SUMMARY: CHAPTER 2 Introductory Concepts

Stoichiometry

- Invented by Lavosier
- Molecules react in fixed proportions

$$\alpha_1 A + \alpha_2 B \Rightarrow \alpha_3 C + \alpha_4 D$$

Stoichiometric Coefficent, β_n

 Number of molecules produced when reaction goes once

Example

$$2CO + O_2 \Rightarrow 2CO_2$$

$$CO + \frac{1}{2}O_2 \Rightarrow CO_2$$

New Topic: Reaction rate:

Original definition due to Priestley - moles/hr produced by a reactor.

Van't Hoff showed that as you make a reactor bigger, you produce more product. The production rate is proportional to the volume. i.e.

total production(moles/hr)=constant×Volume.

Van't Hoff defined

$$r_{A} = \frac{\text{production rate (Moles/hr)}}{\text{reactor volume (liter)}}$$
 (1)

- r_A called the Rate of production of A
- r_A has dimensions moles/lit-hr
- r_A is positive for a product, negative for a reactant

Equ 1 applies to homogeneous reactions Different equation applies to heterogeneous reactions

Some reactions scale as surface area instead $R_A = \frac{\text{production rate (Moles/hr)}}{\text{surface area (cm}^2)}$

- R_A is also called the Rate of production of A
- R_A has dimensions moles/cm²-hr
- R_A is positive for a product, negative for a reactant

It is also useful to define r_i the rate of a reaction i by

$$r_{i} = \frac{1}{\beta_{A}} r_{A}$$

Table 2.1 Summary of the key definitions.		
Stoichiometric coefficient	The amount of product produced when the reaction goes once. The stoichiometric is positive for a product and negative for a reactant.	
r _{A1}	The net rate of production of a species A. r_A is positive for a product and negative for a reactant.	
Rate of reaction 1	$r_1 = \frac{1}{\beta_A} r_A$ for any species A participating in reaction 1.	
Homogeneous reaction	A reaction which happens throughout the reacting phase.	
Heterogeneous reaction	A reaction which happens near the boundary of a reacting phase.	

New Topic: Variations in rate with conditions

Rates vary with:

- Concentrations of all species (reactants, products, inerts) (factors of 10-100)
- Temperature (factors of 100 or more)
- The presence of solvents (factors of 10^{12} or more)
- The presence of catalysts (factors of 10^{12} or more)

Next Topic: Rate equations

definition:

• Rate as a function of the concentration of all of the speices in the reactor.

Typical rate laws for simple A⇒C reactions:

$$r_A$$
= -k(C_A) First order
 r_A = -k(C_A)² Second order
 r_A = -k(C_A)³ Third order
 r_A = -k(C_A)ⁿ nth order

n is the order k is the rate constant

For reactions
$$A + B \Rightarrow C$$

 $r_A = -k(C_A)^n(C_B)^m$
nth order in A, mth order in B
overall (m+n)th order

$$r_A = -k(C_A)(C_B)^2$$

first order in A, second order in B, third order overall.

Table 2.4 The key definitions from Section 2.3.		
Rate equation	The rate as a function of the	
	concentration of the reactants.	
Order	The exponent n is the expression.	
First order	A reaction whose rate is	
reaction	preparation to the reactant	
	concentration to the first power	
	(i.e. $n = 1$ in eqn. (2.11)).	
Second order	A reaction whose rate is	
reaction	proportional to the reactant	
	concentration to the second order.	
Overall order of	The sum of the orders for each of	
reaction	the reactants.	

notation

 k_1 , k_2 rate constants K_1 , K_2 equilibrium constants C_A =[A] concentration of species A

Discussion Problems:

Table2.2 Sample rate data to illustrate equation (2.11).			
C _A rate C _A rate			
Moles/Lit	Moles/Lit/	Moles/Lit	Moles/Lit/
	Min		hrs
0.25	0.13	1	0.5
0.5	0.25	2	1.0

1. what is the order of the reaction?

Table2.3 Sample data to illustrate equation (2.12).					
C_{A}	C_{B}	rate	C_{A}	C_{B}	rate
moles/liter	moles/liter	moles/liter-	moles/lit	moles/liter	moles/liter-
		min	er		min
1	0.25	0.031	0.25	1	0.13
1	0.5	0.13	0.5	1	0.25
1	1	.5	1	1	0.5
1	2	2.0	2	1	1.0

2. what is the order of the reaction?

More complex rate equations

Very few real reactions have simple reaction orders over a wide range of conditions:

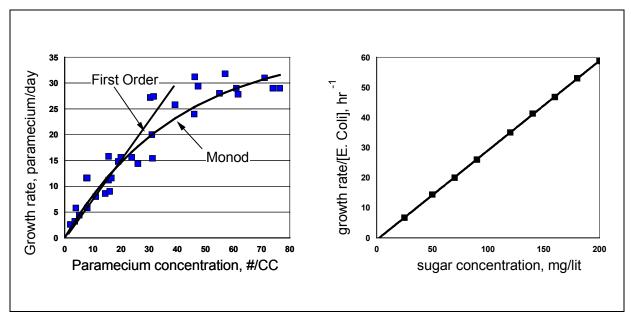
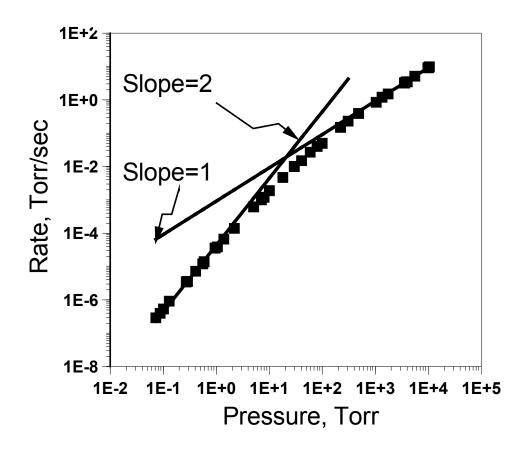
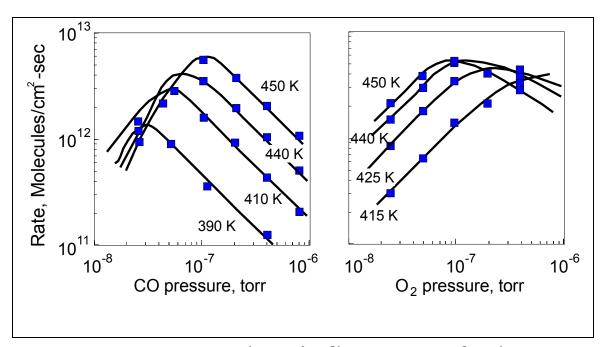




Figure 2.1 The reproduction rate of paramecium as a function of the paramecium concentration and the rate of E. Coli growth in sugar solutions as a function of the sugar concentration. Paramecium data of Meyers, H. Experim. Zoology 49 (1927) 1. E. Coli data from Monod[1942].

$$r_{\text{ecoli}} = \frac{k_1 K_2 [\text{E..Coli}] [\text{Sugar}]}{(1 + K_2 [\text{Sugar}])}$$
(2.18)

Figure 2.3 The rate of CH₃NC isomerization to CH₃CN as a function of the CH₃NC pressure.

Figure 2.15 The influence of the CO pressure on the rate of CO oxidation on Rh(111). Data of Schwartz, Schmidt, and Fisher.

$$r_{CO} = \frac{k_1 P_{CO} P_{O_2}}{(1 + K_2 P_{CO})^2}$$

Called a **Langmuir-Hinshelwood** rate law. also called **Monod** rate law

Arises because reaction occurs on catalyst surface:

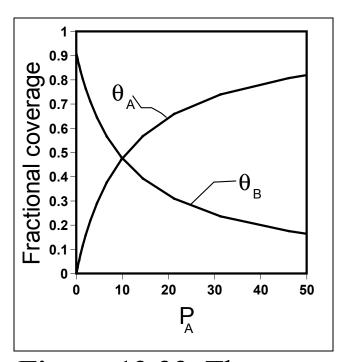
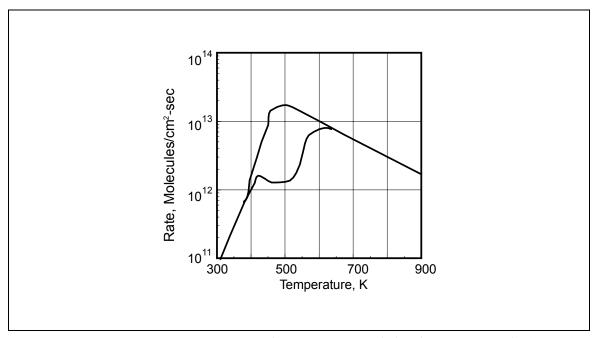



Figure 12.33 The changes in θ_A and θ_B as a function of P_A with $K_BP_B=10$.

No industrially important reaction is first or second order over a wide range of conditions

Not all reactions have rate equations:

Figure 2.22 Rate Data for CO Oxidation on Rh(100) catalyst. Data of Schwartz et al.[1986].

Summary

Table 2.1 Summary of the key definitions.		
Stoichiometric		
coefficient	The amount of product	
	produced when the reaction	
	goes once. The stoichiometric	
	is positive for a product and	
	negative for a reactant.	
r_{A1}	The net rate of production of a	
	species A. r _A is positive for a	
	product and negative for a	
	reactant.	
Rate of reaction	$r_1 = \frac{1}{\beta_L} r_A$ for any species A	
1	participating in reaction1.	
r_1	participating in reaction.	
Homogeneous	A reaction which happens	
reaction	throughout the reacting phase.	
Heterogeneous	A reaction which happens near	
reaction	the boundary of a reacting	
	phase.	

Table 2.4 The key definitions from Section 2.3.		
Rate equation	The rate as a function of the	
	concentration of the reactants.	
Order	The exponent n is the expression.	
First order	A reaction whose rate is	
reaction	preparation to the reactant	
	concentration to the first power	
	(i.e. $n = 1$ in eqn. (2.11)).	
Second order	A reaction whose rate is	
reaction	proportional to the reactant	
	concentration to the second order.	
Overall order of	The sum of the orders for each of	
reaction	the reactants.	

- Real reactions rarely follow these simple rate laws.
- Some reactions do not have a rate law

Next Topic: Temperature dependence of the rate equation:

Harcourt Equation (assumes energy transfer dominates):

$$k=k^T T^n$$

k=rate constant

k^T=preexponential

n = constant between 1 and 4.

Arrhenius' model (assumes activation barrier to reaction controls rate)

 $k=k_o exp(-E_a/k_BT)$ $k_o=preexponential$ $E_a = activation barrier, kj/molecule$ $k = boltzman's constant, 1.381x10^{-23} j/K$ T= temp (kelvin).

Real data somewhere in between

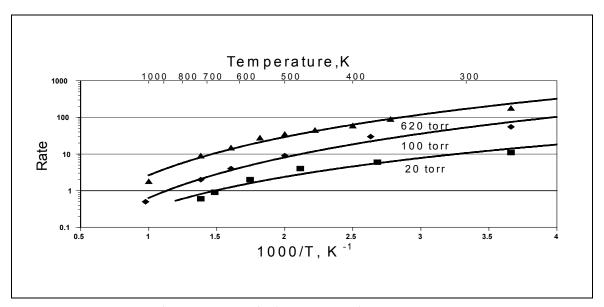
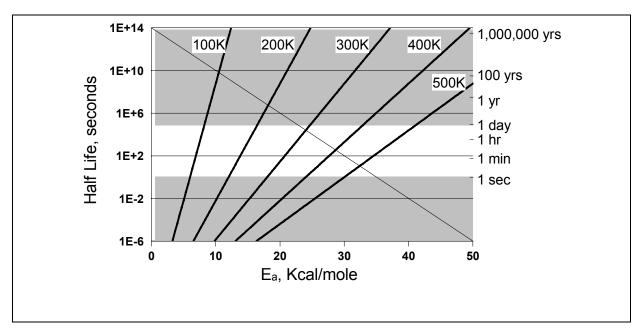



Figure 2.6 The rate of the reaction $CH + N_2 \rightarrow HCN + N$ as a function of the temperature. Data of Becker, Gelger and Wresen[1996].

$$k_1 = k_m^0 (T)^m e^{-E_A/k_B T}$$
(2.28)

Arrhenius' effect much larger than Harcourt and Essen.

Key implications of Arrhenius' Law

Figure 2.8 A plot of $\tau_{\frac{1}{2}}$ vs. E_A at 100, 200, 300, 400, and 500 K.

$$E_{A} = (1/15 \text{ kcal/mole} - ^{\circ} \text{ K})T_{\text{minute}}$$
(2.31)

$$E_A = (0.06 \text{ kcal/mole} - \text{ K})T_{\text{sec}}$$
(2.32)

$$T_{\text{minute}} = \frac{15 \text{ K} - \text{mole}}{\text{kcal}} E_{A}$$
(2.33)

Changes in rate with temp

$$r_2 = r_1 \exp\left(\frac{E_A}{k_B} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right)$$

(2.36)

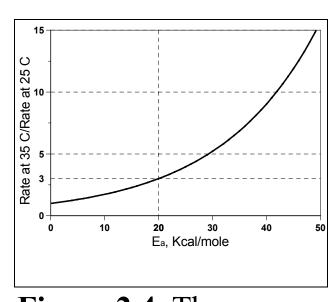


Figure 2.4 The fractional change in the rate of a nth order reaction when the temperature is changed from 25 to 35 °C.

Table 2.6 The variation in rate of a series of reactions with a 10° K change in temperature. Data from Van't Hoff[1884].

Reaction	Temp. range C	Rate change with a 10 K temperature change
$CH_3COOCH_2CH_3 + H_2O \stackrel{H^+}{\Rightarrow}$ $CH_3COOH + CH_3CH_2OH$	3.6-30.4	2.03
$CH_3CH_2Cl + NaOH \Rightarrow$ $H_2C = CH_2 + NaCl + H_2O$	23.5-43.6	2.87
$CH_{3}CH_{2}CH_{2}Cl + NaOH \Rightarrow$ $CH_{3}CH = CH_{2} + NaCl$	24.5-43.6	2.68
$HPO_3 + H_2O \Rightarrow H_3PO_4$	0-61	3.0

Table 2.7 The variation in the respiration rate of plants with a 10° change in temperature. Data of Clausen[1890].		
Wheat	2.47	
Lilac	2.48	
Lupine	2.46	

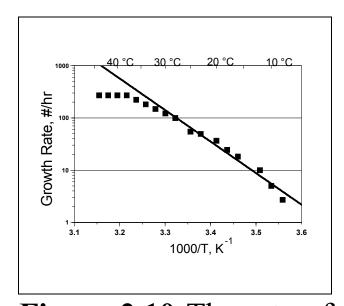
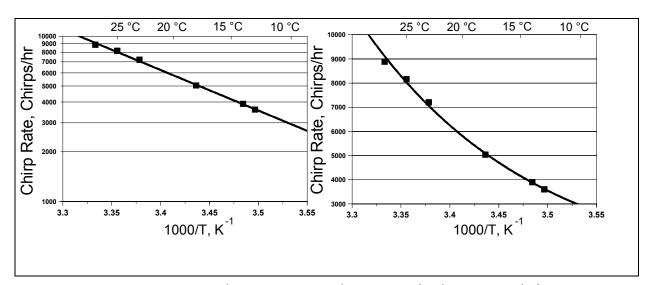
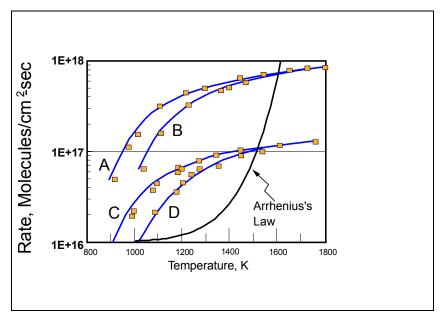




Figure 2.10 The rate of E. Coli growth as a function of temperature adapted from Bailey and Ollis [1977].

Figure 2.11 The rate that crickets chirp as a function of temperature. Data for field crickets (Gryllys pennsylvanicus)

Again: not all reactions work:

Figure 2.17 The variation in the rate of the reaction in Figure 2.16 with temperature. Data of Loffler and Schmidt[1976]. A) $_{P_{NH_3}} = 0.3$, $_{P_{H_2}} = 0.15$, B) $_{P_{NH_3}} = 0.3$, $_{P_{H_2}} = 0.44$, C) $_{P_{NH_3}} = 0.05$, $_{P_{H_2}} = 0.15$, D) $_{P_{NH_3}} = 0.05$, $_{P_{H_2}} = 0.45$

Discussion Problem

Your taste buds work by a chemical reaction where sugar molecules bind to nerve endings in your mouth.

- a) What is the activation barrier for the process?
- b) How much will the sweetness of bread change if you heat the bread enough that the temperature of your tongue rises by 5 C?