
C
ooperating with others and ex-
ploiting them for personal gain
are the two main ways members

of a society can interact. To gain further
insight into the social dynamics of com-
peting individuals, researchers have for-
malized the choices within a mathe-
matical framework known as game the-
ory. They have devised various strategies
about when to cooperate and have pit-
ted those schemes against one another
to determine the most successful. Such
analyses indicate that cooperation of-
ten emerges naturally in simple socie-
ties; moreover, members can often fend
oÝ cutthroat exploiters from the outside
[see ÒThe Arithmetics of Mutual Help,Ó
by Martin A. Nowak, Robert M. May and
Karl Sigmund, page 76].

Many of these notions derive from the
classic game called the PrisonerÕs Dilem-
ma. A player can cooperate with oppo-
nents or try to cheat them (called de-
fecting). The opponent, of course, faces
the same choice. With this game and
some programming, a reader can ex-
plore the concept of mutual help, with-
out going to prison.

I describe a spatial setup, where play-
ers inhabit the squares of an oversize
chessboard and spend their time repeat-
edly playing rounds of the PrisonerÕs
Dilemma against their neighbors. To
simplify the programming, I ignored
corners and edges of the chessboard
and instead considered the squares to
wrap back around on themselves. All
the games in each round are played at
the same time.

Within each round, every player takes
on, one at a time, its eight nearest neigh-
bors and itself (this self-interaction is in-
cluded to make the computer program
simpler). The players earn points de-
pending on the strategy they and their
opponents play. Each one gets a point if
both cooperate; none if both defect. The
player receives nothing if it cooperates

and the opponent defects. The highest
score, which I have labeled b, is for
cheating (a player defects as the oppo-
nent cooperates). The value of b will ul-
timately control the outcome of the
game. Just pick a value greater than 1; I
used 1.85. A table known as a payoÝ
matrix summarizes the scoring; it lists
the rewards for the four diÝerent pos-
sible combinations of strategies [see il-

lustration on page 112].
The nine payoÝs resulting from the

play are added up to give each playerÕs
score in that round. Each player then
looks to see if any of its eight neighbors
earned a score higher than it did. If so,
the player will adopt the more success-
ful strategy for the next round. For in-
stance, if the opponent with the highest
score in the playerÕs neighborhood co-
operated, the player will cooperate in
the next round.

If you play the game once, against just
one other player, your best choice is to
defect. Betrayal maximizes your score
regardless of what your opponent does.
In the spatial game, however, the out-
come is harder to predict because the
strategy each player adopts in the next
round depends on the scores of its eight

neighbors as well as its own. In turn,
each neighborÕs score depends on its
nearest neighbors, which means that the
conÞguration of the nearest 24 players
aÝects the outcome at each square of
the chessboard.

I wrote the program in a dialect of
the BASIC language called QBASIC, which
comes with recent versions of MS-DOS
for PC-compatible computers. It will
work with MicrosoftÕs QuickBASIC on
the PC or the Macintosh and can easily
be converted to run with other comput-
er languages. The code is listed on page
114, and the explanation of its function
appears in the box on page 112.

Once the program is working, you can
adjust several parameters to inßuence
the outcomes. As I mentioned, the game
turns largely on the value of b, the ad-
vantage for hoodwinking. As b increas-
es, defectors do better when they come
across cooperators. Surrounding defec-
tors always exploit lone cooperators,
which always do worse. But groups of
cooperators can help one another to
ßourish. One example is a square of
four cooperators in a sea of defectors.
Each cooperator will score four points
(one from playing with each of its three

110 SCIENTIFIC AMERICAN June 1995

Computing Bouts of the PrisonerÕs Dilemma

THE AMATEUR SCIENTIST conducted by Alun L. Lloyd

ALUN L. LLOYD is a graduate student
in the department of zoology at the Uni-
versity of Oxford. His interests include
mathematical biology and nonlinear dy-
namics (that is, chaos). His research is
supported by the Wellcome Trust.

A
LU

N
 L

. L
LO

Y
D

DEFECTORS (red and yellow)gradually invade a world of cooperators (blue).The
game began with one defector at the center, with the score for cheating, b, set to 1.85.

Copyright 1995 Scientific American, Inc.Copyright 1995 Scientific American, Inc.

neighbors and one from playing against
itself), but the defectors neighboring
the cooperators will score at most 2b

because they are next to, at most, two
cooperators. If b is not too large, coop-
erators will score higher than defectors.
Lone defectors will do well because they
are surrounded by cooperators.

The outcome of the competition be-
tween such diÝerent circumstances is
that clusters of defectors and coopera-
tors are seen to grow and shrink, to
collide and tear one another apart. Of-
ten a dynamic equilibrium results.

From a distance, an overall pattern is
discernible, but individual squares are
constantly changing.

Because each squareÕs payoÝ is some
multiple of b plus some multiple of 1,
there is only a certain set of b values
for which the behavior changes. The
Þrst experiment you could carry out is
to run the program for diÝerent b val-
ues between 1 and 3. Try, for instance,
1.15, 1.35, 1.55, 1.77, 1.9 and 2.01. For
the smaller b values, the defectors tend
to be isolated, but for larger ones they
form connected structures.

Once you have seen some of the dif-
ferent behaviors, you may want to de-
scribe them in more quantitative terms.
Count the numbers of cooperators and
defectors (identiÞed by a total of four
colors, depending on the strategies
played over two rounds) in each round.
How do these quantities vary as the con-
test continues? For some b values, these
frequencies get progressively closer to
some Þxed value; for others, they vary
periodically (for instance, taking one of
two values, depending on whether the
round is even or odd) or even in an un-

112 SCIENTIFIC AMERICAN June 1995

Getting the most out of the Prisoner’s Dilemma games
means understanding the construction of the pro-

gram. The program keeps track of the players and their
scores by organizing them into arrays.

Each square on the chessboard is labeled by its row and
column number, written as a pair (i, j). I chose the number
of squares, N, on the chessboard to be 60. The strategies
are labeled by numbers: 1 for cooperation and 2 for defec-
tion. The schemes adopted by each player can then be re-
corded as an array of numbers, s(i, j). The payoffs are re-
corded in another array, pm(x,y)—which stands for payoff
matrix—where x is the strategy a player adopts and y the
strategy the opponent plays. Hence, a player adopting a
strategy of defecting (2) against an opponent cooperating
(1) will receive pm(2,1), which equals b, the score for
cheating.

Before play begins, the pro-
gram decides which strategy
each player will use in the first
round. For every square, the
computer picks a number at
random between 0 and 1. If it
is less than a certain value—
say, 0.1—then the program
places a defector on that
square; otherwise, a coopera-
tor goes there. The cutoff
number roughly indicates the
proportion of players who will
defect in the first round.

The program goes through
every square (i, j) on the
board, calculating each play-
er’s payoff and recording it
as payoff(i, j). The payoff is
worked out by adding the
scores from the games with
the nine players, whose positions relative to the player on
(i, j) are given by (i + k, j + l), where k and l take the values
–1, 0 or 1.

Notice in the program there is a slight complication be-
cause the chessboard wraps around on itself. If j equals 1,
we are looking at the first column; its neighbors to the
“left” actually lie in the last column. Similar troubles plague
the last column and the first and last rows. To solve the
problem, I included an array, bc (m)—for boundary condi-
tions—which redirects the computer in these cases.

Now that we know the position of a player (i, j) and each
neighbor (bc (i + k),bc (j + l)), the array s (i, j) indicates the

strategies each will play. The payoff from this single game
can be calculated by looking in the array containing the
payoff matrix: pm (s (i, j), s (bc (i + k),bc (j + l))). Nine such
payoffs are summed before moving to the next square on
the board.

Once the payoff for every square has been calculated,
the program finds the most successful strategy in each
neighborhood. Then it updates the array of strategies ac-
cordingly, storing these new strategies in the array sn(i, j).
The program goes through every square, recording its
payoff in the variable hp, for highest payoff, and its strate-
gy in sn(i, j). The program then looks at the neighboring
squares in turn. If one of the neighbor’s payoff is greater
than hp, hp is set equal to that payoff, and the neighbor’s
strategy is recorded in sn(i, j). Once all the neighbors have

been examined, the variable
hp contains the highest value
of the payoff in the neighbor-
hood, and sn(i, j) has the
strategy used by that player.

After all the new strategies,
sn(i, j), have been decided,
they are copied into the array
s(i, j), and the next round be-
gins. The progress of the
game is followed by coloring
a square grid of points on the
screen. The coloring depends
on the strategy each player
adopts in the current and pre-
vious rounds. So there are
four colors: blue (is cooperat-
ing, did cooperate), red (is de-
fecting, did defect), green (is
cooperating, did defect) and
yellow (is defecting, did coop-
erate). Using this scheme, we

can see not only which players are cooperators (blue and
green) or defectors (red and yellow) but also which play-
ers’ strategies are changing (green and yellow) and which
are not changing (red and blue). In the program, the array
c(x,y) tells the computer which colors represent the previ-
ous and current strategies (x and y, respectively).

If the program runs too slowly, reduce the size of the
board. Doubling the number of squares means that the
program will take approximately four times as long to play
each round. If you do wish to increase the board size, you
may have to increase the sizes of the arrays s, sn and bc
accordingly.

BASIC Ideas of Cooperating and Defecting

The payoff matrix

OPPONENT’S STRATEGY

COOPERATE

C
O

O
P

E
R

A
T

E

DEFECT

D
E

F
E

C
T

P
LA

Y
E

R
’S

 S
TR

A
TE

G
Y

b

1 0

0

Copyright 1995 Scientific American, Inc.

114 SCIENTIFIC AMERICAN June 1995

DEFINT C, I-N, S
DEFSNG B, H, P
DIM s(120, 120), sn(120, 120)
DIM bc(121), c(2, 2)
DIM payoff(120, 120)

LET b = 1.85
LET N = 60
LET p = 0.1
LET pm(1, 1) = 1
LET pm(1, 2) = 0
LET pm(2, 1) = b
LET pm(2, 2) = 0

LET c(1, 1) = 1
LET c(2, 2) = 4
LET c(1, 2) = 2
LET c(2, 1) = 14

RANDOMIZE TIMER
FOR i = 1 TO N
FOR j = 1 TO N
LET s(i, j) = 1
IF (RND < p) THEN LET s(i, j) = 2

NEXT j, i

FOR i = 1 TO N
LET bc(i) = i

NEXT i
LET bc(0) = N
LET bc(N + 1) = 1

SCREEN 12

FOR M = 1 TO 1000

FOR i = 1 TO N
FOR j = 1 TO N

LET pa = 0
FOR k = -1 TO 1
FOR l = -1 TO 1

NEXT l, k
LET payoff(i, j) = pa

NEXT j, i

FOR i = 1 TO N
FOR j = 1 TO N

LET hp = payoff(i, j)
LET sn(i, j) = s(i, j)
FOR k = -1 TO 1
FOR l = -1 TO 1

END IF
NEXT l, k

NEXT j, i

FOR i = 1 TO N
FOR j = 1 TO N
COLOR (c(sn(i, j), s(i, j)))
PSET (i, j)
LET s(i, j) = sn(i, j)

NEXT j, i
NEXT M

END

define variables, array sizes

advantage for cheating
size of board
proportion of defectors
set up payoff matrix

set up colors
= 409 on Mac
= 205 on Mac
= 341 on Mac
= 69 on Mac

initialize board

set up boundary conditions
no problem if i between 1 and N

redirect neighbors of edges

not needed on Mac

begin playing game

calculate payoffs for each player

find largest payoff in each
neighborhood and calculate
new strategies

display strategies

ForeColor on Mac

LET pa = pa + pm(s(i, j), s(bc(i + k), bc(j + l)))

IF payoff(bc(i + k), bc(j + l)) > hp THEN
LET hp = payoff(bc(i + k), bc(j + l))
LET sn(i, j) = s(bc(i + k), bc(j + l))

The Program for the PrisonerÕs Dilemma

CORRESPONDENCE

Reprints are available; to order, write
Reprint Department, ScientiÞc Ameri-
can, 415 Madison Avenue, New York,
NY 10017-1111, or fax inquiries to
(212) 355-0408.

Back issues: $8.95 each ($9.95 outside
U.S.) prepaid. Most numbers available.
Credit card (Mastercard/ Visa) orders
for two or more issues accepted. To
order, fax (212) 355-0408.

Index of articles since 1948 available
in electronic format. Write SciDex  ,
ScientiÞc American, 415 Madison Ave-
nue, New York, NY 10017-1111, fax
(212) 980-8175 or call (800) 777-0444.

ScientiÞc American-branded products
available. For free catalogue, write Sci-
entiÞc American Selections, P.O. Box
11314, Des Moines, IA 50340-1314, or
call (800) 777-0444.

Photocopying rights are hereby grant-
ed by ScientiÞc American, Inc., to li-
braries and others registered with the
Copyright Clearance Center (CCC) to
photocopy articles in this issue of Sci-

entiÞc American for the fee of $3.00
per copy of each article plus $0.50 per
page. Such clearance does not extend
to the photocopying of articles for pro-
motion or other commercial purposes.
Correspondence and payment should
be addressed to Copyright Clearance
Center, Inc., 222 Rosewood Drive, Dan-
vers, MA 01923. Specify CCC Ref-
erence Number ISSN 0036-8733/95.
$3.00 + 0.50.

Editorial correspondence should be
addressed to The Editors, ScientiÞc
American, 415 Madison Avenue, New
York , NY 10017-1111. Manuscripts are
submitted at the authorsÕ risk and will
not be returned unless accompanied
by postage.

Advertising correspondence should
be addressed to Advertising Manager,
ScientiÞc American, 415 Madison Ave-
nue, New York, NY 10017-1111, or fax
(212) 754-1138.

Subscription correspondence should
be addressed to Subscription Manager,
ScientiÞc American, P.O. Box 3187, Har-
lan, IA 51537. The date of the last issue
of your subscription appears on each
monthÕs mailing label . For change of
address notify us at least four weeks in
advance. Please send your old address
(mailing label, if possible) and your new
address. E-mail : SCAinquiry@aol.com.

Copyright 1995 Scientific American, Inc.Copyright 1995 Scientific American, Inc.

predictable fashion. Calculate the frac-
tion of players that change their strate-
gies in each round. If it equals 0, you
have reached a static equilibrium.
Graphically, the situation shows up as
all squares being two colors. (Such a
pattern occurs when b is set to 2.01.)

Is the initial proportion of defectors
to cooperators important for these re-
sults? Try running the program several
times with diÝerent ratios. The cluster-
ing of defectors and cooperators is also
crucial. If the number of cooperators is
small, on some occasions they may be
clustered and can ßourish. On others,
they may be isolated and are doomed.

This program can generate some pret-
ty patterns if the initial conÞguration is
symmetrical. It is easy to modify the
code so that every square at Þrst is a
cooperator. Remove the line in the pro-
gram that decides whether a square
should start oÝ as a defector. Now set
just one square, near the center, to be a
defector. (Insert the line s (30,30) = 2,
for instance, just after the loop that
now sets all squares to be cooperators.)
Choose a b value between 1.8 and 2
and start the program. You should see
that the single defector can invade the
world of cooperators [see illustration

on page 110].
Another easy modiÞcation is to play

the game only against the eight neigh-
bors. To do this, do not add on the pay-
oÝ when the square plays against itself
(when k = 0 and l = 0 in the program).
Similar behaviors will be seen but with
slightly diÝerent b values.

Or try diÝerent boundary condi-
tionsÑfor instance, unwrap the chess-
board and let the edge players compete
against their Þve neighbors and the cor-
ner players their three. This scenario
can be messier to program, as edge and
corner squares must be treated diÝer-
ently. Another alternative would be to
insist that all corner and edge squares
always cooperate or always defect. An
interesting change would be to play the
game against only the four nearest
neighbors (up, down, left and right). For
those of you who like a challenge, try
setting up the game on a honeycomb-
pattern board, so that each square has
six neighbors.

Further explorations could include
altering more than one entry in the pay-
oÝ matrix. Small changes, such as set-
ting the entry at the bottom right in the
payoÝ matrix (both player and oppo-
nent defecting) to a tiny positive value
such as 0.01, do not alter overall behav-
ior very much. More radical changes will
have a noticeable eÝect. The number of
possible manipulations of the program
is almost limitless, as will be the pat-
terns produced.

SCIENTIFIC AMERICAN June 1995 115Copyright 1995 Scientific American, Inc.

116 SCIENTIFIC AMERICAN Month 1995 Copyright 1995 Scientific American, Inc.Copyright 1995 Scientific American, Inc.

