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Preface
These notes serve as course notes for an undergraduate course in number the- ory. Most if not all universities worldwide offer introductory courses in number theory for math majors and in many cases as an elective course.

The notes contain a useful introduction to important topics that need to be ad- dressed in a course in number theory. Proofs of basic theorems are presented in an interesting and comprehensive way that can be read and understood even by non-majors with the exception in the last three chapters where a background in analysis, measure theory and abstract algebra is required. The exercises are care- fully chosen to broaden the understanding of the concepts. Moreover, these notes shed light on analytic number theory, a subject that is rarely seen or approached by undergraduate students. One of the unique characteristics of these notes is the careful choice of topics and its importance in the theory of numbers. The freedom is given in the last two chapters because of the advanced nature of the topics that are presented.

Thanks to professor Pavel Guerzhoy from University of Hawaii for his contri- bution in chapter 6 on continued fraction and to Professor Ramez Maalouf from Notre Dame University, Lebanon for his contribution to chapter 8.
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Chapter 1
Introduction
Integers are the building blocks of the theory of numbers. This chapter contains somewhat very simple and obvious observations starting with properties of inte- gers and yet the proofs behind those observations are not as simple. In this chapter we introduce basic operations on integers and some algebraic definitions that will be necessary to understand basic concepts in this book.  We then introduce the Well ordering principle which states basically that every set of positive integers has a smallest element. Proof by induction is also presented as an efficient method for proving several theorems throughout the book. We proceed to define the con- cept of divisibility and the division algorithm. We then introduce the elementary but fundamental concept of a greatest common divisor (gcd) of two integers, and the Euclidean algorithm for finding the gcd of two integers.  We end this chap- ter with Lame’s Lemma on an estimate of the number of steps in the Euclidean algorithm needed to find the gcd of two integers.
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1.1 
Algebraic  Operations With Integers
The set Z of all integers, which this book is all about, consists of all positive and negative integers as well as 0. Thus Z is the set given by

Z = {..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...}. 
(1.1) While the set of all positive integers, denoted by N, is defined by

N = {1, 2, 3, 4, ...}. 
(1.2)

On Z, there are two basic binary operations, namely addition  (denoted by +) and multiplication (denoted by ·), that satisfy some basic properties from which every other property for Z emerges.

1. The Commutativity property  for addition  and multiplication
a + b = b + a a · b = b · a
2. Associativity property  for addition  and multiplication
(a + b) + c   =  a + (b + c) (a · b) · c   =  a · (b · c)
3. The distributivity  property  of multiplication over addition
a · (b + c)   =  a · b + a · c.
1.2. THE WELL ORDERING PRINCIPLE AND MATHEMATICAL INDUCTION9

In the set Z there are ”identity elements” for the two operations + and ·, and these are the elements 0 and 1 respectively, that satisfy the basic properties

for every a ∈ Z.

a + 0 = 0 + a = a a · 1 = 1 · a = a
The set Z allows additive inverses for its elements, in the sense that for every

a ∈ Z there exists another integer in Z, denoted by −a, such that

a + (−a) = 0. 
(1.3) While for multiplication, only the integer 1 has a multiplicative  inverse in the

sense that 1 is the only integer a such that there exists another integer, denoted by
a−1 or by 1/a, (namely 1 itself in this case) such that

a · a−1 = 1. 
(1.4) From the operations of addition and multiplication one can define two other

operations on Z, namely subtraction (denoted by −) and division (denoted by
/).  Subtraction is a binary operation on Z, i.e. defined for any two integers in Z, while division is not a binary operation and thus is defined only for some specific couple of integers in Z. Subtraction and division are defined as follows:

1. a − b is defined by a + (−b), i.e. a − b = a + (−b) for every a, b ∈ Z
2. a/b is defined by the integer c if and only if a = b · c.

1.2 
The Well Ordering Principle and Mathematical
Induction
In this section, we present three basic tools that will often be used in proving prop- erties of the integers. We start with a very important property of integers called

10
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the well ordering principle. We then state what is known as the pigeonhole prin- ciple, and then we proceed to present an important method called mathematical induction.

1.2.1 
The Well Ordering Principle
The Well Ordering Principle: A least element exist in any non empty set of pos- itive integers.

This principle can be taken as an axiom on integers and it will be the key to proving many theorems.  As a result, we see that any set of positive integers is well ordered while the set of all integers is not well ordered.

1.2.2 
The Pigeonhole  Principle
The Pigeonhole Principle:  If s objects are placed in k boxes for s > k, then at least one box contains more than one object.

Proof.  Suppose that none of the boxes contains more than one object. Then there are at most k objects. This leads to a contradiction with the fact that there are s objects for s > k.
1.2.3 
The Principle of Mathematical Induction
We now present a valuable tool for proving results about integers. This tool is the principle of mathematical induction .

Theorem  1. The First Principle of Mathematical Induction:  If a set of positive integers has the property that, if it contains the integer k, then it also contains
1.2. THE WELL ORDERING PRINCIPLE AND MATHEMATICAL INDUCTION11

k + 1, and if this set contains 1 then it must be the set of all positive integers. More generally, a property concerning the positive integers that is true for n = 1, and that is true for the integer n + 1 whenever it is true for the integer n, must be true for all positive integers.
We use the well ordering principle to prove the first principle of mathematical induction

Proof.  Let S be the set of positive integers containing the integer 1, and the integer k + 1 whenever it contains k.  Assume also that S is not the set of all positive integers. As a result, there are some integers that are not contained in S and thus those integers must have a least element α by the well ordering principle. Notice that α = 1 since 1 ∈ S. But α − 1 ∈ S and thus using the property of S, α ∈ S. Thus S must contain all positive integers.

We now present some examples in which we use the principle of induction.

Example 1. Use mathematical induction to show that ∀n ∈ N

X j = n(n + 1) . 
(1.5)
2
First note that


j=1
X j = 1 = 1 · 2
2
j=1
and thus the the statement is true for n  = 1.  For the remaining inductive step,

suppose that the formula holds for n, that is Pn

j = n(n+1) . We show that

X j = (n + 1)(n + 2) .
2
j=1
to complete the proof by induction. Indeed

n+1
n
X j = X j + (n + 1) = n(n + 1) + (n + 1) = (n + 1)(n + 2) ,
j=1

2
2
j=1
and the result follows.

12
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Example  2. Use mathematical induction to prove that n!  ≤ nn  for all positive integers n.
Note that 1! = 1 ≤ 11  = 1. We now present the inductive step. Suppose that

n! ≤ nn
for some n, we prove that (n + 1)! ≤ (n + 1)n+1 . Note that

(n + 1)! = (n + 1)n! ≤ (n + 1).nn < (n + 1)(n + 1)n = (n + 1)n+1 .
This completes the proof.

Theorem  2. The Second Principle of Mathematical Induction:  A set of positive integers that has the property that for every integer k, if it contains all the integers
1 through k then it contains k + 1 and if it contains 1 then it must be the set of all positive integers. More generally, a property concerning the positive integers that is true for n = 1, and that is true for all integers up to n + 1 whenever it is true for all integers up to n, must be true for all positive integers.
The second principle of induction is also known as the principle  of strong induction.   Also, the first principle of induction is known as the principle  of weak induction.
To prove the second principle of induction, we use the first principle of induc- tion.

Proof.  Let T be a set of integers containing 1 and such that for every positive integer k, if it contains 1, 2, ..., k, then it contains k + 1. Let S be the set of all positive integers k such that all the positive integers less than or equal to k are in T . Then 1 is in S, and we also see that k + 1 is in S. Thus S must be the set of all positive integers. Thus T must be the set of all positive integers since S is a subset of T .

1.3. DIVISIBILITY AND THE DIVISION ALGORITHM
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Exercises
1. Prove using mathematical induction that n < 3n for all positive integers n.
2. Show that Pn

j2 = n(n+1)(2n+1)
3. Use mathematical induction to prove that Pn

(−1)j−1j2  = (−1)n−1 n(n+
1)/2.
4. Use mathematical induction to prove that Pn


j3 = [n(n+1)/2]2 for every

positive integer n.
5. Use mathematical induction to prove that Pn


(2j − 1) = n2
6. Use mathematical induction to prove that 2n < n! for n ≥ 4.
7. Use mathematical induction to prove that n2  < n! for n ≥ 4.
1.3 
Divisibility and the Division Algorithm
We now discuss the concept of divisibility and its properties.

1.3.1 
Integer Divisibility
Definition 1. If a and b are integers such that a = 0, then we say ”a divides b” if there exists an integer k such that b = ka.
If a divides b, we also say ”a is a factor of b” or ”b is a multiple of a” and we write a |  b.  If a doesn’t divide b, we write a - b.  For example 2 |  4 and 7 |  63, while 5 - 26.

Example  3. a) Note that any even integer has the form 2k for some integer k, while any odd integer has the form 2k + 1 for some integer k.  Thus 2|n if n is even, while 2 - n if n is odd.

14
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b) ∀a ∈ Z one has that a | 0.

c) If b ∈ Z is such that |b| < a, and b = 0, then a - b.
Theorem  3. If a, b and c are integers such that a | b and b | c, then a | c.

Proof.  Since a | b and b | c, then there exist integers k1  and k2  such that b = k1a
and c = k2b. As a result, we have c = k1k2 a and hence a | c.

Example 4. Since 6 | 18 and 18 | 36, then 6 | 36.
The following theorem states that if an integer divides two other integers then it divides any linear combination of these integers.

Theorem  4. If a, b, c, m and n are integers, and if c  |   a and c  |   b, then c  |
(ma + nb).
Proof.  Since c |  a and c |  b, then by definition there exists k1  and k2  such that

a = k1c and b = k2 c. Thus

ma + nb = mk1c + nk2c = c(mk1  + nk2 ),
and hence c | (ma + nb).
Theorem 4 can be generalized to any finite linear combination as follows. If

a | b1 , a | b2 , ..., a | bn
then



n
a | X kj bj
(1.6)
j=1
for any set of integers k1, · · · , kn  ∈ Z.  It would be a nice exercise to prove the
generalization by induction.

1.3. DIVISIBILITY AND THE DIVISION ALGORITHM
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1.3.2 
The Division Algorithm
The following theorem states somewhat an elementary but very useful result.

Theorem  5. The Division Algorithm If a and b are integers such that b > 0, then there exist unique integers q and r such that a = bq + r where 0 ≤ r < b.
Proof.  Consider the set A = {a − bk ≥ 0 |  k ∈ Z}.  Note that A is nonempty since for k <  a/b,  a − bk > 0.  By the well ordering principle, A has a least element r = a − bq for some q. Notice that r ≥ 0 by construction. Now if r ≥ b then (since b > 0)

r > r − b = a − bq − b = a − b(q + 1) =≥ 0.
This leads to a contradiction since r is assumed to be the least positive integer of the form r = a − bq. As a result we have 0 ≤ r < b.
We will show that q and r are unique.  Suppose that a = bq1 + r1 and a =
bq2 + r2 with 0 ≤ r1 < b and 0 ≤ r2 < b. Then we have

b(q1  − q2 ) + (r1 − r2) = 0.
As a result we have

Thus we get that



b(q1  − q2) = r2 − r1.
b | (r2 − r1).
And since − max(r1 , r2) ≤ |r2  − r1| ≤ max(r1, r2 ), and b > max(r1, r2 ), then
r2 − r1  must be 0, i.e. r2  = r1. And since bq1 + r1 = bq2 + r2 , we also get that

q1  = q2 . This proves uniqueness.

Example 5. If a = 71 and b = 6, then 71 = 6 · 11 + 5. Here q = 11 and r = 5.

Exercises
1. Show that 5 | 25, 19 | 38 and 2 | 98.

16
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2. Use the division algorithm to find the quotient and the remainder when 76 is divided by 13.

3. Use the division algorithm to find the quotient and the remainder when -100 is divided by 13.

4. Show that if a, b, c and d are integers with a and c nonzero, such that a |  b
and c | d, then ac | bd.

5. Show that if a and b are positive integers and a | b, then a ≤ b.
6. Prove that the sum of two even integers is even, the sum of two odd integers is even and the sum of an even integer and an odd integer is odd.

7. Show that the product of two even integers is even, the product of two odd integers is odd and the product of an even integer and an odd integer is even.

8. Show that if m is an integer then 3 divides m3  − m.
9. Show that the square of every odd integer is of the form 8m + 1.

10. Show that the square of any integer is of the form 3m or 3m + 1 but not of the form 3m + 2.

11. Show that if ac | bc, then a | b.
12. Show that if a | b and b | a then a = ±b.
1.4 
Representations of Integers in Different Bases
In this section, we show how any positive integer can be written in terms of any positive base integer expansion in a unique way. Normally we use decimal nota- tion to represent integers, we will show how to convert an integer from decimal notation into any other positive base integer notation and vise versa.  Using the

1.4. REPRESENTATIONS OF INTEGERS IN DIFFERENT BASES
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decimal notation in daily life is simply better because we have ten fingers which facilitates all the mathematical operations.

Notation An integer a written in base b expansion is denoted by (a)b .

Theorem  6. Let b be a positive integer with b > 1. Then any positive integer m
can be written uniquely as
m = al bl  + al

1bl−1  + ... + a b + a ,
−
1 
0
where l is a positive integer, 0 ≤ aj < b for j = 0, 1, ..., l and al  = 0.
Proof.  We start by dividing m by b and we get

m = bq0 + a0, 
0 ≤ a0  < b. If q0  = 0 then we continue to divide q0  by b and we get q0  = bq1  + a1, 
0 ≤ a1  < b.
We continue this process and hence we get

	q1
	=
.
	bq2 + a2, 
0 ≤ a2  < b,

	
	.
	

	
	.
	

	ql−2
ql−1
	=
=
	bql−1  + al−1,
0 ≤ al−1 < b,

b · 0 + al , 
0 ≤ al  < b.


Note that the sequence q0, q1 , ... is a decreasing sequence of positive integers with a last term ql  that must be 0.

Now substituting the equation q0  = bq1 + a1  in m = bq0 + a0, we get

m = b(bq1  + a1 ) + a0  = b2q1  + a1 b + a0,
18
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Successively substituting the equations in m, we get

m   =  b3q2  + a2b2  + a1 b + a0,
.
.
.
=  bl ql


1  + a


bl−1  + ... + a b + a ,
− 
l−1
1 
0
=  al bl  + al


1bl−1  + ... + a b + a .
−
1 
0
What remains to prove is that the representation is unique. Suppose now that

m = al bl  + al

1 bl−1  + ... + a1b + a0

= cl bl  + c



l−1

bl−1  + ... + c1b + c0
where if the number of terms is different in one expansion, we add zero coeffi- cients to make the number of terms agree.  Subtracting the two expansions, we

get

(al  − cl )bl  + (al

−1 − c



l−1

)bl−1  + ... + (a1

− c1)b + (a0

− c0) = 0.
If the two expansions are different, then there exists 0 ≤ j ≤ l such that cj  = aj .
As a result, we get

bj ((al   − cl )bl−j  + ... + (aj+1 − cj+1 )b + (aj  − cj )) = 0
and since b = 0, we get

(al  − cl )bl−j  + ... + (aj+1 − cj+1 )b + (aj  − cj ) = 0.
We now get



aj − cj  = (al  − cl )bl−j  + ... + (aj+1 − cj+1 )b,

and as a result, b  |  (aj  − cj ).  Since 0 ≤ aj  < b and 0 ≤ cj   < b, we get that
aj = cj . This is a contradiction and hence the expansion is unique.

1.4. REPRESENTATIONS OF INTEGERS IN DIFFERENT BASES
19

Note that base 2 representation of integers is called binary representation. Bi- nary representation plays a crucial role in computers. Arithmetic operations can be carried out on integers with any positive integer base but it will not be addressed in this book. We now present examples of how to convert from decimal integer representation to any other base representation and vise versa.

Example 6. To find the expansion of 214 base 3:
we do the following

	214
	=
	3 · 71 + 1

	71
	=
	3 · 23 + 2

	23
	=
	3 · 7 + 2

	7
	=
	3 · 2 + 1

	2
	=
	3 · 0 + 2


As a result, to obtain a base 3 expansion of 214, we take the remainders of divi- sions and we get that (214)10  = (21221)3.
Example 7. To find the base 10 expansion, i.e. the decimal expansion, of (364)7:
We do the following: 4 · 70  + 6 · 71  + 3 · 72  = 4 + 42 + 147 = 193.

In some cases where base b > 10 expansion is needed, we add some characters to represent numbers greater than 9.  It is known to use the alphabetic letters to denote integers greater than  9 in base b expansion for b  > 10.  For example (46BC 29)13  where A = 10, B = 11, C = 12.

To convert from one base to the other, the simplest way is to go through base

10 and then convert to the other base. There are methods that simplify conversion from one base to the other but it will not be addressed in this book.

Exercises
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1. Convert (7482)10  to base 6 notation.

2. Convert (98156)10  to base 8 notation.

3. Convert (101011101)2  to decimal notation.

4. Convert (AB6C 7D)16   to decimal notation.

5. Convert (9A0B)16   to binary notation.

1.5 
The Greatest Common  Divisor
In this section we define the greatest common divisor (gcd) of two integers and discuss its  properties.  We also prove that the greatest common divisor of two integers is a linear combination of these integers.

Two integers a and b, not both 0, can have only finitely many divisors, and thus can have only finitely many common divisors. In this section, we are interested in the greatest common divisor of a and b. Note that the divisors of a and that of

| a | are the same.

Definition 2. The greatest common divisor of two integers a and b is the greatest integer that divides both a and b.
We denote the greatest common divisor of two integers a and b by (a, b). We also define (0, 0) = 0.

Example  8. Note that the greatest common divisor of 24 and 18 is 6.  In other words (24, 18) = 6.

There are couples of integers (e.g.  3 and 4, etc...)  whose greatest common divisor is 1 so we call such integers relatively prime integers.

Definition 3. Two integers a and b are relatively prime if (a, b) = 1.

1.5. THE GREATEST COMMON DIVISOR
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Example 9. The greatest common divisor of 9 and 16 is 1, thus they are relatively prime.

Note that every integer has positive and negative divisors.  If a is a positive divisor of m, then −a is also a divisor of m.  Therefore by our definition of the greatest common divisor, we can see that (a, b) = (| a |, | b |).
We now present a theorem about the greatest common divisor of two integers. The theorem states that if we divide two integers by their greatest common divisor, then the outcome is a couple of integers that are relatively prime.

Theorem  7. If (a, b) = d then (a/d, b/d) = 1.

Proof.  We will show that a/d  and b/d have no common positive divisors other than 1. Assume that k is a positive common divisor such that k | a/d  and k | b/d. As a result, there are two positive integers m and n such that

a/d  = km   and b/d = kn
Thus we get that



a = kmd   and b = knd.
Hence kd is a common divisor of both a and b. Also, kd ≥ d. However, d is the
greatest common divisor of a and b. As a result, we get that k = 1.

The next theorem shows that the greatest common divisor of two integers does not change when we add a multiple of one of the two integers to the other.

Theorem  8. Let a, b and c be integers. Then (a, b) = (a + cb, b).
Proof.  We will show that every divisor of a and b is also a divisor of a + cb and b and vise versa.  Hence they have exactly the same divisors. So we get that the greatest common divisor of a and b will also be the greatest common divisor of a + cb and b. Let k be a common divisor of a and b. By Theorem 4, k | (a + cb)
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and hence k is a divisor of a + cb. Now assume that l is a common divisor of a + cb

and b. Also by Theorem 4 we have ,

l | ((a + cb) − cb) = a.
As a result, l is a common divisor of a and b and the result follows.

Example 10. Notice that (4, 14) = (4, 14 − 3 · 4) = (4, 2) = 2.

We now present a theorem which proves that the greatest common divisor of two integers can be written as a linear combination of the two integers.

Theorem  9. The greatest common divisor of two integers a and b, not both 0 is the least positive integer such that ma + nb = d for some integers m and n.
Proof.  Assume without loss of generality that a and b are positive integers. Con- sider the set of all positive integer linear combinations of a and b. This set is non empty since a = 1 · a + 0 · b and b = 0 · a + 1 · b are both in this set. Thus this set has a least element d by the well-ordering principle. Thus d = ma + nb for some integers m and n. We have to prove that d divides both a and b and that it is the greatest divisor of a and b.
By the division algorithm, we have

a = dq + r,
0 ≤ r < d.
Thus we have

r = a − dq = a − q(ma + nb) = (1 − qm)a − qnb.
We then have that r is a linear combination of a and b.  Since 0 ≤ r < d and d is the least positive integer which is a linear combination of a and b, then r = 0 and a = dq. Hence d |  a.  Similarly d |  b.  Now notice that if there is a divisor c that divides both a and b. Then c divides any linear combination of a and b by Theorem 4. Hence c | d. This proves that any common divisor of a and b divides d. Hence c ≤ d, and d is the greatest divisor.

1.5. THE GREATEST COMMON DIVISOR
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As a result, we conclude that if (a, b) = 1 then there exist integers m and n
such that ma + nb = 1.

Definition 4. Let a1 , a2, ..., an be integers, not all 0. The greatest common divisor of these integers is the largest integer that divides all of the integers in the set. The greatest common divisor of a1, a2 , ..., an is denoted by (a1, a2 , ..., an ).
Definition 5. The integers a1, a2 , ..., an are said to be mutually relatively prime if

(a1, a2, ..., an ) = 1.

Example 11. The integers 3, 6, 7 are mutually relatively prime since (3, 6, 7) = 1

although (3, 6) = 3.

Definition 6. The integers a1, a2 , ..., an are called pairwise prime if for each i = j, we have (ai , aj ) = 1.

Example 12. The integers 3, 14, 25 are pairwise relatively prime. Notice also that these integers are mutually relatively prime.

Notice that if a1 , a2, ..., an are pairwise relatively prime then they are mutually relatively prime.

Exercises
1. Find the greatest common divisor of 15 and 35.

2. Find the greatest common divisor of 100 and 104.

3. Find the greatest common divisor of -30 and 95.

4. Let m be a positive integer.  Find the greatest common divisor of m and

m + 1.
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5. Let m be a positive integer, find the greatest common divisor of m and

m + 2.

6. Show that if m and n are integers such that (m, n) = 1, then (m+n,m-n)=1 or 2.

7. Show that if m is a positive integer, then 3m + 2 and 5m + 3 are relatively prime.

8. Show that if a and b are relatively prime integers, then (a + 2b, 2a + b) = 1or

3.

9. Show that if a1, a2, ..., an  are integers that are not all 0 and c is a positive integer, then (ca1 , ca2, ..., can ) = c(a1 , a2, ...an ).
1.6 
The Euclidean Algorithm
In this section we describe a systematic method that determines the greatest com- mon divisor of two integers. This method is called the Euclidean algorithm.

Lemma  1. If a and b are two integers and a = bq + r where also q and r are integers, then (a, b) = (r, b).
Proof.  Note that by theorem 8, we have (bq + r, b) = (b, r).
The above lemma will lead to a more general version of it. We now present the Euclidean algorithm in its general form. It states that the greatest common divisor of two integers is the last non zero remainder of the successive division.

Theorem  10. Let a = r0 and b = r1 be two positive integers where a ≥ b. If we apply the division algorithm successively to obtain that
rj  = rj+1 qj+1  + rj+2  where 0 ≤ rj+2 < rj+1
1.6. THE EUCLIDEAN ALGORITHM
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for all j = 0, 1, ..., n − 2 and
rn+1 = 0.
Then (a, b) = rn .

Proof.  By applying the division algorithm, we see that

	r0
r1
	=
=
.
	r1q1  + r2
r2q2  + r3
	0 ≤ r2 < r1,
0 ≤ r3 < r2,

	
	.
	
	

	
	.
	
	

	rn−2
rn−1
	=
=
	rn−1qn−1  + rn
rn qn .
	0 ≤ rn < rn−1,


Notice that, we will have a remainder of 0 eventually since all the remainders are integers and every remainder in the next step is less than the remainder in the previous one. By Lemma 1, we see that

(a, b) = (b, r2 ) = (r2, r3) = ... = (rn , 0) = rn .
Example 13. We will find the greatest common divisor of 4147 and 10672:
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Note that

	10672
	=
	4147 · 2 + 2378,

	4147
	=
	2378 · 1 + 1769,

	2378
	=
	1769 · 1 + 609,

	1769
	=
	609 · 2 + 551,

	609
	=
	551 · 1 + 58,

	551
	=
	58 · 9 + 29,

	58
	=
	29 · 2,


Hence (4147, 10672) = 29.

We now use the steps in the Euclidean algorithm to write the greatest common divisor of two integers as a linear combination of the two integers. The following example will actually determine the variables m and n described in Theorem 9. The following algorithm can be described by a general form but for the sake of simplicity of expressions we will present an  example that shows the steps for obtaining the greatest common divisor of two integers as a linear combination of the two integers.

Example 14. Express 29 as a linear combination of 4147 and 10672:

1.6. THE EUCLIDEAN ALGORITHM
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29  =  551 − 9 · 58,
=  551 − 9(609 − 551 · 1),
=  10.551 − 9.609,

=  10 · (1769 − 609 · 2) − 9 · 609,

=  10 · 1769 − 29 · 609,

=  10 · 1769 − 29(2378 − 1769 · 1),
=  39 · 1769 − 29 · 2378,

=  39(4147 − 2378 · 1) − 29 · 2378,

=  39 · 4147 − 68 · 2378,

=  39 · 4147 − 68(10672 − 4147 · 2),
=  175 · 4147 − 68 · 10672,

As a result, we see that 29 = 175 · 4147 − 68 · 10672.

Exercises
1. Use the Euclidean algorithm to find the greatest common divisor of 412 and
32 and express it in terms of the two integers.
2. Use the Euclidean algorithm to find the greatest common divisor of 780 and
150 and express it in terms of the two integers.
3. Find the greatest common divisor of 70, 98, 108.

4. Let a and b be two positive even integers. Prove that (a, b) = 2(a/2, b/2).
5. Show that if a and b are positive integers where a is even and b is odd, then
(a, b) = (a/2, b).
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1.7 
Lame’s Theorem
In this section, we give an estimate to the number of steps needed to find the greatest common divisor of two integers using the Euclidean algorithm. To do this, we have to introduce the Fibonacci numbers for the sake of proving a lemma that gives an estimate on the growth of Fibonacci numbers in the Fibonacci sequence. The lemma that we prove will be used in the proof of Lame’s theorem.

Definition 7. The Fibonacci sequence is defined recursively by f1  = 1, f2  = 1, and
fn = fn−1  + fn−2for  n ≥ 3.
The terms in the sequence are called Fibonacci numbers.

In the following lemma, we give a lower bound on the growth of Fibonacci numbers.  We  will show that Fibonacci numbers grow faster than a geometric

series with common ratio α = (1 + √5)/2.
Lemma 2. For n ≥ 3, we have fn  > αn−2 where α = (1 + √5)/2.
Proof.  We use the second principle of mathematical induction to prove our result. It is easy to see that this is true for n = 3 and n = 4. Assume that αk−2 < fk for all integers k where k  ≤  n.  Now since α is a solution of the polynomial x2  − x − 1 = 0, we have α2  = α + 1. Hence

αn−1 = α2.αn−3  = (α + 1).αn−3  = αn−2 + αn−3 .
By the inductive hypothesis, we have

αn−2 < fn , 
αn−3 < fn


−1.
After adding the two inequalities, we get

αn−1 < fn + fn


−1 = f


n+1 .
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We now present Lame’s theorem.

Theorem  11. using the Euclidean algorithm to find the greatest common divisor of two positive integers has number of divisions less than or equal five times the number of decimal digits in the minimum of the two integers.
Proof.  Let a and b be two positive integers where a > b. Applying the Euclidean algorithm to find the greatest common divisor of two integers with a = r0 and b = r1, we get

	r0
r1
	=
=
.
	r1q1  + r2
r2q2  + r3
	0 ≤ r2 < r1,
0 ≤ r3 < r2,

	
	.
	
	

	
	.
	
	

	rn−2
rn−1
	=
=
	rn−1qn−1  + rn
rn qn .
	0 ≤ rn < rn−1,


Notice that each of the quotients q1, q2 , ..., qn−1  are all greater than 1 and qn  ≥ 2

and this is because rn < rn−1. Thus we have

	rn rn−1 rn−2 rn−3
	≥
≥
≥
≥
.
	1 = f2 ,
2rn  ≥ 2f2  = f3,
rn−1  + rn ≥ f3 + f2 = f4, rn−2  + rn−1  ≥ f4 + f3 = f5,

	
	.
	

	
	.
	

	r2
b
	≥
=
	r3 + r4 ≥ fn−1  + fn−2  = fn ,
r1  ≥ r2 + r3 ≥ fn + fn−1  = fn+1 .
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Thus notice that b ≥ fn+1 . By Lemma 2, we have fn+1 > αn−1 for n > 2. As a result, we have b > αn−1. Now notice since

we see that

Thus we have



1 log10 α > 5 ,
log10 b > (n − 1)/5. n − 1 < 5log10 b.

Now let b has k decimal digits. As a result, we have b < 10k  and thus log10 b < k. Hence we conclude that n − 1 < 5k.  Since k is an integer, we conclude that n ≤ 5k.

Exercises
1. Find an upper bound for the number of steps in the Euclidean algorithm that is used to find the greatest common divisor of 38472 and 957748838.

2. Find an upper bound for the number of steps in the Euclidean algorithm that is used to find the greatest common divisor of 15 and 75. Verify your result by using the Euclidean algorithm to find the greatest common divisor of the two integers.

Chapter 2
Prime Numbers
Prime numbers, the building blocks of integers, have been studied extensively over the centuries. Being able to present an integer uniquely as product of primes is the main reason behind the whole theory of numbers and behind the interesting results in this theory.  Many interesting theorems, applications and conjectures have been formulated based on the properties of prime numbers.

In this chapter, we present methods to determine whether a number is prime or composite using an ancient Greek method invented by Eratosthenes. We also show that there are infinitely many prime numbers. We then proceed to show that every integer can be written uniquely as a product of primes.

We introduce as well the concept of diophantine equations where integer so- lutions from given equations are determined using the greatest common divisor. We then mention the Prime Number theorem without giving a proof of course in addition to other conjectures and major results related to prime numbers.

2.1 
The Sieve of Eratosthenes
Definition 8. A prime is an integer greater than 1 that is only divisible by 1 and itself.
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Example 15. The integers 2, 3, 5, 7, 11 are prime integers.
Note that any integer greater than 1 that is not prime is said to be a composite

number.

We now present the sieve of Eratosthenes.  The Sieve of Eratosthenes is an ancient method of finding prime numbers up to a specified integer. This method was invented by the ancient Greek mathematician Eratosthenes. There are several other methods used to determine whether a number is prime or composite.  We first present a lemma that will be needed in the proof of several theorems.

Lemma 3. Every integer greater than one has a prime divisor.

Proof.  We present the proof of this Lemma by contradiction. Suppose that there is an integer greater than one that has no prime divisors. Since the set of integers with elements greater than one with no prime divisors is nonempty, then by the well ordering principle there is a least positive integer n greater than one that has no prime divisors. Thus n is composite since n divides n. Hence

n = abwith 1 < a < nand  1 < b < n.
Notice that a < n and as a result since n is minimal, a must have a prime divisor which will also be a divisor of n.
Theorem  12. If n is a composite integer, then n has a prime factor not exceeding

√n.
Proof.  Since n is composite, then n = ab, where a and b are integers with 1 <
a ≤ b < n. Suppose now that a > √n, then
√n < a ≤ b
and as a result



ab > √n √n = n.
2.1. THE SIEVE OF ERATOSTHENES
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Therefore a ≤ √n.  Also, by Lemma 3, a must have a prime divisor a1  which is also a prime divisor of n and thus this divisor is less than a1  ≤ a ≤ √n.
We now present the algorithm of the Sieve of Eratosthenes that is used to de- termine prime numbers up to a given integer.

The Algorithm of the Sieve of Eratosthenes
1. Write a list of numbers from 2 to the largest number n you want to test.

Note that every composite integer less than n must have a prime factor less than √n.  Hence you need to strike off the multiples of the primes that are

less than √n
2. Strike off all multiples of 2 greater than 2 from the list . The first remaining number in the list is a prime number.

3. Strike off all multiples of this number from the list.

4. Repeat the above steps until no more multiples are found of the prime inte- gers that are less than √n
Exercises
1. Use the Sieve of Eratosthenes to find all primes less than 100.

2. Use the Sieve of Eratosthenes to find all primes less than 200.

3. Show that no integer of the form a3  + 1 is a prime except for 2 = 13  + 1.

4. Show that if 2n − 1 is prime, then n is prime.

Hint: Use the identity (akl  − 1) = (ak  − 1)(ak(l−1) + ak(l−2) + ... + ak  + 1).
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2.2 
The infinitude  of Primes
We now show that there are infinitely many primes.  There are several ways to prove this result.  An alternative proof to the one presented here is given as an exercise.  The proof we  will provide was presented by Euclid in his book the Elements.

Theorem  13. There are infinitely many primes.

Proof.  We present the proof by contradiction.  Suppose there are finitely many primes p1, p2 , ..., pn , where n is a positive integer.  Consider the integer Q such that

Q = p1p2 ...pn + 1.
By Lemma 3, Q has at least a prime divisor, say q. If we prove that q is not one of the primes listed then we obtain a contradiction. Suppose now that q = pi for

1 ≤ i  ≤ n.  Thus q divides p1 p2...pn  and as a result q divides Q − p1 p2...pn .
Therefore q divides 1. But this is impossible since there is no prime that divides 1 and as a result q is not one of the primes listed.

The following theorem discusses the large gaps between primes.  It simply states that there are arbitrary large gaps in the series of primes and that the primes are spaced irregularly.

Theorem  14. Given any positive integer n, there exists n consecutive composite integers.
Proof.  Consider the sequence of integers

(n + 1)! + 2, (n + 1)! + 3, ..., (n + 1)! + n, (n + 1)! + n + 1
Notice that every integer in the above sequence is composite because k divides

(n + 1)! + k if 2 ≤ k ≤ n + 1 by 4.
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Exercises
1. Show that the integer Qn  = n! + 1, where n is a positive integer, has a prime divisor greater than n. Conclude that there are infinitely many primes. Notice that this exercise is another proof of the infinitude of primes.

2. Find the smallest five consecutive composite integers.

3. Find one million consecutive composite integers.

4. Show that there are no prime triplets other than 3,5,7.

2.3 
The Fundamental Theorem  of Arithmetic
The Fundamental Theorem of Arithmetic is one of the most important results in this chapter. It simply says that every positive integer can be written uniquely as a product of primes. The unique factorization is needed to establish much of what comes later. There are systems where unique factorization fails to hold. Many of these examples come from algebraic number theory. We can actually list an easy example where unique factorization fails.

Consider the class C of positive even integers.  Note that C is closed under multiplication, which means that the product of any two elements in C is again in C . Suppose now that the only number we know are the members of C . Then we have 12 = 2.6 is composite where as 14 is prime since it is not the product of two numbers in C . Now notice that 60 = 2.30 = 6.10 and thus the factorization is not unique.

We now give examples of the unique factorization of integers.

Example 16. 99 = 3 · 3 · 11 = 32  · 11,
32 = 2 · 2 · 2 · 2 · 2 = 25
36
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2.3.1 
The Fundamental Theorem of Arithmetic
To prove the fundamental theorem of arithmetic, we need to prove some lemmas about divisibility.

Lemma 4. If a,b,c are positive integers such that (a, b) = 1 and a | bc, then a | c.

Proof.  Since (a, b) = 1, then there exists integers x, y such that ax + by = 1. As a result, cax + cby = c. Notice that since a |  bc, then by Theorem 4, a divides cax + cby and hence a divides c.
We can generalize the above lemma as such:  If (a,ni ) = 1 for every i  =
1, 2, · · · , n and a  |   n1n2  · · · nk+1 , then a  |   nk+1 .  We next prove a case of this generalization and use this to prove the fundamental theorem of arithmetic.

Lemma 5. If p divides n1 n2 n3...nk , where p is a prime and ni  > 0 for all 1 ≤
i ≤ k, then there is an integer j with 1 ≤ j ≤ k such that p | nj .

Proof.  We present the proof of this result by induction.  For k  = 1, the result is trivial.  Assume now that the result is true for k. Consider n1 n2 ...nk+1 that is divisible by p. Notice that either

(p, n1n2...nk ) = 1 or (p, n1n2...nk ) = p.
Now if (p, n1 n2 ...nk ) = 1 then by Lemma 4, p | nk+1 . Now if p | n1n2...nk , then by the induction hypothesis, there exists an integer i such that p | ni .

We now state the fundamental theorem of arithmetic and present the proof using Lemma 5.

Theorem  15. The Fundamental Theorem of Arithmetic Every positive integer different from 1 can be written uniquely as a product of primes.

2.3. THE FUNDAMENTAL THEOREM OF ARITHMETIC
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Proof.  If n is a prime integer, then n itself stands as a product of primes with a single factor. If n is composite, we use proof by contradiction. Suppose now that there is some positive integer that cannot be written as the product of primes. Let n be the smallest such integer.  Let n = ab, with 1 < a < n and 1 < b  < n. As a result a and b are products of primes since both integers are less than n. As a result, n = ab is a product of primes, contradicting that it is not.  This shows that every integer can be written as product of primes.  We now prove that the representation of a positive integer as a product of primes is unique. Suppose now that there is an integer n with two different factorizations say

n = p1p2 ...ps  = q1 q2...qr
where p1, p2 , ...ps , q1 , q2, ...qr  are primes,

p1  ≤ p2  ≤ p3  ≤ ... ≤ ps and q1  ≤ q2  ≤ q3  ≤ ... ≤ qr .
Cancel out all common primes from the factorizations above to get

pj1 pj2 ...pju   = qi1 qi2 ...qiv
Thus all the primes on the left side are different from the primes on the right side. Since any pjl   (l = 1, · · · , n) divides pj1 pj2 ...pju , then pjl   must divide qi1 qi2 ...qiv , and hence by Lemma 5, pj1   must divide qjk   for some 1 ≤ k ≤ v which is impos- sible. Hence the representation is unique.

Remark 1. The unique representation  of a positive integer n as a product of primes can be written in several ways.  We will present the most common rep-
resentations.  For example, n  = p1p2p3 ...pk   where pi   for 1  ≤ i  ≤ k are not
necessarily distinct. Another example would be

n = pa1 pa2 pa3 ...paj

(2.1)
1 
2 
3 
j
where all the pi  are distinct for 1 ≤ i ≤ j. One can also write a formal product
n =
Y
all primes pi


pαi , 
(2.2)
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where all but finitely many of the α0 s are 0.

Example 17. The prime factorization of 120 is given by 120 = 2·2·2·3·5 = 23 ·3·5. Notice that 120 is written in the two ways described in 1.

We know describe in general how prime factorization can be used to determine the greatest common divisor of two integers. Let

a = pa1 pa2 ...pan

and b = pb1 pb2 ...pbn ,
1
2
n

1      2 
n
where we exclude in these expansions any prime p with power 0 in both a and b (and thus some of the powers above may be 0 in one expansion but not the other). Of course, if one prime pi  appears in a but not in b, then ai = 0 while bi  = 0, and

vise versa. Then the greatest common divisor is given by

(a, b) = pmin(a1 ,b2 )

min(a2 ,b2 )
1 
p2 
...pmin(an ,bn )
where min(n, m) is the minimum of m and n.
The following lemma is a consequence of the Fundamental Theorem of Arith- metic.

Lemma 6. Let a and b be relatively prime positive integers. Then if d divides ab, there exists d1  and d2  such that d = d1 d2  where d1  is a divisor of a and d2  is a divisor of b. Conversely, if d1  and d2  are positive divisors of a and b, respectively, then d = d1 d2  is a positive divisor of ab.

Proof.  Let d1   = (a, d) and d2   = (b, d).  Since (a, b) = 1 and writing a and b in terms of their prime decomposition, it is clear that d = d1d2   and (d1 , d2 ) = 1. Note that every prime power in the factorization of d must appear in either d1  or d2. Also the prime powers in the factorization of d that are prime powers dividing a must appear in d1  and that prime powers in the factorization of d that are prime powers dividing b must appear in d2.
2.3. THE FUNDAMENTAL THEOREM OF ARITHMETIC
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Now conversely, let d1   and d2   be positive divisors of a and b, respectively. Then

is a divisor of ab.


d = d1d2
2.3.2 
More on the Infinitude of Primes
There are also other theorems that discuss the infinitude of primes in a given arith- metic progression. The most famous theorem about primes in arithmetic progres- sion is Dirichlet’s theorem

Theorem 16. Dirichlet’s Theorem Given an arithmetic progression of terms an + b , for n = 1, 2, ... ,the series contains an infinite number of primes if a and b are relatively prime,

This result had been conjectured by Gauss but was first proved by Dirichlet. Dirichlet proved this theorem using complex analysis, but the proof is so chal- lenging. As a result, we will present a special case of this theorem and prove that there are infinitely many primes in a given arithmetic progression. Before stating the theorem about the special case of Dirichlet’s theorem, we prove a lemma that will be used in the proof of the mentioned theorem.

Lemma 7. If a and b are integers both of the form 4n + 1, then their product ab

is of the form 4n + 1

Proof.  Let a = 4n1  + 1 and b = 4n2  + 1, then

ab = 16n1n2   + 4n1  + 4n2  + 1 = 4(4n1n2   + n1  + n2) + 1 = 4n3  + 1,
where n3  = 4n1 n2  + n1  + n2.
Theorem  17. There are infinitely many primes of the form 4n + 3, where n is a positive integer.
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Proof.  Suppose that there are finitely many primes of the form 4n + 3, say p0  =
3, p1, p2 , ..., pn . Let

N = 4p1p2 ...pn + 3.
Notice that any odd prime is of the form 4n + 1 or 4n + 3. Then there is at least one prime in the prime factorization of N of the form 4n + 3, as otherwise, by Lemma 7, N will be in the form 4n + 1. We wish to prove that this prime in the factorization of N is none of p0  = 3, p1, p2 , ..., pn . Notice that if

3 | N,
then 3 | (N − 3) and hence


3 | 4p1p2...pn
which is impossible since pi = 3 for every i. Hence 3 doesn’t divide N . Also, the other primes p1 , p2, ..., pn  don’t divide N because if pi  | N , then

pi  | (N − 4p1p2...pn ) = 3.
Hence none of the primes p0 , p1, p2, ..., pn   divides N. Thus there are infinitely many primes of the form 4n + 3.

Exercises
1. Find the prime factorization of 32, of 800 and of 289.

2. Find the prime factorization of 221122 and of 9!.

3. Show that all the powers of in the prime factorization of an integer a are even if and only if a is a perfect square.

4. Show that there are infinitely many primes of the form 6n + 5.

2.4. LEAST COMMON MULTIPLE
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2.4 
Least Common  Multiple
We can use prime factorization to find the smallest common multiple of two pos- itive integers.

Definition 9. The least common multiple (l.c.m.) of two positive integers is the smallest positive integer that is a multiple of both.

We denote the least common multiple of two positive integers a an b by ha, bi.
Example 18. h2, 8i = 8, h5, 8i = 40

We can figure out ha, bi once we have the prime factorization of a and b.  To do that, let

a = pa1 pa2 ...pan

and b = pb1 pb2 ...pbn ,
1
2
m

1      2 
m
where (as above) we exclude any prime with 0 power in both a and b.   Then

max(a1 ,b1 )

max(a2 ,b2 )

max(an ,bn )
ha, bi  = p1 
p2 
...pm 
, where max(a, b) is the maximum of
the two integers a and b. We now prove a theorem that relates the least common multiple of two positive integers to their greatest common divisor. In some books, this theorem is adopted as the definition of the least common multiple. To prove the theorem we present a lemma

Lemma 8. If a and b are two real numbers, then

min(a, b) + max(a, b) = a + b
Proof.  Assume without loss of generality that a ≥ b. Then

max(a, b) = a  and  min(a, b) = b,
and the result follows.

Theorem  18. Let a and b be two positive integers. Then

1. ha, bi ≥ 0;
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2. ha, bi = ab/(a, b);
3. If a | m and b | m, then ha, bi | m
Proof.  The proof of part 1 follows from the definition. As for part 2, let

a = pa1 pa2 ...pan and b = pb1 pb2 ...pbn .
Notice that since


1 
2 
m

1      2 
m
(a, b) = pmin(a1 ,b2 )

min(a2 ,b2 )
1 
p2 
...pmin(an ,bn )
and


max(a1 ,b1 )


max(a2 ,b2 )
then

ha, bi = p1 
p2 
...pmax(an ,bn ) ,
max(a1 ,b1 )

max(a2 ,b2 )

min(a1 ,b2 )

min(a2 ,b2 )
ha, bi(a, b)   =  p1 
p2 
...pmax(an ,bn )p1 
p2

...pmin(an ,bn )
=  pmax(a1 ,b1 )+min(a1 ,b1 )

max(a2 ,b2 )+min(a2 ,b2 )
1 
p2 
...pmax(an ,bn )+min(an ,bn )
=  pa1 +b1

a2 +b2

(an +bn )
1 
p2 
...pn
=  pa1 pa2 ...pan pb1 pb2 ...pbn   = ab
1 
2 
m    1     2 
m
Note also that we used Lemma 8 in the above equations. For part 3, it would be a nice exercise to show that ab/(a, b) | m (Exercise 6). Thus ha, bi | m.
Exercises
1. Find the least common multiple of 14 and 15.

2. Find the least common multiple of 240 and 610.

3. Find the least common multiple and the greatest common divisor of 2556 7211

and 23 587213.

4. Show that every common multiple of two positive integers a and b is divis- ible by the least common multiple of a and b.
2.5. LINEAR DIOPHANTINE EQUATIONS
43

5. Show that if a and b are positive integers then the greatest common divisor of a and b divides their least common multiple. When are the least common multiple and the greatest common divisor equal to each other.

6. Show that ab/(a, b) | m where m =< a, b >.
2.5 
Linear Diophantine Equations
In this section, we discuss equations in two variables called diophantine equations. These kinds of equations require integer solutions. The goal of this section is to present the set of points that determine the solution to this kind of equations. Geo- metrically speaking, the diophantine equation represent the equation of a straight line. We need to find the points whose coordinates are integers and through which the straight line passes.

Definition 10. A linear equation of the form ax + by = c where a, b and c are integers is known as a linear diophantine equation.
Note that a solution to the linear diophantine equation (x0, y0) requires x0 and y0   to be  integers.  The following theorem describes the case in which the diophantine equation has a solution and what are the solutions of such equations.

Theorem  19. The equation ax + by = c has integer solutions if and only if d | c where d = (a, b). If the equation has one solution x = x0, y = y0, then there are infinitely many solutions and the solutions are given by

x = x0  + (b/d)t
y = y0  − (a/d)t
where t is an arbitrary integer.
Proof.  Suppose that the equation ax + by = c has integer solution x and y. Thus since d | a and d | b, then

d | (ax + by) = c.
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Now we have to prove that if d | c, then the equation has integral solution. Assume that d | c. By theorem 9, there exist integers m and n such that

d = am + bn.
And also there exists integer k such that

c = dk
Now since c = ax + by, we have

c = dk = (ma + nb)k = a(km) + b(nk).
Hence a solution for the equation ax + by = c is

x0  = km  and y0  = kn.
What is left to prove is that we have infinitely many solutions. Let

x = x0  + (b/d)t and y = y0  − (a/d)t.
We have to prove now that x and y are solutions for all integers t. Notice that

ax + by = a(x0  + (b/d)t) + b(y0  − (a/d)t) = ax0  + by0 = c.
We now show that every solution for the equation ax + by = c is of the form

x = x0  + (b/d)tand y = y0  − (a/d)t.
Notice that since ax0  + by0 = c, we have

a(x − x0 ) + b(y − y0) = 0.
Hence



a(x − x0) = b(y − y0).
2.5. LINEAR DIOPHANTINE EQUATIONS
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Dividing both sides by d, we get

a/d(x − x0) = b/d(y − y0 ).
Notice that (a/d, b/d)  = 1 and thus we get by Lemma 4 that a/d  |  y − y0 . As a result, there exists an integer t such that y = y0 − (a/d)t. Now substituting y − y0 in the equation

We get


a(x − x0) = b(y − y0).
x = x0  + (b/d)t.
Example 19. The equation 3x+6y = 7 has no integer solution because (3, 6) = 3

does not divide 7.

Example  20. There are infinitely many integer solutions for the equation 4x +
6y = 8 because (4, 6) = 2 |  8. We use the Euclidean algorithm to determine m and n where 4m + 6n = 2. It turns out that 4(−1) + 6(1) = 2. And also 8 = 2.4. Thus x0  = 4.(−1) = −4 and y0  = 4.1 = 4 is a particular solution. The solutions are given by

for all integers t.
Exercises

x = −4 + 3t
y = 4 − 2t
1. Either find all solutions or prove that there are no solutions for the diophan- tine equation 21x + 7y = 147.

2. Either find all solutions or prove that there are no solutions for the diophan- tine equation 2x + 13y = 31.

3. Either find all solutions or prove that there are no solutions for the diophan- tine equation 2x + 14y = 17.
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4. A grocer orders apples and bananas at a total cost of $8.4. If the apples cost

25 cents each and the bananas 5 cents each, how many of each type of fruit did he order.

2.6 
The function [x] , the symbols ”O”, ”o” and ”∼”
We start this section by introducing an important number theoretic function. We proceed in defining some convenient symbols that will be used in connection with the growth and behavior of some functions that will be defined in later chapters.

2.6.1 
The Function [x]
.

Definition 11. The function [x] represents the largest integer not exceeding x. In other words, for real x, [x] is the unique integer such that
x − 1 < [x] ≤ x < [x] + 1.
We also define ((x))  to be the fractional part of x.  In other words ((x))  =
x − [x].
We now list some properties of [x] that will be used in later or in more advanced courses in number theory.

1. [x + n] = [x] + n, if n is an integer.

2. [x] + [y] ≤ [x + y].
3. [x] + [−x] is 0 if x is an integer and -1 otherwise.

4. The number of integers m for which x < m ≤ y is [y] − [x].
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5. The number of multiples of m which do not exceed x is [x/m].
Using the definition of [x], it will be easy to see that the above properties are direct consequences of the definition.

We now define some symbols that will be used to estimate the growth of number theoretic functions. These symbols will be not be really appreciated in the context of this book but these are often used in many analytic proofs.

2.6.2 
The ”O” and ”o” Symbols
Let f (x) be a positive function and let g(x) be any function. Then O(f (x)) (pro- nounced ”big-oh” of f (x))denotes the collection of functions g(x) that exhibit a growth that is limited to that of f (x) in some respect. The traditional notation for stating that g(x) belongs to this collection is:

g(x) = O(f (x)).
This means that for sufficiently large x,
| g(x) |  < M, 
(2.3)
|f (x)|
where M is some positive number.

Example 21. sin(x) = O(x), and also sin(x) = O(1).
Now, the relation g(x) = o(f (x)), pronounced ”small-oh” of f (x), is used to indicate that f (x) grows much faster than g(x). It formally says that

lim

g(x)


= 0. 
(2.4)
x→∞ f (x)
More generally, g(x) = o(f (x)) at a point b if

lim

g(x)


= 0. 
(2.5)
x→b f (x)
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Example 22. sin(x)  = o(x) at ∞, and xk   = o(ex) also at ∞ for every constant
k.
The notation that f (x) is asymptotically equal to g(x) is denoted by ∼.  For-
mally speaking, we say that f (x) ∼ g(x) if

lim

f (x)


= 1. 
(2.6)
Example 23. [x] ∼ x.

x→∞ g(x)
The purpose of introducing these symbols is to make complicated mathemat- ical expressions simpler.  Some expressions can be represented as the principal part that you need plus a remainder term. The remainder term can be expressed using the above notations. So when you need to combine several expressions, the remainder parts involving these symbols can be easily combined. We will state now some properties of the above symbols without proof.  These properties are easy to prove using the definitions of the symbols.

1. O(O(f (x)))  = O(f (x)),
2. o(o(f (x)))  = o(f (x)).
3. O(f (x)) ± O(f (x)) = O(f (x)),
4. o(f (x) ± o(f (x)) = o(f (x)),
5. O(f (x)) ± O(g(x)) = O(max(f (x), g(x))),
There are some other properties that we did not mention here, properties that are rarely used in number theoretic proofs.

Exercises
1. Prove the five properties of the [x]
2. Prove the five properties of the O and o notations in Example 24.
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2.7 
Theorems and Conjectures involving prime num- bers
We have proved that there are infinitely many primes. We have also proved that there are arbitrary large gaps between primes. The question that arises naturally here is the following: Can we estimate how many primes are there less than a given number? The theorem that answers this question is the prime number theorem. We denote by π(x) the number of primes less than a given positive number x. Many mathematicians worked on this theorem and conjectured many estimates before Chebyshev finally stated that the estimate is x/logx. The prime number theorem was finally proved in 1896 when Hadamard and Poussin produced independent proofs.  Before stating the prime number theorem, we state and prove a lemma involving primes that will be used in the coming chapters.

Lemma 9. Let p be a prime and let m ∈ Z+ . Then the highest power of p dividing

m! is

∞
X
i=1

  m  
pi
Proof.  Among all the integers from 1 till m, there are exactly h m i integers that are divisible by p. These are p, 2p, ..., h m i p. Similarly we see that there are h m i
p 
pi
integers that are divisible by pi . As a result, the highest power of p dividing m! is

X i    m  
pi
i≥1

   m
−
pi+1

  
  m  
=
pi
i≥1
Theorem  20. The Prime Number Theorem Let x > 0 then

π(x) ∼ x/logx
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So this theorem says that you do not need to find all the primes less than x to find out their number, it will be enough to evaluate x/logx for large x to find an estimate for the number of primes. Notice that I mentioned that x has to be large enough to be able to use this estimate.

Several other theorems were proved concerning prime numbers. many great mathematicians approached problems that are related to primes.  There are still many open problems of which we will mention some.

Conjecture 1. Twin Prime Conjecture There are infinitely many pairs primes p

and p + 2.

Conjecture 2. Goldbach’s Conjecture Every even positive integer greater than 2 can be written as the sum of two primes.

Conjecture 3. The n2   + 1 Conjecture  There are infinitely many primes of the form n2  + 1, where n is a positive integer.
Conjecture 4. Polignac Conjecture For every even number 2n are there infinitely many pairs of consecutive primes which differ by 2n.
Conjecture 5. Opperman Conjecture Is there always a prime between n2   and
(n + 1)2?
Chapter 3
Congruences
A congruence is nothing more than a statement about divisibility. The theory of congruences was introduced by Carl Friedreich Gauss. Gauss contributed to the basic ideas of congruences and proved several theorems related to this theory. We start by introducing congruences and their properties. We proceed to prove theo- rems about the residue system in connection with the Euler φ-function. We then present solutions to linear congruences which will serve as an introduction to the Chinese remainder theorem. We present finally important congruence theorems derived by Wilson, Fermat and Euler.

3.1 
Introduction to congruences
As we mentioned in the introduction, the theory of congruences was developed by

Gauss at the beginning of the nineteenth century.

Definition 12. Let m be a positive integer. We say that a is congruent to b modulo m if m | (a − b) where a and b are integers, i.e. if a = b + km where k ∈ Z.
If a is congruent to b modulo m, we write a ≡ b(mod m).
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Example 24. 19 ≡ 5(mod 7). Similarly 2k + 1 ≡ 1(mod 2) which means every odd number is congruent to 1 modulo 2.

There are many common properties between equations and congruences. Some properties are listed in the following theorem.

Theorem 21. Let a, b, c and d denote integers. Let m be a positive integers. Then:

1. If a ≡ b(mod m), then b ≡ a(mod m).
2. If a ≡ b(mod m) and b ≡ c(mod m), then a ≡ c(mod m).
3. If a ≡ b(mod m), then a + c ≡ b + c(mod m).
4. If a ≡ b(mod m), then a − c ≡ b − c(mod m).
5. If a ≡ b(mod m), then ac ≡ bc(mod m).
6. If a ≡ b(mod m), then ac ≡ bc(mod mc), for c > 0.

7. If a ≡ b(mod m) and c ≡ d(mod m) then a + c ≡ (b + d)(mod m).
8. If a ≡ b(mod m) and c ≡ d(mod m) then a − c ≡ (b − d)(mod m).
9. If a ≡ b(mod m) and c ≡ d(mod m) then ac ≡ bd(mod m).
Proof. 

1. If a  ≡ b(mod m),  then m  |   (a − b).  Thus there exists integer k such that a − b = mk, this implies b − a = m(−k) and thus m |  (b − a). Consequently b ≡ a(mod m).
2. Since a  ≡ b(mod  m),  then m  |   (a − b).   Also, b  ≡ c(mod m),  then m | (b − c). As a result, there exit two integers k and l such that a = b + mk and b = c+ml, which imply that a = c+m(k+l) giving that a = c(mod m).
3.1. INTRODUCTION TO CONGRUENCES
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3. Since a ≡ b(mod m), then m | (a − b). So if we add and subtract c we get

m | ((a + c) − (b + c))
and as a result



a + c ≡ b + c(mod m).
4. Since a ≡ b(mod m), then m | (a − b) so we can subtract and add c and we
get

and as a result


m | ((a − c) − (b − c))
a − c ≡ b − c(mod m).
5. If a ≡ b(mod m), then m |  (a − b). Thus there exists integer k such that
a − b = mk and as a result ac − bc = m(kc). Thus

m | (ac − bc)
and hence



ac ≡ bc(mod m).
6. If a ≡ b(mod m), then m |  (a − b). Thus there exists integer k such that
a − b = mk and as a result

ac − bc = mc(k).
Thus

and hence



mc | (ac − bc)
ac ≡ bc(mod mc).
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7. Since a  ≡ b(mod  m),  then m  |   (a − b).   Also, c  ≡ d(mod m),  then m | (c −d). As a result, there exits two integers k and l such that a −b = mk and c − d = ml. Note that

(a − b) + (c − d) = (a + c) − (b + d) = m(k + l).
As a result,

hence



m | ((a + c) − (b + d)),
a + c ≡ b + d(mod m).
8. If a = b + mk and c = d + ml where k and l are integers, then

As a result, hence


(a − b) − (c − d) = (a − c) − (b − d) = m(k − l).
m | ((a − c) − (b − d)), a − c ≡ b − d(mod m).
9. There exit two integers k and l such that a − b = mk and c − d = ml and
thus ca − cb = m(ck) and bc − bd = m(bl). Note that

(ca − cb) + (bc − bd) = ac − bd = m(kc − lb).
As a result, hence



m | (ac − bd), ac ≡ bd(mod m).
3.1. INTRODUCTION TO CONGRUENCES
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Examples 1.
1. Because 14 ≡ 8(mod 6) then 8 ≡ 14(mod 6).
2. Because 22 ≡ 10(mod 6) and 10 ≡ 4(mod 6). Notice that 22 ≡ 4(mod 6).
3. Because 50 ≡ 20(mod 15), then 50 + 5 = 55 ≡ 20 + 5 = 25(mod 15).
4. Because 50 ≡ 20(mod 15), then 50 − 5 = 45 ≡ 20 − 5 = 15(mod 15).
5. Because 19 ≡ 16(mod3), then 2(19) = 38 ≡ 2(16) = 32(mod 3).
6. Because 19 ≡ 16(mod3), then 2(19) = 38 ≡ 2(16) = 32(mod 2(3) = 6).
7. Because 19 ≡ 3(mod 8) and 17 ≡ 9(mod 8), then 19 + 17 = 36 ≡ 3 + 9 =
12(mod 8).
8. Because 19 ≡ 3(mod 8) and 17 ≡ 9(mod 8), then 19 − 17 = 2 ≡ 3 − 9 =
−6(mod 8).
9. Because 19 ≡ 3(mod 8) and 17 ≡ 9(mod 8), then 19(17) = 323 ≡ 3(9) =
27(mod 8).
We now present a theorem that will show one difference between equations and congruences. In equations, if we divide both sides of the equation by a non- zero number, equality holds. While in congruences, it is not necessarily true. In other words, dividing both sides of the congruence by the same integer doesn’t preserve the congruence.

Theorem  22.
1. If a, b, c and m are integers such that m > 0, d = (m, c) and
ac ≡ bc(mod m), then a ≡ b(mod m/d).
2. If (m, c) = 1 then a = b(mod m) if ac ≡ bc(mod m).
Proof.  Part 2 follows immediately from Part 1. For Part 1, if ac ≡ bc(mod m), then

m | (ac − bc) = c(a − b).
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Hence there exists k such that c(a − b) = mk. Dividing both sides by d, we get (c/d)(a − b)  =  k(m/d). Since (m/d, c/d)  = 1, it follows that m/d  |  (a − b). Hence a ≡ b(mod m/d).
Example 25. 38 ≡ 10(mod 7). Since (2, 7) = 1 then 19 ≡ 5(mod 7).
The following theorem combines several congruences of two numbers with different moduli.

Theorem  23. If

a ≡ b(mod m1 ), a ≡ b(mod m2), ..., a ≡ b(mod mt )
where a, b, m1 , m2 , ..., mt are integers and m1, m2, ..., mt are positive, then

a ≡ b(mod hm1 , m2, ...mt i)
Proof.  Since a ≡ b(mod mi ) for all 1 ≤ i ≤ t. Thus mi  | (a − b). As a result,

hm1, m2 , ..., mt i | (a − b)
(prove this as an exercise). Thus

a ≡ b(mod hm1 , m2, ...mt i).
Exercises
1. Determine whether 3 and 99 are congruent modulo 7 or not.

2. Show that if x is an odd integer, then x2  ≡ 1(mod 8)
3. Show that if a, b, m and n are integers such that m and n are positive, n | m
and a ≡ b(mod m), then a ≡ b(mod n).
4. Show that if ai  ≡ bi (mod m) for i = 1, 2, ..., n, where m is a positive integer

and ai , bi  are integers for j = 1, 2, ..., n, then Pn

Pn
i=1

bi (mod m)
5. For which n does the expression 1 + 2 + ... + (n − 1) ≡ 0(mod n) holds.
3.2. RESIDUE SYSTEMS AND EULER’S φ-FUNCTION
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3.2 
Residue Systems and Euler’s φ-Function
3.2.1 
Residue Systems
Suppose m is a positive integer. Given two integers a and b, we see that by the division algorithm that a = bm + r where 0 ≤ r < m. We call r the least non- negative residue of a modulo m. As a result, we see that any integer is congruent to one of the integers 0, 1, 2, ..., m − 1 modulo m.

Definition 13. A complete residue system modulo m is a set of integers such that every integer is congruent modulo m to exactly one integer of the set.

The easiest complete residue system modulo m is the set of integers 0, 1, 2, ..., m−
1. Every integer is congruent to one of these integers modulo m.

Example  26. The set of integers {0, 1, 2, 3, 4} form a complete residue system modulo 5. Another complete residue system modulo 5 could be 6, 7, 8, 9, 10.

Definition 14. A reduced residue system modulo m is a set of integers ri such that
(ri , m) = 1 for all i and ri = rj (mod m) if i = j.
Notice that, a reduced residue system modulo m can be obtained by deleting all the elements of the complete residue system set that are not relatively prime to m.
Example 27. The set of integers {1, 5} is a reduced residue system modulo 6.

The following lemma will help determine a complete residue system modulo any positive integer m.
Lemma 10. A set of m incongruent integers modulo m forms a complete residue system modulo m.
58
CHAPTER 3.  CONGRUENCES

Proof.  We will prove this lemma by contradiction.  Suppose that the set of m integers does not form a complete residue system modulo m. Then we can find at least one integer a that is not congruent to any element in this set. Hence non of the elements of this set is actually congruent to the remainder when a is divided by m. Thus dividing by m yields to at most m − 1 remainders. Therefore by the pigeonhole principle, at least two integers in the set that have the same remainder modulo m. This is a contradiction since the set of integers is formed of m integers that are incongruent modulo m.
Theorem  24. If a1 , a2, ..., am   is a complete residue system modulo m, and if k is a positive integer with (k, m) = 1, then

ka1  + b, ka2  + b, ..., kam   + b
is another complete residue system modulo m for any integer b.
Proof.  Let us prove first that no two elements of the set {ka1 +b, ka2 +b, ..., kam +
b} are congruent modulo m. Suppose there exists i and j such that
kai + b ≡ kaj  + b(mod m).
Thus we get that



kai  ≡ kaj (mod m).
Now since (k, m) = 1, we get

ai  ≡ aj (mod m)
But for i = j, ai  is inequivalent to aj  modulo m.  Thus i = j.  Now notice that there are m inequivalent integers modulo m and thus by Lemma 10, the set form a complete residue system modulo m.
3.3. LINEAR CONGRUENCES
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3.2.2 
Euler’s  φ-Function
We now present a function that counts the number of positive integers less than a given integer that are relatively prime to that given integer. This function is called Euler φ-function. We will discuss the properties of Euler φ-function in details in chapter 5. It will be sufficient for our purposes in this chapter to the notation.

Definition 15. The Euler φ-function of a positive integer n, denoted by φ(n) counts the  number of positive integers less than n that are relatively prime to n.

Example 28. Since 1 and 3 are the only two integers that are relatively prime to

4 and less than 4, then φ(4) = 2. Also, 1,2,...,6 are the integers that are relatively prime to 7 that are less than 7, thus φ(7) = 6.

Now we can say that the number of elements in a reduced residue system modulo n is φ(n).
Theorem 25. If a1, a2 , ..., aφ(n) is a reduced residue system modulo n and (k, n) =
1, then ka1, ka2, ..., kaφ(n) is a reduced residue system modulo n.
Proof.  The proof proceeds exactly in the same way as that of Theorem 24.

Exercises
1. Give a reduced residue system modulo 12.

2. Give a complete residue system modulo 13 consisting only of odd integers.

3. Find φ(8) and φ(101).
3.3 
Linear Congruences
Because congruences are analogous to equations, it is natural to ask about solu- tions of linear equations. In this section, we will be discussing linear congruences of one variable and their solutions. We start by defining linear congruences.
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Definition 16. A congruence of the form ax ≡ b(mod m) where x is an unknown integer is called a linear congruence in one variable.
It is important to know that if x0   is a solution for a linear congruence, then all integers xi  such that xi  ≡ x0(mod m) are solutions of the linear congruence. Notice also that ax ≡ b(mod m) is equivalent to a linear Diophantine equation i.e. there exists y such that ax − my = b. We now prove theorems about the solutions of linear congruences.

Theorem  26. Let a, b and m be integers such that m > 0 and let c = (a, m). If c does not divide b, then the congruence ax ≡ b(mod m) has no solutions. If c | b, then

ax ≡ b(mod m)
has exactly c incongruent solutions modulo m.
Proof.  As we mentioned earlier, ax ≡ b(mod m) is equivalent to ax − my = b. By Theorem 19 on Diophantine equations, we know that if c does not divide b, then the equation, ax − my = b has no solutions. Notice also that if c |  b, then there are infinitely many solutions whose variable x is given by

x = x0  + (m/c)t
Thus the above values of x are solutions of the congruence ax ≡ b(mod m). Now we have to determine the number of incongruent solutions that we have. Suppose that two solutions are congruent, i.e.

x0  + (m/c)t1 ≡ x0  + (m/c)t2 (mod m).
Thus we get



(m/c)t1  ≡ (m/c)t2(mod m).
Now notice that (m, m/c)  = m/c  and thus

t1  ≡ t2(mod c).
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Thus we get a set of incongruent solutions given by x = x0  + (m/c)t, where t is taken modulo c.

Remark 2. Notice that if c = (a, m) = 1, then there is a unique solution modulo m for the equation ax ≡ b(mod m).
Example  29. Let us find all the solutions of the congruence 3x ≡ 12(mod 6). Notice that (3, 6) = 3 and 3 |   12.  Thus there are three incongruent solutions modulo 6.  We use the Euclidean algorithm to find the solution of the equation
3x − 6y = 12 as described in chapter 2.  As a result, we get x0   = 6. Thus the three incongruent solutions are given by x1  = 6(mod 6), x1  = 6 + 2 = 2(mod 6) and x2  = 6 + 4 = 4(mod 6).
As we mentioned earlier in Remark 2, the congruence ax ≡ b(mod m) has a unique solution if (a, m) = 1. This will allow us to talk about modular inverses.

Definition 17. A solution for the congruence ax ≡ 1(mod m) for (a, m) = 1 is called the modular inverse of a modulo m. We denote such a solution by a¯.

Example 30. The modular inverse of 7 modulo 48 is 7. Notice that a solution for

7x ≡ 1(mod 48) is x ≡ 7(mod 48).
Exercises
1. Find all solutions of 3x ≡ 6(mod 9).
2. Find all solutions of 3x ≡ 2(mod 7).
3. Find an inverse modulo 13 of 2 and of 11.

4. Show that if a¯ is the inverse of a modulo m and ¯b is the inverse of b modulo

m, then a¯¯b is the inverse of ab modulo m.
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3.4 
The Chinese Remainder Theorem
In this section, we discuss the solution of a system of congruences having different moduli. An example of this kind of systems is the following; find a number that leaves a remainder of 1 when divided by 2, a remainder of 2 when divided by three and a remainder of 3 when  divided by 5.  This kind of question can be translated into the language of congruences. As a result, in this chapter, we present a systematic way of solving this system of congruences.

Theorem  27. The system of congruences

x ≡ b1(mod n1), x ≡ b2 (mod n2),
.
.
.
x ≡ bt (mod nt ),
has a unique solution modulo N  = n1n2...nt if n1 , n2 , ..., nt  are pairwise rela- tively prime positive integers.
Proof.  Let Nk    = N/nk . Since (ni , nj ) = 1 for all i = j, then (Nk , nk ) = 1. Hence by Theorem 26 , we can find an inverse yk   of Nk   modulo nk   such that Nk yk  ≡ 1(mod nk ). Consider now

Since
thus we see that


t
x = X bi Ni yi
i=1
Nj  ≡ 0(mod nk ) for all j = k, x ≡ bk Nk yk (mod nk ).
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Also notice that Nk yk   ≡ 1(mod nk ).  Hence x is a solution to the system of t congruences. We have to show now that any two solutions are congruent modulo N . Suppose now that you have two solutions x0, x1  to the system of congruences. Then

x0  ≡ x1(mod nk )
for all 1 ≤ k ≤ t. Thus by Theorem 23, we see that

x0  ≡ x1 (mod N ).
Thus the solution of the system is unique modulo N .

We now present an example that will show how the Chinese remainder theo- rem is used to determine the solution of a given system of congruences.

Example 31. Solve the system

x ≡ 1(mod 2) x ≡ 2(mod 3) x ≡ 3(mod 5).
We have N = 2.3.5 = 30. Also

N1  = 30/2 = 15, N2  = 30/3 = 10and  N3  = 30/5 = 6.
So we have to solve now 15y1  ≡ 1(mod 2). Thus

y1  ≡ 1(mod 2).
In the same way, we find that
y2  ≡ 1(mod 3)and  y3  ≡ 1(mod 5).
As a result, we get

x ≡ 1.15.1 + 2.10.1 + 3.6.1 ≡ 53 ≡ 23(mod 30).
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Exercises
1. Find an integer that leaves a remainder of 2 when divided by either 3 or 5, but that is divisible by 4.

2. Find all integers that leave a remainder of 4 when divided by 11 and leaves a remainder of 3 when divided by 17.

3. Find all integers that leave a remainder of 1 when divided by 2, a remainder of 2 when divided by 3 and a remainder of 3 when divided by 5.

3.5 
Theorems  of Fermat, Euler, and Wilson
In this section we present three applications of congruences.  The first theorem is Wilson’s theorem which states that (p − 1)! + 1 is divisible by p, for p prime. Next, we present Fermat’s theorem, also known as Fermat’s little theorem which states that ap   and a have the same remainders when divided by p where p -  a. Finally we present Euler’s theorem which is a generalization of Fermat’s theorem and it states that for any positive integer m that is relatively prime to an integer a, aφ(m) ≡ 1(mod m) where φ is Euler’s φ-function. We start by proving a theorem about the inverse of integers modulo primes.

Theorem  28. Let p be a prime. A positive integer m is its own inverse modulo p

if and only if p divides m + 1 or p divides m − 1.

Proof.  Suppose that m is its own inverse. Thus

Hence p | m2  − 1. As a result,


m.m ≡ 1(mod p).
p | (m − 1)or  p | (m + 1).
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We get that m ≡ 1(mod p) or m ≡ −1(mod p).
Conversely, suppose that

m ≡ 1(mod p)or  m ≡ −1(mod p).
Thus



m2  ≡ 1(mod p).
Theorem 29. Wilson’s Theorem If p is a prime number, then p divides (p−1)!+1.
Proof.  When p = 2, the congruence holds.  Now let p > 2.  Using Theorem

26, we see that for each 1 ≤ m ≤ p, there is an inverse 1 ≤ m¯

≤ p such that

mm¯

≡ 1(mod p).  Thus by Theorem 28, we see that the only two integers that

have their own inverses are 1 and p − 1. Hence after coupling the integers from 2 to p − 2 each with its inverse, we get

2.3.....(p − 2) ≡ 1(mod p).
Thus we get



1.2.3.....(p − 2)(p − 1) ≡ (p − 1)(mod p)
As a result, we have (p − 1)! ≡ −1(mod p).
Note also that the converse of Wilson’s theorem also holds. The converse tells us whether an integer is prime or not.

Theorem  30. If m is a positive integer with m ≥ 2 such that
(m − 1)! + 1 ≡ 0 (mod m)
then m is prime.
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Proof.  Suppose that m has a proper divisor c1  and that

(m − 1)! + 1 ≡ 0(mod m).
That is m = c1 c2  where 1 < c1   < m and 1 < c2   < m.  Thus c1  is a divisor of

(m − 1)!. Also, since
m | ((m − 1)! + 1),
we get



c1  | ((m − 1)! + 1).
As a result, by Theorem 4, we get that

c1  | ((m − 1)! + 1 − (m − 1)!),
which gives that c1  | 1. This is a contradiction and hence m is prime.

We now present Fermat’s Theorem or what is also known as Fermat’s Little Theorem.  It states that the remainder of ap−1  when divided by a prime p that doesn’t divide a is 1. We then state Euler’s theorem which states that the remain- der of aφ(m) when divided by a positive integer m that is relatively prime to a is

1. We prove Euler’s Theorem only because Fermat’s Theorem is nothing but a special case of Euler’s Theorem. This is due to the fact that for a prime number p,

φ(p) = p − 1.

Theorem  31. Euler’s Theorem If m is a positive integer and a is an integer such that (a, m) = 1, then

aφ(m) ≡ 1(mod m)
Example 32. Note that 34  = 81 ≡ 1(mod 5). Also, 2φ(9)  = 26  = 64 ≡ 1(mod 9).
We now present the proof of Euler’s theorem.
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Proof.  Let k1, k2, ..., kφ(m) be a reduced residue system modulo m. By Theorem

25, the set

{ak1, ak2 , ..., akφ(m)}
also forms a reduced residue system modulo m. Thus

ak1 ak2...akφ(m) = aφ(m) k1k2...kφ(m) ≡ k1k2...kφ(m) (mod m).
Now since (ki , m)  = 1 for all 1 ≤ i ≤ φ(m),  we have (k1k2 ...kφ(m), m)  = 1. Hence by Theorem 22 we can cancel the product of k’s on both sides and we get

aφ(m) ≡ 1(mod m).
An immediate consequence of Euler’s Theorem is:

Corollary  1. Fermat’s  Theorem If p is a prime and a is a positive integer with

p - a, then

ap−1 ≡ 1(mod p).
We now present a couple of theorems that are direct consequences of Fermat’s theorem.  The first states Fermat’s theorem in a different way.  It says that the remainder of ap  when divided by p is the same as the remainder of a when divided by p. The other theorem determines the inverse of an integer a modulo p where p - a.
Theorem  32.  If p is a prime number and a is a positive integer,  then ap     ≡
a(mod p).
Proof.  If p - a, by Fermat’s theorem we know that

ap−1 ≡ 1(mod p).
Thus, we get



ap  ≡ a(mod p).
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Now if p | a, we have


ap  ≡ a ≡ 0(mod p).
Theorem  33. If p is a prime number and a is an integer such that p - a, then ap−2
is the inverse of a modulo p.

Proof.  If p - a, then Fermat’s theorem says that

ap−1 ≡ 1(mod p).
Hence



ap−2a ≡ 1(mod p).
As a result, ap−2 is the inverse of a modulo p.

Exercises
1. Show that 10!+1 is divisible by 11.

2. What is the remainder when 5!25! is divided by 31?

3. What is the remainder when 5100  is divided by 7?

4. Show that if p is an odd prime, then 2(p − 3)! ≡ −1(mod p).
5. Find a reduced residue system modulo 2m , where m is a positive integer.

6. Show that if a1, a2 , ..., aφ(m) is a reduced residue system modulo m, where

m is a positive integer with m = 2, then a1 + a2 + ... + aφ(m) ≡ 0(mod m).
7. Show that if a is an integer such that a is not divisible by 3 or such that a is divisible by 9, then a7  ≡ a(mod 63).
Chapter 4
Multiplicative Number  Theoretic
Functions
In this chapter, we study functions, called multiplicative functions, that are defined on integers.  These functions have the property that their value at the product of two relatively prime integers is equal to the product of the value of the functions at these integers. We start by proving several theorems about multiplicative functions that we will use later.  We then study special functions and prove that the Euler φ-function that was seen before is actually multiplicative. We also define the sum of divisors and the number of divisors functions.

Later define the Mobius function which investigate integers in terms of their prime decomposition. The summatory function of a given function takes the sum of the values of f at the divisors of a given integer n.  We then determine the Mobius inversion of this function which writes the values of f in terms of the values of its summatory function. We end this chapter by presenting integers with interesting properties and prove some of their properties.
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4.1 
Definitions and Properties
Definition 18. An arithmetic function is a function whose domain of definition is the set N of positive integers.
Definition 19. An arithmetic function f is called multiplicative if f (ab) = f (a)f (b)
for all a, b ∈ N such that (a, b) = 1.

Definition 20. An arithmetic function f is called completely multiplicative if

f (ab) = f (a)f (b)
(4.1)

for all positive integers a, b.
Example 33. The function f (a) = 1 where k is a completely multiplicative func- tion since

f (ab) = 1 = f (a)f (b).
Notice also that a completely multiplicative function is a multiplicative function but not otherwise.

We now prove a theorem about multiplicative functions. We will be interested in studying the properties of multiplicative functions rather than the completely multiplicative ones.

Theorem  34. Given a multiplicative function f . Let n = Qs

pak    be the prime

factorization of n. Then



s
f (n) = Y f (pak ).
k=1
Proof.  We prove this theorem by induction on the number of primes in the factor- ization of n.  Suppose that n = pa1 . Thus the result follow easily. Suppose now
that for



s
n = Y pak ,
k=1
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we have



s
f (n) = Y f (pak ).
So we have to prove that if


k=1
s+1
n = Y pak ,
then


k=1
s+1
f (n) = Y f (pak ).
Notice that for


k=1
s+1
n = Y pak ,
we have (Qs

k=1
pak , pas+1 ) = 1. Thus we have get
k=1    k

s+1
s+1 
s
f (n) = f (Y pak ) = f (Y pak )f (pas+1 )
k
k=1
which by the inductive step gives

k
k=1

s+1
s+1



s+1
f (Y pak ) = f (n) = Y f (pak ).
k
k=1

k
k=1
From the above theorem, we can see that to evaluate a multiplicative function at an integer, it will be enough to know the value of the function at the primes that are in the prime factorization of the number.

We now define summatory functions which represents the sum of the values of a given function at the divisors of a given number.

Definition 21. Let f be an arithmetic function. Define

F (n) = X f (d)
d|n
Then F is called the summatory function of f .
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This function determines the sum of the values of the arithmetic function at the divisors of a given integer.

Example 34. If f (n) is an arithmetic function, then

F (18) = X f (d) = f (1) + f (2) + f (3) + f (6) + f (9) + f (18).
d|18
Theorem  35. If f is a multiplicative function, then the summatory function of f
denoted by F (n) = Pd n f (d) is also multiplicative.
Proof.  We have to prove that F (mn)  = F (m)F (n) whenever (m, n)  = 1. We have

F (mn)  = X f (d).
d|mn
Notice that by Lemma 6, each divisor of mn can be written uniquely as a product of relatively prime divisors d1  of m and d2  of n, moreover the product of any two divisors of m and n is a divisor of mn. Thus we get

F (mn)  =
X
d1 |m,d2 |n
Notice that since f is multiplicative, we have


f (d1d2)
F (mn)    =
X
d1 |m,d2 |n
=
X
d1 |m,d2 |n


f (d1d2)
f (d1)f (d2)
=
X f (d1) X f (d2 ) = F (m)F (n)
d1 |m

d2 |n
Exercises
1. Determine whether the arithmetic functions f (n) = n! and g(n) = n/2 are completely multiplicative or not.
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2. Define the arithmetic function g(n) by the following. g(n)=1 if n = 1 and 0 for n > 1. Prove that g(n) is multiplicative.

4.2 
Multiplicative Number  Theoretic  Functions
We now present several multiplicative number theoretic functions which will play a crucial role in many number theoretic results. We start by discussing the Euler phi-function which was defined in an earlier chapter. We then define the sum-of- divisors function and the number-of-divisors function along with their properties.

4.2.1 
The Euler  φ-Function
As defined earlier, the Euler φ-function counts the number of integers smaller than and relatively prime to a given integer.  We first calculate the value of the phi-function at primes and prime powers.

Theorem  36. If p is prime, then φ(p) = p − 1. Conversely, if p is an integer such that φ(p) = p − 1, then p is prime.

Proof.  The first part is obvious since every positive integer less than p is relatively prime to p. Conversely, suppose that p is not prime. Then p = 1 or p is a composite number. If p = 1, then φ(p) = p − 1. Now if p is composite, then p has a positive divisor. Thus φ(p) = p − 1. We have a contradiction and thus p is prime.

We now find the value of φ at prime powers.

Theorem 37. Let p be a prime and m a positive integer, then φ(pm ) = pm − pm−1 . Proof. Note that all integers that are relatively prime to pm  and that are less than

pm   are those that are not multiple of p.  Those integers are p, 2p, 3p, ..., pm−1p.
There are pm−1  of those integers that are not relatively prime to pm   and that are less than pm . Thus

φ(pm ) = pm  − pm−1 .
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Example 35. φ(73) = 73 − 72  = 343 − 49 = 294. Also φ(210 ) = 210 − 29  = 512.
We now prove that φ is a multiplicative function.

Theorem 38. Let m and n be two relatively prime positive integers. Then φ(mn)  =
φ(m)φ(n).
Proof.  Denote φ(m) by s and let k1, k2 , ..., ks  be a reduced residue system modulo

m.  Similarly, denote φ(n) by t and let k0 , k0 , ..., k0  be a reduced residue system
1 
2 
t
modulo n. Notice that if x belongs to a reduced residue system modulo mn, then
(x, m) = (x, n) = 1.
Thus



x ≡ ki (mod m)and  x ≡ k0 (mod n)
for some i, j. Conversely, if

x ≡ ki (mod m)and  x ≡ k0 (mod n)
some i, j then (x, mn) = 1 and thus x belongs to a reduced residue system modulo

mn.  Thus a reduced residue system modulo mn can be obtained by by determin-

ing all x that are congruent to ki  and k0

modulo m and n respectively.  By the

Chinese remainder theorem, the system of equations

x ≡ ki (mod m)and  x ≡ k0 (mod n)
has a unique solution. Thus different i and j will yield different answers. Thus

φ(mn)  = st.
We now derive a formula for φ(n).
Theorem  39. Let n = pa1 pa2 ...pas   be the prime factorization of n. Then
1
2
s


1    
1  
1  
φ(n) = n

1 −
1

1 −
2

...

1 −
.
s
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Proof.  By Theorem 37, we can see that for all 1 ≤ i ≤ k
φ(pai ) = pai  − pai −1 = pai
1 − 1
.
i
i
i
i
pi
Thus by Theorem 38,

φ(n)    =   φ(pa1 pa2 ...pas )
1 
2 
s
=  φ(pa1 )φ(pa2 )...φ(pas )
1
2
 
1
=  pa1
1 −
1

s
a   
1
22 
1 −
2



...pas
1 − 1
s
=  pa1 pa2 ...pak

1       
1
1 −
1 −

1
... 
1 −
1 
2 
k 
p1 
p2 
ps
 
1    
1  
1  
=  n 
1 −
1

1 −
2

...

1 −
.
s
Example 36. Note that
φ(200) = φ(2352 ) = 200



1    
1 − 2
1 −


1  
= 80.
5
Theorem  40. Let n be a positive integer greater than 2. Then φ(n) is even.

Proof.  Let n = pa1 pa2 ...pak . Since φ is multiplicative, then
1 
2 
k
k
φ(n) = Y φ(paj ).
j=1
Thus by Theorem 39, we have

φ(paj ) = paj −1−1
j
j
(pj  − 1).
We see then φ(paj )is even if p


is an odd prime. Notice also that if pj

= 2, then it

follows that φ(paj ) is even. Hence φ(n) is even.
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Theorem  41. Let n be a positive integer. Then

X φ(d) = n.
d|n
Proof.  Split the integers from 1 to n into classes. Put an integer m in the class Cd if the greatest common divisor of m and n is d. Thus the number of integers in the Cd  class is the number of positive integers not exceeding n/d  that are relatively prime to n/d. Thus we have φ(n/d) integers in Cd . Thus we see that

n = X φ(n/d).
d|n
As d runs over all divisors of n, so does n/d.  Hence

n = X φ(n/d) = X φ(d).
d|n

d|n
4.2.2 
The Sum-of-Divisors Function
The sum of divisors function, denoted by σ(n), is the sum of all positive divisors of n.
Example 37. σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.

Note that we can express σ(n) as σ(n) = Pd n d.
We now prove that σ(n) is a multiplicative function.

Theorem  42. The sum of divisors function σ(n) is multiplicative.

Proof.  We have proved in Theorem 35 that the summatory function is multiplica- tive once f is multiplicative. Thus let f (n) = n and notice that f (n) is multiplica- tive. As a result, σ(n) is multiplicative.
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Once we found out that σ(n) is multiplicative, it remains to evaluate σ(n) at powers of primes and hence we can derive a formula for its values at any positive integer.

Theorem 43. Let p be a prime and let n = pa1 pa2 ...pat  be a positive integer. Then
1 
2 
t
σ(pa ) = p


a+1

− 1 ,
and as a result,

p − 1
t
aj +1
σ(n) = Y pj
− 1
pj  − 1
j=1
Proof.  Notice that the divisors of pa  are 1, p, p2, ..., pa . Thus

σ(pa ) = 1 + p + p2  + ... + pa = p

a+1

− 1 .
p − 1
where the above sum is the sum of the terms of a geometric progression.

Now since σ(n) is multiplicative, we have

σ(n)    =   σ(pa1 )σ(pa2 )...σ(pat )
pa1 +1

a2 +1

at +1
=
   1 
− 1 . p2 
− 1 ... pt
− 1
p1  − 1

p2  − 1

pt  − 1
t
aj +1
= Y pj
− 1
pj  − 1
j=1
Example 38. σ(200) = σ(2352) = 24 − 1 53  − 1  = 15.31 = 465.
2−1

5−1
4.2.3 
The Number-of-Divisors Function
The number of divisors function, denoted by τ (n), is the sum of all positive divi- sors of n.
Example 39. τ (8) = 4.
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We can also express τ (n) as τ (n) = Pd n 1.

We can also prove that τ (n) is a multiplicative function.

Theorem  44. The number of divisors function τ (n) is multiplicative. Proof. By Theorem 36, with f (n) = 1, τ (n) is multiplicative.

We also find a formula that evaluates τ (n) for any integer n.
Theorem 45. Let p be a prime and let n = pa1 pa2 ...pat  be a positive integer. Then
1 
2 
t
τ (pa ) = a + 1,
and as a result,


t
τ (n) = Y(aj  + 1).
j=1
Proof.  The divisors of pa  as mentioned before are 1, p, p2 , ..., pa . Thus

τ (pa ) = a + 1
Now since τ (n) is multiplicative, we have

τ (n)    =  τ (pa1 )τ (pa2 )...τ (pat )
=  (a1  + 1)(a2  + 1)...(at  + 1)
t
=  Y(aj  + 1).
j=1
Example 40. τ (200) = τ (2352) = (3 + 1)(2 + 1) = 12.

Exercises
1. Find φ(256) and φ(2.3.5.7.11).
2. Show that φ(5186) = φ(5187).
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3. Find all positive integers n such that φ(n) = 6.

4. Show that if n is a positive integer, then φ(2n) = φ(n) if n is odd.

5. Show that if n is a positive integer, then φ(2n) = 2φ(n) if n is even.

6. Show that if n is an odd integer, then φ(4n) = 2φ(n).
7. Find the sum of positive integer divisors and the number of positive integer divisors of 35

8. Find the sum of positive integer divisors and the number of positive integer divisors of 2534 537313.

9. Which positive integers have an odd number of positive divisors.

10. Which positive integers have exactly two positive divisors.

4.3 
The Mobius Function and the Mobius Inversion
Formula
We start by defining the Mobius function which investigates integers in terms of their prime decomposition. We then determine the Mobius inversion formula which determines the values of the a function f at a given integer in terms of its summatory function.



Definition 22. µ(n) =


1 if n = 1;

(−1)t   if n = p p ...p


where the p


are distinct primes;
1    2 
t 
i
  0  otherwise.
Note that if n is divisible by a power of a prime higher than one then µ(n) = 0. In connection with the above definition, we have the following
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Definition 23. An integer n is said to be square-free,  if no square divides it, i.e. if there does not exist an integer k such that k2  | n.
It is immediate (prove as exercise) that the prime-number factorization of a square-free integer contains only distinct primes.

Example 41. Notice that µ(1) = 1, µ(2) = −1, µ(3) = −1 and µ(4) = 0.

We now prove that µ(n) is a multiplicative function.
Theorem  46. The Mobius function µ(n) is multiplicative.

Proof.  Let m and n be two relatively prime integers. We have to prove that

µ(mn)  = µ(m)µ(n).
If m = n = 1, then the equality holds. Also, without loss of generality, if m = 1, then the equality is also obvious. Now suppose that m or n is divisible by a power of prime higher than 1, then

µ(mn)  = 0 = µ(m)µ(n).
What remains to prove that if m and n are square-free integers say m = p1 p2...ps where p1, p2, ..., ps  are distinct primes and n = q1q2 ...qt  where q1, q2 , ..., qt . Since (m, n)  = 1, then there are no common primes in the prime decomposition be- tween m and n. Thus

µ(m) = (−1)s , µ(n) = (−1)t and µ(mn)  = (−1)s+t .
In the following theorem, we prove that the summatory function of the Mobius function takes only the values 0 or 1.
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Theorem  47. Let F (n) = Pd n µ(d), then F (n) satisfies

F (n) =

( 1 if n = 1;
0 if n > 1.
Proof.  For n  = 1, we have F (1) = µ(1)  = 1.  Let us now find µ(pk ) for any integer k > 0. Notice that

F (pk ) = µ(1) + µ(p) + ... + µ(pk ) = 1 + (−1) + 0 + ... + 0 = 0

Thus by Theorem 36, for any integer n = pa1 pa2 ...pat   > 1 we have,
1 
2 
t
F (n) = F (pa1 )F (pa2 )...F (pat ) = 0
1 
2 
t
We now define the Mobius inversion formula. The Mobius inversion formula expresses the values of f in terms of its summatory function of f .

Theorem  48. Suppose that f is an arithmetic function and suppose that F is its summatory function, then for all positive integers n we have

f (n) = X µ(d)F (n/d).
d|n
Proof.  We have



X µ(d)F (n/d)  =  X µ(d)  X


f (e)
d|n

d|n
=  X

e|(n/d)
X µ(d)f (e)
d|n  e|(n/d)
=  X X


µ(d)f (e)
e|n d|(n/e)
= X f (e)  X


µ(d)
e|n

d|(n/d)
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Notice that Pd (n/e) µ(d) = 0 unless n/e  = 1 and thus e = n. Consequently we

get


X f (e)  X


µ(d) = f (n).1 = f (n).
e|n

d|(n/d)
Example  42. A good example of a Mobius inversion formula would be the in- version of σ(n)  and τ (n).   These two functions are the summatory functions of f (n) = n and f (n) = 1 respectively. Thus we get

n = X µ(n/d)σ(d)
d|n
and
Exercises


1 = X µ(n/d)τ (d).
d|n
1. Find µ(12), µ(10!) and µ(105).
2. Find the value of µ(n) for each integer n with 100 ≤ n ≤ 110.

3. Use the Mobius inversion formula and the identity n  = Pd n φ(n/d) to show that φ(pt ) = pt  − pt−1  where p is a prime and t is a positive integer.

4.4 
Perfect,  Mersenne, and Fermat Numbers
Integers with certain properties were studied extensively over the centuries. We present some examples of such integers and prove theorems related to these inte- gers and their properties.

We start by defining perfect numbers.

Definition 24. A positive integer n is called a perfect number if σ(n) = 2n.
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In other words, a perfect number is a positive integer which is the sum of its proper divisors.
Example 43. The first perfect number is 6, since σ(6) = 12. You can also view this as 6 = 1 + 2 + 3.  The second perfect number is 28, since σ(28) = 56 or
28 = 1 + 2 + 4 + 7 + 14.

The following theorem tells us which even positive integers are perfect.

Theorem  49. The positive integer n is an even perfect number if and only if

n = 2l−1 (2l  − 1),
where l is an integer such that l ≥ 2 and 2l  − 1 is prime.

Proof.  We show first that if n  = 2l−1(2l  − 1) where l is an integer such that l ≥ 2 and 2l  − 1 is prime then n is perfect.  Notice that 2l  − 1 is odd and thus (2l−1 , 2l  − 1) = 1. Also, notice that σ is a multiplicative function and thus

σ(n) = σ(2l−1)σ(2l  − 1).
Notice that σ(2l−1 ) = 2l − 1 and since 2l − 1 is prime we get σ(2l − 1) = 2l . Thus

σ(n) = 2n.
We now prove the converse.  Suppose that n is a perfect number.  Let n = 2r s, where r and s are positive integers and s is odd. Since (2r , s) = 1, we get

σ(n) = σ(2r )σ(s)  = (2r+1 − 1)σ(s).
Since n is perfect, we get

(2r+1 − 1)σ(s) = 2r+1 s.
Notice now that (2r+1 − 1, 2r+1 ) = 1 and thus 2r+1  | σ(s). Therefore there exists an integer q such that σ(s) = 2r+1 q. As a result, we have

(2r+1 − 1)2r+1 q = 2r+1 s
84
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and thus we get



(2r+1 − 1)q = s
So we get that q | s. We add q to both sides of the above equation and we get
s + q = (2r+1 − 1)q + q = 2r+1 q = σ(s).
We have to show now that q = 1.  Notice that if q = 1, then s will have three divisors and thus σ(s)  ≥ 1 + s + q. Hence q = 1 and as a result s = 2r+1  − 1. Also notice that σ(s) = s + 1. This shows that s is prime since the only divisors of s are 1 and s. As a result,

where (2r+1 − 1) is prime.


n = 2r (2r+1 − 1),
In theorem 50, we see that to determine even perfect numbers, we need to find primes of the form 2l  − 1. It is still unknown whether there are odd perfect

numbers or not.

Theorem  50. If 2l − 1 is prime where l is a positive integer, then l must be prime. Proof.  Suppose that l is composite, that is l = rs where 1 < r < m and 1 < s <
m. Thus after factoring, we get that
2m  − 1 = (2r  − 1)(2r(s−1)  + 2r(s−2)  + ... + 2r  + 1)
Notice that the two factors above are both greater than 1. Thus 2m −1 is not prime. This is a contradiction.

The above theorem motivates the definition of interesting numbers called Mersenne numbers.

Definition 25. Let l be a positive integer. An integer of the form Ml   = 2l  − 1 is called the lth Mersenne number; if l is prime then Ml   = 2l  − 1 is called the lth Mersenne prime.
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Example 44. M3  = 23  − 1 = 7 is the third Mersenne prime.

We prove a theorem that help decide whether Mersenne numbers are prime.
Theorem  51. Divisors of Mp  = 2p − 1 for prime p is of the form 2mp + 1, where

m is a positive integer.
Proof.  Let p1  be a prime dividing Mp  = 2p  − 1. By Fermat’s theorem, we know that p1  | (2p1 −1 − 1). Also, it is easy to see that

(2p  − 1, 2p1 −1 − 1) = 2(p,p1 −1) − 1.
Since p1  is a common divisor of 2p − 1 and 2p1 −1 − 1 and thus not relatively prime. Hence (p, p1  − 1) = p. Hence p | (p1  − 1) and thus there exists a positive integer k such that p1  − 1 = kp. Since p1  is odd, then k is even and thus k = 2m. Hence

p1  = kp + 1 = 2mp + 1.
Because any divisor of Mp is a product of prime divisors of Mp , each prime divisor of Mp  is of the form 2mp + 1 and the result follows.

Example 45. M23   = 223  − 1 is divisible by 47 = 46k + 1. We know this by trial and error and thus looking at all primes of the form 46k + 1 that are less than
√M23 .
We now define Fermat numbers and prove some theorems about the properties of these numbers.

Definition 26. Integers of the form Fn = 22

+ 1 are called Fermat numbers.

Fermat conjectured that these integers are primes but it turned out that this is not true. Notice that F0  = 3, F1  = 5, F2  = 17, F3  = 257 and F4  = 65, 537 while F5  is composite. It turned out the F5  is divisible by 641. We now present a couple of theorems about the properties of these numbers.
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Theorem  52. For all positive integers n, we have

F0F1F2...Fn−1  = Fn − 2
Proof.  We will prove this theorem by induction. For n = 1, the above identity is true. Suppose now that

holds. We claim that

Notice that


F0F1F2...Fn−1  = Fn − 2

F0F1F2...Fn = Fn+1 − 2.
F0F1F2...Fn = (Fn − 2)Fn = (22

− 1)(22

+ 1) = 22

n+1

− 1 = Fn+1 − 2.
Using Theorem 53, we prove that Fermat numbers are relatively prime.

Theorem  53. Let s = t be nonnegative integers. Then (Fs , Ft ) = 1.

Proof.  Assume without loss of generality that s < t. Thus by Theorem 52, we have

F0F1F2...Fs ...Ft−1  = Ft − 2
Assume now that there is a common divisor d of Fs   and Ft . thus we see that d
divides

Ft − F0F1F2...Fs ...Ft−1  = 2.
Thus d = 1 or d = 2. But since Ft  is odd for all t. We have d = 1. Thus Fs   and

Ft are relatively prime.

Exercises
1. Find the six smallest even perfect numbers.

2. Find the eighth perfect number.
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3. Find a factor of 21001  − 1.

4. We say n is abundant if σ(n) > 2n. Prove that if n = 2m−1(2m  − 1) where

m is a positive integer such that 2m  − 1 is composite, then n is abundant.
5. Show that there are infinitely many even abundant numbers.

6. Show that there are infinitely many odd abundant numbers.

7. Determine whether M11  is prime.

8. Determine whether M29  is prime.

9. Find all primes of the form 22n  + 5 where n is a nonnegative integer.
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Chapter 5
Primitive Roots and Quadratic
Residues
In this chapter, we discuss the multiplicative structure of the integers modulo n. We introduce the concept of the order of integer modulo n and then we study its properties. We then define primitive roots modulo n and show how to determine whether an integer is primitive modulo n or not. We later find all positive integers having primitive roots and prove related results.

We define the concept of a quadratic residue and establish its basic properties. We then introduce Legendre symbol and also develop its basic properties. We also introduce the law of quadratic reciprocity. Afterwards, we generalize the notion of Legendre symbol to the Jacobi symbol and discuss the law of reciprocity related to Jacobi symbol.

5.1 
The order  of Integers and Primitive  Roots
In this section, we study the order of an integer modulo n, where n is positive. We also define primitive roots and related results. Euler’s theorem in Chapter 4 states that if a positive integer a is relatively prime to n, then aφ(n) ≡ 1(mod n).  Thus

89
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by the well ordering principle, there is a least positive integer x that satisfies this congruence ax  ≡ 1(mod n).
Definition 1. Let (a, b)  = 1.  The smallest positive integer x such that ax    ≡
1(mod b) is called the order of a modulo b. We denote the order of a modulo b by

ordb a.
Example 46. ord72 = 3 since 23   ≡ 1(mod 7) while 21   ≡ 2(mod 7) and 22   ≡
4(mod 7).
To find all integers x such that ax   ≡ 1(mod b), we need the following theorem.

Theorem  54. If (a, b) = 1 with b > 0, then the positive integer x is a solution of the congruence ax   ≡ 1(mod b) if and only if ordb a | x.
Proof.  Having ordb a | x, then we have that x = k.ordb a for some positive integer

k. Thus

ax   = akordb a  = (aordb a )k  ≡ 1(mod b).
Now if ax   ≡ 1(mod b), we use the division algorithm to write

x = qordb a + r,
0 ≤ r < ordb a.
Thus we see that



ax   ≡ aqordb  a+r ≡ (aordb a )q ar  ≡ ar (mod b).
Now since ax   ≡ 1(mod b),we have ar  ≡ 1(mod b). Since ordb a, we get r = 0.
Thus x = q.ordb a and hence ordb a | x.
Example 47. Since ord72 = 3, then 215   ≡ 1(mod 7) while 10 is not a solution for 2x  ≡ 1(mod 7).
Theorem  55. If (a, b) = 1 with b > 0, then

ai  ≡ aj (mod b)
5.1. THE ORDER OF INTEGERS AND PRIMITIVE ROOTS
91
where i and j are nonnegative integers, if and only if

i ≡ j(mod ordb a)
Proof.  Suppose that

i ≡ j(mod ordb a)  and 0 ≤ j ≤ i.
Then we have i − j = k.ordb a, where k is a positive integer. Hence

ai = aj+k.ordb a = aj (aordb a )k  ≡ aj (mod b).
Assume now that ai  ≡ aj (mod b) with i ≥ j. Thus we have

ai  ≡ aj ai−j ≡ aj (mod b)
Since (a, b) = 1, we have (aj , b) = 1 and thus by Theorem 22, we get

ai−j ≡ 1(mod b).
By theorem 54, we get that ordb a | (i − j) and hence i ≡ j(mod b).
We introduce now primitive roots and discuss their properties. We are inter- ested in integers whose order modulo another integer is φ(b).  In one of the exer-

cises, one is asked to prove that if aand b are relatively prime then ordb a |  φ(b).
Definition 2. If (r, m) = 1 with m > 0 and if ordm r = φ(m) then r is called a primitive root modulo m.
Example 48. Notice that φ(7) = 6 hence 2 is not a primitive root modulo 7. While

ord73 = 6 and thus 3 is a primitive root modulo 7.

Theorem 56. If (r, m) = 1 with m > 0 and if r is a primitive root modulo n, then the integers {r1, r2, ...rφ(m) } form a reduced residue set modulo m.
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Proof.  To prove that the set {r1 , r2 , ...rφ(m)} form a reduced residue set modulo m we need to show that every two of them are relatively prime and that no two of them are congruent modulo m. Since (r, m) = 1, it follows that (rn , m) = 1 for all positive integers n. Hence all the powers of r are relatively prime to m. To show that no two powers in the above set are equivalent modulo m, assume that

ri ≡ rj (mod m).
By Theorem 55, we see that

i ≡ j(mod ordm φ(m)).
Notice that 1 ≤ i, j ≤ φ(m) and hence i = j.
Theorem  57. If ordm a = t and if u is a positive integer, then

ordm (au) = t/(t, u).
Proof.  Let



v = ordm (au),   w = (t, u),   t = t1wand u = u1 w.

Notice that (t1, u1) = 1.
Because t1  = t/(t, u), we want to show that ordm (au)  = t1. To do this, we will show that (au)t1     ≡ 1(mod m) and that if (au)v   ≡ 1(mod m), then t1   |  v. First note that

(au)t1   = (au1 w )(t/w) = (at )u1    ≡ 1(mod m).
Hence by Theorem 54, we have v | t1. Now on the other hand, since

(au)v = auv   ≡ 1(mod m),
we know that t | uv. Hence t1w | u1wv and hence t1  | u1v. Because (t1, u1) = 1, we see that t1   |  v.  Since v |  t1  and t1   |  v, we conclude that v = t1  = t/w  = t/(t, u).
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Example 49. We see that ord734  = 6/(6, 4) since ord7 3 = 6.

Corollary  2. Let r be a primitive root modulo m, where m is a positive integer,
m > 1. Then ru is a primitive root modulo m if and only if (u, φ(m)) = 1. Proof. By Theorem 57, we see that

ordm ru = ordm r/(u, ordm r) = φ(m)/(u, φ(m)).
Thus ordm ru = φ(m) and ru is a primitive root if and only if (u, φ(m)) = 1.

The above corollary leads to the following theorem

Theorem  58. If the positive integer m has a primitive root, then it has a total of

φ(φ(m)) incongruent primitive roots.
Proof.  Let r be a primitive root modulo m. By Theorem 56, we see that {r1, r2, ..., rφ(m)}
form a reduced residue system modulo n.  By Corollary 1, it is known that ru  is a primitive root modulo m if and only if (u, φ(m))  = 1. Thus we have exactly φ(φ(m))  such integers u that are relatively prime to φ(m)  and hence there are exactly φ(φ(m)) primitive roots modulo m.
Exercises
1. Determine ord13 10.

2. Determine ord11 3.

3. Show that 5 is a primitive root of 6.

4. Show that if a¯ is an inverse of a modulo n, then ordn a = ordn a¯.

5. Show that if n is a positive integer, and a and b are integers relatively prime to n such that (ordn a, ordn b) = 1, then ordn (ab) = ordn a.ordn b.
6. Show that if a is an integer relatively prime to the positive integer m and

ordm a = st, then ordm at = s.
7. Show that if a and n are relatively prime with n > 0, then ordn a | φ(n).
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5.2 
Primitive  Roots for Primes
In this section, we show that every integer has a primitive root. To do this we need to introduce polynomial congruence.

Let f (x) be a polynomial with integer coefficients. We say that an integer a is a root of f (x) modulo m if f (a) ≡ 0(mod m).
Example 50. Notice that x ≡ 3(mod 11) is a root for f (x) = 2x2  + x + 1 since

f (3) = 22 ≡ 0(mod 11).
We now introduce Lagrange’s theorem for primes. This is modulo p, the fun- damental theorem of algebra. This theorem will be an important tool to prove that every prime has a primitive root.

Theorem  59. Lagrange’s Theorem Let

m(x)  = bn xn + bn

1xn−1 + ... + b1x + b0
be a polynomial of degree n, n ≥ 1 with integer coefficients and with leading coef-
ficient bn  not divisible by a prime p. Then m(x) has at most n distinct incongruent roots modulo p.

Proof.  Using induction, notice that if n = 1, then we have

m(x)  = b1x + b0    and p - b1.
A root of m(x) is a solution for b1x+b0 (mod p). Since p - b1 , then this congruence has exactly one solution by Theorem 26.

Suppose that the theorem is true for polynomials of degree n − 1, and let
m(x) be a polynomial of degree n with integer coefficients and where the leading coefficient is not divisible by p.  Assume now that m(x)  has n + 1 incongruent roots modulo p, say x0, x1, ..., xn . Thus

m(xk ) ≡ 0(mod p)
5.2. PRIMITIVE ROOTS FOR PRIMES
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for 0 ≤ k ≤ n. Thus we have
m(x) − m(x0)   =  bn (xn − xn ) + bn


1(xn−1 − xn−1 ) + ... + b1(x − x0)
=  bn (x − x0 )(xn−1 + xn−2x0 + ... + xxn−2 + xn−1)
n−2


n−3

0
n−3

0
n−2
+  bn−1 (x − x0)(x
=  (x − x0)f (x)

+ x 
x0  + ... + xx0 
+ x0 
) + ... + b1(x − c0)
where f (x) is a polynomial of degree n − 1 with leading coefficient bn . Notice
that since m(xk ) ≡ m(x0 )(mod p), we have

m(xk ) − m(x0) = (xk  − x0)f (xk ) ≡ 0(mod p).
Thus f (xk ) ≡ 0(mod p) for all 1 ≤ k ≤ n and thus x1 , x2, ..., xn  are roots of f (x).  This is a contradiction since we a have a polynomial of degree n − 1 that has n distinct roots.

We now use Lagrange’s Theorem to prove the following result.

Theorem  60. Consider the prime p and let p − 1 = kn for some integer k. Then

xn − 1 has exactly n incongruent roots modulo p. Proof.  Since p − 1 = kn, we have

xp−1 − 1   =  (xn − 1)(xn(k−1)  + xn(k−2) + ... + xn + 1)
=  (xn − 1)f (x)
By Fermat’s little theorem, we know that xp−1 − 1 has p − 1 incongruent roots modulo p. Also, roots of xp−1 − 1 are roots of f (x) or a root of xn − 1. Notice that by Lagrange’s Theorem, we have that f (x) has at most p − n − 1 roots modulo p. Thus xn − 1 has at least n roots modulo p. But again by Lagrange’s Theorem, since we have that xn − 1 has at most n roots, thus we get that xn − 1 has exactly n incongruent roots modulo p.
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We now prove a lemma that gives us how many incongruent integers can have a given order modulo p.

Lemma 11. Let p be a prime and let m be a positive integer such that p − 1 = mk
for some integer k. Then

S(m) = |{m : 0 < m < p,  m ∈ Z}| ≤ φ(m).
Proof.  For each positive integer m dividing p − 1,

Notice that if S(m)  = 0, then S(m)  ≤ φ(m).  If S(m)  > 0, then there is an integer a of order m modulo p. Since ordp a = m, then a, a2 , ...am  are incongruent modulo p. Also each power of a is a root of xm  − 1 modulo p because

(ak )m   = (am )k  ≡ 1(mod p)
for all positive integers k. By Theorem 60, we know that xm   − 1 has exactly m incongruent roots modulo p, so that every root is congruent to one of these powers of a.  We also know by Theorem 57 that the powers of ak   with (k, m) = 1 have order m. There are exactly φ(m) such integers with 1 ≤ k ≤ m and thus if there is one element of order m modulo p, there must be exactly φ(m)  such positive integers less than p. Hence S(m) ≤ φ(m).
In the following theorem, we determine how many incongruent integers can have a given order modulo p. We actually show the existence of primitive roots for prime numbers.

Theorem  61. Every prime number has a primitive root.
Proof.  Let p be a prime and let m be a positive integer such that p − 1 = mk for some integer k.  Let F (m) be the number of positive integers of order m modulo p that are less than p. The order modulo p of an integer not divisible by p divides p − 1, it follows that

p − 1 = X
m|p−1

F (m).
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By Theorem 42, we see that



p − 1 = X
m|p−1


φ(m).
By Lemma 1, F (m) ≤ φ(m) when m | (p − 1). Together with
X
m|p−1

F (m) = X
m|p−1


φ(m)
we see that F (m) = φ(m) for each positive divisor m of p − 1. Thus we conclude
that F (m) = φ(m).  As a result, we see that there are p − 1 incongruent integers of order p − 1 modulo p. Thus p has φ(p − 1) primitive roots.

Exercises
1. Find the incongruent roots modulo 11 of x2  + 2.

2. Find the incongruent roots modulo 11 of x4  + x2  + 1.

3. Find the incongruent roots modulo 13 of x3  + 12.

4. Find the number of primitive roots of 13 and of 47.

5. Find a complete set of incongruent primitive roots of 13.

6. Find a complete set of incongruent primitive roots of 17.

7. Find a complete set of incongruent primitive roots of 19.

8. Let r be a primitive root of p with p ≡ 1(mod 4). Show that −r is also a primitive root.

9. Show that if p is a prime and p ≡ 1(mod 4), then there is an integer x such that x2  ≡ −1(mod p).
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5.3 
The Existence of Primitive  Roots
In this section, we demonstrate which integers have primitive roots. We start by showing that every power of an odd prime has a primitive root and to do this we start by showing that every square of an odd prime has a primitive root.

Theorem  62. If p is an odd prime with primitive root r, then one can have either
r or r + p as a primitive root modulo p2 .

Proof.  Notice that since r is a primitive root modulo p, then

ordp r = φ(p) = p − 1.
Let m = ordp2  r, then

Thus

By Theorem 54, we have



rm ≡ 1(mod p2). rm ≡ 1(mod p).
p − 1 | m.
By Exercise 7 of section 6.1, we also have that

m | φ(p2 ).
Also, φ(p2) = p(p − 1) and thus m either divides p or p − 1. And since p − 1 | m
then we have

m = p − 1 or m = p(p − 1).
If m = p(p − 1) and ordp2  r = φ(p2) then r is a primitive root modulo p2. Other- wise, we have m = p − 1 and thus

rp−1 ≡ 1(mod p2).
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Let s = r + p. Then s is also a primitive root modulo p. Hence, ordp2  s equals either p−1 or p(p−1). We will show that ordp2  s = p−1 so that ordp2  s = p(p−1). Note that

sp−1 = (r + p)p−1
=  rp−1 + (p − 1)rp−2 p + ... + pp−1
=  rp−1 + (p − 1)p.rp−2 (mod p2 ).
Hence

Note also that if then

Thus we have



p2  | sp−1 − (1 − prp−2. p2  | (sp−1 − 1),
p2  | prp−2.
p | rp−2
which is impossible because p - r. Because ordp2  s = p − 1, we can conclude that
ordp2  s = p(p − 1) = φ(p2 ).
Thus, s = r + p is a primitive root of p2.
Example  51. Notice that 7 has 3 as a primitive root.   Either ord49 3 = 6 or
ord49 3 = 42.  But since 36   6≡ 1(mod 49).  Hence ord49 3 = 42.  Hence 3 is a primitive root of 49.

We now show that any power of an odd prime has a primitive root.

Theorem  63. Let p be an odd prime.  Then any power of p is a primitive root. Moreover, if r is a primitive root modulo p2 , then r is a primitive root modulo pm for all positive integers m.
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Proof.  By Theorem 62, we know that any prime p has a primitive root r which is also a primitive root modulo p2, thus

p2  - (rp−1 − 1). 
(5.1)

We will prove by induction that

pm  - (rp

m−2

(p−1) − 1) 
(5.2)
for all integers m ≥ 2. Once we prove the above congruence, we show that r is
also a primitive root modulo pm . Let n = ordpm r. By Theorem 54, we know that n | φ(pm ). Also, we know that φ(pm ) = pm (p − 1). Hence n | pm (p − 1). On the other hand, because

we also know that


pm  | (rn − 1),
p | (rn − 1).
Since φ(p) = p − 1, we see that by Theorem 54, we have n  = l(p − 1).  also
n  |   pm−1(p − 1), we have that n  = ps (p − 1), where 0  ≤ s  ≤ m − 1.  If

n = ps (p − 1) with s ≤ m − 2, then

pk  | rp

m−2

(p−1) − 1,
which is a contradiction. Hence

ordpm r = φ(pm ).
We prove now (7.5) by induction.  Assume that our assertion is true for all

m ≥ 2. Then

pm  - (rp

m−2

(p−1) − 1).
Because (r, p)  = 1, we see that (r, pm−1 )  = 1.  We also know from Euler’s

theorem that

pm−1  | (rp

m−2

(p−1) − 1).
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Thus there exists an integer k such that

rpm−2 (p−1) = 1 + kpm−1.
where p - k because rp

m−2

(p−1) 6≡ 1(mod pm ). Thus we have now
rpm−1 (p−1) 
=
(1 + kpm−1)p
≡  1 + kpm (mod pm+1 )
Because p - k, we have



pm+1  - (rp


m−1


(p−1) − 1).
Example 52. Since 3 is a primitive root of 7, then 3 is a primitive root for 7k  for all positive integers k.
In the following theorem, we prove that no power of 2, other than 2 or 4, has a primitive root and that is because when m is an odd integer, ordk m = φ(2k ) and

this is because 2k  | (aφ(2   )/2  − 1).
Theorem  64. If m is an odd integer, and if k ≥ 3 is an integer, then
m2k−2
≡ 1(mod 2k ).
Proof.  We prove the result by induction. If m is an odd integer, then m = 2n + 1

for some integer n. Hence,

m2  = 4n2  + 4n + 1 = 4n(n + 1) + 1.
It follows that 8 | (m2  − 1).
Assume now that



2k  | (m2


k−2


− 1).
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Then there is an integer q such that

m2k−2   = 1 + q.2k .
Thus squaring both sides, we get

m2k−1   = 1 + q.2k+1  + q222k .
Thus



2k+1 | (m2


k−1


− 1).
Note now that 2 and 4 have primitive roots 1 and 3 respectively. We now list the set of integers that do not have primitive roots.

Theorem  65. If m is not pa  or 2pa , then m does not have a primitive root.
Proof.  Let m = ps1  ps2  ...psi . If m has a primitive root r then r and m are relatively
1 
2 
i
prime and ordm r = φ(m).  We also have, we have (r, ps ) = 1 where ps  is of the primes in the factorization of m. By Euler’s theorem, we have

ps  | (rφ(p ) − 1).
Now let



L = [φ(ps1 ), φ(ps2  ), ..., φ(psi )].
We know that


1 
2 
i
rL ≡ 1(mod psk )
for all 1 ≤ k ≤ m. Thus using the Chinese Remainder Theorem, we get

m | (rL − 1),
which leads to ordm r = φ(m) ≤ L. Now because

φ(m) = φ(ps1  )φ(ps2 )...φ(psn ) ≤ [φ(ps1 ), φ(ps2  ), ..., φ(psn )].
1 
2 
n
1 
2 
n
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Now the inequality above holds only if

φ(ps1  ), φ(ps2  ), ..., φ(psn )
1 
2 
n
are relatively prime. Notice now that by Theorem 41,

φ(ps1  ), φ(ps2  ), ..., φ(psn )
1 
2 
n
are not relatively prime unless m = ps  or m = 2ps  where p is an odd prime and t
is any positive integer.

We now show that all integers of the form m = 2ps  have primitive roots.
Theorem  66. Consider a prime p = 2 and let s is a positive integer, then 2ps  has a primitive root. In fact, if r is an odd primitive root modulo ps , then it is also a primitive root modulo 2ps  but if r is even, r + ps  is a primitive root modulo 2ps .

Proof.  If r is a primitive root modulo ps , then

ps  | (rφ(p ) − 1)
and no positive exponent smaller than φ(ps ) has this property. Note also that

φ(2ps ) = φ(ps ),
so that

If r is odd, then

Thus by Theorem 56, we get



ps  | (rφ(2p ) − 1).
2 | (rφ(2p ) − 1).
2ps  | (rφ(2p ) − 1).
It is important to note that no smaller power of r is congruent to 1 modulo 2ps . This power as well would also be congruent to 1 modulo ps  contradicting that r is a primitive root of ps . It follows that r is a primitive root modulo 2ps .
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While, if r is even, then r + ps  is odd. Hence

2 | ((r + ps )φ(2p  ) − 1).
Because ps  | (r + ps  − r), we see that

ps  | ((r + ps )φ(2p  ) − 1).
As a result, we see that 2ps  | ((r + ps )φ(2p  ) − 1) and since for no smaller power of
r + ps  is congruent to 1 modulo 2ps , we see that r + ps  is a primitive root modulo
2ps .

As a result, by Theorem 63, Theorem 65 and Theorem 66, we see that

Theorem 67. The positive integer m has a primitive root if and only if n = 2, 4, ps
or 2ps
for prime p = 2 and s is a positive integer.

Exercises
1. Which of the following integers 4, 12, 28, 36, 125 have a primitive root.

2. Find a primitive root of 4, 25, 18.

3. Find all primitive roots modulo 22.

4. Show that there are the same number of primitive roots modulo 2ps  as there are modulo ps , where p is an odd prime and s is a positive integer.

5. Find all primitive roots modulo 25.

6. Show that the integer n has a primitive root if and only if the only solutions of the congruence x2  ≡ 1(modn) are x ≡ ±1(mod n).
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5.4 
Introduction to Quadratic Residues  and  Non- residues
The question that we need to answer in this section is the following. If p is an odd prime and a is an integer relatively prime to p. Is a a perfect square modulo p.

Definition 3. Let m be a positive integer. An integer a is a quadratic residue of m if (a, m) = 1 and the congruence x2  ≡ a(mod m) is solvable. If the congruence x2  ≡ a(mod m) has no solution, then a is a quadratic nonresidue of m.
Example  53. Notice that 12    = 62    ≡ 1(mod 7), 32    = 42    ≡ 2(mod 7) and
22  = 52  ≡ 4(mod 7). Thus 1, 2, 4 are quadratic residues modulo 7 while 3, 5, 6

are quadratic nonresidues modulo 7.

Lemma 12. Let p = 2 be a prime number and a is an integer such that p - a. Then either a is quadratic nonresidue modulo p or
x2  ≡ a(mod p)
has exactly two incongruent solutions modulo p.

Proof.  If x2  ≡ a(mod p) has a solution, say x = x0, then −x0  is a solution as well. Notice that −x0  6≡ x0(mod p) because then p | 2x0  and hence p - x0.
We now show that there are no more than two incongruent solutions. Assume that x = x0  and x = x00  are both solutions of x2  ≡ a(mod p). Then we have

(x0)2  − (x00 )2  = (x0  + x00 )(x0  − x00 ) ≡ 0(mod p).
Hence



x0  ≡ x00 (mod p)  or x0  ≡ −x00 (mod p).
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The following theorem determines the number of integers that are quadratic residues modulo an odd prime.

Theorem  68. If p = 2 is a prime, then there are exactly (p − 1)/2 quadratic residues modulo p and (p − 1)/2 quadratic nonresidues modulo p in the set of integers 1, 2..., p − 1.

Proof.  To find all the quadratic residues of p among all the integers 1, 2, ..., p − 1, we determine the least positive residue modulo p of 12, 22 , ..., (p − 1)2. Consider- ing the p − 1 congruences and because each congruence has either no solution or two incongruent solutions, there must be exactly (p − 1)/2 quadratic residues of p among 1, 2, ..., p − 1. Thus the remaining are (p − 1)/2 quadratic nonresidues of p.

Exercises
1. Find all the quadratic residues of 3.

2. Find all the quadratic residues of 13.

3. find all the quadratic residues of 18.

4. Show that if p is prime and p ≥ 7, then there are always two consecutive quadratic  residues of p.  Hint:  Show that at least one of 2, 5 or 10 is a quadratic residue of p.

5. Show that if p is prime and p ≥ 7, then there are always two quadratic residues of p that differ by 3.

5.5 
Legendre  Symbol
In this section, we define Legendre symbol which is a notation associated to quadratic residues and prove related theorems.
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Definition 4. Let p = 2 be a prime and a be an integer such that p -  a.  The

Legendre symbol   a   is defined by

  a  
=
p

( 1
if a is a quadratic residue of p
−1   if a is a quadratic nonresidue of p.
Example 54. Notice that using the previous example, we see that
  1  
=
7
  3  
=
7

  2  
=
7
  5  
=
7

  4  
7
  6  
7


= 1

= −1

In the following theorem, we present a way to determine wether an integer is a quadratic residue of a prime.

Theorem  69. Euler’s  Criterion  Let p = 2 be a prime and let a be a positive integer such that p - a. Then

  a  
p


φ(p)/2
≡


(mod p).
Proof.  Assume that    a    = 1. Then the congruence x2  ≡ a(mod p) has a solution say x = x0. According to Fermat’s theorem, we see that

aφ(p)/2  = ((x0)2)φ(p)/2  ≡ 1(mod p).
Now if    a    = −1, then x2   ≡ a(mod p) is not solvable. Thus by Theorem 26, we have that for each integer k with (k, p)  = 1 there is an integer l such that kl ≡ a(mod p). Notice that i = j since x2   ≡ a(mod p) has no solutions. Thus we can couple the integers 1, 2, ..., p − 1 into (p − 1)/2 pairs, each has product a. Multiplying these pairs together, we find out that

(p − 1)! ≡ aφ(p)/2 (mod p).
108
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Using Wilson’s Theorem, we get

  a  
= −1 ≡ a(p−1)/2(mod p).
Example 55. Let p = 13 and a = 3. Then    3   = −1 ≡ 36(mod 13).
We now prove some properties of Legendre symbol.

Theorem  70. Let p = 2 be a prime. Let a and b be integers such that p - a, p - b
and p | (a − b) then
  a  
=
p

  b  
. p

Proof.  Since p  |   (a − b), then x2    ≡ a(mod  p) has a solution if and only if

x2  ≡ b(mod p) has a solution. Hence

  a  
=
p


  b  
p
Theorem  71. Let p = 2 be a prime. Let a and b be integers such that p - a, p - b
then
  a     b  
=

  ab  
and

p
By Euler’s criterion, we have
  a  
p
  b  

p
φ(p)/2
≡
φ(p)/2

p
(mod p)
Thus we get



p
  a     b  

≡ b
φ(p)/2

(mod p).
  ab  
p
p
≡ (ab)

≡
p
(mod p).
We now show when is −1 a quadratic residue of a prime p .
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Corollary  3. If p = 2 is a, then

( 1
if p ≡ 1(mod 4)
  −1    =
p


−1   if p ≡ −1(mod 4).
Proof.  By Euler’s criterion, we know that

  a  
= (   1)φ(p)/2(mod p)
p
If 4 | (p − 1), then p = 4m + 1 for some integer m and thus we get

(−1)φ(p)/2  = (−1)2m  = 1.
and if 4 | (p − 3), then p = 4m + 3 for some integer m and we also get

(−1)φ(p)/2  = (−1)2m+1 = −1.
We now determine when 2 is a quadratic residue of a prime p.

Theorem  72. For every odd prime p we have

  2  
=
p

( 1
if p ≡ ±1(mod 8)
−1   if p ≡ ±3(mod 8).
Proof.  Consider the following (p − 1)/2 congruences
p − 1   ≡  1(−1)1      (mod p)
2  ≡  2(−1)2      (mod p)
p − 3   ≡  3(−1)3      (mod p)
4  ≡  4(−1)4      (mod p)
.
.
.
r
p − 1 (   1)
2


(p−1)/2


(mod p),
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where r is either p − (p − 1)/2 or (p − 1)/2. Multiplying all these equations we get,

2.4.6...(p − 1) ≡
This gives us


  p − 1  
2

!(−1)



1+2+...+(p−1)/2


(mod p).
2(p−1)/2

  p − 1   !
2

  p − 1  
≡
2



!(−1)(p  −1)/8(mod p).
Now notice that   p− 1  ! 6≡ 0(mod p) and thus we get

2(p−1)/2  ≡ (−1)(p  −1)/8 (mod p).
Note also that by Euler’s criterion, we get
  2  
2φ(p)/2
p


(mod p),
and since each member is 1 or -1 the two members are equal.

We now present an important lemma that determines whether an integer is a quadratic residue of a prime or not.

Lemma  13. Gauss’s Lemma Let p  = 2 be a prime and a a relatively prime integer to p.   If  k counts the number of least positive residues of the integers a, 2a, ..., ((p − 1)/2)a that are greater than p/2, then

  a  
= (   1)k . p
Proof.  Let m1, m2 , ..., ms  be those integers greater than p/2 in the set of the least positive  residues of the integers a, 2a, ..., ((p − 1)/2)a  and let n1, n2, ..., nt  be

those less than p/2. We now show that

p − m1, p − m2 , ..., p − mk , p − n1, p − n2, ..., p − nt
are precisely the integers



1, 2, ..., (p − 1)/2,
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in the same order.

So we shall show that no two integers of these are congruent modulo p, be- cause there are exactly (p − 1)/2 numbers in the set, and all are positive integers less than or equal to (p − 1)/2. Notice that mi  6≡ mj (  mod  p) for all i = j and ni  6≡ nj (  mod  p) for all i = j.  If any of these congruences fail, then we will have that r ≡ s(mod p) assuming that ra ≡ sa(mod p). Also any of the integers p − mi  can be congruent to any of the ni ’s.  Because if such congruence holds, then we have ra ≡ p − sa(mod p), so that ra ≡ −sa(mod p). Because p - a, this implies that r ≡ −s(mod p), which is impossible. We conclude that

k
t
  p − 1  
Y(p − mi ) Y ni  ≡

!(mod p),
2
i=1

i=1
which implies

(−1)s m1m2...(p − mk )n1n2...nt  ≡


  p − 1  
2


!(mod p),
Simplifying, we get

m1m2...(p − mk )n1n2...nt  ≡ a.2a...((p − 1)/2) = a(p−1)/2 ((p − 1)/2)!(mod p).
As a result, we have that

a(p−1)/2 ((p − 1)/2)! ≡ ((p − 1)/2)!(mod p)
Note that since (p, ((p − 1)/2)!) = 1, we get

(−1)k a(p−1)/2  ≡ 1(mod p).
Thus we get



a(p−1)/2  ≡ (−1)k (mod p).
Using Euler’s criterion, the result follows.
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Example 56. To find    5   using Gauss’s lemma, we calculate
6
X[5i/13] = [5/13] + [10/13] + [15/13] + [20/13] + [25/13] + [30/13] = 5
i=1
Thus we get    5   = (−1)5  = −1.

Exercises
1. Find all quadratic residues of 3

2. Find all quadratic residues of 19.

3. Find the value of Legendre symbol   j   for j = 1, 2, 3, 4, 5, 6.

4. Evaluate the Legendre symbol    7  by using Euler’s criterion.

5. Let a and b be integers not divisible by p. Show that either one or all three of the integers a, b and ab are quadratic residues of p.

6. Let p be a prime and a be a quadratic residue of p.  Show that if p  ≡
1(mod 4), then −a is also a quadratic residue of p, whereas if p ≡ 3(mod 4), then −a is a quadratic nonresidue of p.

7. Show that if p is an odd prime and a is an integer not divisible by p then

  a2    = 1.

5.6 
The Law of Quadratic Reciprocity
Given that p and q are odd primes.  Suppose we know whether q is a quadratic residue of p or not. The question that this section will answer is whether p will be a quadratic residue of q or not.  Before we state the law of quadratic reciprocity, we will present a Lemma of Eisenstein which will be used in the proof of the law of reciprocity. The following lemma will relate Legendre symbol to the counting lattice points in the triangle.
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Lemma 14. If p = 2 is a prime and a is an odd integer such that p - a, then

  a  
p


= (−1)

P (p−1)/2
i=1 
.
Proof.  Consider the least positive residues of the integers a, 2a, ..., ((p − 1)/2)a;
let m1, m2, ..., ms    be integers of this set such that mi   > p/2  for all i and let n1, n2 , ..., nt  be those integers where ni < p/2.  Using the division algorithm, we see that

ia = p[ia/p] + r
where r is one of the mi  or ni . By adding the (p − 1)/2 equations, we obtain

(p−1)/2

(p−1)/2
s 
t
X ia =

X p[ia/p] + X mi + X ni . 
(5.3)

i=1

i=1

i=1

i=1
As in the proof of Gauss’s Lemma, we see that

p − m1, p − m2, ..., p − ms , p − n1, p − n2, ..., p − nt
are precisely the integers 1, 2, ..., (p − 1)/2, in the same order. Now we obtain

(p−1)/2
s

t
s 
t
X i = X(p − mi ) + X ni = ps − X mi + X ni . 
(5.4)

i=1

i=1

i=1

i=1

i=1
We subtract (5.4) from (5.3) to get

(p−1)/2
X
i=1


ia −

(p−1)/2
X i =
i=1

(p−1)/2
X
i=1

s
p[ia/p] − ps + 2 X mi .
i=1
Now since we are taking the following as exponents for −1, it suffice to look at
them modulo 2. Thus

(p−1)/2
0 ≡  X
i=1


[ia/p] − s(mod 2).
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(p−1)/2
X
i=1


[ia/p] ≡ s(mod 2)
Using Gauss’s lemma, we get

  a  


(p−1)/2
= (−1)s  = (−1)P i=1 
[ia/p].
Theorem  73. The Law of Quadratic  Reciprocity Let p and q be distinct odd

primes. Then
  p     q  
= (−1)
q
p


p− 1    q− 1
2       .   2
Proof.  We consider now the pairs of integers also known as lattice points (x, y)
with

1 ≤ x ≤ (p − 1)/2and  1 ≤ y ≤ (q − 1)/2.
The number of such pairs is p− 1 . q− 1 . We divide these pairs into two groups de-
2 
2
pending on the sizes of qx and py. Note that qx = py for all pairs because p and

q are distinct primes.

We now count the pairs of integers (x, y) with

1 ≤ x ≤ (p − 1)/2,   1 ≤ y ≤ (q − 1)/2and  qx > py.
Note that these pairs are precisely those where

1 ≤ x ≤ (p − 1)/2and  1 ≤ y ≤ qx/p.
For each fixed value of x with 1 ≤ x  ≤ (p − 1)/2,  there are [qx/p] integers satisfying 1 ≤ y ≤ qx/p. Consequently, the total number of pairs with are

1 ≤ x ≤ (p − 1)/2,   1 ≤ y ≤ qx/p, and qx > py
is
(p−1)/2
X
i=1


[qi/p].
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Consider now the pair of integers (x, y) with

1 ≤ x ≤ (p − 1)/2,   1 ≤ y ≤ (q − 1)/2, and qx < py.
Similarly, we find that the total number of such pairs of integers is

(q−1)/2
X
i=1


[pi/q].
Adding the numbers of pairs in these classes, we see that

(p−1)/2
X


[qi/p] +

(q−1)/2
X


p
1 q
1 [pi/q] =

. 

,
i=1

2
2
i=1
and hence using Lemma 14, we get that

  p     p  


p− 1    q− 1
q
q
= (−1)

2       .   2
Exercises
1. Evaluate    3  .

2. Evaluate    31  .

3. Using the law of quadratic reciprocity, show that if p is an odd prime, then

  3  
=
p

( 1
if p ≡ ±1(mod 12)
−1   if p ≡ ±5(mod 12).
4. Show that if p is an odd prime, then

( 1
if p ≡ 1(mod 6)
  −3    =
p


−1   if p ≡ −1(mod 6).
5. Find a congruence describing all primes for which 5 is a quadratic residue.
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5.7 
Jacobi Symbol
In this section, we define the Jacobi symbol which is a generalization of the Leg- endre symbol. The Legendre symbol was defined in terms of primes, while Jacobi symbol will be generalized for any odd integers and it will be given in terms of Legendre symbol.

Definition 27. Let n be an odd positive integer with prime factorization n  =
pa1      a2 
am
1   p2  ...pm     and let a be an integer relatively prime to n, then
  a    = Y   a       .
n 
p
i=1
Example 57. Notice that from the prime factorization of 45, we get that
  2  
=

  2     2  


= (−1)(−1) = 1
55
5
11
We now prove some properties for Jacobi symbol that are similar to the prop- erties of Legendre symbol.

Theorem  74. Let n be an odd positive integer and let a and b be integers such that(a, n) = 1 and (b, n) = 1. Then

1. if n | (a − b), then


  a    =   b    .
n 
n
2.
  ab  


=   a   
 
.
n 
n 
n
Proof.  Proof of 1: Note that if p is in the prime factorization of n, then we have that p | (a − b). Hence by Theorem 70, we get that

  a  
=
p

  b  
. p

5.7. JACOBI SYMBOL
117

As a result, we have

  a   = Y   a  

= Y   b  
n 
p
i=1

p
i=1
Proof of 2: Note that by Theorem 71, we have    ab    =   a       b    for any prime p
p 
p 
p
appearing in the prime factorization of n. As a result, we have

  ab  
=
n

m
Y
i=1
m

  ab   ci
pi
ci     m 
ci
=   Y   a  
p
i=1

Y   b  
p
i=1
=    a      b    .
n 
n
In the following theorem, we determine   − 1   and   2  .
n
n
Theorem  75. Let n be an odd positive integer. Then

1.
  −1    = (
n


1)(n−1)/2.
2.
  2  
n


= (−1)(n −1)/8.
Proof.  Proof of 1: If p is in the prime factorization of n, then by Corollary 3, we see that    − 1   = (−1)(p−1)/2. Thus

  −1      =
n

Y  −1   ci
p
i=1
=  (−1)

i=1 ci (pi −1)/2.
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Notice that since pi − 1 is even, we have

i    = (1 + (pi − 1))

≡ 1 + ci (pi − 1)(mod 4)
and hence we get

m 
m
n = Y pci   ≡ 1 + X ci (pi − 1)(mod 4).
As a result, we have


i=1

i=1
m
(n − 1)/2 ≡ X ci (pi − 1)/2 (mod 2).
i=1
Proof of 2: If p is a prime, then by Theorem 72 we have

  2  
p


= (−1)(p  −1)/8.
Hence




  2  


P m 
2
n
= (−1)

i=1 ci (pi −1)/8.
Because 8 | p2  − 1, we see similarly that

(1 + (p2  − 1))ci   ≡ 1 + ci (p2  − 1)(mod 64)
i
i
and thus



m
n2  ≡ 1 + X ci (p2  − 1)(mod 64),
which implies that


i=1
m
(n2  − 1)/8 ≡ X ci (p2  − 1)/8(mod 8).
i=1
We now show that the reciprocity law holds for Jacobi symbol.
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Theorem  76. Let (a, b) = 1 be odd positive integers. Then

  b     a  
= (−1)
a 
b


a− 1    b− 1
2       .   2       .
Proof.  Notice that since a = Qm

pci   and b = Qn


qdi   we get
  b     a  

j=1    i
n


m       p

i=1
    q

i
  cj di
= Y Y 
j 
i
a 
b
q
p
i=1  j=1
By the law of quadratic reciprocity, we get

  b     a  


= (−1)


P n
i=1


P m
j=1


cj  


−   di ( qi −1 )
2 
2
a 
b
As in the proof of part 1 of Theorem 75, we see that

and



m
X cj
j=1
n


  pj
  q

− 1  
2

− 1  

a − 1

≡
2
b − 1


(mod 2)
Thus we conclude that


X di
2
i=1

≡
2
(mod 2).
m
X cj
j=1


  pj

− 1     n
2
i=1


  qi

− 1  
2
≡

a − 1 .
2

b − 1
2


(mod 2).
Exercises
1. Evaluate    258  .

2. Evaluate   1008  .

3. For which positive integers n that are relatively prime to 15 does the Jacobi symbol   15   equal 1?

4. Let n be an odd square free positive integer. Show that there is an integer a
such that (a, n) = 1 and   a   = −1.
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Chapter 6
Introduction to Continued Fractions
In this chapter, we introduce continued fractions, prove their basic properties and apply these properties to solve some problems. Being a very natural object, con- tinued fractions appear in  many areas of Mathematics, sometimes in an unex- pected way. The Dutch mathematician and astronomer, Christian Huygens (1629-

1695), made the first practical application of the theory of ”anthyphaeiretic ratios” (the old name of continued fractions) in 1687. He wrote a paper explaining how to use convergents to find the best rational approximations for gear ratios. These approximations enabled him to pick the gears with the best numbers of teeth. His work was motivated by his desire to build a mechanical  planetarium.  Further continued fractions attracted attention of most prominent mathematicians.  Euler, Jacobi, Cauchy, Gauss and many others worked with the subject. Continued frac- tions find their applications in some areas of contemporary Mathematics. There are mathematicians who  continue to develop the theory of continued fractions nowadays, The Australian mathematician A.J. van der Poorten is, probably, the most prominent among them.
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6.1 
Basic Notations
In general, a (simple) continued fraction is an expression of the form

1
a0  +


a1  + a

1
,
2  + . . .
where the letters a0 , a1,  a2 , . . . denote independent variables, and may be inter- preted as one wants (e.g. real or complex numbers, functions, etc.). This expres- sion has precise sense if the number of terms is finite, and may have no meaning for an infinite number of terms. In this section we only discuss the simplest clas- sical setting.

The letters  a1, a2 , . . . denote positive integers. The letter a0  denotes an integer.
The following standard notation is very convenient.

Notation 1. We write

[a0 ; a1, a2 , . . . , an ] = a0  +
if the number of terms is finite, and


a1  + a2


1

1
+ . . .
an
[a0; a1, a2 , . . .] = a0  +


1
a1  + a


1
. . .
2  +
for an infinite number of terms.

Still, in the case of infinite number of terms a certain amount of work must be carried out in order to make the above formula meaningful. At the same time, for the finite number of terms the formula makes sense.

Example 58.

[−2; 1, 3, 5] = −2+1/(1+1/(3+1/5)) = −2+1/(1+5/16) = −2+1/(21/16) = −2+16/21 = −26
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Notation 2. For a finite continued fraction [a0; a1 , a2, . . . , an ] and a positive inte- ger k ≤ n, the k-th remainder is defined as the continued fraction
rk = [ak ; ak+1 , ak+2 , . . . , an ].
Similarly, for an infinite continued fraction [a0; a1, a2, . . .] and a positive inte- ger k, the k-th remainder is defined as the continued fraction
rk = [ak ; ak+1 , ak+2 , . . .].
Thus, at least in the case of a finite continued fraction,

α = [a0; a1, a2, . . . , an ] = a0  + 1/(a1  + 1/(a2  + . . . + 1/an ))
we have

α = a0  + 1/(a1  + 1/(a2  + . . . + 1/(ak−1  + 1/rk ))) = ”[a0 ; a1, a2 , . . . , ak−1 , rk ]”

(6.1) for any positive k ≤ n. Quotation signs appear because we consider the expres- sions of this kind only with integer entries but the quantity rk may be a non-integer.

It is not difficult to expand any rational number α into a continued fraction. Indeed, let a0  = [α] be the greatest integer not exceeding α. Thus the difference δ = α − a0   < 1 and, of course, δ ≥ 0. If δ = 0 then we are done. Otherwise put r1  = 1/δ, find a1   = [r1] and non-negative δ = α1  − a1   < 1. Continue the procedure until you obtain δ = 0.

Example  59. Consider the continued fraction expansion for 42/31.  We obtain a0    =  [42/31]  = 1, δ = 42/31 − 1 = 11/31.   Now r1  = 1/δ  = 31/11 and a1  = [α1 ] = [31/11] = 2. The new δ = 31/11 − 2 = 9/11. Now r2 = 1/δ = 11/9 and a2    = [α2]  = [11/9]  = 1.   It  follows that δ  = 11/9 − 1  = 2/9.   Now r3 = 1/δ  = 9/2 and a3   = [α3 ] = [9/2] = 4. It follows that δ = 9/2 − 4 = 1/2. Now r4 = 1/δ = 2 and a4  = [α4 ] = [2] = 2. It follows that δ = 2 − 2 = 0 and we are done.
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Thus we have calculated
42/31 = [a0; a1, a2 , a3, a4] = [1; 2, 1, 4, 2].
The above example shows that the algorithm stops after finitely many steps. This is in fact quite a general phenomenon. In order to practice with the introduced notations let us prove a simple but important proposition.

Proposition 1. Any rational number can be represented as a finite continued frac- tion.

Proof. By construction, all remainders are positive rationals.  For a positive integer k put rk = A/B  and let ak   = [rk ]. Then

A − Bak 
C
rk − ak   =

:= 
. 
(6.2)
B 
B
with C < B because rk − ak   < 1 by construction. If C = 0, then the algorithm stops at this point and we are done. Assume now that C = 0. It follows from (6.1) that

rk = ak  + r
Compare now (6.2) with (6.3) to find that


1
k+1

. 
(6.3)

B
rk+1 = C .
Since C < B, the rational number rk+1 has a denominator which is smaller than the the denominator of the previous remainder rk .  It follows that after a finite number of steps we obtain an integer (a rational with 1 in the denominator) rn  = an and the procedure stops at this point.

There appear several natural questions in the connection with Proposition 1.
Is such a continued fraction representation unique? The immediate answer is

”no”. Here are two ”different” continued fraction representations for 1/2:
1
= [0; 2] = [0; 1, 1].
2
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However, we require that an > 1, where an is the last element of a finite continued fraction. Then the answer is ”yes”.

Hint. Make use of the formulas (6.5) below. From now on we assume that an > 1.

Another natural question is about infinite continued fractions and (as one can

easily guess) real numbers. The proof of the corresponding result is slightly more involved, and we do not give it here. In this brief introduction we just formulate the result and refer to the literature ([12, Theorem 14]) for a complete proof. We, however, provide some remarks concerning this result below.  In particular, we will explain at some point, what the convergence means.

Theorem  77. An infinite continued fraction converges and defines a real number. There is a one-to-one correspondence between

• all (finite and infinite) continued fractions [a0; a1, a2 , . . .] with an integer a0
and positive integers ak   for k > 0 (and the last term an  > 1 in the case of finite continued fractions)
and
• real numbers.

Note that the algorithm we developed above can be applied to any real number and provides the corresponding continued fraction.

Theorem 77 has certain theoretical significance.  L.Kronecker (1823-1891) said, ”God created the integers; the rest is work of man”. Several ways to represent real numbers out of integers are well-known.  Theorem 77 provides yet another way to fulfill this task. This way is constructive and at the same time is not tied to any particular base (say to decimal or binary decomposition).

We will discuss some examples later.

Exercises
1. Prove that under the assumption an  > 1 the continued fraction representa- tion given in Proposition 1 is unique. In other words, the correspondence
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between

• finite continued fractions [a0 ; a1, a2 , . . . an ] with an integer a0, positive integers ak  for k > 0 and an > 1

and

• rational numbers is one-to-one.

6.2 
Main Technical  Tool
Truncate finite (or infinite) continued fraction α = [a0 ; a1, a2 , . . . , an ] at the k-th place (with k < n in the finite case). The rational number sk   = [a0; a1 , a2, . . . , ak ] is called the k-th convergent of α. Define the integers pk  and qk  by

pk
sk   =
k
written in the reduced form with qk  > 0.

(6.4)

The following recursive transformation law takes place.

Theorem  78. For k ≥ 2


pk  = ak pk−1  + pk−2
qk  = ak qk−1  + qk−2.


(6.5)

Remark. It does not matter here whether we deal with finite or infinite con- tinued fractions: the convergents are finite anyway. Proof. We use the induction argument on k. For k = 2 the statement is true.

Now, assume (6.5) for 2 ≤ k < l. Let
α = [a  ; a , a , . . . a ] = pl
0 
1 
2 
l 
q
l
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be an arbitrary continued fraction of length l + 1.  We denote by pr /qr  the r-th convergent α. Consider also the continued fraction

β = [a1 ; a2, . . . , al ]
and denote by p0 /q0  its r-th convergent. We have α = a0  + 1/β which translates
r
r
as

pl  = a0 p0


0
l−1


(6.6)
ql  = p0
.
Also, by the induction assumption,

p0
0
0
l−1 = al pl−2  + pl−3


(6.7)
q0
0
0
l−1 = al ql−2  + ql−3
Combining (6.6) and (6.7) we obtain the formulas

pl  = a0(al p0

0
l−3

)+al q0

0
l−3

= al (a0p0

0
l−2

)+(a0 p0

0
l−3

) = al pl−1+pl−2
and



ql  = al p0


0
l−3


= al ql−1  + ql−2,
which complete the induction step. We have thus proved that

pk
sk   =
,
k
where pk  and qk  are defined by the recursive formulas (6.5). We still have to check that these are the quantities defined by (6.4), namely that qk  > 0 and that qk  and pk  are relatively prime. The former assertion follows from (6.5) since ak   > 0 for k > 0. To prove the latter assertion, multiply the equations (6.5) by qk−1  and pk−1 respectively and subtract them. We obtain

pk qk−1  − qk pk−1  = −(pk−1qk−2  − qk−1 pk−2).
(6.8)

This concludes the proof of Theorem 6.5. As an immediate consequence of

(6.5) we find that
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pk−1

pk 
(  1)k
=


(6.9)
and

qk−1  − qk

qk qk−1
k
pk−2

pk 
(  1)
=

ak .
qk−2  − qk

qk qk−2
Since all the numbers qk  and ak  are positive, the above formulas imply the follow- ing.

Proposition  2. The subsequence of convergents pk /qk   for even indices k is in- creasing.
The subsequence of convergents pk /qk   for odd indices k is decreasing.
Every convergent with an odd index is bigger than every convergent with an even index.

Remark. Proposition 2 implies that both subsequences of convergents (those with odd indices and those with even indices) have limits. This is a step towards making sense out of an infinite continued fraction: this should be common limit of these two subsequences.  It is somehow more technically involved (although still fairly elementary!) to prove that these two limits coincide.

Theorem  79. Let α = [a0 ; a1, a2, . . . , an ]. For k < n we have

1
 α − pk   ≤
1
Proof.

qk (qk+1  + qk )  ≤  

qk  

qk qk+1
Another inequality, which provides the lower bound for the distance between the number α and k-th convergent is slightly more involved. To prove it we first consider the following way to add fractions which students sometimes prefer.

Definition 1. The number



a + c b + d
is called the mediant of the two fractions a/b and c/d.  (The quantities a, b, c and
d are integers.)
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Lemma 15. If
a 
c
then


b ≤ d
a 
a + c
c
b ≤ b + d ≤ d .
Consider now the sequence of fractions

pk , pk  + pk+1 , pk  + 2pk+1 , . . . , pk  + ak pk+1


pk+2
=
, 
(6.10)
qk
qk + qk+1

qk + 2qk+1

qk + ak qk+1

qk+2
where the last equality follows from (6.5).

It follows that the sequence (6.10) is increasing if k is even and is decreasing if k is odd. Thus, in particular, the fraction

pk  + pk+1
qk + qk+1


(6.11)

is between the quantities pk /qk   and α. Therefore the distance between pk /qk   and the fraction (6.11) is smaller than the distance between pk /qk   and α:
 α −


pk  
qk   ≥


pk  + pk+1
qk + qk+1


1
= 

. qk (qk  + qk+1 )
The second (right) inequality in Theorem 79 is now proved.  This finishes the proof of Theorem 79.

Exercises
1. Check the assertion of Theorem 78 for k = 2.

2. Check that for k = 2



p2q1 − q2p1  = −1.

Hint. Introduce formally p−1   = 1 and q−1   = 0, check that then formulas

6.5 are true also for k = 1.

3. Combine the previous exercises with (6.8) to obtain

qk pk−1  − pk qk−1  = (−1)
for k ≥ 1. Derive from this that qk  and pk  are relatively prime.
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4. Prove Proposition 2

5. Combine (6.9) with Proposition 2 to prove the inequality

 α −

pk  
1
 
.
qk   ≤ qk qk+1
6. Prove Lemma 15

7. Use (6.5) to show that the sign of the difference between two consecutive fractions in (6.10) depends only on the parity of k.
6.3 
Very Good Approximation
Continued fractions provide a representation of numbers which is, in a sense, generic and canonical. It does not depend on an arbitrary choice of a base. Such a representation should be the best in a sense. In this section we quantify this naive idea.

Definition 2. A rational number a/b is referred to as a ”good” approximation to a number α if

imply


c
a
d = b
and 
0 < d ≤ b
|dα − c| > |bα − a|.
Remarks. 1. Our ”good approximation” is ”the best approximation of the sec- ond kind” in a more usual terminology.

2. Although we use this definition only for rational α, it may be used for any real
α as well. Neither the results of this section nor the proofs alter.

3. Naively, this definition means that a/b  approximates α better then any other rational number whose denominator does not exceed b.  There is another, more
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common, definition of ”the best approximation”.  A rational number x/y  is re- ferred to as ”the best approximation of the first kind” if c/d = x/y  and 0 < d ≤ y imply |α − c/d| > |α − x/y|.  In other words, x/y  is closer to α than any ratio- nal number whose denominator does not exceed y. In our definition we consider a slightly different measure of approximation, which takes into the account the denominator, namely b|α − a/b| = |bα − a| instead of taking just the distance

|α − a/b|.
Theorem  80. Any ”good” approximation is a convergent.

Proof.  Let a/b  be a ”good” approximation to α  = [a0; a1, a2 , . . . , an ].  We have to prove that a/b = pk /qk   for some k.
Thus we have a/b  > p1/q1   or a/b lies between two consecutive convergents

pk−1/qk−1  and pk+1 /qk+1 for some k. Assume the latter. Then

 
pk−1  
1
 
 
and

  b − qk−1   ≥ bqk−1
 
pk−1  

  pk

pk−1  
1
  <  

  = 
.
It follows that


  b − qk−1  

  qk  − qk−1  

qk qk−1
Also

b > qk . 
(6.12)

a  
 

k+1
 
1
which implies


 α − b   ≥  q


k+1

− b   ≥ bq
1

,
k+1
|bα − a| ≥ q

.
k+1
At the same time Theorem 79 (it right inequality multiplied by qk ) reads

1
It follows that


|qk α − pk | ≤ q

.
k+1
|qk α − pk | ≤ |bα − a| ,
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and the latter inequality together with (6.12) show that a/b  is not a ”good” ap- proximation of α in this case.

This finishes the proof of Theorem 80.

Exercises
1. Prove that if a/b is a ”good” approximation then a/b ≥ a0.
2. Show that if a/b > p1/q1   then a/b is not a ”good” approximation to α.
6.4 
An Application
Consider the following problem which may be of certain practical interest. As- sume that we calculate certain quantity using a computer.  Also assume that we know in advance that the quantity in question is a rational number.  The com- puter returns a decimal which has high accuracy and is pretty close to our desired answer. How to guess the exact answer?

To be more specific consider an example.

Example 60. Assume that the desired answer is

123456
121169
and the result of computer calculation with a modest error of 10−15  is

α = 123456/121169 + 10−15  =
1.01887446459077916933374047817511079566555802226642127937013592

5855623137931319066757999158200529838490042832737746453300761745

9911363467553582186862976503891259315501489654944746593600673439576129207

with some two hundred digits of accuracy which, of course come short to help in guessing the period and the exact denominator of 121169.

6.5. A FORMULA OF GAUSS, A THEOREM OF KUZMIN AND LE´ VI AND A PROBLEM OF ARNOLD1

Solution. Since 123456/121169 is a good (just in a naive sense) approximation to α, it should be among its convergents.  This is not an exact statement, but it offers a hope! We have

α = [1; 52, 1, 53, 2, 4, 1, 2, 1, 68110, 4, 1, 2, 106, 22, 3, 1, 1, 10, 2, 1, 3, 1, 3, 4, 2, 11].

We are not going to check all convergents, because we notice the irregularity: one element, 68110 is far more than the others. In order to explain this we use the left inequality from Theorem 79 together with the formula (6.5). Indeed, we have an approximation of α which is unexpectedly good: |α − pk /qk | is very small (it is around 10−15 ) and with a modest qk  too. We have

and

qk (qk+1  + qk ) = qk (ak+1 qk + qk   1) = q2(a 
+ q
/q  )
 α −

pk  
1
qk  
q2
It follows that 1/q2(ak+1 + qk



−1/qk

k (ak+1 + qk−1/qk )
) is small (smaller than 10−15 ) and therefore,

ak+1 should be big. This is exactly what we see. Of course, our guess is correct:

123456
121169

= [1, 52, 1, 53, 2, 4, 1, 2, 1].
In this way we conclude that in general an unexpectedly big element allows to cut the continued fraction (right before this element) and to guess the exact rational quantity. There is probably no need (although this is, of course, possible) to quantify this procedure. I prefer to use it just for guessing the correct quantities on the spot from the first glance.

6.5 
A Formula of Gauss, a Theorem  of Kuzmin  and
Le´vi and a Problem of Arnold
In this connection Gauss asked about a probability ck  for a number k to appear as an element of a continued fraction. Such a probability is defined in a natural way:

134
CHAPTER 6.  INTRODUCTION TO CONTINUED FRACTIONS

as a limit when N → ∞ of the number of occurrences of k among the first N ele- ments of the continued fraction enpension. Moreover, Gauss provided an answer, but never published the proof. Two different proofs were found independently by R.O.Kuzmin (1928) and P. Le´vy (1929) (see [12] for a detailed exposition of the R.O.Kuzmin’s proof).

Theorem 81. For almost every real α the probability for a number k to appear as an element in the continued fraction expansion of α is

1
ck  = ln 2 ln


1
1 +
k(k + 2)


. 
(6.13)

Remarks. 1. The words ”for almost every α” mean that the measure of the set of exceptions is zero.

2. Even the existence of pk  (defined as a limit) is highly non-trivial.

Theorem 81 may (and probably should) be considered as a result from ergodic theory rather than number theory. This constructs a bridge between these two ar- eas of Mathematics and explains the recent attention to continued fractions of the mathematicians who study dynamical systems.  In particular, V.I.Arnold formu- lated the following open problem. Consider the set of pairs of integers (a, b) such that the corresponding points on the plane are contained in a quarter of a circle of radii N :

a2  + b2  ≤ N 2.
Expand the numbers p/q  into continued fractions and compute the frequencies sk   for the appearance of k in these fractions.  Do these frequencies have limits as N  → ∞?  If so, do these limits have anything to do with the probabilities, given by (6.13)?  These questions  demand nothing but experimental computer investigation, and such an experiment may be undertaken by a student. Of course, it would be extremely challenging to find a phenomena experimentally in this way and to prove it after that theoretically.

Of course, one can consider more general kinds of continued fractions.  In particular, one may ease the assumption that the elements are positive integers

6.5. A FORMULA OF GAUSS, A THEOREM OF KUZMIN AND LE´ VI AND A PROBLEM OF ARNOLD1

and consider, allowing arbitrary reals as the elements (the question of conver- gence may usually be solved).  The following identities were discovered inde- pendently by three prominent mathematicians. The English mathematician R.J. Rogers found and proved these  identities in 1894, Ramanujan found the iden- tities (without proof) and formulated them in his letter to Hardy from India in

1913. Independently, being separated from England by the war, I. J. Schur found the identities and published two different proofs in 1917. We refer an interested

reader to [2] for a detailed discussion and just state the amazing identities here.

s 5 + √5

√5 + 1 
[0; e−2π , e−4π , e−6π , e−8π , . . .] = 
 
−

e2π/5
2
s
[1; e−π , e−2π , e−3π , e−4π , . . .] = 

5 − √5
2
−

√5 − 1
2


 eπ/5
Exercises
1. Prove that ck  really define a probability distribution, namely that

∞
X ck  = 1.
k=1
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Chapter 7
Introduction to Analytic Number
Theory
The distribution of prime numbers has been the object of intense study by many modern mathematicians. Gauss and Legendre conjectured the prime number the- orem which states that  the number of primes less than a positive number x is asymptotic to x/logx as x approaches infinity. This conjecture was later proved by Hadamard and Poisson. Their proof and many other proofs lead to the what is known as Analytic Number theory.

In this chapter we demonstrate elementary theorems on primes and prove el- ementary properties and results that will lead to the proof of the prime number theorem.

7.1 
Introduction
It is well known that the harmonic series P∞

1  diverges.  We therefore deter-
n=1 n
mine some asymptotic formulas that determines the growth of the Pn   x


1 . We

start by introducing Euler’s summation formula that will help us determine the asymptotic formula.
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We might ask the following question.  What if the sum is taken over all the primes.  In this section, we show that the sum over the primes diverges as well. We also show that an interesting product will also diverge.  From the following theorem, we can actually deduce that there are infinitely many primes.

Euler’s  Summation  Formula If f has a continuous derivative on an interval
[a, b] where a > 0, then

X
a<n≤b

Z b
f (n) =
a

Z
f (t)dt +
a

b

({t}


)f 0(t)dt + f (b)(


{b})


− f (a)(


{a}).
where {t} denotes the fractional part of t.
For the proof of Euler’s summation formula see [3, Chapter 3].

Proposition  3. If x ≥ 1, we have that:
1
  1  
= log x + γ + O
n 
x
n≤x
Proof.  We use Euler’s summation formula by taking f (t) = 1/t. We then get

1
Z x  1
=
dt

Z
{t} dt + 1 + O   1  
n
n≤x

1 
− 1 
t2 
x
Z ∞
=  log x + 1 −
1

{t} dt + Z ∞
t2
x

{t} dt + O
t2

  1  
x
Notice now that {t} ≤ t and hence the two improper integrals exist since they are
dominated by integrals that converge. We therefore have

Z ∞
0 ≤
{t} dt ≤ 1 ,
we also let


x
t2
Z ∞
γ = 1 −
1

x
{t} dt t2
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and we get the asymptotic formula. Notice that γ is called Euler’s constant. Notice also that similar steps can be followed to find an asymptotic formulas for other sums involving powers of n.
We now proceed to show that if we sum over the primes instead, we still get a divergent series.

Theorem  82. Both Pp  p  and Qp (1 − p ) diverge.
1 
1
Proof.  Let x ≥ 2 and put
P (x) = Y  1

p≤x
Let 0 < u < 1 and m ∈ Z, we have



1   −1
− p


, 
S(x) = X 1
p
p≤x
1
>
1 − u
Now taking u = 1 , we get
1

1 − um+1
1 − u
1
> 1 +


= 1 + u + ... + um .
  1   m
+ ... +
As a result, we have that


1 − 1
p
p
P (x) > Y  1 + 1 + ... + 1
p
pm p≤x
Choose m > 0 ∈ Z such that 2m−1  ≤ x ≤ 2m . Observe also that
Y  1 + 1 + ... + 1


= 1 + X
1
p
pm

pm1  pm2  ...
p≤x

pi ≤x   1 
2
where 1 ≤ mi  ≤ m . As a result, we get every  1 , n ∈ Z+ where each prime factor
of n is less than or equal to x(Exercise). Thus we have

Y  1 + 1 + ... + 1

2m−1
> X 1

[x/2]
> X 1
p
p≤x

pm 
n
n=1

n
n=1
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Taking the limit as x approaches infinity, we conclude that P (x) diverges.

We proceed now to prove that S(x) diverges. Notice that if u > 0, then

Thus we have


log(1/u 
1) < u + 1    (u2
2
u2


+ u3


+ ...).
log(1/u − 1) < u +

(1/1
u), 
0 < u < 1.
2
We now let u = 1/p for each p ≤ x, then

Thus



log



 
1
1 − 1/p


1
− p <


1
2p(p − 1)
Thus we have


log P (x) = X log(1/1 − p).
p≤x
1 X
1

1 X
1
log P (x) − S(x) < 2
This implies that



p≤x

<
p(p − 1) 
2
1


n=1

n(n − 1)
S(x) > log P (x) − 2
And thus S(x) diverges as x approaches infinity.

Theorem  83 (Abel’s Summation Formula). For any arithmetic function f (n), we

let

A(x) = X f (n)
n≤x
where A(x) = 0 for x < 1. Assume also that g has a continuous derivative on the interval [y, x], where 0 < y < x. Then we have

X
y<n≤x


f (n)g(n)  = A(x)g(x) − A(y)g(y) −

Z x
A(t)g0(t)dt.
y
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The proof of this theorem can be found in [3, Chapter 4].

Exercises
1. Show that one gets every 1 , n ∈ Z+  where each prime factor of n is less than or equal to x in the proof of Theorem 1.

2. Write down the proof of Abel’s summation formula in details.

7.2 
Chebyshev’s  Functions
We introduce some number theoretic functions which play important role in the distribution of primes. We also prove analytic results related to those functions. We start by defining the Van-Mangolt function

Definition 5. Ω(n) = logp if n = pm  and vanishes otherwise.

We define also the following functions, the last two functions are called Cheby- shev’s functions.

1. π(x) = Pp

≤x 1.

2. θ(x) = Pp

≤x logp

3. ψ(x) = Pn
Notice that


≤x Ω(n)
ψ(x) = X Ω(n) =

∞
∞
X
X Ω(pm ) = X

X logp.
n≤x

m=1, pm ≤x    p

m=1 p≤x1/m
Example 61.
1. π(10) = 4.

2. θ(10) = log2 + log3 + log5 + log7.

3. ψ(10) = log2 + log2 + log2 + log3 + log3 + log5 + log7
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Remark 3. It is easy to see that
ψ(x) = θ(x) + θ(x1/2 ) + θ(x1/3) + ...θ(x1/m )
where m ≤ log2x. This remark is left as an exercise.

Notice that the above sum will be a finite sum since for some m, we have that

x1/m < 2 and thus θ(x1/m ) = 0.

We use Abel’s summation formula now to express the two functions π(x)  and

θ(x) in terms of integrals.

Theorem  84. For x ≥ 2, we have

and


θ(x) = π(x) log x −

Z x  π(t)
dt
2 
t
π(x) =

θ(x)
log x

Z x 
θ(t)
+ 
t log2 t


dt.
Proof.  We define the characteristic function χ(n) to be 1 if n is prime and 0 oth- erwise. As a result, we can see from the definition of π(x) and θ(x) that they can be represented in terms of the characteristic function χ(n).  This representation will enable use to apply Abel’s summation formula where f (n)  = χ(n) for θ(x) and where f (n) = χ(n) log n for π(x). So we have,

π(x) =
X
1≤n/leqx

χ(n) 
and  θ(x) =  X
1≤n≤x


χ(n) log n
Now let g(x) = log x in Theorem 84 with y = 1 and we get the desired result for the integral representation of θ(x). Similarly we let g(x) = 1/ log x with y = 3/2
and we obtain the desired result for π(x) since θ(t) = 0 for t < 2.

We now prove a theorem that relates the two Chebyshev’s functions θ(x) and ψ(x).  The following theorem states that if the limit of one of the two functions θ(x)/x or ψ(x)/x exists then the limit of the other exists as well and the two limits are equal.
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Theorem  85. For x > 0, we have
ψ(x)


θ(x)


(log x)2
0 ≤
x
−

x 
≤ 2√x log 2 .
Proof.  From Remark 4, it is easy to see that

0 ≤ ψ(x) − θ(x) = θ(x1/2) + θ(x1/3) + ...θ(x1/m )
where m ≤ log2 x. Moreover, we have that θ(x) ≤ x log x. The result will follow after proving the inequality in Exercise 2.

Exercises
1. Show that



ψ(x) = θ(x) + θ(x1/2) + θ(x1/3) + ...θ(x1/m )
where m ≤ log2 x.
2. Show that 0 ≤ ψ(x) − θ(x) ≤ (log2(x))√x log √x and thus the result of
Theorem 86 follows.

3. Show that the following two relations are equivalent

π(x) =


x
log x


 
x
+ O 
log2 x
θ(x) = x + O


    x
log x
7.3 
Getting  Closer  to the Proof  of the  Prime  Num-
ber Theorem
We know prove a theorem that is related to the defined functions above. Keep in mind that the prime number theorem is given as follows:

π(x)logx
lim
x→∞
x

= 1.
We now state equivalent forms of the prime number theorem.
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Theorem  86. The following relations are equivalent

π(x) log x
lim
x→∞
lim
x→∞
lim
x→∞

x θ(x)
x ψ(x)
x

= 1
(7.1)

= 1
(7.2)

= 1. 
(7.3)

Proof.  We have proved in Theorem 86 that (7.2) and (7.3) are equivalent, so if we show that (7.1) and (7.2) are equivalent, the proof will follow. Notice that using the integral representations of the functions in Theorem 85, we obtain

θ(x)


π(x) log x
=
−

1 Z x  π(t)
dt
and

x 
x 
x   2 
t
π(x) log x
=

θ(x)

log x Z x
+

θ(t)


dt.
x 
x 
x

2      t log2 t
Now to prove that (7.1) implies (7.2), we need to prove that

1 Z x  π(t)
lim
x→∞ x  2

dt = 0. t
Notice also that (7.1) implies that π(t) = O     1     for t ≥ 2 and thus we have
1 Z x  π(t)

t
dt = O

log t
  1 Z x      dt
x  2
t

x  2      log t
Now once you show that (Exercise 1)

Z x      dt

√x
x − √x
+ 
√  ,
2      log t ≤ log 2

log
x
then (7.1) implies (7.2) will follow. We still need to show that (7.2) implies (7.1)
and thus we have to show that

lim

log x Z x



θ(t)dt


= 0.
x→∞
x

2      t log2 t
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Notice that θ(x) = O(x) and hence

log x Z x

θ(t)dt

  log x Z x 
dt
= O 
.
x 
2      t log2 t

x 
2      log2 t
Now once again we show that (Exercise 2)

Z x
dt

√x
x − √x
+
√ 
2      log2 t ≤ log2 2


log2
x
then (7.2) implies (7.1) will follow.

Theorem  87. Define

l1  = lim inf
x→∞

π(x)
x/logx
θ(x)


, 
L1  = lim sup
x→∞

π(x)
, x/logx
θ(x)
and

l2  = lim inf

x→∞

, 
L2  = lim sup 

, x 

x→∞ 
x
l3  = lim inf
x→∞

ψ(x)
x


, 
L3  = lim sup
x→∞

ψ(x)
, x
then l1  = l2  = l3  and L1  = L2  = L3 . Proof. Notice that

ψ(x) = θ(x) + θ(x1/2) + θ(x1/3) + ...θ(x1/m ) ≥ θ(x)
where m ≤ log2x
Also,



ψ(x) = X  log x   log p
log p
p≤x


X log x log p = log xπ(x).
log p
p≤x
Thus we have



θ(x) ≤ ψ(x) ≤ π(x) log x
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As a result, we have



θ(x)


ψ(x)


π(x)
x 
≤
x 
≤ x/ log x
and we get that L2  ≤ L3  ≤ L1 . We still need to prove that L1  ≤ L2.
Let α be a real number where 0 < α < 1, we have

θ(x)   = X log p ≥
X


log p

p≤x
>
X
xα ≤p≤x

xα ≤p≤x
α log x   (log p > α log x)
=  αlogx{π(x)  − π(xα )}
However, π(xα ) ≤ xα . Hence

θ(x) > α log x{π(x) − xα }

As a result,



θ(x)
x
1−α


απ(x)
>
x/ log x


− αxα−1 log x
Since limx→∞ α log x/x
As a result, we get that


= 0, then

L2  ≥ α lim sup
x→∞


π(x)
x/ log x
As α → 1, we get L2  ≥ L1.

L2  ≥ αL1
Proving that l1  = l2  = l3  is left as an exercise.

We now present an inequality due to Chebyshev about π(x).
Theorem  88. There exist constants a < A such that
for sufficiently large x.


x a
log x


< π(x) < A

x
log x
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Proof.  Put



l = lim inf
x→∞


π(x)
x/ log x


, 
L = lim sup
x→∞


π(x)
, x/ log x
It will be sufficient to prove that L ≤ 4 log 2 and l ≥ log 2. Thus by Theorem 2, we have to prove that

and

To prove (7.4), notice that



lim sup
x→∞
lim inf
x→∞

θ(x)
x
ψ(x)
x

≤ 4 log 2
(7.4)

≥ log 2
(7.5)

N = C (2n, n) =

(n + 1)(n + 2)...(n + n)
n!


< 22n < (2n + 1)N
Suppose now that p is a prime such that n < p < 2n and hence p | N . As a result,
we have N ≥ Qn<p<2n p. We get
N ≥ θ(2n) − θ(n).
Since N  < 22n , we get that θ(2n) − θ(n)  < 2n log 2. Put n = 1, 2, 22, ..., 2m−1
where m is a positive integer. We get that

θ(2m ) < 2m−1 log 2.
Let x > 1 and choose m such that 2m−1  ≤ x ≤ 2m , we get that

θ(x) ≤ θ(2m ) ≤ 2m+1 log 2 ≤ 4x log 2
and we get (7.4) for all x.
We now prove (7.5). Notice that by Lemma 9, we have that the highest power of a prime p dividing N = (2n)! is given by

µp       2n  

  n   
sp  = X
 

pi

− 2   pi
.
i=11
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where µp  = h log 2n i. Thus we have N = Q


p≤2n


psp . If x is a positive integer then

[2x] − 2[x] < 2,
It means that [2x] − 2[x] is 0 or 1. Thus sp  ≤ µp  and we get

Notice as well that


N ≤ Y
p≤e2n

pµp .
ψ(2n) = X   log 2n   log p = X µ
log p
p


log p.
Hence we get


p≤2n


log N ≤ ψ(2n).

p≤2n
Using the fact that 22n < (2n + 1)N , we can see that

ψ(2n) > 2n log 2 − log(2n + 1).
Let x > 2 and put n =  x   ≥ 1. Thus  x − 1 < n < x  and we get 2n ≤ x. So we
get

2 
2 
2
ψ(x)   ≥  ψ(2n) > 2n log 2 − log(2n + 1)
>
(x − 2) log 2 − log(x + 1).
As a result, we get



lim inf
x→∞


ψ(x)
x


≥ log 2.
Exercises
1. Show that l1  = l2  = l3  in Theorem 88.

2. Show that


Z x      dt

√x
x − √x
+ 
√  ,
2      log t ≤ log 2

log
x
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3. Show that


Z x 
dt

√x
x − √x
+
√ 
4. Show that


2      log2 t ≤ log2 2


log2
x
N = C (2n, n) =

(n + 1)(n + 2)...(n + n)
n!


< 22n < (2n + 1)N
5. Show that  22n    < N = C (2n, n) <  22n .
2√n

√2n
Hint: For one side of the inequality, write

N 
(2n)!

1.3.5....(2n − 1)

2.4.6.....(2n)
2n  = 22n (n!)2   =
then show that

. 
,
2.4.6....(2n) 
2.4.6...(2n)
1 > (2n + 1).

N 2
24n


> 2n.

N 2
24n .
The other side of the inequality will follow with similar arithmetic tech- niques as the first inequality.
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Chapter 8
Other Topics in Number  Theory
This chapter discusses various topics that are of profound interest in number the- ory. Section 1 on cryptography is on an application of number theory in the field of message decoding, while the other sections on elliptic curves and the Riemann zeta function are deeply connected with number theory. The section on Fermat’s last theorem is related, through Wile’s proof of Fermat’s conjecture on the non- existence of integer solutions to xn  + yn  = zn  for n > 2, to the field of elliptic curves (and thus to section 2).

8.1 
Cryptography
In this section we discuss some elementary aspects of cryptography, which con- cerns the coding and decoding of messages. In cryptography, a (word) message is transformed into a sequence a of integers, by replacing each letter in the message by a specific and known set of integers that represent this letter, and thus forming a large integer a by concatenation. Then this integer a is transformed (i.e. coded) into another integer b by using a congruence of the form b  = ak (mod m)  for some chosen k and m, as described below, with k unknown except to the sender and receiver. b is then sent to the receiver who decodes it into a again by using
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a congruence of the form a = bk¯ (mod m), where k¯ is related to k and is itself only known to the sender and receiver, and then simply transforms the integers in a back to letters and reveals the message again.  In this procedure, if a third party intercepts the integer b, the chance of transforming this into a, even if m and the integers that represent the letters of the alphabet are exactly known, is almost impossible to do (i.e. has a fantastically small probability of being achieved) if k is not known, that practically the transformed message will not be revealed except to the intended receiver.

The basic results on congruences to allow for the above procedure are in the following two lemmata, where φ in the statements is Euler’s φ-function.

Lemma 16. Let a and m be two integers, with m positive and (a, m)  = 1. If k
and k¯ are positive integers with kk¯ = 1(mod φ(m)), then akk¯  = a(mod m).
Proof.  kk¯

= 1(mod φ(m))  thus kk¯

= qφ(m) + 1 (q  ≥ 0).   Hence akk¯    =
aqφ(m)+1    =  aqφ(m)a.   But by Euler’s Theorem, if (a, m)  = 1 then aφ(m)   =
1(mod m). This gives that

(aφ(m))q a = 1(mod m)a = a(mod m), 
(8.1)

and hence that akk¯  = a(mod m), and the result follows.

We also need the following.

Lemma 17. Let m be a positive integer, and let r1 , r2 , · · · , rn be a reduced residue system modulo m (i.e. with n = φ(m) and (ri , m) = 1 for i = 1, · · · , n). If k is an integer such that (k, φ(m))  = 1, then rk , rk , · · · , rk  forms a reduced residue
system modulo m.

1 
2 
n
Before giving the proof, one has to note that the above lemma is in fact an

if-and-only-if statement, i.e. (k, φ(m))  = 1 if and only if rk , rk , · · · , rk  forms a
1
2
n
reduced residue system modulo m.  However we only need the if part, as in the lemma.
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Proof.  Assume first that (k, φ(m)) = 1. We show that rk , rk , · · · , rk  is a reduced
1 
2 
n
residue system modulo m.  Assume otherwise, i.e.  assume that ∃i, j such that
rk 
k 
k 
k
i  = rj (mod m), in which case ri  and rj would belong to the same class and thus
rk 
k 
k
1 , r2 , · · · , rn would not form a reduced residue system. Then, since (k, φ(m)) =
1, ∃k¯ with kk¯ = 1(mod φ(m)), and so
rkk¯

kk¯
i
= ri (mod m) 
and 
rj    = rj (mod m) 
(8.2)
by the previous lemma. But if rk  = rk (mod m) then (rk )k¯  = (rk )k¯ (mod m), and
i
j
i
j
since rkk¯ = r (mod m) and rkk¯ = r (mod m), then r

= r (mod m) giving that r
i
i
j 
j 
i
j 
i
and rj belong to the same class modulo m, contradicting that r1 , r2 , · · · , rn form a

reduced residue system. Thus ri = rj implies that rk = rk if (k, φ(m)) = 1.
i
j
Now to do cryptography, one proceeds as follows. Let S be a sentence given in terms of letters and spaces between the words that is intended to be transformed to a destination with the possibility of being intercepted and revealed by a third party.

1. Transform S into a (large) integer a by replacing each letter and each space between words by a certain representative integer (e.g. three or four digit integers for each letter).  a is formed by concatenating the representative integers that are produced.

2. Choose a couple p1  and p2  of very large prime numbers, each (for example) of the order  of a hundred digit integer, and these should be strictly kept known only to the sender and receiver. Then form the product m = p1p2 , which is itself a very large number to the point that the chances of someone revealing the prime number factorization p1 p2 of m is incredibly small, even if they know this integer m.  Now one has, by standard results concerning the φ-function, that φ(p1) = p1  − 1 and φ(p2) = p2  − 1, and that, since p1  and p2  are relatively prime, φ(m)  = φ(p1 )φ(p2) = (p1  − 1)(p2  − 1). Thus φ(m) is a very large number, of the order of m itself, and hence m
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has a reduced residue system that contains a very large number of integers of the order of m itself. Hence almost every integer smaller than m, with a probability of the order 1 − 1/10100  (almost 1), is in a reduced residue system r1, r2 , · · · , rφ(m) of m.  Thus almost every positive integer smaller than m is relatively prime with m, with probability of the order 1 − 1/10100 .

3. Now given that almost every positive integer smaller than m is relatively prime with m, the integer a itself is almost certainly relatively prime with m, and hence is in a reduced residue system for m.  Hence, by lemma 17 above, if k is a (large) integer such that (k, φ(m))  = 1, then ak   belongs to a reduced residue system for m, and there exists a unique positive b smaller than m with b = ak (mod m).
4. Send b to the destination where φ(m) and k are known. The destination can determine a k¯ such that kk¯ = 1(mod φ(m)), and then finds the unique c such that c = bk¯ (mod m).  Now since, almost certainly, (a, m) = 1, then almost certainly c = a since c = bk¯ (mod m)  =  (ak )k¯ (mod m)  = akk¯ (mod m), and which by lemma 16, is given by a(mod  m)  almost certainly since (a, m)  = 1 almost certainly.   Now the destination translates a  back to letters and spaces to reveal the sentence S.   Note that if any third party intercepts b,  they almost certainly cannot reveal the integer a since the chance of them knowing φ(m)  = p1p2  is almost zero, even if they know m and k. In this case they practically won’t be able to determine a k¯ with kk¯ = 1(mod φ(m)), to retrieve a and transform it to S.
8.2 
Elliptic Curves
Elliptic curves in the xy-plane are the set of points (x, y) ∈ R × R that are the zeros of special types of third order polynomials f (x, y), with real coefficients, in the two variables x and y. These curves turn out to be of fundamental interest
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in analytic number theory.  More generally, one can define similar curves over arbitrary algebraic fields as follows.  Let f (x, y) be a polynomial of any degree in two variables x and y, with coefficients in an algebraic field F . We define the algebraic curve Cf (F ) over the field F by
Cf (F ) = {(x, y) ∈ F × F : f (x, y) = 0 ∈ F }. 
(8.3) Of course one can also similarly define the algebraic curve Cf (Q) over a field Q,
where Q is either a subfield of the field F where the coefficients of f exist, or is
an extension field of F . Thus if f ∈ F [x, y], and if Q is either an extension or a subfield of F , then one can define Cf (Q) = {(x, y) ∈ Q × Q : f (x, y) = 0}. Our main interest in this section will be in third order polynomials (cubic curves)

f (x, y) = ax3  + bx2y + cxy2  + dy3  + ex2  + f xy + gy2 + hx + iy + j,
(8.4)

with coefficients in R, with the associated curves Cf (Q) over the field of rational numbers Q  ⊂ R.  Thus, basically, we will be interested in points (x, y) ∈  R2 that have rational coordinates  x and y, and called rational points, that satisfy f (x, y) = 0.  Of course one can first imagine the curve f (x, y) = 0 in R2 , i.e. the curve Cf (R) over R, and then choosing the points on this curve that have ra- tional coordinates. This can simply be expressed by writing that Cf (Q) ⊂ Cf (R). It has to be mentioned that ”rational curves” Cf (Q)  are related to diophantine equations.  This is in the sense that rational solutions to equations f (x, y) = 0 produce integer solutions to equations f 0(x, y) = 0, where the polynomial f 0    is very closely related to the polynomial f , if not the same one in many cases. For example every point in Cf (Q), where f (x, y) = xn + yn , i.e. every rational solu- tion to f (x, y) = xn + yn = 0, produces an integer solution to xn + yn  = 0. Thus algebraic curves Cf (Q) can be of genuine interest in this sense.

In a possible procedure to construct the curve Cf (Q) for a polynomial f (x, y) ∈ R[x, y] with real coefficients, one considers the possibility that, given one ratio- nal point (x, y) ∈ Cf (Q)  ⊂ Cf (R), a straight line with a rational slope m might
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intersect the curve Cf (R) in a point (x0, y0) that is also in Cf (Q). This possibility comes from the simple fact that if (x, y), (x0, y0) ∈ Cf (Q), then the slope of the straight line that joins (x, y) and (x0, y0) is a rational number. This technique, of determining one point in Cf (Q) from another by using straight lines as mentioned, works very well in some cases of polynomials, especially those of second degree, and works reasonably well for third order polynomials.

Two aspects of this technique of using straight lines to determine points in Cf (Q), and which will be needed for defining elliptic curves, are the following. The first is illustrated by the following example.

Consider the polynomial f (x, y)  = y2  − x2   + y  = (y − x + 1)(y + x).
The curve Cf (R) contains the two straight lines y = x − 1 and y = −x.  The point (2, 1) ∈ Cf (Q), and if one tries to find the intersection of the particular line y = x − 1 that passes through (2, 1) with Cf (R), one finds that this includes the whole line y = x − 1 itself, and not just one or two other points (for example). This result is due to the fact that f is a reducible polynomial, i.e.  that can be factored in the form f = f 0f 00   with f and f 00   not just real numbers.

In this direction one has the following general theorem concerning the number of intersection points between a straight line L and an algebraic curve Cf (R):
Theorem  89. If f ∈ R[x, y] is a polynomial of degree d, and the line L, which is defined by the zeros of g(x, y) = y − mx − b  ∈ R[x, y], are such that L ∩ Cf (R)  contains more than d points (counting the multiplicities of intersections) then in fact L = Cg (R)  ⊂ Cf (R),  and f  can be written in the form f (x, y) = g(x, y)p(x, y), where p(x, y) is some polynomial of degree d − 1.

In connection with the above theorem, and in defining an elliptic curve Cf (R),  where f is a polynomial of degree three, we shall require that this curve be such that any straight line that passes through two points (x1, y1 ), (x2 , y2) ∈  Cf (R),  where the two points could be the same point if the curve at one of them is differ- entiable with the tangent at that point to the curve having same slope as that of the
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line, will also pass through a unique third point (x3 , y3). By the above theorem, if a line intersects the curve Cf (R)  associated with the third order polynomial f in more than three points, then the line itself is a subset of Cf (R).  This will be excluded for the kind of third degree polynomials f whose associated algebraic curves shall be called elliptic curves.

One other thing to be excluded, to have third order curves characterized as elliptic curves, is the existence of singular points on the curve, where a singular point is one where the curve does not admit a unique tangent.

It has to be mentioned that in the previous discussion, the points on the curve Cf (R) may lie at infinity. To deal with this situation we assume that the curve is in fact a curve in the real projective plane P2(R).  We now can define an elliptic curve Cf (R) as being such that f (x, y) is an irreducible third order polynomial with Cf (R) having no singular points in P2(R).
The main idea behind the above definition for elliptic curves is to have a curve whereby any two points A and B on the curve can determine a unique third point, to be denoted by AB, using a straight line joining A and B.  The possibilities are as follows: If the line joining A and B is not tangent to the curve Cf (R) at any point, then the line intersects the curve in exactly three different points two of which are A and B while the third is AB. If the line joining A and B is tangent to the curve at some point p then either this line intersects Cf (R) in exactly two

points, p and some other point p0 , or intersects the curve in only one point p. If the

line intersects Cf (R) in two points p and p0, then either p = A = B in which case AB = p0, or A = B in which case (irrespective of whether p = A and p0  = B or vice-versa) one would have p = AB.  While if the line intersects Cf (R) in only one point p then p = A = B = AB.
The above discussion establishes a binary operation on elliptic curves that pro- duces, for any two points A and B a uniquely defined third point AB. This binary operation in turn produces, as will be described next, another binary operation, denoted by +, that defines a group structure on Cf (R) that is associated with the
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straight-line construction discussed so far.

A group structure on an elliptic curve Cf (R) is defined as follows: Consider an arbitrary point, denoted by 0, on Cf (R).  We define, for any two points A and B on Cf (R), the point A + B by

A + B = 0(AB), 
(8.5)

meaning that we first determine the point AB as above, then we determine the point 0(AB) corresponding to 0 and AB. Irrespective of the choice of the point 0, one has the following theorem on a group structure determined by + on Cf (R).
Theorem  90. Let Cf (R) be an elliptic curve, and let 0 be any point on Cf (R). Then the above binary operation + defines an Abelian group structure on Cf (R), with 0 being the identity element and −A = A(00) for every point A.
The proof is very lengthy and can be found in [18]. We first note that if 0 and

00  are two different points on an elliptic curve with associated binary operations

+ and +0, then one can easily show that for any two points A and B
A +0  B = A + B − 00.
(8.6) This shows that the various group structures that can be defined on an elliptic curve

by considering all possible points 0 and associated operations +, are essentially the same, up to a ”translation”.

Lemma 18. Consider the group structure on an elliptic curve Cf (R), correspond- ing to an  operation + with identity element 0.  If the cubic polynomial f has rational  coefficients, then  the subset Cf (Q)  ⊂  Cf (R)  of rational  solutions to f (x, y) = 0 forms a subgroup of Cf (R) if and only if 0 is itself a rational point (i.e. a rational solution).

Proof.  If Cf (Q) is a subgroup of Cf (R), then it must contain the identity 0, and thus 0 would be a rational point.  Conversely, assume that 0 is a rational point.
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First, since f has rational coefficients, then for any two rational points A and B in Cf (Q)  one must have that AB is also rational, and thus (since 0 is assumed rational) that 0(AB) is rational, making A + B = 0(AB) rational. Thus Cf (Q) would be closed under +.  Moreover, since for every A ∈  Cf (Q)  one has that

−A = A(00), then −A is also rational, which makes Cf (Q) closed under inver- sion. Hence Cf (Q) is a subgroup.

Thus by lemma 18, the set of all rational points on an elliptic curve form a subgroup of the group determined by the curve and a point 0, if and only if the identity element 0 is itself a rational point.  In other words, one finds that if the elliptic curve Cf (R) contains one rational point p, then there exists a group structure on Cf (R), with 0 = p and the corresponding binary operation +, such that the set Cf (Q) of all rational points on Cf (R) is a group.

One thing to note about rational solutions to general polynomial functions

f (x, y), is that they correspond to integer solution to a corresponding homoge- neous polynomial h(X, Y, Z ) in three variables, and vice-verse, where homoge- neous practically means that this function is a linear sum of terms each of which has the same power when adding the powers of the variables involved in this term. For example X Y 2  − 2X 3  + X Y Z + Z 3  is homogeneous.

In fact a rational solution x  = a/b  and y  = c/d  for f (x, y)  = 0, where a, b, c, d are integers, can first be written as x = ad/bd  and y = cb/bd, and thus one can always have this solution in the form x = X/Z  and y = Y /Z , where X  = ad, Y   = cb and Z  = bd.  If x  =  X/Z  and y  = Y /Z  are replaced in f (x, y) = 0, one obtains a new version h(X, Y, Z ) = 0 of this equation written in terms of the new variables X, Y, Z .  One can immediately see that this new polynomial function h(X, Y, Z ) is homogeneous in X, Y, Z .  The homogeneous function h(X, Y, Z ) in X, Y, Z is the form that f (x, y) takes in projective space, where in this case the transformations x = X/Z and y = Y /Z define the projec- tive transformation that take f (x, y) to h(X, Y, Z ).
If we now go back to cubic equation f (x, y)  = 0, one can transform this
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function into its cubic homogeneous form h(X, Y, Z ) = 0, where

h(X, Y, Z ) = aX 3 
+  bX 2Y + cX Y 2  + dY 3  + eX 2 Z
+  f X Y Z + gY 2Z + hX Z 2  + iY Z 2  + jZ 3, 
(8.7)

by using the projective transformation x = X/Z and y = Y /Z . Then, by impos- ing some conditions, such as requiring that the point (1, 0, 0) (in projective space) satisfy this equation, and that the line tangent to the curve at the point (1, 0, 0) be the Z -axis that intersects the curve in the point (0, 1, 0), and that the X -axis is the line tangent to the curve at (0, 1, 0), then one can immediately show that the homogeneous cubic equation above becomes of the form

h(X, Y, Z ) = cX Y 2  + eX 2 Z + f X Y Z + hX Z 2  + iY Z 2  + jZ 3. 
(8.8)

Which, by using the projective transformation again, and using new coefficients, gives that points on the curve Cf (R) are precisely those on the curve Ch (R), where

h(x, y) = axy2  + bx2 + cxy + dx + ey + f.
(8.9)

And with further simple change of variables (consisting of polynomial functions in x and y with rational coefficients) one obtains that the points on the curve Cf (R) are precisely those on Cg (R) where

g(x, y) = y2  − 4x3  + g2x − g3, 
(8.10)

i.e. that Cf (R)  = Cg (R).  The equation g(x, y) = 0, where g is given in (8.10), is said to be the Weierstrass normal form of the equation f (x, y) = 0. Thus, in particular, any elliptic curve defined by a cubic f , is birationally equivalent to an elliptic curve defined by a polynomial g(x, y) as above.  Birational equivalence between curves is defined here as being a rational transformation, together with its inverse transformation, that takes the points on one curve to another, and vice- versa.
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8.3 
The Riemann Zeta Function
The Riemann zeta function ζ (z) is an analytic function that is a very important function in analytic number theory. It is (initially) defined in some domain in the complex plane by the special type of Dirichlet series given by

∞
ζ (z) = X
n=1

1
, 
(8.11)
nz
where Re(z) > 1. It can be readily verified that the given series converges locally uniformly, and  thus that ζ (z) is indeed analytic in the domain in the complex plane C defined by Re(z) > 1, and that this function does not have a zero in this domain.

We first prove the following result which is called the Euler Product Formula.

Theorem  91. ζ (z), as defined by the series above, can be written in the form

∞
ζ (z) = Y
n=1

1
 
 1   
pz


, 
(8.12)

where {pn } is the sequence of all prime numbers.
Proof.  knowing that if |x| < 1 then

1
1 − x

∞
= X xk , 
(8.13)
k=0
one finds that each term      1    in ζ (z) is given by
pz
1
∞
1
= X   , 
(8.14)
pz 
k=0     n
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since every |1/pz | < 1 if Re(z) > 1. This gives that for any integer N
N
Y
n=1

1
 
 1   
pz

=
Y   1 + 1
n=1
n

1
+  2z
n


+ · · ·
=  X
1
pk1 z



kj z


(8.15)
n1     · · · pni
= X 1
nz
where i ranges over 1, · · · , N , and j ranges from 0 to ∞, and thus the integers n in the third line above range over all integers whose prime number factorization consist of a product of powers of the primes p1  = 2, · · · , pN . Also note that each such integer n appears only once in the sum above.

Now since the series in the definition of ζ (z) converges absolutely and the order of the terms in the sum does not matter for the limit, and since, eventu- ally, every integer n appears on the right hand side of 8.15 as N  −→ ∞, then

limN →∞  P

z     N   =  ζ (z).  Moreover, limN →∞
n=1   

    exists, and the re-

1 
N 
1
n 
1
sult follows.


1− pz
The Riemann zeta function ζ (z) as defined through the special Dirichlet series above, can be continued analytically to an analytic function through out the com- plex plane C except to the point z = 1, where the continued function has a pole of order 1. Thus the continuation of ζ (z) produces a meromorphic function in C with a simple pole at 1. The following theorem gives this result.

Theorem  92. ζ (z), as defined above, can be continued meromorphically in C, and can be written in the form ζ (z) =  1     + f (z), where f (z) is entire.
z−1
Given this continuation of ζ (z), and also given the functional equation that is satisfied by this continued function, and which is

ζ (z) = 2z πz−1 sin   πz   Γ(1 − z)ζ (1 − z), 
(8.16)
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(see a proof in [3]), where Γ is the complex gamma function, one can deduce that the continued ζ (z) has zeros at the points z = −2, −4, −6, · · · on the negative real axis. This follows as such:  The complex gamma function Γ(z) has poles at the points z = −1, −2, −3, · · · on the negative real line, and thus Γ(1 − z) must have poles at z = 2, 3, · · · on the positive real axis. And since ζ (z) is analytic at these points, then it must be that either sin   πz   or ζ (1 − z) must have zeros at the points z = 2, 3, · · · to cancel out the poles of Γ(1 − z), and thus make ζ (z) analytic at these points. And since sin   πz   has zeros at z = 2, 4, · · · , but not at z = 3, 5, · · · , then it must be that ζ (1 − z) has zeros at z = 3, 5, · · · . This gives that ζ (z) has zeros at z = −2, −4, −6 · · · .

It also follows from the above functional equation, and from the above men- tioned fact that ζ (z) has no zeros in the domain where Re(z) > 1, that these zeros at z = −2, −4, −6 · · · of ζ (z) are the only zeros that have real parts either less that 0, or greater than 1. It was conjectured by Riemann, The Riemann Hypothe- sis, that every other zero of ζ (z) in the remaining strip 0 ≤ Re(z) ≤ 1, all exist on the vertical line Re(z) = 1/2. This hypothesis was checked for zeros in this strip with very large modulus, but remains without a general proof. It is thought that the consequence of the Riemann hypothesis on number theory, provided it turns out to be true, is immense.
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