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Chapter 3 Summary
Analysis of rate data

Rate measurements and old topic

General approach
Initiate reaction
measure concentration vs time
fit data to calculate rates

Figure 3.2  Wilhelmy’s [1850] measurements of
the changes in sucrose concentration in grape
juice after acid is added.
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Figure 3.3 Concentration vs time for a simple
reaction.

These types of measurements started in
1820.  Still done today.  (now do them
faster).
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Table 3.1  Some techniques used to measure rates of reaction.
Method Description Time Scale

Batch Methods
Conventional 1)  Mix reactants together in a batch reactor

2)  Measure concentration versus time
10 sec or more

Stopped flow 1) Set of continuous flow systems where
reactants are fed into the reactor, and flow
out again so quickly that there is negligible
reaction

2) Stop the flow so the reactants can react
3) Measure conversion versus time

10-1 sec or more

Temperature jump 1)  Mix reactants at such a low temperature
that the reaction rate is negligible

2)  Use CO2 laser to suddenly heat reaction
3)  Measure concentration vs time

10-6 sec or more

Shock tube 1) Put 10-1 atm of one reactant and 10 atm at
helium on one side of a diaphragm

2) Put 10-3 atm of the other reactant on the
other side of the diaphragm

3) Suddenly break the diaphragm so the gas
flows from the high pressure side to the
low pressure side

Measure the reactant concentration vs time

10-3 to 10-5 sec

Flash photolysis 1)  Put the reactants into a vessel under
conditions where reaction is negligible

2)  Pulse a laser or flash lamp to start reaction
3)  Measure the reactant concentration vs time

10-9 to 10-1 sec

NMR 1) Initiate a change with a magnetic pulse
2) Measure the decay of spins with the NMR

10-2 to 10-9 sec

Flow Methods
Conventional flow
system

1) Continuously feed reactants into a reactor
       - CSTR or plug flow
1) Measure the steady state reaction rate

10-3 sec or more

Molecular beam 1)  Direct beams of reactants toward each
together in a vacuum system

2)  Measure the steady state reaction rate

10-13 to 10-9 sec
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If you have to do an experiment which do
you choose?

• Direct vs indirect methods
• Choose method with appropriate time

scale
 

 -----
 Direct vs indirect methods
 

 recall - rate equation is the rate as a function
of the concentrations
 

• Direct method - any method where you
actually measure the rate as a function of
concentration

• Indirect method - a method where you
measure some other property (i.e.
concentration vs time) and infer a rate
equation.
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 Example of a direct method:
 

 

 

 

 2AsH 2As 3H3 2⇒ +
 
 

 (3.6)

 F e e d

S i l i c o n
W a f e r s

H o ld e r
( b o a t)

3 - z o n e  o v e nP r e s s u r e  G a u g e

D o o r
( L o a d lo c k )

 Figure 3.7  A typical arsine
decomposition reactor.
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 Figure 3.8  A possible
apparatus to examine the
decomposition of arsine
(AsH3) on silicon.
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 Indirect measurement to do the same thing
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 Figure 3.9  Typical
batch data for
reaction(3.7).  Data of
Tamaru[1955].
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 T
able 3.2    A

 C
om

parison of the A
dvantages and D

isadvantages of
D

irect and Indirect M
ethods

 D
irect M

ethod
 Indirect M

ethod
 A

dvantages
• G

et rate equation directly
• Easy to fit data to a rate law
• H

igh confidence on final rate
equation

 D
isadvantages

• M
ust infer rate equation

• H
ard to analyze rate data

• Low
 confidence on final rate

equation
 D

isadvantages
• D

ifficult experim
ent

• N
eed m

any runs
• N

ot suitable for very fast or
very slow

 reactions

 A
dvantages

• Easier experim
ent

• C
an do a few

 runs and get
im

portant inform
ation

• Suitable for all reactions including
very fast or very slow

 ones
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 Other notation
 

 direct method - differential method
 -differential reactor
 indirect method - integral method
 

 Next: start analysis of data from indirect
reactors:
 

 Which is easier to analyze?
• Direct method (rate vs concentration)
• Indirect method (concentration vs time)
 

 Direct is easier to analyze.
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Analysis of data from a differential reactor
 

 

 

 

 

 

 

 

 

 

 

 General method - least squares with rate vs
time data.
 

 Pitfalls
 

• It is not uncommon for more than one
rate equation may fit the measured
kinetics within the experimental
uncertainties, just because data fits,
does not mean rate equation is correct.
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 Figure 3.11  The rate of copper
etching as a function of the
oxygen concentration.  Data of
Steger and Masel [1998].
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• The quality of kinetic data vary with
the equipment used and the method of
temperature measurement and control.
Data taken on one apparatus is often
not directly comparable to data taken
on different apparatus.

• It is not uncommon to observe 10-30%
variations in rate taken in the same
apparatus on different days.  Usually,
these variations can be traced to
variations in the temperature, pressure,
or flow rate in the reactor.

• The procedure used to fit the data can
have a major effect on the values of
the parameters obtained in the data
analysis.

• The quality of the regression
coefficient (r2) does not tell you how
well a model fits your data.
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Example 3.A Fitting data to Monod's Law

Table 3.A.1 shows some data for the growth
rate of paramecium as a function of the
paramecium concentration.  Fit the data to
Monod's Law:

]par[K1
]par[Kkr

2

21
p +
=

(3.A.1)

where [par] is the paramecium
concentration, and k1 and K2 are constants.
Table 3.A.1 The rate of paramecium reproduction as a function of the paramecium concentration.
Data of Meyers, J. Experimental Zoology, 49 (1927) 1
Paramecium
concentration

#/CC

rate,
#/CC-hr

Paramecium
concentration

#/CC

rate,
#/CC-hr

Paramecium
concentration

#/CC

rate,
#/CC-hr

2 10.4 16 36 46 96
3.6 12.8 16.6 46.4 46.2 124.8
4 23.2 19 59.2 47.4 117.6

5.2 17.6 20 62.4 55 112
7.8 46.4 23.8 62.4 57 127.2
8 23.2 26 57.6 61 116
8 46.4 30.4 108.8 61.6 111.2
11 32 31 80 71 124

14.4 34.4 31.2 61.6 74 116
15.6 44.8 31.6 109.6 76.4 116
15.6 63.2 39.2 103.2
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There are two methods that people use to
solve problems like this:
• Rearranging the equations to get a linear

fit and using least squares
• Doing non-linear least squares

I prefer the latter, but I wanted to give a
picture of the former.

There are two versions of the linear plots:
• Lineweaver-Burk Plots
• Eadie-Hofstee Plots

In the Lineweaver-Burk method, one plots
1/rate vs. 1/concentration.  Rearranging
equation (3.A.1) shows:

1 1 1
1 2 1r k K par kp

= +
[ ]

(3.A.2)
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Figure 3.A.1 A Lineweaver-
Burk plot of the data in Table
3.A.1

Figure 3.A.2 The Lineweaver-
Burk fit of the data in Table
3.A.1

Table 3.A.2 The formulas in the spreadsheet for the Lineweaver Burke plot
A B C D E F

01 k_1 =1/D2 =SLOPE(D6:D3
5,C6:C35)

2

02 K_2 =1/C1/D1 =INTERCEPT(D
6:D36,C6:C36)

=SUM(F5:F37)

03 r2 =RSQ(D6:D36,C
6:C36)

04 conc rate 1/conc 1/rate rate calculated from
rate equation

error

05 0 0 =C$1*C$2*$A5/(1+C
$2*$A5)

=ABS(E5-$B5)^$F$1

06 2 10.4 =1/A6 =1/B6 =C$1*C$2*$A6/(1+C
$2*$A6)

=ABS(E6-$B6)^$F$1

07 3.6 12.8 =1/A7 =1/B7 =C$1*C$2*$A7/(1+C
$2*$A7)

=ABS(E7-$B7)^$F$1
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Comparison of equations (3.A.2) and
(3.A.3) shows:

 k1 = 1/.00717=139.4,
k2=1/(0.194*k1)=0.037,

r2=0.930
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Figure 3.A.1 A Lineweaver-
Burk plot of the data in Table
3.A.1

Figure 3.A.2 The Lineweaver-
Burk fit of the data in Table
3.A.1



16

The Eadie-Hofstee plot

Rearranging equation (3.A.1):

( )r K par k K parp 1 2 1 2+ =[ ] [ ]
(3.A.4)

Further rearrangement yields:
r

par
k K K rp

p[ ]
= −1 2 2

(3.A.5)
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Figure 3.A.3 An Eadie-
Hofstee plot of the data in
Table 3.A.1

Figure 3.A.4 The Eadie-
Hofstee fit of the data in Table
3.A.1
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r
par

rp
p[ ]

.= −4 18 0.0156

(3.A.6)

r2=0.34
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Figure 3.A.3 An Eadie-
Hofstee plot of the data in
Table 3.A.1

Figure 3.A.4 The Eadie-
Hofstee fit of the data in Table
3.A.1

Eadie-Hofstee gives much lower r2 but
better fit to data!
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The last way to fit the data is with a non-
linear least squares.

The idea in nonlinear least squares is to use
the solver function of a spreadsheet to
calculate the best values of the coefficients
based on some criterion.   A common
criterion is to minimize the total error,
where the total error is defined by:

Total Error abs r k K par
K parp

Data
= −

+


















∑

1 2

2

2

1
[ ]
[ ]

(3.A.7)

One often uses powers other than 2 to do the
fitting.
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Figure 3.A.5 A nonlinear least
squares fit to the data in Table
3.A.1

Figure 3.A.6 A comparison of
the three fits to the data

Table 3.A.5 A comparison of the various fits to the data in Table 3.A.1
Method k1 K2 Total error R-squared

Lineweaver-Burk 139 0.0370 9643 0.910 (linear plot)
Eadie-Hofstee 267 0.0156 6809 0.344 (linear plot)

non-linear least squares 204 0.0221 4919 0.905 (non-linear)

Table 3.A.7 The values of R-squared calculated using the different methods
Method R-squared from

linear regression
R-squared from
equation (2.B.9)

R-squared from
equation (2.B.10)

Lineweaver-Burk 0.910 0.814 0.552
Eadie-Hofstee 0.344 0.869 0.516
nonlinear least

squares
0.905 0.905 0.558
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Example 3.B -  Tests of Statistical
Significance:  Analysis of Variance

Table 3.B.1  Fits to the data in Example 3.A

Concent
ration

Experimental
Rate

Calculated
rate

Non-linear
least squares

Calculated
rate

Lineweaver-
Burk

Calculated
rate

Eadie-
Hofstee

0
2

3.6
4

5.2
7.8
8
8

0
10.4
12.8
23.2
17.6
46.4
32

34.4

0
8.65

15.06
16.60
21.07
30.05
30.71
30.71

0
9.6

16.38
17.69
22.49
31.21
31.83
31.83

0
8.10

14.24
15.73
20.10
29.06
29.72
29.72

Continued
Variance 164 230 321

Which model fits best?  Is the difference
statistically significant?
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First let us see which model fits best.
We do that by calculating the variance of the
data and seeing which model has the lowest
variance.  The variance Vi is defined by

( ) ( )( )
( ) ( )V

erimental rate calculated rate

number of samples number of independent parameters in eli
po s=

−

−

∑ exp

mod
int

2

(3.B.1)

substituting in equation (3.A.7) yields

V total  error  from  Equ.  3.A.7
number of samples  number of parametersi =

−

(3.B.2)

It is important to calculate the variance as
shown in (3.B.1) and not for example the
variance of one over the rate.  In order to use
the statistical tests below, one will have to
assume that the error in the data follows
what statisticians call a “χ2 distribution.”  If
you calculate the errors in the rate, the errors
usually do follow a “χ2 distribution”.
I used Excel to calculate
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1-FDIST (1.96, 30, 30) = 0.97

so I am 97% sure that the non-linear least
squares fit better than the Lineweaver-Burk
plot.  Excel also has a FINV function that
calculates Finverse via
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Analysis of batch reactor data
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Two methods to analyze data
Essen's method
Van't Hoffs Method

Essen's method:

 Essen's Method
 

 

(C
  /

C
  )

 - 
1

0 A
A

ln
(C

  /
C

  )
0 A

A

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Time

H
al

f O
rd

er

Fi
rs

t O
rd

er
Se

co
nd

 O
rd

er
Th

ird
 O

rde
r

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Time

Ha
lf 

O
rd

er

Fi
rs

t O
rd

er

Sec
on

d O
rde

r

Third Order

 Figure 3.15  A replot of the data from Figure 3.14 as a function of ln ( )C / CA A
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Never works in practice
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 Figure 3.16  An Essen plot of the data in Table
3.5.
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Van't hoff's method

Calculate k  - is it constant

k  =  1 Ln
C
C

1
A
0

Aτ






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






(3.51)
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Figure 3.18  Van’t Hoff Plot of the data from Table 3.5 and Table 3.6
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Another interesting thing in the chapter

Table 3.D.3 Module used to calculate k1, k2,
k3, where k1, k2 and k3 are defined by equation
(3.D.2)

Public Function kone(ca0, ca, tau) As Variant
kone = Log(ca0 / ca) / tau
End Function

Public Function ktwo(ca0, ca, tau) As Variant
ktwo = ((1# / ca) - (1# / ca0)) / tau
End Function

Public Function kthree(ca0, ca, tau) As Variant
kthree = ((1# / ca) ^ 2 - (1# / ca0) ^ 2) / tau
End Function
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Table.1  Summary of key concepts.
Two methods to measure rates:  Direct and Indirect

Direct Indirect
High Accuracy
Need many runs

Lower Accuracy
Fewer experiments

Methods to analyze direct data
• Least squares
• Non-linear least squares

Non-linear least squares easier and more accurate
Methods to analyze indirect data

Essen
- construct plots of ( ) ( )Ln C C C CA

O
A A

O
A

n
/ , / − 1

- see if linear
Van’t Hoff

- calc k1, k2, k3
- see if constant

Van’t Hoff - easier and more accurate
Key equations for indirect data

( )N
dX

V rA
0

0

X
A

A

A

−
=∫ τ (3.26)

C
dX

rA
0

0

X
A

A

A

−
=∫ τ (3.28)

A
F
A
0

C
C A

A
 

d C
- r

∫  =  τ (3.31)

1
k

Ln
C
C1

A
0

A









 = τ (3.39)
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1

n 1 k C

C
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1
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0 n 1
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0
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