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X.  Extreme Event 
 
 
 
 
PROBLEM X.1: Analysis of Annual Maximum River Discharge 

This problem deals with the importance of considering an extreme event such as a 
flood when making decisions about dam construction. 
 
DESCRIPTION 

From US Geological Survey Water Resources Data, the annual maximum 
discharges for the gauging station of the Salt Fork River near St. Joseph, Illinois 
between 1959 and 1975 are listed below. 
 

Table X.1.1.  Annual Maximum Discharge Data 
 

Year 
Annual Discharge 

feet3/sec (CFS) 

1959 6030 
1960 1800 
1961 2300 
1962 3370 
1963 2340 
1964 5380 
1965 1230 
1966 950 
1967 2640 
1968 6860 
1969 2630 
1970 2600 
1971 2350 
1972 1350 
1973 2990 
1974 2750 
1975 1920 

 
METHODOLOGY 

We use Extreme Event (EE) Analysis to help make the most effective decision. 
 
a) Suppose a Type I Largest value extremal distribution is adopted for the annual 
maximum discharge at this station. Determine the parameters for the distribution 
through sample means and variance. 
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b) The Probable Maximum Flood (PMF) is defined as the level of cubic feet per 
second (CFS) whose exceedence probability is 10-5. Find the PMF for the above 
gauging station by filling the missing entries in Columns 2 and 3 of Table X.1.2 
where y is the “actual” flood in any year, measured in terms of proportion (or 
percentage) of PMF. 
 
c) Suppose there is a flood control earth dam of 100 ft. in height at this gauging 
station. However, the dam was inappropriately designed as considerable damage 
downstream still occurs even for moderate floods. Column 4 of Table X.1.2 shows 
potential flood damage, X in 106$, downstream for different levels of flood y. To 
make the dam more effective, its height, h feet, is to be raised. The damage X is 
therefore a function of Y and h. For a given level of dam height h, 100≥h , the 

damage X is a monotone increasing function of Y. For this reason, the probability 
that an annual damage X exceeds a particular level x (x is the damage caused by a 
level y flood) for the existing dam is exactly equal to the probability that the flood 
level y is exceeded. Use this information to i) fill in all entries in Column 4 of Table 
X.1.2, and ii) to compute the conditional expected damages f2, f3, f4, and expected 
damage f5 for the existing dam. (f2, f3, and f4 are expected damages in 106$, 
conditioned on the exceedence probability of damage being in [0, .01], [.01, .88], 
and [.88, 1] respectively.) Fill in this information in Table X.1.3. 
 

d) If the cost of raising the height of the dam in 106$ is 100)( −= hhf for 100≥h , 

fill in the first row of Table X.1.3 in which three other dam heights are being 
considered. Suppose the values of f2, f3, f4, and f5 for the three new alternatives have 
been computed as shown in Table X.1.3. Plot f1 vs. f2, f1 vs. f3, f1 vs. f4, and f1 vs. f5 
on the same graph using f1 as the vertical axis. Estimate all relevant trade-offs 
between various pairs of alternatives and summarize your results in the form of a 
table. Discuss their implications on the dam height decision. 
 

Table X.1.2.  Template for Flood Data  
 

Y 
Proportion 

of PMF 

Flood 
in CFS 

Exceedence 
Prob. P(Y y≥ ) 

Potential Damage 
in 106$ X, when h 

= 100 ft. 

Exceedence Prob. 

P(X x≥ ) when h 

= 100 

.01  .9906 .1  

.05  .9358 .5  

.07  .8821 1.2  

.10   2.0  

.20  .3155 3.0  

.30  .0972 4.5  

.40  .0270 7.0  

.50  .0073 10.0  

.60  .0020 14.0  

.80  .000167 25.0  
1.0  .00001 50.0  
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Table X.1.3. Cost of Dam Improvement Options 

 

Cost of 
Expected 
Damage in 106$ 

Option 0 
h0=100 ft. 

Option 1 
h1=102 ft. 

Option 2 
h2=105 ft. 

Option 3 
h3=110 ft. 

f1: cost     
f4: low prob. 

Damage  
 8.5 5.5 3.0 

f3: med. Prob. 
Damage 

 2.4 1.8 1.5 

f2: high. prob. 
damage 

 .35 .10 0.0 

f5: overall 
expected damage 

 2.0 1.5 1.0 

 
SOLUTION 

a) Sample mean  2911=x  

Sample variance SD2 = (1663)2 (using SDn-1 rather than SDn), hence, 
SD = 1663 

 

∴  ==
)(6

ˆ
SD

y

π
α 7.7 x 10-4  

and  =−=
y

y xu
α

γ

ˆ
ˆ  2911 - =

4-10 x 7.7

577216.0
 2161.37 

 

b) 0.00001 = P(Y ≥ PMF) = P (S ≥ yα̂ (PMF - yû )) = P (S ≥ 11.50) 

 Thus   yα̂ (PMF - yû ) = 11.50 ⇒ PMF = 44.1709637.2161
ˆ

50.11

y

=+
α

 

 ∴ 0.1PMF = 1709.64 

 P(Y ≥ 0.1PMF) = P(Y ≥ 1709.64) = P(S ≥ 7.7 x 10-4(1709.64 – 2161.37)) 

    = P(S ≥ -0.35) = 1 – P(S ≤ 0.35) = 1 – 0.2419 = .7581 
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c) With the information given, Table X.1.2 becomes: 
 

Table X.1.4. Flood Data with Completed Exceedance Probabilities 

Y 
Proportion 

of PMF 

Flood in 
CFS 

Exceedence 
Prob. 

P(Y y≥ ) 

Potential 
Damage in 106$ 

X, when h = 
100 ft. 

Exceedance Prob.  

)(1)(ˆ xFxF −=  

P(X x≥ ) when 

h=100 

.01 170.96 .9906 .1 .9906 

.05 854.8 .9358 .5 .9358 

.07 1196.72 .8821 1.2 .8821 

.10 1709.64 .7581 2.0 .7581 

.20 3419.20 .3155 3.0 .3155 

.30 5128.8 .0972 4.5 .0972 

.40 6838.4 .0270 7.0 .0270 

.50 8548.0 .0073 10.0 .0073 

.60 10257.6 .0020 14.0 .0020 

.80 13676.8 .000167 25.0 .000167 
1.0 17096 .00001 50.0 .00001 

 
Note:   X = X(Y, h) X is a monotone increasing function of Y, given h. 

∴  P(X ≥ x: h=100) = P(Y ≥ y)  where x = X(y: h=100) 
 
For simplicity, let the partitions in the probability scale IP1, IP2, and IP3, be 
transformed into partitions in the damage scales IX1, IX2, and IX3 respectively, as 
shown in Table X.1.2. Thus: 
 

 f2 = E(X|IX1) = 
1

1
1

,
2

)(
|)(ˆ)(ˆ|

11

IP

xx
xFxF ii

i

IXxx

i

ii

+
− +

+

∈

∑
+  

=

8821.01

2

)2.15.0(
|8821.09358.0|

2

)5.01.0(
|9358.09906.0|

2

)1.00(
|9906.00.1|

−

+
−+

+
−+

+
−

 

 = 0.53 
 
Likewise, 
 
 f3 = E (X|IX2) 
 

= +
−

+
−+

+
−

0073.08821.0

2

)0.30.2(
|3155.07581.0|

2

)0.22.1(
|7581.08821.0|
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0073.8821.

2

)107(
|0073.027.|

2

)75.4(
|0270.0922.|

2

)5.40.3(
|0922.03155.0|

−

+
−+

+
−+

+
−

 

 
  = 3.07 
 
 f4 = E (X|IX3) 
 
     = 

+
−

+
−+

+
−+

+
−

00073.

2

)5025(
|00001.000167.|

2

)2514(
|000167.002.|

2

)1410(
|002.0073.|

 
 

      
00073.

2

)10050(
|000001.|

−

+
−

 

 
     = 18.22 
 
 f5 = f4(.0073) + f3(.8821-.0073) + f2(1-.8821) 
  
     = 2.88 
 
d) Table X.1.3 becomes: 
 

 
Table X.1.5. Cost of Dam Improvement Options with Completed Values of 

Dam Height Options at Various Partitions 
 

Cost of 
Expected 

Damage in 106$ 

Option 0 
h0=100ft 

Option 1 
h1=102ft 

Option 2 
h2=105ft 

Option 3 
h3=110ft 

f1: cost 0 2 5 10 
f4: low prob. 

damage 
(catastrophe) 

18.22 8.5 5.5 3.0 

f3: med. prob. 
damage 

3.07 2.4 1.8 1.5 

f2: high prob. 
damage 

.53 .35 .10 0.0 

f5: overall 
expected 
damage 

2.88 2.0 1.5 1.0 
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Figure X.1.1. Plot of Table X.1.5 
 

Trade-offs: 
)()(

)()(
),(

qjpj

qipi

qpij
hfhf

hfhf
hh

−

−
≈λ  

 

 h0 – h1 h0 – h2 h0 – h3 h1 – h2 h1 – h3 h2 – h3 

12λ  -11.1 -11.63 -18.87 -12.0 -22.86 -50 

13λ  -2.99 -3.94 -6.37 -5.0 -8.89 -16.7 

14λ  -0.21 -0.36 -0.66 -1.0 -1.45 -2.0 

15λ  -2.27 -3.62 -5.32 -6.0 -8.0 -10 

 
ANALYSIS 

The need to consider extreme events as opposed to “average” events is 
demonstrated clearly in this example. For example, in comparing Option h1 with h0, 
it costs $2M to construct h1 while the reduction in damage is $0.88M in the 
“average” sense (f5), and $9.72M in the extreme-event case (f4). Considering the 
average case (f5) alone may lead to rejection of h1 in favor of h0 since the “average” 
expected benefit will not pay for the “certain” cost. However, considering the 
extreme event case (f4) will make h1 very attractive, as the expected benefit in case 
of an extreme event is about five times that of the cost. 
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PROBLEM X.2: Integrated Circuit for a Helicopter 

Four design options are being considered for an integrated circuit chip computer 
subsystem for a combat helicopter. 

 
DESCRIPTION 

The objective of this problem is to maximize the reliability of the chip subsystem 
for a mission of a three-hour duration.  The reliability of each design must be 
weighed against the cost. 
  
METHODOLOGY 

We solve this problem using Extreme Event Analysis. 
 

Suppose N  identical components are tested for one time period.  Let )(tN f  be the 

number of components that have failed, and  )(0 tN  be the number of components 

that are operating.  The failure rate (λ) of the components is given by: 
 

 (t)Ν(t)N

(t)Ν

Ν

(t)Ν

fo

ff

+
==λ

 
 

The reliability )(tR of a system is defined as the conditional probability that a 

system performs correctly throughout an interval of time [ ]tt ,0 , given that the 

system was performing correctly at time 0t .  For components having exponential 

time to failure distribution, the reliability is given by: 
 

 
λteR(t) −=  

 
You may want to use the following equation: 
 

 2ln(n)σµ)(f N
4 +=⋅  

 
An integrated circuit chip for use in the computer for a combat helicopter has a 
mean failure rate of 0.05 ( λ = 0.05) per hour, and a standard deviation of 0.02 

(assuming normal distribution).  The cost of each chip is $100. Maximizing the 
reliability of the chip subsystem for a three-hour mission can be done by placing 
the chips in parallel. 

 

The failure rate for such a parallel system is given by nλ , where n is the total 

number of parallel components used.  Assume that the standard deviation of the 
parallel system is the same for each individual chip. 
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SOLUTION 

i) The 4 design options for the chip subsystem each have 1, 2, 3, and 4 chips in 
parallel. For each of the options, compute the mean reliability of the subsystem for 
the 3-hour mission. 
 
Design Option 1: 

0.86071  eR(3)

0.05(0.05)   λ

0.05)3(

1

sys

==

==

−

 
 
Design Option 2: 

0.99253eR(3)

0.0025   (0.05)   λ

0.0025)3(

2

sys

==

==

−

 
 
Taking similar steps for Design Options 3 and 4, the complete results are as 
follows: 
 

Table X.2.1. Failure and Reliability Rate by Design Option 

Design Option sysλ
 R(3) 

1 0.05 0.86071 
2 0.0025 0.99253 
3 0.000125 0.99963 
4 0.00000625 0.99998 

 

ii) Calculate )(4 ⋅f for each design option for a partition point of 85% on the 

reliability axis.  
Hint: To compute the partition point on the probability axis from the partition point 
on the reliability axis, calculate the corresponding value of the failure rate using: 

 
λteR(t) −=  

Design Option 1: 

 0.85eR(3) 13λ == −

 
where 1λ  is the partition point on the failure rate axis. 

 0.05417λ 1 =  
Converting to standard normal: 

 
0.210.2085

σ

µλ
)(αΦ λ1

1

1- ≈=
−

=
 

where λµ is the mean failure rate of the system, σ  is the standard deviation of the 

failure rate, and 1α is the partition point of the probability axis. 
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From standard normal tables we have: 

07644.0

5826.01

1
ln202.005.0

)ln(2)(

5826.0

4

1

=










−
+=

+=⋅

=

nf
n σµ

α

 

 
Taking similar steps for Design Options 2, 3, and 4, the complete results are shown 
in Table X.2.2: 

Table X.2.2.  f4 with a Partition Point of 85% on the Reliability Axis 
Design 
Option i i

λ   )(1
iα−Φ   

i
α   n )(f

N

4 ⋅   

1 0.05417 0.21 0.5826 2.3960 0.07644 

2 0.05417 2.58 0.9951 204.5787 0.06774 

3 0.05417 2.70 0.9966 290.5198 0.06748 

4 0.05417 2.71 0.9966 295.7597 0.06747 

 

iii) Calculate )(4 ⋅f for each design option using a partition point of 0.99 on the 

probability axis. 
 
Design Option 1: 
 

 

11070.0

99.01

1
ln202.005.0

)ln(2)(4

=










−
+=

+=⋅ nf
n σµ

 

 
Taking similar steps for Design Options 2, 3, and 4, the complete results are 
presented in Table X.2.3: 
 

Table X.2.3.  f4 with a Partition Point of 99% on the Probability Axis 
Design 
Option 

 α n )(f
N

4 ⋅   

1 0.99 100 0.11070 

2 0.99 100 0.06320 

3 0.99 100 0.06082 

4 0.99 100 0.06070 
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iv) Plot your results in terms of cost vs. damage, where the damage is given by the 
calculated value of the failure rate of the chip subsystem. Below is the graph for 
these results:  

 
Figure X.2.1. Unconditional and Conditional Damage Rates versus Cost 

 
ANALYSIS 

Figure X.2.1 shows the performance of the four design options relative to two 
objectives: minimizing failure rate and minimizing cost. Several Pareto-optimal 
solutions are presented based on expected value (f5), and two versions of 
conditional expected value (f4) based on partitioning either the failure-rate axis or 
the probability axis. It should be observed that Option 1 has a low cost but the 
failure rate is high. Option 2 significantly reduces the failure rate at an additional 
unit cost of $100. It should be observed that the reduction in failure rate between 
Options 3 and 4 is marginal. Nevertheless, the small change in reliability could be 
crucial, especially when dealing with safety-critical systems such as the computer 
used in operating a combat helicopter. 
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PROBLEM X.3: Overpopulation  

Overpopulation is becoming a threat to many developing countries. This problem 
addresses this through the perspective of conception. 
 
DESCRIPTION 

A developing country is considering trying to decrease the number of new babies, 
so that it can control the growth of the overall population. It must decide which of 
the following four birth control options to subsidize in order to control the number 
of conceptions:  

• Contraceptive pills 

• Contraceptive patches 

• Condoms 

• Diaphragms 
 

METHODOLOGY 

We try to find the best solution using the extreme event analysis 
 
The number of theoretical conceptions is assumed to be of a normal distribution 

with a mean µ  of 0 and standard deviation σ of 1. 
 

Key Assumptions: 

 

• The number of theoretical conceptions is statistically independent between 
days. 

• We conduct the birth control measurement experiment for an initial period 
of 1 month (30 days). 

• We take a sample of 100 couples in the given geographical area. 
 
The following table summarizes the corresponding cost, mean, and standard 
deviation for each of the birth control strategies: 
 

Table X.3.1. Birth Control Strategies with Associated Cost, Mean, and 
Standard Deviation 

 

Birth Control Strategies Cost ($) Mean Std. Deviation 

1. Contraceptive Patch 2000 0 1 
2. Contraceptive Pills 1500 3 4 
3. Condoms 100 10 9 
4. Diaphragms 2400 18 12 

 
SOLUTION 

The four required steps are as follows: 
 
A) Determine the most probable one-month maximum number of conceptions. 
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We calculate as follows: 
 

µ  = 0 

σ = 1 
 

un = µ  + σ Φ-1 (1-1/n) 
 
Model value for n = 30: 

u30 = 0 + Φ-1 (1-1/30) 
       = 1.834 

 
Follow these same steps for all four strategies. 
 
B) Determine the probability that the maximum number of conceptions will 
exceed 20 in the given month and determine the corresponding return period.  
 
Strategy 1—Contraceptive patch: 
 

PY(y) = [PX(y)]30 

               = [Φ((y-µ)/σ)]30 

Pr (max # of conceptions > 20) = 1- PY (20) 

                                                        = 1- [Φ ((20-0)/1)]30 

 
Return period of maximum number of conceptions of 20 = (1/0), which 
implies it would seldom exceed 20.  

 
Strategy 2—Pill: 
 

PY(y) = [PX(y)]30 

               = [Φ((y-µ)/σ)]30 

Pr (max # of conceptions > 20) = 1- PY (20) 

                                                        = 1- [Φ((20-3)/4)]30 

 
Return period of maximum number of conceptions of 20 = 3117 months. 

 
Strategy 3—Condoms: 
 

PY(y) = [PX(y)]30 

               = [Φ ((y-µ)/σ]30 

Pr (max # of conceptions > 20) = 1- PY (20) 

                                                        = 1- [Φ ((20-10)/9)]30 

 
Return period of maximum number of conceptions of 20 = 1.0139 months.  

 
Strategy 4—Diaphragms: 
 



342     Extreme Event 

 

PY(y) = [PX(y)]30 

               = [Φ ((y-µ)/σ)]30 

Pr (max # of conceptions > 20) = 1- PY (20) 

                                                        = 1- [Φ((20-18)/12)]30 

 
Return period of maximum number of conceptions of 20 = every month.  

 
C) Determine the expected (f5) and conditional expected values (f4) for the 
above return period for each birth control strategy.   
 
Strategy 1—Patch 
 

f4(30)  = un  + (1/δn) 

δ30 = 




















−Φ− −

2
1 )

30

1
1(

2

1
exp

2

30

π
 

     =  2.227 
 
Therefore, f4(30)  = 1.834 + (1/2.227) = 2.283 
                    f5(30) = 0 

 
Strategy 2— Pills 
 

f4(30)  = un  + (1/δn) 

δ30 = 




















−Φ− −

2
1

2
)

30

1
1(

2

1
exp

42

30

π

 

     = 0.5567 
 
Therefore, f4(30)  = 10.336+(1/0.5567) = 12.13 
                    f5(30) = 3 

 
Strategy 3—Condoms 
 

f4(30)  = un  + (1/δn) 

δ30 =



















−Φ− −

2
1

2
)

30

1
1(

2

1
exp

92

30

π
  

     = 0.2474 
 
Therefore, f4(30)  = 26.505+(1/0.2474) = 30.55 
                    f5(30) = 10 
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Strategy 4—Diaphragm 
 

f4(30)  = un  + (1/δn) 

δ30 = 




















−Φ− −

2
1

2
)

30

1
1(

2

1
exp

122

30

π

 

     = 0.1856 
 
Therefore, f4(30)  = 40.007+(1/0.1856) =45.40 
                    f5(30) = 18 

 
D) Plot the cost of each strategy versus both the expected value (f5) and the 
conditional expected value (f4) of the number of conceptions. 
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Figure X.3.1. Cost versus conditional expected value (f4) and expected value 
(f5) for 30 days 

 
ANALYSIS  

Obviously, from the above chart we may conclude that Strategy 4 (diaphragms) is 
an inferior solution.  It is an older technology that is not only expensive to 
implement, but more invasive and less effective.  However, it doesn’t manipulate 
the hormones in the way Strategies 1 (the patch) and 2 (the pill) do.   
 
Strategy 1 has the greatest likelihood of working with the lowest risk, but comes at 
a price.  To control overpopulation, it is likely worth the extra $500/month/100 
people to choose Strategy 1 over Strategy 2, or choose the birth control patch over 
the pill.  The reason for the great change in extreme value is the complication and 
consistency required in using the pill (Strategy 2), that is not required in applying 
the patch (Strategy 1) for the same effectiveness. 
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Strategy 3, issuing condoms for population control, appears to be a less effective 
method. However because of its nature, the number of theoretical conceptions can 
be decreased simply by purchasing a greater number.  A future study may compare 
the greater distribution of condoms (Strategy 3) using the patch (Strategy 1) as a 
benchmark. 
 
By understanding the most effective tools to aid couples in family planning, the 
government can have a means of knowing where to subsidize these efforts.  With 
government subsidies the population growth can become better controlled, which 
will lead to greater efficiency in existing education, transportation, and related 
infrastructures.  Ultimately, population control will lead to a developing country’s 
economic stability and growth and enhance the population’s standard of living. 
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PROBLEM X.4: Effective Snow Removal in a City 

The goal of this problem is to use extreme event analysis derived from historical 
snow precipitation data to analyze different policies for efficient removal of 
roadway snow accumulation. 
 
The Department of Transportation in a particular city is concerned with keeping a 
city’s roadways free of snow and ice during the winter months, especially in 
January. They have 4 different policy options on snow removal, and wish to 
improve efficiency.  
 
Analyzing the city’s historical snowfall data revealed that in January, the amount of 
daily snowfall (x in cm) has the following distribution: 
 

( )

















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∫
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du
u
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xX

0

2

2s
2

kln
exp

2

1
08.092.0

92.0

)Pr(

π

if x = 0

if x > 0

 

where s = 1, k = 2.7 (obtained through simulation). 
 
The analysis showed that each of four options has the same effect of changing s and 
k values of the above distribution, such that: 
 

• Policy 1 ~ (s = 1.2, k = 2.0) 

• Policy 2 ~ (s = 1.2, k = 1.5) 

• Policy 3 ~ (s = 1,    k = 2.0) 

• Policy 4 ~ (s = 1,    k = 1.5) 
 
Using the above specifications: 
 
(i) Calculate u30, the most probable 1-month maximum snowfall (cm) for each of 
the above policy options. 

 
(ii) Calculate the probability that maximum snowfall of 20cm would be exceeded. 
What is the corresponding return period of the exceeding 20cm for each of the 
policy options? 
 

(iii) Using the approximation formula ( ) ttuf δ/14 +=⋅ , where ( )tXt utf=δ , 

perform multiobjective tradeoff analysis of ( )⋅5f  vs. monthly cost, and ( )⋅4f  vs. 

monthly cost. Assume that the monthly cost for Policies 1, 2, 3, and 4 are $2M, 
$4M, $5M, and $8M, respectively.  
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PROBLEM X.5: Analyzing Investment Opportunities  

An investor wants to decide between four investment opportunities.  A market 
theory asserts that investment returns, denoted by X, are normally distributed. For 
this problem, we interpret investment returns X as “opportunity losses.” Therefore, 
the upper-tail region in a distribution of such investment returns corresponds to 
events that have low likelihoods of occurrence, but high opportunity losses.  
 
An investor who has faith in this market theory wants to conduct extreme-event 
analysis for the following four long-term bond investment alternatives. For a given 

investment i, the notation Xi~Ni( ii σµ , ) is used to refer to a normal distribution 

with parameters iµ  and iσ , the mean and standard deviation, respectively, of the 

underlying random variable Xi. These parameters are estimated from historical 
annual data. 
 
 (i)  Investment 1: X1~N1(0.047, 0.010); Unit Cost = $10 
 (ii)  Investment 2: X2~N2(0.048, 0.015); Unit Cost = $8 
 (iii)  Investment 3: X3~N3(0.049, 0.020); Unit Cost = $5 
 (iv)  Investment 4: X4~N4(0.050, 0.025); Unit Cost = $4 
 
Procedure: 

 
(a) Calculate the f4 for each investment alternative for n = 20 years. Use the exact 
formulas for f4 of a normal distribution.  
 
(b) For each of the investment alternatives, plot the f4 and f5 values along the x-axis 
and the corresponding costs along the y-axis. Analyze the resulting graph. 
 
(c) Rework (a) using the approximation formulas for un and δn and f4 as follows, 
and calculate the % error relative to the exact values obtained from (a): 
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PROBLEM X.6: Modeling Stream’s Oxygen Concentration 

To determine the concentration of dissolved oxygen in a stream.  The daily level of 
dissolved oxygen (DO) concentration for a stream is assumed to be of normal 
distribution with a mean of 3 mg/L and a standard deviation of 0.5 mg/L.  We 
assume that the DO concentrations between days are statistically independent. 
 
Using extreme event analysis, determine: 
 

a) Determine the one-year most probable maximum DO level. 
b) Determine the probability that the maximum DO level will exceed 5 mg/L 

in a year.  Determine the corresponding return period. 


