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IV. Surrogate Worth Tradeoff 
 

 

 

 

PROBLEM IV.1: Selecting the Location of a New University Bus Stop 

A university plans to add a shuttle stop near the stadium, aimed at helping students 
to easily walk to their classrooms and a dining hall.  
 
DESCRIPTION 

 

If the stadium is the center of the coordinates, the classroom building is at (100, 
300) and the dining hall is at (200, 400). We assume that 1) students can walk 
directly to either of them from the bus stop, and that 2) the stadium area has the 
space for it. Where should we locate this new bus stop so that the walking distance 
can be shortest? 
 
METHODOLOGY 

 

The objective of this problem is to minimize the walking distance from the bus 
stop. We use the Surrogate Worth Tradeoff (SWT) method to determine a bus stop 
location that will satisfy both destinations. 
 
The objective function is: 
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Because the number in the square-root operation is always equal to or larger than 
zero, the objective function is actually the same as: 
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SOLUTION 

 

First convert Eq. (1) into the ε -constraint form presented by Eq. (2): 
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Form the Lagrangian function: 
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By Kuhn-Tucker necessary conditions, derive Eqs. (4) to (8): 
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Equation (IV.1.4) yields:  
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Equation (IV.1.5) yields 
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From Eqs, (IV.1.8) and (IV.1.9) we get: 
 

400

300

200

100

2

2

1

1
12

−

−
−=

−

−
−=

x

x

x

x
λ  

 

20012 += xx      (IV.1.10) 

 

Upper and lower limits on 1x  and 2x  may easily be derived by satisfying Eqs. 

(IV.1.8) and (IV.1.9), as follows: 

400300

200100

2

1

<<

<<

x

x
 



Station Location     83 

 
Samples of Pareto-optimal solutions are shown in Table IV.1.1. 

 

Table IV.1.1.  Noninferior Solutions and Tradeoff Values 

1x  2x  1 1 2( , )f x x  2 1 2( , )f x x  12λ  

110 310 200 16200 0.1111 
120 320 800 12800 0.2500 
140 340 3200 7200 0.6667 
160 360 7200 3200 1.5000 
180 380 12800 800 4.0000 

The values of surrogate worth functions generated by the decisionmaker selecting 

this bus stop are tabulated as 12W  in the following table: 

 

 

Table IV.1.2. Noninferior Solutions, Tradeoff Values, and Surrogate Worth 

Function Values 

1x  2x  ),( 211 xxf  ),( 212 xxf  12λ  12W  

110 310 200 16200 0.1111 +8 

120 320 800 12800 0.2500 +6 

140 340 3200 7200 0.6667 +3 

150 350 5000 5000 1 0 

160 360 7200 3200 1.5000 -3 

180 380 12800 800 4.0000 -6 

When 12W  = 0, we get a preferred solution: 350,150 21 == xx . 
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Figure IV.1.1. Noninferior Solution in the Functional Space 

 

 
 

Figure IV.1.2. Noninferior Solution in the Decision Space 
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Figure IV.1.3. Tradeoff Function λ12 (f2) versus f2(x) 

 
ANALYSIS 

From the plots in Figures IV.1.1 to IV.1.3, if the decision is on the Pareto frontier 
and we want a smaller f2(x)—that is, a shorter distance to the classroom building, 
both λ12  and f1 will be increased. As shown in Figure IV.1.1, if we want a smaller f2 
value than that of Point A, it could be Point B (on the Pareto frontier) or Point C ( 
not on the Pareto frontier), and Points A and B both have larger f1 values. This 
means we could not obtain more benefit (a shorter distance to classes) from f2 
without sacrificing f1 (i.e., students will have a longer walk to the dining hall). 
Similarly, on the Pareto frontier we could not obtain more benefit from f1 without 
sacrificing f2. This validates the Pareto solution yielded above. 
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PROBLEM IV.2: Investing in Stock Market and Small Family Business 

The purpose of this problem is to maximize profit by allocating a person’s time and 
budget on the stock market and a small family business. 
 
DESCRIPTION 

Todd has a total of $20,000 to split up between investing in the stock market and 
reinvesting in a small family business. He has 8 hours available every day to divide 
between researching stocks and working on his small business.  It goes without 
saying that he wants to maximize the profit of both his stock investment and his 
business pursuit. 
 
METHODOLOGY 

We use the Surrogate Worth Tradeoff Method (SWT) to solve this multiobjective 
problem. 
 
Let x1 denote the hours Todd would spend in researching stocks, and x2 the amount 
of money (measured in thousands of dollars) he would invest in the stock market.  

Also, let ),( 211 xxf  denote the profit he could make through stock investment in 5 

years, and ),( 212 xxf  denote the profit he could make from his business in 5 

years.  Now let us describe ),( 211 xxf  and ),( 212 xxf  by the following 

simplified mathematical relations: 
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Hence, we can formulate our problem in the following fashion: 
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SOLUTION 

This is a typical multiobjective tradeoff problem.  We need to find the noninferior 
solution as well as the Pareto-optimal one via analysis based on the Kuhn-Tucker 
theorem.  To facilitate our analysis, we first reformulate the model in the standard 
ε -constraint form: 
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The Lagrangian formulation is defined as: 
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The Kuhn-Tucker conditions lead to: 
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Since 012 >λ guarantees a noninferior solution, (IV.2.10)–(IV.2.12) leads to 
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From (IV.2.8) and (IV.2.9) we know that: 
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Eqs. (IV.2.13), (IV.2.14), and (IV.2.15) together determine the Pareto-optimal 
solution to our problem.  Table IV.2.1 shows the data which is depicted in Figure 
IV.2.1 (the noninferior solution in the decision space).  Figure IV.2.2 depicts the 
solution in the functional space.  Needless to say, the negativeness of the slope 

represents the tradeoff, i.e., .
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Table IV.2.1: Noninferior Solutions and Tradeoff Values 

1x  2x  ),( 211 xxf  ),( 212 xxf  12λ  

0.5 1.29 0.78 140.35 0.08 

1.0 2.64 3.10 121.51 0.17 

1.5 4.05 6.92 103.68 0.26 

2.0 5.49 12.15 87.04 0.37 

2.5 6.96 18.68 71.73 0.49 

3.0 8.43 26.35 57.87 0.63 

3.5 9.88 35.00 45.55 0.79 

4.0 11.29 44.44 34.82 0.98 

4.5 12.66 54.48 25.68 1.23 

5.0 13.97 64.91 18.10 1.55 

5.5 15.20 75.55 12.01 1.99 

6.0 16.34 86.23 7.32 2.64 

6.5 17.40 96.78 3.90 3.71 

7.0 18.36 107.06 1.64 5.83 

7.5 19.23 116.97 0.39 12.17 

7.99 19.99 126.24 0.00 631.66 
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ANALYSIS 

In this example, we have discovered the noninferior solution and the Pareto 
optimum for a multiobjective tradeoff problem (see Figure IV.2.1).  Figure IV.2.2 
shows the tradeoffs that Todd has to make to arrive at his decision. 
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Figure IV.2.1. Noninferior solutions in the decision space 
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Figure IV.2.2. Noninferior solutions in the functional space 
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PROBLEM IV.3:  Finding a Student Apartment 

The purpose of this problem is to find an apartment that provides easier access to a 
particular university and requires the minimum possible rent cost. 
 
DESCRIPTION 

A student is looking for an apartment near the university. For an apartment to be 
“optimal,” it must be inexpensive and allow for a quick, easy commute to campus.  
Thus, two of the student’s objectives are to minimize cost and to minimize 
commute time.  
 
METHODOLOGY 

For this multiobjective problem, we use the Surrogate Worth Tradeoff (SWT) 
method to calculate the tradeoffs between the two objectives to be minimized: rent 
cost (f1) and commuting time (f2). 
 
The two decision variables used to optimize these objectives are: distance (x1, in 
kilometers) and access (x2, a subjective score of how easy the commute is with a 
smaller absolute value being much easier).  Off-campus housing does not start until 
three-quarters of a kilometer away from school, and commute time is measured in 
minutes. 
 
SOLUTION 

In functional form, the objective functions are as follows: 
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Translating this into the ε -constraint form gives: 
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where f2 is the minimum of the second objective function. 
 
The Lagrangian function for this optimization problem is: 
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Taking the partial derivatives from this function and using the Kuhn-Tucker 
conditions yields: 
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, where 012 >λ  ensures Pareto optimality. 

 
Solving (IV.3.1) and (IV.3.2) for lambda yields: 
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ANALYSIS 

Plotting this in the decision space gives the student a picture of how the two 
decision variables relate to each other, as shown in Figure IV.3.1. 
 
Plotting the values of the two objective functions gives a picture of the Pareto-
optimal frontier, as shown in Figure IV.3.2. 
 
Figures IV.3.1 and IV.3.2 show that the student can expect to pay a lower rent if the 
residence is farther away from the campus. However, this benefit can be offset by 
the longer commute. Thus, these two factors construct a noninferior solution 
frontier. Considering this frontier would help the student select his or her optimal 
accommodation. 
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Figure IV.3.1. Noninferior Solution in Decision Space 

 

 
 

Figure IV.3.2. Noninferior Solution in Functional Space 
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PROBLEM IV.4: Balancing Exercise and Sleep  

A student wants to exercise every morning, but also likes to sleep longer. 
 

DESCRIPTION 

A student likes to work out for 60 minutes in the morning, but she only has that 
much free time before classes begin. The physiological benefit of exercise per 
minute increases the longer she works out. Because she is usually up late studying, 
she would also like to be able to sleep longer. Obviously, the longer she sleeps, the 
less time she can spend at the gym. In other words, the increase in rest per minute 
sleeping in will decrease the time for working out.  
 
METHODOLOGY 

In order to analyze the tradeoff between the two objectives of increased rest and 
increased benefit from exercise, we utilized the Surrogate Worth Tradeoff (SWT) 
method. 
 

SOLUTION 

The first step is to develop the following model: 
 
Definition of variables: 

 
R = rest (units of well-being) 
E = benefit of exercise (units of health) 
r = sleeping in (activity) 
e = exercising (activity) 
Ti = time spent on activity i (min), where i = {r, e}  
 
Decision variables 
 

fR = objective function, maximize rest 
fE = objective function, maximize benefit from exercise 
 
Model: 

 
E = (TE/30)2 
R = (TR/15)1/2 

fR = max {R} = max {(TR/15)1/2} 
fE = max {E} = max {(TE/30)2 } 
 s.t. TR + TE ≤ 60  
       TR ≥ 0 
       TE ≥ 0 
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Figure IV.4.1. Well-being and Health in the Decision Space 

 
Therefore, if TR + TE < 60, one objective could be improved without compromising 
the other.  However, this situation cannot be Pareto optimal because time spent 
sleeping in plus time spent exercising must equal 60 minutes. 
 
Given TR + TE = 60, the student can solve for TE and substitute the solution into the 
first objective function.  The two objectives then become: 
 
fR = max {R} = max {(TR/15)1/2 } 
fE = max {E} = max {((60-TR)/30)2} 
 s.t. 0 ≤ TR ≤ 60 
 
Multiobjective problems like this one can also be restructured as a single objective 
problem by converting the other objectives into constraints. This is done by 
mandating that the function meet some minimal requirement.  By doing this, a 
Lagrangian function can be formed that incorporates the minimum requirements for 
additional objectives into one objective function.  According to the Surrogate 
Worth Tradeoff Method (SWT), the value of the Lagrangian multiplier can be 
found by taking the negative of the derivative of one function divided by the 
derivative of the other.  The Lagrangian multiplier, denoted by λE,R, is the cost or 
value added to the objective function per unit of change in the constraint or second 
objective function.  In this case, the Lagrangian multiplier is as follows: 
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ANALYSIS 

In the SWT, λE,R must not be negative.  Examining this equation, it can be seen that 
the feasible region for a noninferior solution is 0 ≤ TR ≤ 60.  This confirms the 
bounds previously established for time spent in sleeping. 
 
The following Table IV.4.1 and Figure IV.4.2, IV.4.3 and IV.4.4 show and 
illustrate noninferior solutions to this multiobjective problem: 
 

Table IV.4.1.  Noninferior Solution and Tradeoff Values 

TE TR fE fR λE,R 

0 60 0 2 0 
15 45 0.25 1.73 0.12 
30 30 1 1.41 0.19 
45 15 2.25 1 0.2 
60 0 4 0 ∞ 
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Figure IV.4.2. Noninferior Solution in the Functional Space 
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Figure IV.4.3. Noninferior Solution in the Decision Space 
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Figure IV.4.4. Tradeoff Function  λE,R versus fR
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PROBLEM IV.5: Survival and Colonization in Space   

Planet Zysk has had space travel for several centuries and its inhabitants have 
traveled to all the planets in its solar system.  Their science is extremely well-
advanced, and the planet’s scientists and top administrators have been aware for 
some time that their sun would become a supernova sometime within the next 300–
700 years.  The projected date of the disaster is still somewhat unclear, but for the 
past 100 years, the planet’s scientists have been trying desperately to develop a 
faster-than-light (FTL) spaceship to transport its population to other solar systems 
so that they can survive the coming catastrophe.  They have finally succeeded.  The 
spaceship has been tested and is successful over fairly short distances (several light-
years), and the planet’s leaders are now turning their attention to planning 
colonizing expeditions. 
 
DESCRIPTION 

As soon as practicable, Planet Zysk wants to send off as many expeditions as 
possible so that they can learn which colonies are most successful in order to plan 
full-scale evacuations.  From their previous planetary expeditions, Zysk’s scientists 
have developed a so-called survival index. This helps them to estimate the chances 
of survival of both the colony ship and the colony itself.  It is not known whether 
this index is completely applicable to long-range FTL expeditions, but this must be 
used in lieu of any other information. 
 
METHODOLOGY 

From empirical data, the scientists have also formed a function which predicts the 
amount of time necessary to prepare expeditions of different sizes.  They hope to 
minimize their time function while maximizing their survival index.  Like those on 
Earth, Planet Zysk’s risk analysts have developed the Surrogate Worth Trade-off 
(SWT) method. They will use this to help them decide how long they should take to 
prepare and how many Zyskians to send on the expeditions.  Because the SWT 
method is meant to minimize two functions, Zysk’s scientists realize that 
maximizing the positive survival index is the same as minimizing the negative 
survival index.   Both survival index and time are functions of the numbers of 
Zyskians and the number of pounds of equipment that will be sent. 
 
A panel of three leading scientists will decide on the worth of any choices given: 
whether time should be minimized at the expense of the survival index; or the 
opposite.  There is a general consensus, before looking at the figures, that one Zysk 
year (1003 of their days) is probably a reasonable time to shoot for, but there is 
considerable disagreement on what the Negative Survival Index (NSI) should be—
figures range from -2000 to as high (or low) as -9000. 
 
Decision Variables: 

x1 = number of Zyskians to be on any one ship 
x2 = number of pounds of equipment to be sent on any ship 
 



98     Surrogate Worth Tradeoff 

 

Problem Statement: 

These are the functions which are to be minimized: 
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SOLUTION 
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Minimize 403
2

2
2

11 ++= xxf  

 s.t. 2
2

2
2

12 )10(
2

1
)50(5 ε≤−−−−= xxf   

  
02

222

≥

+≥

δ

δε f
 

 
2) Lagrangian: 

 

])10(
2

1
)50(5[403

)(),,(

2
2

2
2

112
2

2
2

1

221211221

ελ

ελλ

−−−−−+++=

−+=

xxxx

ffxxL

 

 
3) Apply Kuhn-Tucker necessary conditions: 
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4) Solve for 12λ in each and set them equal: 
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The data are illustrated in the following tables and figures.  
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Table IV.5.1. Noninferior Solutions 

 
               Time     Negative Survivability 

x1          x2                 x1
2 + 3x2

2 + 40         -5(x1-5)2 – ½(x2-10)2 

50.1 10.63694 2,889.44  -10,170 

50.2 11.35747 2,947.02  -10,216 

50.3 12.17918 3,015.09  -10,263 

50.4 13.125 3,096.96  -10,311 

50.5 14.22535 3,197.33  -10,360 

50.6 15.52147 3,323.11  -10,412 

50.7 17.07071 3,484.72  -10,467 

50.8 18.95522 3,698.54  -10,528 

50.9 21.29707 3,991.51  -10,598 

51.0 24.28571 4,410.39  -10,682 

51.1 28.23204 5,042.35  -10,792 

51.2 33.68421 6,065.32  -10,953 

51.3 41.70732 7,890.19  -11,221 

51.4 54.68085 11,651.95  -11,763 

51.5 79.23077 21,524.79  -13,208 

51.6 143.3333 64,335.89  -19,747 

51.7 738.5714 1,639,176.16  -276,313 
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Figure IV.5.1. Noninferior solution in the functional space 
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ANALYSIS 

 
Table IV.5.2. Noninferior Solutions and Trade-off Values 

 

      x1         x2          1f         2f        12λ      Worth 

50.1 10.63694        2,889.44  -10,170 100.2 5 

50.5 14.22535        3,197.33  -10,360 20.2 4 

51 24.28571        4,410.39  -10,682 10.2 3 

51.2 33.68421           6,065.32  -10,953 8.533333 1 

51.5 79.23077      21,524.79  -13,208 6.866667 -2 

51.7 738.5714     1,639,176.16  -276,313 6.082353 -4 
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Figure IV.5.2. Surrogate worth trade-off curve 

 
1) Time is minimal here but the negative survival index (NSI) is not 

desirable—its absolute value is too low to ensure much chance of survival 
at all (remember, we are minimizing the NSI so we want it to be as 
negative as possible—in other words, to have as great an absolute value as 
possible). 

2) Time has increased to over three Zysk years, which is still well within the 
desired time frame; NSI is still not desirable for those who wish the 
expeditions to be greater in quality than quantity, so the general consensus 
is to allow a longer interval for preparation. 

3) Time is now over four Zysk years, and the NSI is better, but the panel’s 
average worth function still indicates that a further trade-off of time for a 
negative NSI is fairly desirable. 

4) At this point, some of the panel obviously feels that an increase in NSI 
negativity is getting less and less worth the increase in time; however, the 
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average worth function still slightly favors allowing more time for trip 
preparation. 

5) Here the average worth function clearly indicates that any further trade-off 
of time for NSI is undesirable; we have passed the minimum that even the 
most conservative members of the panel felt was necessary, and it is more 
important to minimize time. 

6) This point is clearly desirable to all. 
 
There are several technologies currently under development that might cause 
Zyskians to change their evolution of worth at the points above. For instance, there 
is great hope that a way can be found to transport embryos so that reproductive 
capability need not be a prime consideration of whom to send.  If so, fewer adults 
would need to be sent for breeding purposes, freeing up space for much-needed 
specialists in various fields.  This might change the NSI sufficiently to alter the 
relative worth of some points on the curve.  Also, if an error has been found in 
calculating when the sun will become a supernova, or if new information on that 
event becomes available, a change in the number of years left before the 
catastrophe would alter the trade-off decisions. For example, if the sun were to 
become a supernova in 100 years instead of 300, time would become increasingly 
dear. 
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PROBLEM IV.6: Solving a Problem with Two Non-linear Objectives  

A student is asked to develop the non-inferior solutions and a table of trade-off 
values to minimize two objective functions simultaneously. 
 

Using the data, the student also is asked to plot the non-inferior solution in both the 
decision space and the functional space. 
 
The two objective functions are as follows: 

Minimize f1(x1, x2) = x1
2
 + 2(x2 – 1)2

 + 4 

  f2(x1, x2) = (x1 – 4)2
 + x2

2
 + 3 
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PROBLEM IV.7: Employment and Inflation 

Consider the relationship between employment (or unemployment) and inflation in 
a national economy: 
 

This example problem involves at least two objective functions. It is desirable that 
both of them, unemployment and inflation, be minimized. Determine a preferred 
solution for a computer company that needs to reduce its staff without contributing 
to an increase in inflation.  
 
Use the Surrogate Worth Trade-off (SWT) method to generate Pareto-optimal 
solutions (at least 5) and their associated trade-offs.  
 
Let U(x1,x2) be the unemployment function.  Let I(x1,x2) be the inflation function 
where x1 = money supply and x2 = government spending. (Assume that the federal 
bank of this government has no independence; therefore the money supply is also 
controlled by the executive branch.  Also, inflation is measured by the price index.  
Dividing by 100 gives us the inflation rate.) 
 
Decision Variables: 

 
 x1 = money supply  

x2 = government spending 
 

Problem Statement: 

 
These are the functions which are to be minimized: 

Unemployment = 
2

2
2

121 100),( xxxxU −−=  

Inflation = 
3

2
3

121 ),( xxxxI +=  

 
Use the Surrogate Worth Trade-off (SWT) method to generate Pareto-optimal 
solutions (at least 5) and their associated trade-offs.  
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PROBLEM IV.8: Risk-Return Tradeoff for an Investment Decision 

 

Investors do not usually hold a single asset; they hold groups of assets referred to as 
a portfolio. The following is a partial list of the possible financial instruments that 
investors can consider: 

• Money market: US Treasury bills (T-bills), Bonds 

• Currency market  

• Stock market 
 
Portfolio investing assumes that for a given level of return, an investor would prefer 
less risk. Similarly, an investor would prefer a higher return for a given level of 
risk. Some financial assets, such as T-bills, bonds and notes, are considered to be 
risk-free because they yield a fixed rate of return. Unlike these, stocks have an 
element of risk. This risk-return tradeoff is the motivation for this analysis to focus 
on stock investments.  
 
Several simplifications were employed in the analysis. As mentioned above, the 
scope was limited to the stock market only, and to two stocks in particular – 
Compaq (CPQ) and Microsoft (MSFT). Additionally, the analyses were based on 
the following assumptions: 

• In this problem, a stock’s return is based purely on the price changes for 
several time periods. 

• There is no lending and borrowing. 

• Transaction costs are not taken into consideration. 

• Uninvested money earns no return (for simplification purposes), x1 + x2 < 
1. 

 
Two stocks were selected for the analysis—COMPAQ (CPQ) and Microsoft 
(MSFT). Five-years (1995-1999) of data on their annual rates of return (AROR) 
were recorded, as shown in Table IV.8.1. 
 

Table IV.8.1.  AROR of Stocks CPQ and MSFT for Years 1995-1999 

 

  1995 1996 1997 1998 1999 r 

Stock i=1 (CPQ) 0.55 0.90 0.49 -0.36 -0.08 0.30 

Stock i=2 (MSFT) 0.88 0.56 1.15 0.68 -0.09 0.64 

 
r is the average rate of return (AROR) for the stocks, computed as: 
 

∑
=

=
5

1
5

1

j

ijrr  , where i = Stocks 1 (CPQ) and 2 (MSFT), and j = Periods 1 to 5. 
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Expected Return (mean) of a Combination of Assets: 
 
The expected return of a combination of n assets is just the sum of the expected 
value of each return.  
 

2121 )( rrrrE +=+  

 
The return on a portfolio of assets rP is now simply a weighted average of the return 
on the individual assets, where xi is the fraction of the investor’s funds invested in 

the ith asset. 
 

),(64.03.0 211212211 xxfxxrrxrxr pp ⇒+=⇔+=  

 
Risk of a Combination of Assets: 

 
The variance is the expected value of the squared deviations from the mean return 
on the portfolio:  
 

2
Pσ  2)( PP rrE −=  

 )()()( ' xxQx T=  

 
where Q is the covariance of the stocks and is given by: 
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Risk (σp
2) can be expressed as: 
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The requirement of this problem is to use the Surrogate Worth Tradeoff (SWT) 
method to perform multiobjective optimization with respect to the two objectives: 
f1 (expected return), and f2 (risk). Generate a plot of the Pareto optimal solutions in 
both decision space and functional space.  
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PROBLEM IV.9: Carcinogenic Chemicals in a New Product 

Company X is expanding their product line by producing Product Y.  This 
product’s main ingredients are Chemical A and Chemical B, both of which are 
carcinogenic.   
 

The labor union has requested that an occupational exposure limit (OEL) be 
established for Chemicals A and B, for the following reasons: (1) both chemicals 
are listed as a human carcinogen by the International Agency for Research on 
Cancer (IARC), and (2) neither chemical is regulated by the Occupational Safety 
and Health Administration (OSHA).  Company X’s management has tasked its 
Safety Department with developing an OEL, which would minimize the number of 
cancer incidents and costs associated with the new product. 
 
Use the Surrogate Worth Tradeoff (SWT) method to analyze risk of cancer 
incidents with respect to associated costs. 
 
The relationships for i) exposure to incident cancers (f1) and ii) costs of exposure to 
Chemicals A and B (f2) are the following: 
 

f1(DA, DB) = 1 +  DA + DB
2   

f2(DA, DB) = 100 + 16(DA + DB) – (DA + DB)2 
 
where: 

f1(DA, DB) = cancer incidents as a function of exposure 
f2(DA, DB) = cost as a function of exposure 

DA = exposure to Chemical A 
DB = exposure to Chemical B 
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PROBLEM IV.10: Building a New Rubber Manufacturing Plant 

A Taiwan company is one of the main rubber-product suppliers in the world. It 
plans to establish a new plant in a new industry zone located on the southwestern 
coast of Taiwan. The company is attempting to produce two new rubber products 
which will make it occupy more market share. However, these two products will 
surely cause a change in air pollution. Today, most people in Taiwan are very 
aware of environmental protection problems. Before the local government 
approved the plant proposal, there was a large-scale citizens’ protest in front of city 
hall and the Mayor promised that the government would supervise the plant 
closely. The rubber company will pay extra fees to deal with the pollution problem. 
How can the company management maximize profits while minimizing the cost for 
environmental protection? 
 
Solve the following multiobjective optimization model using the Surrogate Worth 
Tradeoff (SWT) method. 
 

(max profit)  f1(x1,x2) = (5x1-12)2+(3x2-5)2  
(min cost)  f2(x1,x2) = 4x1

2+3x2
2+2x1x2 

 
x1 :  tons of product @ 1 per unit per day 
x2 :  tons of product @ 2 per unit per day 
f1 : profit model in terms of unit price and cost, which includes fixed and 

variable components 
f2 :  cost model for dealing with environmental protection 
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PROBLEM IV.11: Providing Security for a College Concert 

The purpose of this problem is to minimize the injuries and the cost of the security 
in a rock star performance at a concert hall. 
 
A university is planning to have a rock star perform at its concert hall.  In order for 
the event to go smoothly and ensure future business, the university would like to 
minimize the number of injuries at the event (f1).  At the same time, they would like 
to minimize the cost of security (f2).  Because a majority of injuries occur closest to 
the stage, those planning the concert would like to determine the optimal amount of 
security officers to deploy to the stage area (x1) per hour.  In addition, security 
officers must also be dispersed throughout the rest of the arena to guarantee the 
safety of the entire audience. This will be another decision variable, x2, which will 
also be on a per hour basis.  It is known that the concert hall has a maximum 
capacity of 15,000 attendees, which is reflected in the first objective function.  The 
officers deployed around the stage are in a more chaotic situation and may have a 
better chance of dealing with injury.  Because of this, they are given a little more 
pay than those officers standing guard throughout the arena.  The two objective 
functions can be seen below: 
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Solve the multiobjective problem described above and plot the injury and security 
cost tradeoff using the Surrogate Worth Tradeoff (SWT) Method. 
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PROBLEM IV.12: Marikina River Overflow Modeling 

The Marikina River overflow scenario in the Philippines is a chronic problem. 
Hence, the analysis and modeling of the impact of the river overflows requires 
significant attention and management by policymakers. 
 

The objective of this problem is to identify the impact of the current policy decision 
on future concerns using the multiobjective multi-stage risk impact assessment 
method. In particular, the channel overflow scenario will be formulated as a 
multiobjective optimization problem. 
 

The Surrogate Worth Trade-off (SWT) method is useful in multiobjective 
problems. Faced with multiple objectives, the approach is to select a primary 
objective and optimize this while constraining the decisions considered so that the 
other objectives are attained even at minimum levels. A set of Pareto optimal points 
are generated and trade-off analysis can precede with single or multiple decision 
makers. 
 

In this particular problem, use SWT to optimize the following two objectives: 
 

• Minimize investment cost (f1) 

• Minimize risk of flood (f2) 
 

Investment cost:   2)7()3(),( 2
2

2
1211 +−+−= xxxxf    

Risk of flood damage: 7)10()8(),( 2
2

2
1212 +−+−= xxxxf   

 
where:   x1 = number of floodways built 

x2 = number of drainage systems established 
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PROBLEM IV.13: Designing an Enormous Ice-Cream Cone 

The purpose of this problem is to find optimal height and radius for ice-cream cone 
that maximizes its volume while minimizing its surface. 
 

Every summer, ice-cream companies are likely to do promotions for increasing 
their sales. One company wants to make the biggest ice-cream cone while it uses 
the smallest amount of materials just for advertising display. What should the 
radius and the height of the ice-cream cone be?  
 

Solve this problem using the Surrogate Worth Tradeoff (SWT) method to calculate 
the volume and surface tradeoffs for the ice-cream cone. 
 

Function for volume:  
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Function for surface area 

( ) 22
2 , HRRHRf += π  

 

where heightHradiusR :,:  


