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V. Uncertainty Sensitivity Index Method 
 
 
 
 
PROBLEM V.1: Developing a Computer Program  

This example presents a sales model of a computer program which is based on two 
variables, technological complexity and market price.  It is assumed that the 
product is affected by two choices: i) the program’s level of complexity, and ii) its 
market price, which is an exogenous parameter of the company’s simple profit 
model.   
 
DESCRIPTION 

The producer’s dilemma is further described as follows. As the program to be sold 
becomes more complex, it becomes more powerful and more and more non-
professional consumers want to purchase it.  However, after a certain point (such as 
the global maximum in Figure V.1.1), the program can become so complex that 
sales to the general public will drop drastically.  Past this point, however, the 
program becomes complex/powerful enough for academic professionals to use.  
Therefore, with more technological complexity, sales begin to rise again.  
Nevertheless, the new local maximum (at high levels of complexity) is not as high 
as the global maximum because there are fewer academic professionals than there 
are general consumers. 

 
A ( x )  

x 1
* x 2

*

x c

 
Figure V.1.1. Sensitivity band, adapted from the companion textbook [Haimes 

2009] 
 
Note that due to manufacturing constraints, the company can make only one 
version, with technological complexity (x) as the decision variable.  Also, the 
objective of maximizing sales can be alternatively represented by minimizing lost 
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sales (defined here as the objective function f1(x, α), where α is the market price 
parameter). 
 
METHODOLOGY 

Use the Uncertainty Sensitivity Index Method (USIM) to solve this problem. 
 
 
The mathematical formulation of the objective function is as follows:   
 

f1(x, α) = lost sales = 22 5.1)2(25.24 αα +−− xx          (V.1.1) 
where: 

x = technological complexity 
α = market price 

 
We look at the problem from two angles: 1) the “business-as-usual” case (minimize 
objective function to get x*) and 2) the most conservative case (minimize sensitivity 
function to get x̂ ). 
 
SOLUTION 

To determine x*, we have to take the derivative function with respect to x, and let 
20$ˆ == αα : 

 
Based on market prices, and the company’s long history in this industry, they have 
set the nominal value α as equal to $20. 
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Now we need to determine x̂ to derive a sensitivity function from (1): 
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ααα ˆ27ˆ5.1325.20ˆ925.200625.5 22 +−−++= xxx          (V.1.5) 
54027025.20360025.200625.5 2 +−−++= xxx          (V.1.6) 

25.416025.2900625.5 2 +−= xx            (V.1.7) 
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Taking the derivative gives us: 
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67.28ˆ =∴ x  

 
Now we want to minimize the two objectives together.  To do that, we will use the 
ε  -constraint form.   
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Thus, we have: 
 

[ ]690454)ˆ,(min 2
1 +−= xxxf α          (V.1.10) 

 
Subject to: 
 

2
2 25.416025.2900625.5 ε≤+− xx         (V.1.11) 

 
Thus, we can formulate the Lagrangian equation: 
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(V.1.12) 
 
The Kuhn-Tucker necessary conditions yield:  
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Using the partial Lagrangian function with respect to x from (V.1.13), we have: 
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Table V.1.1 displays the results. 

 
Table V.1.1. Non-inferior Solutions and Tradeoff Values  

 
 
 
 
 
 
 
 
 
To dramatize the tradeoffs between the sensitivity objective function and the 
optimality objective function, the latter is evaluated at x* and at x̂  as a function of 
α. 
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Given the nominal value of 20ˆ =α : 
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Furthermore, we can analyze the changes that take place in f1(x*, α) and f1( x̂ , α) 
when the nominal value, α̂ , is perturbed by ∆α = 5.  The corresponding variations 
are given below: 
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719.221)5ˆ*,()ˆ*,( 11 =−− αα xfxf         (V.1.24) 

 
Let )ˆ75.0*,( αη x  denote the percentage change in f1(x*, α^) with a perturbation of 
25% in α̂ .  Then: 

%35.39)ˆ75.0*,( =αη x  

x )ˆ,(1 αxf  )ˆ,(2 αxf  12λ  
5.625 563.44 2687.77 0.0000 
10.00 640.00 1764.00 0.1852 
15.00 915.00 945.56 0.5420 
20.00 1390.00 380.25 1.3105 
25.00 2065.00 68.06 4.1751 
28.67 2687.11 0.00 ∞ 
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Similarly, 
 

1111.2687600)67.28(45)67.28(4)ˆ,ˆ( 2
1 =+−=αxf        (V.1.25) 

6111.2724405)3/43(75.33)3/43(4)5ˆ,ˆ( 2
1 =+−=−αxf       (V.1.26) 

5.37)5ˆ*,()ˆ,ˆ( 11 =−− αα xfxf          (V.1.27) 
 
Let )ˆ75.0,ˆ( αη x  denote the percentage change in f1( α̂,x̂ ) with a perturbation of 
25% in α̂ . Then 

%40.1)ˆ75.0,ˆ( =αη x  
 
ANALYSIS 

The results given in Figure V.1.2 indicate that following a conservative policy that 
trades optimality (cost objective) for a less sensitive outcome provides a very stable 
solution (3% versus 50% changes in f1(·) with a deviation of 25% from the nominal 
value α̂ ). Clearly, neither the solution x* nor x̂  is likely to be recommended. From 
the use of Table V.1.1 and the SWT method, with an interaction with a 
decisionmaker, a preferred level of x should be selected, where:  

67.2863.5 ≤≤ x  

 

0

500

1000

1500

2000

2500

3000

f1 f1(x_star, alpha_hat)
f1(x_hat, alpha hat)

 
 

Figure V.1.2.  The Functions f1(x*, α) and f1( x̂ , α) versus Perturbation in α

∆α = 5 
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PROBLEM V.2: Structural Remodeling 

We seek to minimize the stress-related deformation of cantilevered beams on a 
silicon substrate resulting from stress orientations in the pre-etched thin film. The 
question is whether or not to replace the current beam with a longer beam.  
 
DESCRIPTION 

The question of replacing the current beam with a longer beam can be determined 
by minimizing the following functions: 
 

1) To minimize the height of maximum deformation. 
2) To minimize the sensitivity of the deformation with respect to the thin 
film stress orientation.  

 
METHODOLOGY  

We use the Uncertainty Sensitivity Index Method (USIM) to solve the problem, as 
follows: 
 
The stress orientation is given as the parameter α, which denotes the angular 
difference between the stress axes and the etching film orientation.  The system 
output, ),(1 αxf , is measured as the degree of deformation of the etched 
cantilevered beam from true horizontal with respect to the substrate wafer. Our 
decision variable, x, is the length of the beam. 
 
SOLUTION 

Two objective functions are given as follows: 
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By applying the ε -constraint form, we can formulate the Lagrangian equation: 
 

min )(1 ⋅f  
s.t. f2 <= 2ε  
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The Kuhn-Tucker necessary conditions for stationarity yield: 
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Let the nominal value of α be equal to 1, and substituting the value into (IV.2.4):  
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Plugging this result into various values of lambda we arrive at the Pareto-optimal 
curve shown in Figure V.2.1: 
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Figure V.2.1. Noninferior Solution in Function Space 

 
We can also look at the sensitivity of the response to changes in the value of α, as 
depicted in Figure V.2.2 below: 
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Figure V.2.2.  The Functions f1(x*, α) and f1( x̂ , α) versus Perturbation in α 

 
ANALYSIS 

As can be seen, the deformation for the conservative decision is significantly higher 
than for the business–as-usual option; however it is less sensitive to changes in α.  
This basically says that large values of x, resulting in longer cantilever beams, have 
a consistently higher deformation, but are also less sensitive to changes in α.  
Therefore, if the level of deformation offered by the longer beam is acceptable, then 
this should be used. 
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PROBLEM V.3: The Cost of Buying and Maintaining a Car  

A graduate student on a limited budget would like to buy a car with high gas 
mileage, so that he does not have to spend so much on fuel.  Although financing is 
available to the student, he does not want to invest more than $50,000 in higher-
priced fuel-efficient models.  
 
DESCRIPTION 

To determine whether he can afford to maintain a car, the student must weigh the 
cost of the car against the uncertain costs of fuel. 
 
METHODOLOGY 

The Uncertainty Sensitivity Index Method (USIM) can help decide which car to 
buy.  The two objectives are to: (1) minimize car price; and (2) maximize miles per 
gallon.  
 
SOLUTION 

Through previous research we have determined that at the Pareto-optimal frontier 
of the two objectives, the relationship can be approximated by the following 
formula applicable over the range for which car price is at most $50,000:   
 

P (car price in dollars) = 1,000  
M (miles per gallon) = 5 

 
Note that this model is valid for 0 ≤ P ≤ 50,000 and 5 ≤ M ≤ 55 (In practice, P is 
negatively related to M even considering the prices of hybrid cars.) 
 
Since the student would like to minimize his costs, it is convenient to express M 
also in terms of dollars which will make the problem a single-objective 
optimization.  The conversion is shown below: 
 

Cost ($) = [fuel cost ($/gal)] * [average miles per day] * [days in use] / M 
 
***Given fuel cost of $2.15/gal; 30 miles average per day and 1,500 days if he 
stays for his Ph.D.: 
 

Cost ($) = $96,750 / M 
 
However, since there is a lot of uncertainty about the price of fuel over the coming 
years, we will hold that variable out and denote it by α.  Then, the fuel cost over the 
time the student will own the car will be: 
 

Cost ($) = α 45,000 / M 
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His total cost of car ownership will then be 
 

P + Cost = 1,000 (M – 5) + α 45,000 / M 
 
The objective for this problem is to minimize this function: 
 

Min {f1(M, α ) = 1,000 M – 5,000 + α 45,000 / M } 
  s.t. 5 ≤ M ≤ 55 
 
The minimum of this function can be found by taking the derivative with respect to 
M and equating it to zero. 
 

M
f

∂
⋅∂ )( = 1,000 – α 45,000 / M2 = 0 

M = α45  
 
At the nominal value of α̂  = 2.15, the optimal solution with respect to price would 
be at M ≈ 9.84, which would have a total ownership cost of about $14,672.  
 
However, this solution does not take into consideration the uncertainty surrounding 
fuel prices.  The sensitivity index is defined as the square of the derivative of the 
output function with respect to α: 

 
f2 = (45,000 / M)2 = 2.025 × 109 / M2.   

 
This function is minimized when M is maximized.  This is intuitive because if the 
car has higher gas mileage, it will use less gas and the ownership cost will be less 
susceptible to fuel-price changes. In this case, the maximum valid M for our model 
is 55.  At M = 55, the sensitivity index is 669,421.5. The optimal value for 
minimum ownership cost (at α = 2.15) has a sensitivity index of 20,930,232.5, a 
much higher value. 
 
Moreover, since we cannot minimize both the cost of ownership function and the 
sensitivity index, we are left with a multiobjective optimization problem given by: 
 

Min {1,000 M – 5,000 + α 45,000 / M } and Min {2.025 x 109 / M2} 
 
The two objective functions are plotted below and we can see that the minima do 
not coincide. However, the two graphs intersect. 
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Figure V.3.1. Cost versus sensitivity index 

 
According to the Surrogate Worth Trade-off (SWT) method, the trade-off (or 
Lagrangian multiplier) between these two objectives is given by the negative ratio 
of their derivatives: 
 

λ = – (1,000 – α 45,000 / M2) / (–4.050 x 109 / M3) 
 
The table below shows additional values for our objectives given different choices 
in M for α = 2.15: 
 

Table V.3.1. Noninferior Solutions and Trade-off Values 
 

M Ownership Sensitivity Index 
(x103) lamdba 

9.84 14,672.32          20,913.89  0.000018 
20.00 19,837.50            5,062.50  0.150 
30.00 28,225.00            2,250.00  0.595 
40.00 37,418.75            1,265.63  1.485 
55.00 51,759.09               669.42  3.977 

 
 

 
 



122     Uncertainty Sensitivity Index Method 

 

The possible solutions tabulated above are also shown on the graph below: 
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Figure V.3.2. Noninferior solution in the functional space 

 
ANALYSIS 

Let us consider again the two most extreme scenarios, the M that will minimize the 
total cost of ownership given a fuel cost of $2.15/gal and at the same time minimize 
the sensitivity of the cost of ownership to changes in the cost of fuel.  We will refer 
to them as business-as-usual and conservative, respectively.  The total cost of 
ownership for each scenario is plotted below against some possible costs of fuel.  
As we can see from this chart, the conservative approach is more costly, but it 
changes less with changes in fuel costs.  On the other hand, gas price fluctuation 
has a relatively higher influence on the cost of ownership in the business-as-usual 
approach.  The second chart is similar but is based on percent changes in fuel price. 
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Figure V.3.4. Changes in cost with perturbation in fuel price 
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Despite the risk of an increased cost of ownership, the student has decided to 
follow the business-as-usual approach since the dominant factor is the cost of the 
car itself, not the cost of the fuel.
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PROBLEM V.4: Four USIM EXERCISES 

The following four generic exercises demonstrate the Uncertainty Sensitivity Index 
Methodology (USIM). 
 
DESCRIPTION 

Problems A through D each illustrate a different approach and present the solution 
and analysis of the results. 
 
EXERCISE A: USIM with One Objective 

Consider a system with the objective function: 
222 )1(),(min ααα +−+= xxxf  

whereα  is a parameter with nominal value 5.0=α  and changing from 0=α  to 
0.1=α .  

 
Consider a second objective based on the sensitivity function resulting from the 
above function. Then construct and solve a multiobjective optimization problem. 
  
SOLUTION 

Use USIM to analyze the problem, which takes into account the sensitivity to 
optimal solutions. 
 
 Let: 
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Now that we have a multiple objective problem, the SWT method can be applied to 
solve it. 
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i)  :)ˆ,(min 1 αxf  
8
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    :)ˆ,(min 2 αxf  1*2 =x   0*2 =f   
 
ii) Form an ε -constraint problem: 

)ˆ,(min 1 αxf  
s.t. εα ≤)ˆ,(2 xf  
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iii) Form the Lagrangian of the problem: 
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To obtain a satisfactory 12λ , we need to calculate x  by using 
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Using the SWT method:  
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We can see that when 3>α , there is no trade-off between 1f  and 2f  since non-

negativity of 12λ  does not hold, given the range of x.  If we know ]1,0[∈α , then 
no matter how it will change, any solution of ]1,0[∈x is non-inferior (i.e., 

].1,0[* =X ). 
 
In general, when ),(1 αxf satisfies certain conditions, we have: 
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EXERCISE B:  Envelope Solution Approach 

Using the original function in Exercise A, solve the multiobjective optimization 
problem using the envelope approach. 
 
SOLUTION 

 Use the functions: 
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(In the above problem, x  must be less than or equal to –1/2 and α  has a real 
solution, but if 2/1−≥x , then there is no trade-off between 1f  and 2f .) Figure 
V.4.1 graphically shows the tradeoffs between 1f  and 2f . 
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Figure V.4.1. 1f  versus 2f  
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EXERCISE C: USIM Problem Using Envelope Solution Approach 

Consider the original function used in Exercise B, modified as follows: 
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Solve the multiobjective optimization problem using the envelope approach. 
 
SOLUTION 
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We could get )( 1fFx =  then plug it in )(2 xf , so we have the envelope 1f ~ 2f .) 

 
Generally, given a desired 12λ , we can choose the most compromised 
solution *x and *α  (parameter design) in the following way: 
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Simplifying it: 

  
)1(4

1
12 −

−=
x

λ  

   
Actually, on the envelope we can easily calculate the trade-off, from the envelope 
equation:    
 

  
2

2121

x
f

x
fff

∂
∂

∂
∂

=
∂
∂

∂
∂

αα
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The necessary condition for the Pareto optimum is: 

012 ≥λ or 02
1

2
≤

∂

∂

α
f

 

This can be used to determine the existence of the envelope on the Pareto frontier 
(see Figure V.4.2).   
 
In the above example: 

Original: 0)1(22
1

2
≥−=

∂

∂ xf
α

 no envelope 









≤≤

− 1
2

12
xα  

Modified: 0)1(22
1

2
≤−=

∂

∂ xf
α

 envelope, since 









≤≤

+
− 1

2
12

xα  
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2
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f1

a = 1
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Figure V.4.2. 1f  versus 2f  

 
EXERCISE D: USIM Extension  

Consider a system with the following objective function: 

  2
1

22
3 )1(

2
1)1(),( ααα +−+−= xxxf  

  s.t. 01)( 32
2

1 =−++= xxxxh ββ  
  βα ,  have nominal values 0.5 and 1, respectively. 
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SOLUTION 

Consider minimizing the sensitivity of the constraint: 
 

  Let 2
21

ˆ

2

3 )2(),()( xxxhxf +=







∂

∂
=

=ββ
β

β  

  Minimize it under 0),( =βxh  

   2
213 )2()(min xxxf +=  

   s.t. 01321 =−++ xxx  
  Solve the problem and get: 
   23 1 xx −=  
   21 2xx −=  
 
Substitute these values in ),( αxf  and calculate: 
 
  2

2
22

2 )1(),( ααα +−+= xxxf  
 
Since this is exactly the same function that was minimized in Exercise A, the 
remainder of the USIM solution is the same as before. 
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PROBLEM V.5: Budget Allotment for Cyber-Security 

A large company is considering a change in the amount of money to budget for 
cyber-security for the upcoming year.   
 
DESCRIPTION 

Changing the budget (negative means reduce it, positive means increase) could 
have an effect on the number of cyber attacks during that year, and can be 
calculated using the following equation: 
 

22
1 )2(43),(),( αααα −−−== xxxyxf  

 
METHODOLOGY 

Since the company is uncertain as to which fiscal policy to adopt, they use the 
Uncertainty Sensitivity Index Method (USIM) to help guide their decision.  
 
The decision variable, x, represents the change in budget for the upcoming year.  
This is used to calculate the change in number of cyber attacks for that time period.  
Thus, a negative value for the objective function means there will be a reduction in 
the number of attacks. While increasing the budget will generally reduce the 
number of attacks, at some point attacks will begin increasing as the budget 
increases. Also, a decrease in the budget may still cause a decrease in attacks.  This 
happens because allocating money to cyber-security takes away from (or gives 
more to) facility security allocations, thus more (or fewer) attacks will occur. The 
objective is to find the change in budget that minimizes the number of attacks.  The 
USIM should be applied because the model parameter is unknown.  All budget 
values are in units of $1 million.  All attack values are in units of tens (i.e., -9 
means 90 fewer attacks). 
 
SOLUTION 

An alpha value of 3 was determined using a systems identification procedure. 
 
Given 3ˆ =α  
 

943)ˆ( 2 −−= xxαx,y             (V.5.1) 
222

2 41616]24[)ˆ( ααxxαxαx,f ++=−−=           (V.5.2) 
 
(V.5.1) and (V.5.2) can be written as a joint optimality and sensitivity problem as 
follows: 
 









)ˆ,(
)ˆ,(

min
2

1

αxf
αxf

               (V.5.3) 
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











++=

−−=

364816ˆ(

943)ˆ(
min

2
2

2
1

xx)αx,f

xxαx,f
           (V.5.4) 

 
Use the ε -constraint form: 
 

]943min[ 2 −− xx             (V.5.5) 

2
2 364816 εxx ≤++                (V.5.6) 

 
From (V.5.5) and (V.5.6) formulate the Lagrangian function: 
 

]364816[943)ˆ( 2
2

12
2

12 εxxλxx,λαx,L −+++−−=         (V.5.7) 
 
According to the Kuhn-Tucker necessary conditions, (V.5.7) can be solved:  
 

0]4832[46 12 =++−=
∂
∂ xλx

x
L            (V.5.8) 

0364816 2
2

12
≤−++=

∂
∂ εxx
λ
L            (V.5.9) 

0,0]364816[ 122
2

12 ≥=−++ λεxxλ         (V.5.10) 
 
From (V.5.8) solve for 12λ : 
 

4832
64λ12 +

−
=

x
x            (V.5.11) 

 
ANALYSIS  

Given equations (V.5.8) through (V.5.11), Table V.5.1 and Figure V.5.1 show 
noninferior solutions and trade-off values. 
 

Table V.5.1. Noninferior Solutions & Trade-off Values 
 

x f1(x, α̂ ) f2(x, α̂ ) λ12 
0.67 -10.33 75.11 0.00 

0.5 -10.25 64 0.02 
0.4 -10.12 57.76 0.03 
0.3 -9.93 51.84 0.04 
0.2 -9.68 46.24 0.05 
0.1 -9.37 40.96 0.07 

0 -9 36 0.08 
-0.1 -8.57 31.36 0.10 
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x f1(x, α̂ ) f2(x, α̂ ) λ12 
-0.2 -8.08 27.04 0.13 
-0.3 -7.53 23.04 0.15 
-0.4 -6.92 19.36 0.18 
-0.5 -6.25 16 0.22 
-0.6 -5.52 12.96 0.26 
-0.7 -4.73 10.24 0.32 
-0.8 -3.88 7.84 0.39 
-0.9 -2.97 5.76 0.49 

-1 -2 4 0.63 
-1.1 -0.97 2.56 0.83 
-1.2 0.12 1.44 1.17 
-1.3 1.27 0.64 1.84 
-1.4 2.48 0.16 3.88 
-1.5 3.75 0 ∞ 
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Figure V.5.1. Noninferior solution in functional space 

 

3
110)ˆ*,()ˆ,(min 11 −== αα xfxf          (V.5.12) 

0)ˆ,ˆ()ˆ,(min 22 == αα xfxf          (V.5.13) 
 
From (V.5.12) and (V.5.13) two critical values are computed as: 
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3
2* =x  (Business-as-usual policy) 

5.1ˆ −=x  (Most conservative policy) 
 
Given *x  and x̂ , two functions are derived with respect to α  and are plotted 
versusα : 
 

2
1 )2(

3
8

3
4)*,( ααα −−−=xf          (V.5.14) 

2
1 )2(6

4
27),ˆ( ααα −−+=xf          (V.5.15) 
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Figure V.5.2. The functions )*,(1 αxf and ),ˆ(1 αxf  

 

3
26ˆ2

3
8)*,(

ˆ
1 −=−−=

∂
∂

= α
α

α
αα

xf
         (V.5.16) 

0ˆ26
),ˆ(

ˆ
1 =−=
∂

∂
= α

α
α

αα
xf

         (V.5.17) 

 
From (V.5.16) and (V.5.17), we can distinguish stabilities for two objective 
functions. A most conservative policy will lead to a more stable state than a 
business-as-usual policy.  
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Along with perturbation in α, another plot will help us gain better understanding of 
a situation involving uncertainty: 
 

33.10)ˆ*,(1 −=αxf           (V.5.18) 
25.6)5.ˆ*,(1 −=−αxf           (V.5.19) 

08.4)5.ˆ*,()ˆ*,( 11 −=−− αα xfxf          (V.5.20) 
 

%5.39)ˆ75*,.( =αη x        
 

75.3)ˆ,ˆ(1 =αxf            (V.5.21) 
5.3)5.ˆ,ˆ(1 =−αxf           (V.5.22) 

25.)5.ˆ*,()ˆ,ˆ( 11 =−− αα xfxf          (V.5.23) 
 

%7.6)ˆ75,.ˆ( =αη x        

-16

-12

-8

-4

0

4

8

0 1 2 3 4 5 6

75.3)ˆ,ˆ(1 =αxf 5.3)5.0ˆ,ˆ(1 =−αxf

333.10)ˆ*,(1 −=αxf

25.6)5.0ˆ,ˆ(1 −=−αxf

5.0−=∆α

 
Figure V.5.3. The functions )*,(1 αxf  and ),ˆ(1 αxf  versus perturbation in α 

 
The results given in Figure V.5.3 indicate that following a conservative policy that 
trades optimality for a less sensitive outcome provides a very stable solution (6.7% 
versus 39.5%).  Using the Surrogate Worth Trade-off (SWT) method, and talking 
to the person in the company who is in charge of this decision, the preferred change 
in budget should be between –$1.5 million and $670,000.  It does seem logical to 
choose a value that is a reduction in budget that also causes a reduction in attacks.  
Thus, it may make sense to choose a budget change between –$1.1 million and no 
change. 
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PROBLEM V.6: Art Museum Temperature Maintenance 

In order to keep the artworks housed in an art museum in their best condition, the 
interior temperature of the building must be closely controlled and monitored. The 
problem is to determine the desired temperature at an optimal cost within the given 
climate of the museum.  
 
DESCRIPTION 

Suppose that the goal is to set the temperature at the low 60s degrees. Let x 
represent the temperature and ( )α,xy  denote the cost. The cost (in thousands of 
dollars) is a function of both the temperature x and a parameter α and can be 
written as follows: 
 

( ) ( ) 2260, ααα −−−= xxxy  
 
METHODOLOGY 

Use the Uncertainty Sensitivity Index Method (USIM) to solve this problem. 
 
Let the cost objective function be redefined as ( )α,1 xf , and we wish to minimize 
it: 
 

( ) ( )αα ,,1 xyxf =  
or 

( ) ( ) 22
1 60, ααα −−−= xxxf  

 
Let the nominal value of α  be α̂  where α̂  = 10. Then ( )α̂,xy can be rewritten as 

( ) 3500130ˆ, 2 +−= xxxy α . Since 
 

( ) α
α

α 2,
−−=

∂
∂ xxy , 

 
we define the sensitivity index function 2f  to be 
 

( ) 22
2 44, ααα ++= xxxf . 

 
Substituting α  with α̂ , we have 
 

( ) 3500130, 2
1 −−= xxxf α  (V.6.1) 

( ) 40040, 2
2 ++= xxxf α  (V.6.2) 

 



Art Museum     137 

 

Suppose there are no constraints on x. The joint optimality and sensitivity problem 
can be written in a multiobjective framework as follows: 
 

Min ( ) 3500130, 2
1 −−= xxxf α  (V.6.3) 

Min ( ) 40040, 2
2 ++= xxxf α  (V.6.4) 

 
Solve via the SWT method: 
 
The first phase is converting the second objective f2 into the ε -constraint as 
follows: 
 

Min ( )α̂,1 xf  (V.6.5) 
s.t.  ( ) 22 ˆ, εα ≤xf  (V.6.6) 

 
The problem can be written as: 
 

Min 35001302 −− xx  (V.6.7) 
s.t.  2

2 40040 ε≤++ xx  (V.6.8) 

 
Form the Lagrangian function, 
 

( ) ( )2
2

12
2

12 400403500130,ˆ, ελλα −+++−−= xxxxxL  (V.6.9) 
 
The Kuhn-Tucker necessary conditions for stationarity are as follows: 
 

( ) ( ) 04021302 12 =++−=
∂

⋅∂ xx
x

L λ  (V.6.10) 

( ) 040040 2
2

12
≤−++=

∂
⋅∂ ε

λ
xxL  (V.6.11) 

( ) 040040 2
2

12 =−+ ελ xx  (V.6.12) 
012 ≥λ  (V.6.13) 

 
Solving Equation (V.6.10) yields 
 

402
2130

12 +
−

=
x

xλ  (V.6.14) 

 
 
See Table V.6.1 for several noninferior solutions with the corresponding tradeoff 
values. 
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Table V.6.1. Noninferior Solutions and Tradeoff Values 

 
x  ( )α̂,1 xf  ( )α̂,2 xf  12λ  

-19 
-10 
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1.833 
1.125 

0.7 
0.41667 

0.214286 
0.0625 

 
 

 
Figure V.6.1. Noninferior Solution in the Functional Space 

 
Figure V.6.1 depicts the noninferior solution in the functional spaces 1f  and 2f . 
Let *x  and x̂  denote the decision variables which minimize ( )α̂,1 xf  and 

( )α̂,2 xf . In other words: 
 

Min ( ) ( )αα ˆ*,ˆ, 11 xfxf =  (V.6.15) 
Min ( ) ( )αα ˆ,ˆˆ, 12 xfxf =  (V.6.16) 
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Then we can compute *x  and x̂  with a straightforward method of looking for 
stationary points in the respective functions to yield: 
 

65* =x  
20ˆ −=x  

 
To study the tradeoffs between the sensitivity objective function 2f  and the 

optimality objective function 1f , the latter is evaluated at *x  and x̂  as a function 

of α . The resulting functions ( )α*,1 xf  and ( )α,ˆ2 xf  are plotted in Figure 
V.6.2. The functions are as follows: 
 

( ) 2565*, 2
1 +−−= αααxf  (V.6.17) 

( ) 640020,ˆ 2
2 ++−= αααxf  (V.6.18) 

 
Note that at the nominal value ofα , ( )α̂*,1 xf  changes rapidly with a slope equal 
to -85.  

( )α,ˆ2 xf  has a rate of zero at the nominal value of α ,10. 
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Figure V.6.2. Sensitivity as a function of the Parameter α  
 
Now we focus on the changes that take place in ( )α̂*,1 xf  and ( )α̂,ˆ1 xf when the 
nominal value α  is perturbed by the amount α∆ = −5. Then as a result we have: 
 

( )α̂*,1 xf = −725 
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( )5ˆ*,1 −αxf  = −325 
( ) ( )5ˆ*,ˆ*, 11 −− αα xfxf = 400 

 
ANALYSIS 

Further analysis is performed to determine the performance of the cost function 
( )α̂*,1 xf  relative to ( )α̂,ˆ1 xf .   

 
Let ( )5ˆ*, −αη x  denote the percentage of change in ( )α̂*,1 xf  with a perturbation 
of 50% in α̂ . Then 
 

( ) %55ˆ5.0*, =αη x  
Similarly, 

( ) 6500ˆ,ˆ1 =αxf  
( ) 64755ˆ,ˆ1 =−αxf  

( ) ( ) 25005ˆ*,ˆ,ˆ 11 =−− αα xfxf  
and 

( )αη ˆ5.0,x̂ = 0.38%. 
 
See Figure V.6.3 for the comparison of ( )αη ˆ5.0*,x  and ( )αη ˆ5.0,x̂ . It is clear that 
the conservative policy that trades optimality for a less sensitive outcome provides 
an extremely stable solution. In the case of ( )αη ˆ5.0*,x , we have a 50% deviation 
given a 50% perturbation in the nominal value of α . In the latter case, the 
deviation is basically ignorable given the same perturbation. Therefore, if the 
nominal value of α  is incorrectly assessed, the result would be rather disastrous if 
we choose *x  over x̂ , even though *x  would give us the better value for the 
optimality problem. On the other hand, x̂  makes the problem very parameter-
insensitive but the objective value is not so good. In the end, however, we still need 
to interact with a decisionmaker about which preferred x is chosen with 

*ˆ xxx ≤≤ . 
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Figure V.6.3. Cost as a function of the Parameter α 
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PROBLEM V.7:  Multiobjective Optimization and Sensitivity Analysis 

This problem demonstrates how to integrate sensitivity analysis with multiobjective 
optimization. Solve the following multiobjective optimization problem using the 
Uncertainty Sensitivity Index Method (USIM) and analyze your results. 
 
 22

1 2)2( αα ++−= xxf  

 2221
2 )(4)22()( αα

α
+=+=

∂
∂

= xxff  

 Assume the nominal value 1ˆ =α  
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PROBLEM V.8: Earthquake-Proofing a Building 

How can a building be structurally fortified to counteract the vibration caused by an 
earthquake?  The vibration of a building caused by an earthquake may be 
dampened by placing shock-absorbing materials under and around its foundation, 
as can be seen in Figure V.8.1. Vibration risk can be related to the “work” exerted 
by the building structure to counteract the forces acting on it. Suppose that greater 
magnitudes of “work” lessen the susceptibility of the building to vibration risk, 
which consequently leads to less structural stress. A simple schematic of the 
problem is depicted in the given diagram consisting of only two active forces: (i) 
weight of the structure; and (ii) “spring” force. 

 Spring Force (S)

Weight (W)

x = 0

-x

+x

 
Figure V.8.1. Demonstration of shock absorbing materials 

 
Consider the following model describing the “work” ω  exerted by the building due 
to the forces present in the above diagram: 
 

WxxWS +−=+= 25.0 αωωω  
where: 

•x: vibration-triggered vertical displacement of the building in meter (m), 
measured relative to an equilibrium position (i.e., “initial deformation” of 
the spring) 
• 25.0 xS αω −= : “work” component due to the spring force S where α is 
the Hooke’s Law spring constant, whose nominal value is α̂  = 2×109 
Newton per meter (N/m).  
• WxW =ω : “work” component due to the weight of the building (W = 
2×109 N) 

Use the Uncertainty Sensitivity Index Method (USIM) and the Surrogate Worth 
Trade-off (SWT) method in order to incorporate the uncertainty of the parameters. 
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PROBLEM V.9: Evaluating Investments for a Portfolio 

Risk must be evaluated in a portfolio of two investments. Portfolio risk can be 
assessed using the variance metric (denoted here by f1). For the case of two 
investments: 
 

f1 = σ1
2x1

2 + σ2
2 x2

2 + ρσ1σ2x1x2 
 
Note that in general, the above expression is derived as follows: 
 

),(2

),(2)()(

)(

2121
2
2

2
2

2
1

2
1

21212
2
21

2
1

22111

InvInvCovxxxx

InvInvCovxxInvVarxInvVarx

InvxInvxVarVariancef

++=

++=

+==

σσ

 

 
For portfolio selection consisting of two investments: 
 

2121 2
1),( σρσ=InvInvCov  

where: 
 

f1 = portfolio risk (this risk is measured in terms of variance of portfolio 
returns, hence f1 is unitless) 
σ1 = standard deviation (or volatility) of returns of Investment 1 (Inv1) 
σ2 = standard deviation (or volatility) of returns of Investment 2 (Inv2) 
ρ = correlation of returns of Investments 1 and 2  
x1 = portfolio weight to allocate to Investment 1 
x2 = 1 – x1 = portfolio weight to allocate to Investment 2 

 
Use the Uncertainty Sensitivity Index Method (USIM) to answer the following 
questions: 
 
(a) Derive f1(x1,α), given the following parameters:  
 

σ1 = 0.2 
σ2 = α 
ρ = –0.8 

 
(b) Derive the sensitivity function f2(x1,α). 
 
(c) Plot the noninferior solution in the function space using the functions obtained 
in Steps (a) and (b). Use a nominal value of 3.0ˆ =α . 
 
(d) Analyze the results and discuss the sensitivity of portfolio risk to different 
values of α. 
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PROBLEM V.10: Preventing West Nile Viral Disease 

The West Nile virus is spread to humans through a bite from the Culex species of 
mosquito. Once in the bloodstream, the virus can reach the brain and cause 
encephalitis—a brain inflammation that can affect the entire nervous system. 
Unfortunately, there is no specific treatment for West Nile encephalitis other than 
supportive therapy (such as hospitalization, intravenous fluids, and respiratory 
support) for severe cases. Antibiotics will not work because a virus, not bacteria, 
causes West Nile disease. No vaccine for the virus is currently available. 
 
Applying a DEET-based insect repellent (DEET is short for N,N-diethyl-m-
toluamide) is recommended to minimize the risk of acquiring the disease. The 
downside is that such repellents have been thought to cause adverse skin reactions 
when used in excessive quantities (especially when combined with sunscreen). The 
question is: how much DEET can a person apply to avoid the risk of contracting 
West Nile disease without suffering an adverse skin reaction? 
 
This problem can be solved using the Uncertainty Sensitivity Index Method 
(USIM), as follows: 
   
Consider a health risk function which has the following form: 
 

f1(x;α) = 1 – αxα–1exp(–xα)   x > 0 
 
where: 
 

f1(x;α) = health risk function, which is normalized such that a value of 1 
means maximum health risk and 0 means minimum health risk. 
x = amount of repellent applied (in grams per square inch of skin) 
α = concentration of active ingredient (in parts per 10) 

 
When 2ˆ =α  (i.e., the nominal value of α), the health risk function behaves like a 
bathtub curve as depicted below. 
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Figure V.10.1. Risk Function for Amount Of DEET Applied to Skin 

 
Conduct USIM and analyze the results. (Note: You may have to resort to numerical 
methods when generating noninferior solutions for the multiobjective problem 
comprising f1(x; α̂ ) and its corresponding sensitivity function f2(x; α̂ )). 
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PROBLEM V.11: Optimizing Amount of Catalyst in a Chemical Substance 

This problem examines the sensitivity of a given chemical substance as a function 
of the amount of reaction time given the amount of catalyst.  
 
This exercise is concerned with an industrial process in which the reaction time of a 
chemical substance depends on the temperature and the amount of catalyst. We are 
interested in minimizing the reaction time and its sensitivity to the temperature. 
Currently we are not satisfied with the specified reaction time of a catalyst we are 
using. We have to determine the amount of catalyst that will give us the least 
reaction time. The difference in the reaction time (from the original reaction time) 
is given by the following equation: 
 

22

3
2)1(

2
3

2
3),( ααα −−+= xxxy  

 
Solve the problem using the Uncertainty Sensitivity Index Method (USIM). 
 
A negative value of y indicates a reduction in the original reaction time, while a 
positive value indicates an increase. In short, the greater the negative value we 
obtain the better, because we are reducing our original reaction time. 
 

 ),( αxy  denotes the difference in reaction time 
 x denotes the difference from the original amount of catalyst. (A negative 

value denotes a reduction of the original amount, while a positive value 
denotes an increase.) 

 α  denotes the model’s parameter (temperature). Assume a nominal value 
of 2ˆ =α . 
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PROBLEM V.12: Uncertainty Regarding Costs in a Widget Factory 

A company that produces widgets needs to balance the costs of labor and materials. 
The company has two objectives: to minimize costs in general, and to minimize the 
fluctuating costs of labor. 
 
For each widget, the factory must use a specific type of expensive paint.  There is a 
cost function that depends on the amount of paint used, f1(x, α) = (x-6)2 - α2 (x-3) - 
(α-4)2.  Let x represent the amount of paint used, and α represent some price 
fluctuation in the cost of labor. Assume that 6ˆ =α .  
 
Use the Uncertainty Sensitivity Index Method (USIM) to solve this problem. 
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PROBLEM V.13: Determining Safe Proportions of Chemical Components  

Electrostatic deposition, also known as electroplating, is a manufacturing process 
wherein a metal is deposited onto the surface of a plastic or another metal to affect 
the latter’s physical, mechanical, or chemical property.  Prior to the actual 
deposition process, the surface of the material requires extensive cleaning to assure 
proper adhesion.  To avoid environmental hazards, the process engineer wants to 
determine the correct amounts of two chemicals that can be used as cleansing 
agents.  
 

In the cleaning process, the electroplating plant must minimize toxic fumes and 
totally avoid producing heavy metal. Two major chemicals— 1X  and 2X —are 
commonly present in the cleansing agent and are also available in 50% solutions. 
These produce toxic fumes in the reduction process given by: 
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where: y is the amount of toxic fumes 

 1x  is the amount of Chemical 1X  

 2x  is the amount of Chemical 2X  
 α  is the concentration of Chemical 1X  
 β  is the concentration of Chemical 2X  
 
Furthermore, the cleaning process causes the two chemicals to react with the 
material being cleaned to produce a heavy metal.  As there is no economically 
feasible way of filtering this out from the cleansing agent, producing the heavy 
metal must be totally avoided.  The heavy metal production is given by the 
chemical process: 

00008.0)1( 2
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Given two objective functions, we can assume the variability of α and β, so the 
Uncertainty Sensitivity Index Method (USIM) is applied to solve this problem. The 
new functions of representing sensitivities need to be addressed as well.  Assume 
nominal parameter values of 5.0ˆ =α  and 5.0ˆ =β . 


