

Rich Masel
University of Illinois, Urbana
Champaign

Why Do We Care?

In reactor design we need to determine

- Process chemistry
 - What reactions can lead to the desired products
 - What side reactions occur
 - What are the rates of the processes
 - Any safety issues?

Reaction conditions

- Temperature, pressure
- Catalysts, solvents

Contacting pattern

- CSTR vs plug flow
- Mixing issues
- Heat transfer & pressure drop
- Mathematical modeling

We Know How to Calculate

Process chemistry

- ♦ What reactions can lead to the desired products
- What side reactions occur
- ♦ What are the rates of the processes
- ♦ Any safety issues?

Reaction conditions

- ◆ Temperature, pressure
- Catalysts, solvents

Contacting pattern

- CSTR vs plug flow
- Mixing issues
- Heat transfer & pressure drop
- Mathematical Modeling

This Work Gives

Process chemistry

- What reactions can lead to the desired products
- What side reactions occur
- What are the rates of the processes
- Any safety issues?

Reaction conditions

- Temperature, pressure
- Catalysts, solvents

Contacting pattern

- ◆ CSTR vs plug flow
- Mixing issues
- ♦ Heat transfer & pressure drop
- Mathematical Modeling

Our Approach to Predict Process Chemistry & Conditions

- Develop rules for what reactions can happen
 - ◆ Ea < 75 kT for initiation reactions</p>
 - ◆ Ea < 35 kT for propagation reactions</p>
- Develop approximations for Ea
- Use the findings as a way to quantify process chemistry
- Synthesize the results for design

Rules for mechanisms: Most practical mechanisms must have

- Initiation step
 - weakest bond in reactants break
- Catalytic cycle
 - 7 generic reaction types
- Termination step

- All steps have low barriers
 - ◆ Ea < 75 kT for initiation step</p>
 - ◆ Ea < 35 kT for propagation step</p>

WeiTi Lee's PhD

The complete method for mechanism prediction

- Figure out what species are possible
 - Radicals
 - Reactants, Products
- Make a list of all possible reactions of those species
- Check which reactions must be included
 - Initiation reaction
 - Catalytic cycle
- Eliminate reactions which are slow

Example $H_2 + Br_2 \Rightarrow 2HBr$

- Assume H, Br, H₂, Br₂, HBr only species
- Possible Initiation reactions

$$H_2 + X$$
 $2 H + X$
 $Br_2 + X$ $2 Br + X$

Reactions of H

$$H_2 + H$$
 $H + H_2$
 $Br_2 + H$ $HBr + Br$
 $HBr + H$ $H_2 + Br$

Example: $H_2 + Br_2 \Rightarrow 2HBr$ Continued

Reactions of Br

$$Br_2 + Br$$
 $Br + Br_2$
 $H_2 + Br$ $HBr + H$
 $HBr + Br$ $Br_2 + H$

Termination Reactions

$$2 Br + X Br2 + X$$

 $H + Br + X$ $HBr + X$
 $2 H + X$ $H2 + X$

- Impossible Reactions
 - 4 center reactions (FI, CI exceptions)
 - Reactions without collision partners

All Possible Reactions

$$H_2 + X$$
 $2 H + X$
 $Br_2 + X$ $2 Br + X$
 $H_2 + H$ $H + H_2$
 $Br_2 + H$ $HBr + Br$
 $HBr + H$ $H_2 + Br$
 $Br_2 + Br$ $Br + Br_2$
 $H_2 + Br$ $HBr + H$
 $HBr + Br$ $Br_2 + H$
 $2 Br + X$ $Br_2 + X$
 $H + Br + X$ $HBr + X$
 $2 H + X$ $H_2 + X$

Rules: Must Have Initiation Reaction

```
H_2 + X 2 H + X

Br_2 + X 2 Br + X
                        (Need one of these)
H_2 + H + H_2
Br_2 + H
        HBr + Br
HBr + H
          H_2 + Br
Br_2 + Br
           Br + Br<sub>2</sub>
H_2 + Br
          HBr + H
HBr + Br
           Br_2 + H
2 Br + X Br<sub>2</sub> + X
H + Br + X HBr + X
2H+XH_2+X
```


Rules: Must Have Catalytic Cycle

```
H_2 + X 2H + X
Br_2 + X
       2 Br + X
H_2 + H + H_2
Br_2 + H
       HBr + Br
HBr + H
          H_2 + Br (NEED)
Br_2 + Br
         Br + Br<sub>2</sub>
H_2 + Br HBr + H
HBr + Br
           Br_2 + H (NEED)
2 Br + X Br<sub>2</sub> + X
H + Br +X HBr + X
2H+XH_2+X
```


Rules: Should Have A Termination Reaction

```
H_2 + X \qquad 2H + X
Br_2 + X
       2 Br + X
H_2 + H + H_2
Br_2 + H HBr + Br
HBr + H
         H_2 + Br
Br_2 + Br
          Br + Br<sub>2</sub>
H_2 + Br
         HBr + H
HBr + Br
           Br_2 + H
2 Br + X Br_2 + X
H + Br +X HBr + X (Want one of these)
         H_2 + X
2 H +X
```


Rules: Ignore exchange reactions

```
H_2 + X 2H + X
Br_2 + X
       2 Br + X
H_2 + H + H_2 (Ignore)
Br_2 + H HBr + Br
HBr + H
         H_2 + Br
Br_2 + Br
         Br + Br<sub>2</sub> (Ignore)
H_2 + Br HBr + H
HBr + Br
         Br_2 + H
2 Br + X Br<sub>2</sub> + X
H + Br +X HBr + X
2H+XH_2+X
```


Rules: Initiation reaction: weakest bond breaks

```
H_2 + X 2 H + X (104 kcal/mole)
Br<sub>2</sub> + X 2 Br + X (44 kcal/mole)
```

$$H_2 + X$$
 2 H + X (Ignore)

Where are we now?

```
(Need)
Br_2 + X
         2 Br + X
Br_2 + H
                      (Need)
       HBr + Br
                      (Need)
H_2 + Br
          HBr + H
HBr + Br
           Br_2 + H
          H_2 + Br
HBr + H
                      (Need)
2 Br + X
          Br_2 + X
H + Br + X
           HBr + X
2H+XH_2+X
```


Rules for other reactions

- All steps have low barriers
 - ◆ Ea < 75 kT for initiation step</p>
 - ◆ Ea < 35 kT for propagation step</p>
 - ◆ Ea < 40 kT for side reaction</p>
- Can calculate minimum temperature for the reaction
- Include any other steps which follow the rules

Polanyi Relationship To Estimate Activation Barriers

Polanyi relationship

$$E_a = E_a^o + \gamma_p \Delta H_r$$

2 parameter equation

"If someone claims to have a general correlation for reaction rates the prudent engineer should be suspicious" L.D. Schmidt, 1998

Blowers-Masel Equation

Bond Dissociation Energy

Heat of reaction

$$E_{a} = \frac{(2w_{o} + \Delta H_{r})(v_{p} - 2w_{o} + \Delta H_{r})^{2}}{(v_{p}^{2} - 4w_{o}^{2} + \Delta H_{r}^{2})^{2}}$$

1 parameter equation

Parameter related to intrinsic barrier

Gives Reasonable Results

Table of Parameters

Table 5.4 Intrinsic barriers and transfer.

Coefficients for different types of reaction of neutral species.

	<u> </u>	<u> </u>			
Reaction	Example	Actual kcal/mole	to assume when predicting mechanism s kcal/mole	Actual γ _P	γ _P to assume when predicting mechanisms
Simple bond scission	$AB+X\rightarrow A+B+X$ $X=a$ collision partner	0-1	1	1.0	1.0
Recombination	$A+B+X\rightarrow AB+X$ X=a collision partner	0-1	1	0.0	1.0
Exothermic atom transfer reaction	$R \times + R^1 \to R + x - R^1$ $x = \text{an atom}$	8-16	12	0.2 to 0.6	0.3
Endothermic atom transfer reaction	R - $X + R \rightarrow R + x-R^1$ x=an atom	8-16	12	0.4 to 0.8	0.7
Ligand transfer reaction to hydrogen	$H+R-R^1 \rightarrow HR+R^1$	40-50	45	0.4 to 0.6	0.5
Other ligand transfer reactions	$x + R-R^1 \rightarrow xR + R^1$ x=an atom	50 or more	50	0.3 to 0.7	0.5

Where are we now?

```
(Need)
Br_2 + X
         2 Br + X
Br_2 + H
        HBr + Br
                      (Need)
                      (Need)
H_2 + Br
          HBr + H
HBr + Br
           Br_2 + H
                      (Ea=7 kcal/mole)
          H_2 + Br
                      (Ea=43 kcal/mole)
HBr + H
          Br_2 + X
                      (Need)
2 Br + X
H + Br + X
            HBr + X
2 H + X H_2 + X
```


Rules for other reactions

- All steps have low barriers
 - ◆ Ea < 75 kT for initiation step</p>
 - ◆ Ea < 35 kT for propagation step</p>
 - ◆ Ea < 40 kT for side reaction</p>
- Can calculate minimum temperature for the reaction
- Include any other steps which follow the rules

More Complex Cases: Additional Reactions

Other classes of reactions

- Ligand Transfer Reactions
- Beta-scissions
- Association Reactions
- Addition Reactions
- Disproportionations
- Isomerization Reactions (5-center)

All the same rules apply

More Complex Examples: Need To Reduce Number Of Species Considered

Simplified Method

- Find a feasible initiation step
- Find all feasible reactions of radicals produced in initiation step
- Continue generating reactions until I get to desired products
- Make sure reaction follows rules

Automated mechanism generation

Example: $CH_3CH_3 \Rightarrow H_2C=CH_2 + H_2$

- Steps
- Find a feasible initiation step
- Find all feasible reactions of radicals produced in initiation step
- Continue generating reactions until I get to desired products
- Make sure reaction follows rules

Automated mechanism generation

Initiation step: weakest bond breaks in the reactants

102 kcal/mol

89 kcal/mol

Initiation step is

$$CH_3CH_3 + X \rightarrow 2 \cdot CH_3 \cdot + X$$

Possible mechanism for $CH_3CH_3 \Rightarrow H_2C=CH_2 + H_2$

$$CH_{3}CH_{3} + X \rightarrow 2 \cdot CH_{3} + X$$

$$\cdot CH_{3} + CH_{3}CH_{3} \rightarrow CH_{4} + \cdot CH_{2}CH_{3}$$

$$\cdot CH_{2}CH_{3} + X \rightarrow CH_{2}CH_{2} + H \cdot + X$$

$$H \cdot + CH_{3}CH_{3} \rightarrow H_{2} + \cdot CH_{2}CH_{3}$$

$$2 \cdot CH_{3} \cdot + X \rightarrow CH_{3}CH_{3}$$

Does the Mechanism Fit All of the Rules?

$$CH_{3}CH_{3} + X \xrightarrow{1} 2 \cdot CH_{3} + X$$

$$\cdot CH_{3} + CH_{3}CH_{3} \xrightarrow{2} CH_{4} + \cdot CH_{2}CH_{3}$$

$$\cdot CH_{2}CH_{3} + X \xrightarrow{3} CH_{2}CH_{2} + H \cdot + X$$

$$H \cdot + CH_{3}CH_{3} \xrightarrow{4} H_{2} + \cdot CH_{2}CH_{3}$$

$$2 CH_{3} \cdot + X \xrightarrow{5} CH_{3}CH_{3}$$

Procedure:

Diagram the mechanism, estimate the activation barrier for each step and ask whether the mechanism follows the rules

Solution I: Diagram Mechanism CH,CH,

Solution II: Estimate activation barriers AH, (CH,CH,CH,) = 28.4 kcal/mole

$$CH_3 \bullet + CH_3CH_3 \rightarrow CH_4 + \bullet CH_2CH_3$$

First Estimate heat of reaction

$$\Delta H_f (CH_3 CH_3) = -20.0 \text{ kcal/mole}$$

$$\Delta H_f (CH_3 \bullet) = +34.8 \text{kcal/mole}$$

$$\Delta H_f$$
 (CH₄) = -17.9 kcal/mole

$$\Delta H_f$$
 (• CH₂ CH₃) = +28.4 kcal/mole

Therefore

$$\Delta H_r = -17.9 + 28.4 - 34.8 - (-20.0) = -4.3 \text{ kcal/mole}$$

Next Use Blowers - Masel to Estimate Activation Barrier

$$E_A = 8.7 \text{ kcal/mol}$$

Data from

Webbook

NIST

Is that a low enough activation energy?

- All steps must satisfy
 - ◆ Ea < 75 kT for initiation step</p>
 - ◆ Ea < 35 kT for propagation step</p>
- Energy low enough if temperature high enough

Can Calculate feasible process temperatures!

Does Another Reaction Occur?

$$H \bullet + CH_3 CH_3 \stackrel{6}{\rightarrow} CH_4 + CH_3 \bullet$$

 $E_A = 37.48 \text{ Kcal/mole}$

Step does not satisfy criterion at 500K: rate negligible

Satisfies criterion at 700K

What Are Side Reactions?

- Seven generic reaction types
- All steps must satisfy
 - ◆Ea < 70 kT for initiation step</p>
 - ◆Ea < 35 kT for propagation step</p>
- Find other steps that satisfy constraints

Bridge to catalysis

- Rules also work on metal surfaces
- Blowers-Masel works On Metals
 - Assume a possible catalyst (try all metals)
 - Heat of reaction changes because catalyst binds intermediates
 - Calculate temperature where all criterion satisfied
 - Lowest temp is best catalyst need to also check side reactions
- Does not work on acid catalysts
 - need new rate laws

Summary

- Can predict mechanisms
- Can predict process temperatures
- Can use results to predict catalysts