 g

3=


















3 2 3 2 116
/ / .

�

C

(6.3.4)

Equation 6.3.4 is the equation we will actually
use to evaluate the translational partition
function.  For our case mg = 81 AMU, T =
300°K.  Plugging in the numbers:
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q 81AMU
1AMU

300 K
300 K

ÅT

3/2

3
= 















 =

�

�

3 2
3116 843

/
. /
C

(6.3.5)

b) The rotational partition function.
similar to above
c) The vibrational partition function.
similar to above
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EXAMPLE 6.B  The calculation of molecular
velocities.

Derive an expression for the a) average velocity
of a ideal gas molecule, b) the average internal
energy, c) plug in numbers into your expression
at temperature T = 273 K.

Solution

a) Molecular velocities can be calculated using
the classical partition function, equation (6.78).
According to equation (6.80), one can calculate
the expectation value of the molecular velocity,
v , from:

v = 1
Q

1
h

... ve dr dr ...dr dp dp ....dp
classical

3m
U

1 2 m 1 2 m∫∫∫ ∫
−β � � � � � �

(6.103)
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Therefore:

2/1

2/1

13

g
m

AMU1
K300

T
sec
Å10x52.2V


















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b) A similar derivation shows that the average
translational energy, UT  is:
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m v e dv

e dv
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∫∫∫
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−

−

β
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(6.111)
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c) Plugging Numbers into equation (6.110)
allows one to calculate the following table of
molecular velocities:

Some properties of gases at 0BC

Molecule

Average
Velocity, <v>

m/sec
Molecular
 Diameter

Hydrogen 1687 2.74
Helium 1197 2.18

Carbon Monoxide 453 3.12
Nitrogen 453 2.74
Krypton 262 4.16
Xenon 209 4.85

The numbers in this table are calculated in J.F.
O’Hanlon, A User’s Guide To Vacuum
Technology, Wiley (1980).
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Example:

Calculate the equilibrium constant for the
reaction

F + H2 � complex
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Table 7.C.1  Parameters used to calculate the transition state
theory rate constant for
F + H2 → HF + H.  The exact parameters are also shown for
comparison.

Transition State Reactants
Exact Used for

transition
state

calculations

F H2

rHF 1.34Å 1.602Å
rHH 0.801Å 0.756Å 0.7417Å

υH-H stretch about
3750cm-1

4007cm-1 4395.2cm-1

υFH2 Bend ? 397.9 cm-1

υFH2 Bend ? 397.9 cm-1

Curvature
barrier

? 310 cm-1

E‡ 5.6 kcal/mole 1.7 kcal/mole
M 21 AMU 21 AMU 19 AMU 2 AMU
I 5.48AMU-Å2 7.09AMU-Å2 0.275AMU-Å2

ge 4 4 4 1
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(7.C.2)

It is useful to divide up the partition functions in
equation (7.C.2) into the contributions from the
translation, vibration, rotation and electronic
modes, i.e.,:
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(7.C.3)

where l‡ is an extra factor of 2 that arises
because there are two equivalent transition
states, one with the fluorine attacking one
hydrogen, and the other with one fluorine
attaching the other hydrogen.

Now it is useful to use the results in Chapter
6 to calculate the various terms in equation
(7.C.3).  According to Table 6.5:
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where qt is the translational partition function
for a single translational mode of a molecule, m
is the mass of the molecule, ±B is Boltzman’s
constant, T is temperature, and hP is Plank’s
constant.  For our particular reaction, the
fluorine can translate in three directions; the H2
can translate in three directions; the transition
state can translate in three directions.
Consequently,:
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(7.C.5)

where mF, mH2
 and m‡ are the masses of

fluorine, H2 and the transition state.
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Performing the algebra:
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(7.C.6)

Let’s calculate the last term in equation (7.C.6).
Rearranging the last term shows
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(7.C.7)

Plugging in the numbers yields:
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(7.C.8)

Doing the arithmetic yields:
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Combining equations (7.C.6) and (7.C.9) yields:
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(7.C.10)

Setting T = 300K M‡ = 21AMU, MF = 19AMU,
MH2 = 2AMU yields:
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(7.C.11)

Next, let’s calculate the ratio of the rotational
partition functions.  The fluorine atom does not
rotate so:
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According to equation (6.5)

q 8K T I
hr

B

P
3= ±

(7.C.13)

where ±B is Boltzmann’s constant, T is
temperature, hp is Plank’s constant and I is the
moment of inertia of the molecule.  Combining
(7.C.12) and (7.C.13) yields
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(7.C.14)

Substituting in the adjusted value of I‡ and IH2

from Table 7.C.1 yields:
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Next, let’s calculate the vibrational partition
functions.  According to Table 6.5:
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Let’s first get an expression for the term in
exponential in equation (7.C.16):

It is easy to show
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Plugging in values at hp and ±B from the
appendix yields.

( )( )
( )( )

h
T

2.85 10 kcal / mole - cm 1cm
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(7.C.18)

Note we actually used hPC/Na and ±B/Na in
equation (7.C.16), and not hP where Na is
Avargado’s number and C is the speed of light,
to get the units right.  Doing the arithmetic in
equation 7.C.18 yields:
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Table 7.C.2  The vibrational partition function.
Mode υ hPυ/±BT qv

qHH
‡ 4395.2 cm-1 21. 1.0

(qHH H2
) 4007 cm-1 19.2 1.0

qBend
‡ 379.9 cm-1 1.82 1.19

Table 7.C.2 shows numerical values for various
values of υ.  The vibrational partition function
ratio equals:
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(7.C.20)

Next, let’s calculate the ratio of the partition
functions for the electronic state.  Let’s only
consider the ground electronic state:
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Finally, let’s calculate ±BT/hP:
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Putting this all together, allows one to calculate
a preexponential:
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(7.C.23)

Plugging in the numbers:

( )( )( )( )( )k 6.65 10 / molecule sec 0.42Å 25.8 1.42 1 2.05 10 Å / molecule seco
12 3 14 3= × − = × −2

(7.C.24)

If one uses the actual transition state geometry,
the only thing that changes significantly is the
rotational term.  One obtains:
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ko becomes:

( )( )( )( )( )k 6.65 10 / molecule sec 0.42Å 18.9 1.4 1 1.56 10 Å / molecule seco
12 3 14 3= × − = × −2

(7.C.26)

One can also calculate the pre-exponential via
old collision theory.  In collision theory, one
considers the translations and rotations, but not
the vibrations., i.e.,:
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(7.C.27)

in equation (7.C.26), the rotational partition
function should be calculated at the collision
diameter and not the transition state geometry.
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If we assume a collision diameter of 2.3 C (i.e.,
the sum of the Van der Wall radii) we obtain:
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2AMU 19AMU
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(7.C.28)

Plugging into equation 7.C.25 using the results
above:

( )( )k 6.65 10 / mole sec 0.42Å 9.57Å AMU
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(7.C.29)


