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Introduction and Review

The emphasis in this course is on problems—doing calculations and story problems. To
master problem solving one needs a tremendous amount of practice doing problems. The
more problems you do the better you will be at doing them, as patterns will start to emerge
in both the problems and in successful approaches to them. You will learn quickly and
effectively if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort
before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.

2. Assign letters to quantities that are described only in words; draw a diagram if appro-
priate.

3. Decide which letters are constants and which are variables. A letter stands for a
constant if its value remains the same throughout the problem.

4. Using mathematical notation, write down what you know and then write down what
you want to find.

5. Decide what category of problem it is (this might be obvious if the problem comes at
the end of a particular chapter, but will not necessarily be so obvious if it comes on an
exam covering several chapters).

6. Double check each step as you go along; don’t wait until the end to check your work.

7. Use common sense; if an answer is out of the range of practical possibilities, then check
your work to see where you went wrong.
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1. Review

Success in calculus depends on your background in algebra, trigonometry, analytic geometry
and functions. In this chapter, we review many of the concepts you will need to know to
succeed in this course.

1.1 Algebra

1.1.1. Sets and Number Systems

A set can be thought of as any collection of distinct objects considered as a whole. Typically,
sets are represented using set-builder notation and are surrounded by braces. Recall that
(, ) are called parentheses or round brackets; [, ] are called square brackets; and {, }
are called braces or curly brackets.

Example 1.1: Sets

The collection {a, b, 1, 2} is a set. It consists of the collection of four distinct objects,
namely, a, b, 1 and 2.

Let S be any set. We use the notation x ∈ S to mean that x is an element inside of the
set S, and the notation x 6∈ S to mean that x is not an element of the set S.

Example 1.2: Set Membership

If S = {a, b, c}, then a ∈ S but d 6∈ S.

The intersection between two sets S and T is denoted by S ∩ T and is the collec-
tion of all elements that belong to both S and T . The union between two sets S and T
is denoted by S∪T and is the collection of all elements that belong to either S or T (or both).

Example 1.3: Union and Intersection

Let S = {a, b, c} and T = {b, d}. Then S ∩ T = {b} and S ∪ T = {a, b, c, d}. Note
that we do not write the element b twice in S ∪ T even though b is in both S and T .

Numbers can be classified into sets called number systems.

N the natural numbers {1, 2, 3, . . .}
Z the integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Q the rational numbers Ratios of integers:

{

p
q
: p, q ∈ Z, q 6= 0

}

R the real numbers Can be written using a finite or infinite decimal expansion
C the complex numbers These allow us to solve equations such as x2 + 1 = 0

3



CHAPTER 1. REVIEW

In the table, the set of rational numbers is written using set-builder notation. The colon,
:, used in this manner means such that. Often times, a vertical bar | may also be used to

mean such that. The expression
{

p
q
: p, q ∈ Z, q 6= 0

}

can be read out loud as the set of all

fractions p over q such that p and q are both integers and q is not equal to zero.

Example 1.4: Rational Numbers

The numbers −3
4
, 2.647, 17, 0.7̄ are all rational numbers. You can think of rational

numbers as fractions of one integer over another. Note that 2.647 can be written as a
fraction:

2.647 = 2.647× 1000

1000
=

2647

1000
.

Also note that in the expression 0.7̄, the bar over the 7 indicates that the 7 is repeated
forever:

0.77777777 . . . =
7

9
.

All rational numbers are real numbers with the property that their decimal expansion
either terminates after a finite number of digits or begins to repeat the same finite sequence
of digits over and over. Real numbers that are not rational are called irrational.

Example 1.5: Irrational Numbers

Some of the most common irrational numbers include:

�

√
2. Can you prove this is irrational? (The proof uses a technique called con-

tradiction.)

� π. Recall that π (pi) is defined as the ratio of the circumference of a circle to
its diameter and can be approximated by 3.14159265.

� e. Sometimes called Euler’s number, e can be approximated by 2.718281828459.
We will review the definition of e in a later chapter.

Let S and T be two sets. If every element of S is also an element of T , then we say S is
a subset of T and write S ⊆ T . Furthermore, if S is a subset of T but not equal to T , we
often write S ⊂ T . The five sets of numbers in the table give an increasing sequence of sets:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

That is, all natural numbers are also integers, all integers are also rational numbers, all
rational numbers are also real numbers, and all real numbers are also complex numbers.

1.1.2. Law of Exponents

The Law of Exponents is a set of rules for simplifying expressions that governs the combi-
nation of exponents (powers). Recall that n

√
denotes the nth root. For example 3

√
8 = 2

4



1.1. ALGEBRA

represents that the cube root of 8 is equal to 2.

Definition 1.6: Law of Exponents

Definitions
If m,n are positive integers, then:

1. xn = x · x · . . . · x (n times).

2. x0 = 1, for x 6= 0.

3. x−n =
1

xn
, for x 6= 0.

4. xm/n = n
√
xm or ( n

√
x)

m
, for x ≥ 0.

Combining

1. xaxb = xa+b. 2.
xa

xb
= xa−b, for x 6= 0. 3. (xa)b = xab = xba =

(

xb
)a
.

Distributing

1. (xy)a = xaya, for x ≥ 0, y ≥ 0. 2.

(

x

y

)a

=
xa

ya
, for x ≥ 0, y > 0.

In the next example, the word simplify means to make simpler or to write the expression
more compactly.

Example 1.7: Laws of Exponents

Simplify the following expression as much as possible assuming x, y > 0:

3x−2y3x

y2
√
x

.

Solution. Using the Law of Exponents, we have:

3x−2y3x

y2
√
x

=
3x−2y3x

y2x
1
2

, since
√
x = x

1
2 ,

=
3x−2yx

x
1
2

, since
y3

y2
= y,

=
3y

x
3
2

, since
x−2x

x
1
2

=
x−1

x
1
2

= x− 3
2 =

1

x
3
2

,

=
3y√
x3

, since x
3
2 =
√
x3.

An answer of 3yx−3/2 is equally acceptable, and such an expression may prove to be compu-
tationally simpler, although a positive exponent may be preferred. ♣
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CHAPTER 1. REVIEW

1.1.3. The Quadratic Formula and Completing the Square

The technique of completing the square allows us to solve quadratic equations and also
to determine the center of a circle/ellipse or the vertex of a parabola.

The main idea behind completing the square is to turn:

ax2 + bx+ c

into
a(x− h)2 + k.

One way to complete the square is to use the following formula:

ax2 + bx+ c = a

(

x+
b

2a

)2

− b2

4a2
+ c.

But this formula is a bit complicated, so some students prefer following the steps outlined
in the next example.

Example 1.8: Completing the Square

Solve 2x2 + 12x− 32 = 0 by completing the square.

Solution. In this instance, we will not divide by 2 first (usually you would) in order to
demonstrate what you should do when the ‘a’ value is not 1.

2x2 + 12x− 32 = 0 Start with original equation.

2x2 + 12x = 32 Move the number over to the other side.

2(x2 + 6x) = 32 Factor out the a from the ax2 + bx expression.

6 → 6
2
= 3 → 32 = 9 Take the number in front of x,

divide by 2,
then square it.

2 (x2 + 6x+ 9) = 32 + 2 · 9 Add the result to both sides,
taking a = 2 into account.

2(x+ 3)2 = 50 Factor the resulting perfect square trinomial.

You have now completed the square!

(x+ 3)2 = 25 → x = 2 or x = −8 To solve for x, simply divide by a = 2
and take square roots.

♣
Suppose we want to solve for x in the quadratic equation ax2 + bx+ c = 0, where a 6= 0.

The solution(s) to this equation are given by the quadratic formula.

6



1.1. ALGEBRA

The Quadratic Formula

The solutions to ax2 + bx+ c = 0 (with a 6= 0) are x =
−b±

√
b2 − 4ac

2a
.

Proof. To prove the quadratic formula we use the technique of completing the square. The
general technique involves taking an expression of the form x2 + rx and trying to find a
number we can add so that we end up with a perfect square (that is, (x+ n)2). It turns out
if you add (r/2)2 then you can factor it as a perfect square.

For example, suppose we want to solve for x in the equation ax2 + bx + c = 0, where
a 6= 0. Then we can move c to the other side and divide by a (remember, a 6= 0 so we can
divide by it) to get

x2 +
b

a
x = − c

a
.

To write the left side as a perfect square we use what was mentioned previously. We have
r = (b/a) in this case, so we must add (r/2)2 = (b/2a)2 to both sides

x2 +
b

a
x+

(

b

2a

)2

= − c

a
+

(

b

2a

)2

.

We know that the left side can be factored as a perfect square

(

x+
b

2a

)2

= − c

a
+

(

b

2a

)2

.

The right side simplifies by using the exponent rules and finding a common denominator

(

x+
b

2a

)2

=
−4ac+ b2

4a2
.

Taking the square root we get

x+
b

2a
= ±

√

−4ac + b2

4a2
,

which can be rearranged as

x =
−b±

√
b2 − 4ac

2a
.

In essence, the quadratic formula is just completing the square. ♣

1.1.4. Inequalities, Intervals and Solving Basic Inequalities

Inequality Notation

Recall that we use the symbols <,>,≤,≥ when writing an inequality. In particular,

� a < b means a is to the left of b (that is, a is strictly less than b),

7



CHAPTER 1. REVIEW

� a ≤ b means a is to the left of or the same as b (that is, a is less than or equal to b),

� a > b means a is to the right of b (that is, a is strictly greater than b),

� a ≥ b means a is to the right of or the same as b (that is, a is greater than or equal to
b).

To keep track of the difference between the symbols, some students use the following mnemonic.

Mnemonic

The < symbol looks like a slanted L which stands for “Less than”.

Example 1.9: Inequalities

The following expressions are true:

1 < 2, −5 < −2, 1 ≤ 2, 1 ≤ 1, 4 ≥ π > 3, 7.23 ≥ −7.23.

The real numbers are ordered and are often illustrated using the real number line:

0 1 2 3 4‐1‐2‐3‐4

‐2.5

Intervals

Assume a, b are real numbers with a < b (i.e., a is strictly less than b). An interval is a
set of every real number between two indicated numbers and may or may not contain the
two numbers themselves. When describing intervals we use both round brackets and square
brackets.

(1) Use of round brackets in intervals: ( , ). The notation (a,b) is what we call the open
interval from a to b and consists of all the numbers between a and b, but does not include
a or b. Using set-builder notation we write this as:

(a, b) = {x ∈ R : a < x < b}.

We read {x ∈ R : a < x < b} as “the set of real numbers x such that x is greater than a
and less than b” On the real number line we represent this with the following diagram:

a b

Note that the circles on a and b are not shaded in, we call these open circles and use them
to denote that a,b are omitted from the set.

(2) Use of square brackets in intervals: [ , ]. The notation [a,b] is what we call the
closed interval from a to b and consists of all the numbers between a and b and including
a and b. Using set-builder notation we write this as

[a, b] = {x ∈ R | a ≤ x ≤ b}.

8



1.1. ALGEBRA

On the real number line we represent this with the following diagram:

a b

Note that the circles on a and b are shaded in, we call these closed circles and use them
to denote that a and b are included in the set.

To keep track of when to shade a circle in, you may find the following mnemonic useful:

Mnemonic

The round brackets (, ) and non-shaded circle both form an “O” shape which stands
for “Open and Omit”.

Taking combinations of round and square brackets, we can write different possible types
of intervals (we assume a < b):

(a, b) = {x ∈ R : a < x < b} [a, b] = {x ∈ R : a ≤ x ≤ b} [a, b) = {x ∈ R : a ≤ x < b}

a b a b a b

(a, b] = {x ∈ R : a < x ≤ b} (a,∞) = {x ∈ R : x > a} [a,∞) = {x ∈ R : x ≥ a}

a b a a

(−∞, b) = {x ∈ R : x < b} (−∞, b] = {x ∈ R : x ≤ b} (−∞,∞) = R = all real numbers

b b

Note: Any set which is bound at positive and/or negative infinity is an open interval.

Inequality Rules

Before solving inequalities, we start with the properties and rules of inequalities.

9
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Inequality Rules

Add/subtract a number to both sides:

� If a < b, then a+ c < b+ c and a− c < b− c.

Adding two inequalities of the same type:

� If a < b and c < d, then a + c < b+ d.
Add the left sides together, add the right sides together.

Multiplying by a positive number:

� Let c > 0. If a < b, then c · a < c · b.

Multiplying by a negative number:

� Let c < 0. If a < b, then c · a > c · b.
Note that we reversed the inequality symbol!

Similar rules hold for each of ≤, > and ≥.

Solving Basic Inequalities

We can use the inequality rules to solve some simple inequalities.

Example 1.10: Basic Inequality

Find all values of x satisfying
3x+ 1 > 2x− 3.

Write your answer in both interval and set-builder notation. Finally, draw a number
line indicating your solution set.

Solution. Subtracting 2x from both sides gives x+ 1 > −3. Subtracting 1 from both sides
gives x > −4. Therefore, the solution is the interval (−4,∞). In set-builder notation the
solution may be written as {x ∈ R : x > −4}. We illustrate the solution on the number
line as follows:

‐4

♣
Sometimes we need to split our inequality into two cases as the next example demon-

strates.

Example 1.11: Double Inequalities

Solve the inequality
4 > 3x− 2 ≥ 2x− 1.

10
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Solution. We need both 4 > 3x− 2 and 3x− 2 ≥ 2x− 1 to be true:

4 > 3x− 2 and 3x− 2 ≥ 2x− 1,
6 > 3x and x− 2 ≥ −1,
2 > x and x ≥ 1,
x < 2 and x ≥ 1.

Thus, we require x ≥ 1 but also x < 2 to be true. This gives all the numbers between 1 and
2, including 1 but not including 2. That is, the solution to the inequality 4 > 3x−2 ≥ 2x−1
is the interval [1, 2). In set-builder notation this is the set {x ∈ R : 1 ≤ x < 2}. ♣

Example 1.12: Positive Inequality

Solve 4x− x2 > 0.

Solution. We provide two methods to solve this inequality.

First method. Factor 4x − x2 as x(4 − x). The product of two numbers is positive when
either both are positive or both are negative, i.e., if either x > 0 and 4−x > 0, or else x < 0
and 4−x < 0. The latter alternative is impossible, since if x is negative, then 4−x is greater
than 4, and so cannot be negative. As for the first alternative, the condition 4−x > 0 can be
rewritten (adding x to both sides) as 4 > x, so we need: x > 0 and 4 > x (this is sometimes
combined in the form 4 > x > 0, or, equivalently, 0 < x < 4). In interval notation, this says
that the solution is the interval (0, 4).

Second method. Write 4x− x2 as −(x2 − 4x), and then complete the square, obtaining

−
(

(x− 2)2 − 4
)

= 4− (x− 2)2.

For this to be positive we need (x − 2)2 < 4, which means that x − 2 must be less than 2
and greater than −2: −2 < x− 2 < 2. Adding 2 to everything gives 0 < x < 4.

Both of these methods are equally correct; you may use either in a problem of this type.
♣

We next present another method to solve more complicated looking inequalities. In the
next example we will solve a rational inequality by using a number line and test points. We
follow the guidelines below.

11
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Guidelines for Solving Rational Inequalities

1. Move everything to one side to get a 0 on the other side.

2. If needed, combine terms using a common denominator.

3. Factor the numerator and denominator.

4. Identify points where either the numerator or denominator is 0. Such points are
called split points.

5. Draw a number line and indicate your split points on the number line. Draw
closed/open circles for each split point depending on if that split point satisfies
the inequality (division by zero is not allowed).

6. The split points will split the number line into subintervals. For each subinterval
pick a test point and see if the expression in Step 3 is positive or negative. Indicate
this with a + or − symbol on the number line for that subinterval.

7. Now write your answer in set-builder notation. Use the union symbol ∪ if you
have multiple intervals in your solution.

Example 1.13: Rational Inequality

Write the solution to the following inequality using interval notation:

2− x

2 + x
≥ 1.

Solution. One method to solve this inequality is to multiply both sides by 2+x, but because
we do not know if 2+x is positive or negative we must split it into two cases (Case 1: 2+x > 0
and Case 2: 2 + x < 0).

Instead we follow the guidelines for solving rational inequalities:

Start with original problem:
2− x

2 + x
≥ 1

Move everything to one side:
2− x

2 + x
− 1 ≥ 0

Find a common denominator:
2− x

2 + x
− 2 + x

2 + x
≥ 0

Combine fractions:
(2− x)− (2 + x)

2 + x
≥ 0

Expand numerator:
2− x− 2− x

2 + x
≥ 0

Simplify numerator:
−2x
2 + x

≥ 0 (∗)

Now we have the numerator and denominator in fully factored form. The split points are

12
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x = 0 (makes the numerator 0) and x = −2 (makes the denominator 0). Let us draw a
number line with the split points indicated on it:

‐2 0

The point x = 0 is included since if we sub x = 0 into (*) we get 0 ≥ 0 which is true.
The point x = −2 is not included since we cannot divide by zero. We indicate this with
open/closed circles on the number line (remember that open means omit):

‐2 0

Now choosing a test point from each of the three subintervals we can determine if the
expression −2x

2+x
is positive or negative. When x = −3, it is negative. When x = −1, it is

positive. When x = 1, it is negative. Indicating this on the number line gives:

‐2 0

+‐ ‐

Since we wish to solve −2x
2+x
≥ 0, we look at where the + signs are and shade that area on the

number line:

‐2 0

+‐ ‐

Since there is a closed circle at 0, we include it. Therefore, the solution is (−2, 0]. ♣

Example 1.14: Rational Inequality

Write the solution to the following inequality using interval notation:

2

x+ 2
> 3x+ 3.

Solution. We provide a brief outline of the solution. By subtracting (3x + 3) from both
sides and using a common denominator of x + 2, we can collect like terms and simplify to
get:

−(3x2 + 9x+ 4)

x+ 2
> 0.

The denominator is zero when x = −2. Using the quadratic formula, the numerator is
zero when x = −9±

√
33

6
(these two numbers are approximately −2.46 and −0.54). Since the

inequality uses “>” and 0 > 0 is false, we do not include any of the split points in our

solution. After choosing suitable test points and determining the sign of −(3x2+9x+4)
x+2

we have

‐2.46 ‐2

+‐ ‐

‐0.54

+

Looking where the + symbols are located gives the solution:
(

−∞,
−9−

√
33

6

)

⋃

(

−2, −9 +
√
33

6

)

.

When writing the final answer we use exact expressions for numbers in mathematics, not
approximations (unless stated otherwise). ♣
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1.1.5. The Absolute Value

The absolute value of a number x is written as |x| and represents the distance x is from
zero. Mathematically, we define it as follows:

|x| =
{

x, if x ≥ 0,
−x, if x < 0.

Thus, if x is a negative real number, then −x is a positive real number. The absolute
value does not just turn minuses into pluses. That is, |2x − 1| 6= 2x + 1. You should be
familiar with the following properties.

Absolute Value Properties

1. |x| ≥ 0.

2. |xy| = |x||y|.

3. |1/x| = 1/|x| when x 6= 0.

4. | − x| = |x|.

5. |x+ y| ≤ |x|+ |y|. This is called the triangle inequality.

6.
√
x2 = |x|.

Example 1.15:
√
x2 = |x|

Observe that
√

(−3)2 gives an answer of 3, not −3.

When solving inequalities with absolute values, the following are helpful.

Case 1: a > 0.

� |x| = a has solutions x = ±a.
� |x| ≤ a means x ≥ −a and x ≤ a (that is, −a ≤ x ≤ a).

� |x| < a means x < −a and x < a (that is, −a < x < a).

� |x| ≥ a means x ≤ −a or x ≥ a.

� |x| > a means x < −a or x > a.

Case 2: a < 0.

� |x| = a has no solutions.

� Both |x| ≤ a and |x| < a have no solutions.

� Both |x| ≥ a and |x| > a have solution set {x|x ∈ R}.

Case 3: a = 0.

� |x| = 0 has solution x = 0.

14
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� |x| < 0 has no solutions.

� |x| ≤ 0 has solution x = 0.

� |x| > 0 has solution set {x ∈ R|x 6= 0}.
� |x| ≥ 0 has solution set {x|x ∈ R}.

1.1.6. Solving Inequalities that Contain Absolute Values

We start by solving an equality that contains an absolute value. To do so, we recall that if
a ≥ 0 then the solution to |x| = a is x = ±a. In cases where we are not sure if the right side
is positive or negative, we must perform a check at the end.

Example 1.16: Absolute Value Equality

Solve for x in |2x+ 3| = 2− x.

Solution. This means that either:

2x+ 3 = +(2− x) or 2x+ 3 = −(2− x)
2x+ 3 = 2− x or 2x+ 3 = −2 + x

3x = −1 or x = −5
x = −1/3 or x = −5

Since we do not know if the right side “a = 2− x” is positive or negative, we must perform
a check of our answers omit any that are incorrect.

If x = −1/3, then we have LS = |2(−1/3) + 3| = | − 2/3 + 3| = |7/3| = 7/3 and
RS = 2− (−1/3) = 7/3. In this case LS = RS, so x = −1/3 is a solution.

If x = −5, then we have LS = |2(−5)+3| = |−10+3| = |−7| = 7 and RS = 2− (−5) =
2 + 5 = 7. In this case LS = RS, so x = −5 is a solution. ♣

We next look at absolute values and inequalities.

Example 1.17: Absolute Value Inequality

Solve |x− 5| < 7.

Solution. This simply means −7 < x − 5 < 7. Adding 5 to each gives −2 < x < 12.
Therefore the solution is the interval (−2, 12). ♣

In some questions you must be careful when multiplying by a negative number as in the
next problem.
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Example 1.18: Absolute Value Inequality

Solve |2− z| < 7.

Solution. This simply means −7 < 2 − z < 7. Subtracting 2 gives: −9 < −z < 5. Now
multiplying by −1 gives: 9 > z > −5. Remember to reverse the inequality signs! We can
rearrange this as −5 < z < 9. Therefore the solution is the interval (−5, 9). ♣

Example 1.19: Absolute Value Inequality

Solve |2− z| ≥ 7.

Solution. Recall that for a > 0, |x| ≥ a means x ≤ −a or x ≥ a. Thus, either 2 − z ≤ −7
or 2− z ≥ 7. Either 9 ≤ z or −5 ≥ z. Either z ≥ 9 or z ≤ −5. In interval notation, either z
is in [9,∞) or z is in (−∞,−5]. All together, we get our solution to be: (−∞,−5] ∪ [9,∞).

♣
In the previous two examples the only difference is that one had < in the question and

the other had ≥. Combining the two solutions gives the entire real number line!

Example 1.20: Absolute Value Inequality

Solve 0 < |x− 5| ≤ 7.

Solution. We split this into two cases.
(1) For 0 < |x − 5| note that we always have that an absolute value is positive or zero

(i.e., 0 ≤ |x−5| is always true). So, for this part, we need to avoid 0 = |x−5| from occurring.
Thus, x cannot be 5, that is, x 6= 5.

(2) For |x − 5| ≤ 7, we have −7 ≤ x − 5 ≤ 7. Adding 5 to each gives −2 ≤ x ≤ 12.
Therefore the solution to |x− 5| ≤ 7 is the interval [−2, 12].

To combine (1) and (2) we need combine x 6= 5 with x ∈ [−2, 12]. Omitting 5 from the
interval [−2, 12] gives our solution to be: [−2, 5) ∪ (5, 12]. ♣

Exercises for 1.1

Exercise 1.1.1. Find the constants a, b, c if the expression

4x−1y2 3
√
x

2x
√
y

is written in the form axbyc.

Exercise 1.1.2. Find the roots of the quadratic equation

x2 − 2x− 24 = 0.
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Exercise 1.1.3. Solve the equation

x

4x− 16
− 2 =

1

x− 3
.

Exercise 1.1.4. Solve the following inequalities. Write your answer as a union of intervals.
a) 3x+ 1 > 6 d) x2 + 1 > 0
b) 0 ≤ 7x− 1 < 1 e) x2 + 1 < 0

c)
x2(x− 1)

(x+ 2)(x+ 3)3
≤ 0. f) x2 + 1 > 2x

Exercise 1.1.5. Solve the equation |6x+ 2| = 1.

Exercise 1.1.6. Solve the equation
√
1− x+ x = 1.

1.2 Analytic Geometry

In what follows, we use the notation (x1, y1) to represent a point in the (x, y) coordinate
system, also called the (x, y)-plane. Previously, we used (a, b) to represent an open interval.
Notation often gets reused and abused in mathematics, but thankfully, it is usually clear
from the context what we mean.

In the (x, y) coordinate system we normally write the x-axis horizontally, with positive
numbers to the right of the origin, and the y-axis vertically, with positive numbers above the
origin. That is, unless stated otherwise, we take “rightward” to be the positive x-direction
and “upward” to be the positive y-direction. In a purely mathematical situation, we normally
choose the same scale for the x- and y-axes. For example, the line joining the origin to the
point (a, a) makes an angle of 45◦ with the x-axis (and also with the y-axis).

In applications, often letters other than x and y are used, and often different scales are
chosen in the horizontal and vertical directions.

Example 1.21: Data Plot

Suppose you drop a coin from a window, and you want to study how its height above
the ground changes from second to second. It is natural to let the letter t denote
the time (the number of seconds since the object was released) and to let the letter h
denote the height. For each t (say, at one-second intervals) you have a corresponding
height h. This information can be tabulated, and then plotted on the (t, h) coordinate
plane, as shown in figure 1.1.

We use the word “quadrant” for each of the four regions into which the plane is di-
vided by the axes: the first quadrant is where points have both coordinates positive, or the
“northeast” portion of the plot, and the second, third, and fourth quadrants are counted off
counterclockwise, so the second quadrant is the northwest, the third is the southwest, and
the fourth is the southeast.

Suppose we have two points A and B in the (x, y)-plane. We often want to know the
change in x-coordinate (also called the “horizontal distance”) in going from A to B. This is
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Figure 1.1: A data plot, height versus time.

often written ∆x, where the meaning of ∆ (a capital delta in the Greek alphabet) is “change
in”. Thus, ∆x can be read as “change in x” although it usually is read as “delta x”. The
point is that ∆x denotes a single number, and should not be interpreted as “delta times
x”. Similarly, the “change in y” is written ∆y and represents the difference between the
y-coordinates of the two points. It is the vertical distance you have to move in going from
A to B.

Example 1.22: Change in x and y

If A = (2, 1) and B = (3, 3) the change in x is

∆x = 3− 2 = 1

while the change in y is
∆y = 3− 1 = 2.

The general formulas for the change in x and the change in y between a point (x1, y1)
and a point (x2, y2) are:

∆x = x2 − x1, ∆y = y2 − y1.

Note that either or both of these might be negative.

1.2.1. Lines

If we have two distinct points A(x1, y1) and B(x2, y2), then we can draw one and only one
straight line through both points. By the slope of this line we mean the ratio of ∆y to ∆x.
The slope is often denoted by the letter m.
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Slope Formula

The slope of the line joining the points (x1, y1) and (x2, y2) is:

m =
∆y

∆x
=

(y2 − y1)

(x2 − x1)
=

rise

run
.

Example 1.23: Slope of a Line Joining Two Points

The line joining the two points (1,−2) and (3, 5) has slope m =
5− (−2)
3− 1

=
7

2
.

The most familiar form of the equation of a straight line is:

y = mx+ b.

Here m is the slope of the line: if you increase x by 1, the equation tells you that you have
to increase y by m; and if you increase x by ∆x, then y increases by ∆y = m∆x. The
number b is called the y-intercept, because it is where the line crosses the y-axis (when
x = 0). If you know two points on a line, the formula m = (y2 − y1)/(x2 − x1) gives you
the slope. Once you know a point and the slope, then the y-intercept can be found by
substituting the coordinates of either point in the equation: y1 = mx1+ b, i.e., b = y1−mx1.
Alternatively, one can use the “point-slope” form of the equation of a straight line: start
with (y − y1)/(x− x1) = m and then multiply to get

(y − y1) = m(x− x1),

the point-slope form. Of course, this may be further manipulated to get y = mx−mx1+ y1,
which is essentially the “y = mx+ b” form.

It is possible to find the equation of a line between two points directly from the relation
m = (y − y1)/(x − x1) = (y2 − y1)/(x2 − x1), which says “the slope measured between the
point (x1, y1) and the point (x2, y2) is the same as the slope measured between the point
(x1, y1) and any other point (x, y) on the line.” For example, if we want to find the equation
of the line joining our earlier points A(2, 1) and B(3, 3), we can use this formula:

m =
y − 1

x− 2
=

3− 1

3− 2
= 2, so that y − 1 = 2(x− 2), i.e., y = 2x− 3.

Of course, this is really just the point-slope formula, except that we are not computing m in
a separate step. We summarize the three common forms of writing a straight line below:

Slope-Intercept Form of a Straight Line

An equation of a line with slope m and y-intercept b is:

y = mx+ b.
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Point-Slope Form of a Straight Line

An equation of a line passing through (x1, y1) and having slope m is:

y − y1 = m(x− x1).

General Form of a Straight Line

Any line can be written in the form

Ax+By + C = 0,

where A,B,C are constants and A,B are not both 0.

The slope m of a line in the form y = mx + b tells us the direction in which the line is
pointing. If m is positive, the line goes into the 1st quadrant as you go from left to right. If
m is large and positive, it has a steep incline, while if m is small and positive, then the line
has a small angle of inclination. If m is negative, the line goes into the 4th quadrant as you
go from left to right. If m is a large negative number (large in absolute value), then the line
points steeply downward. If m is negative but small in absolute value, then it points only a
little downward.

If m = 0, then the line is horizontal and its equation is simply y = b.
All of these possibilities are illustrated below.

There is one type of line that cannot be written in the form y = mx+ b, namely, vertical
lines. A vertical line has an equation of the form x = a. Sometimes one says that a vertical
line has an “infinite” slope.

It is often useful to find the x-intercept of a line y = mx + b. This is the x-value when
y = 0. Setting mx+ b equal to 0 and solving for x gives: x = −b/m.

Example 1.24: Finding x-intercepts

To find x-intercept(s) of the line y = 2x− 3 we set y = 0 and solve for x:

0 = 2x− 3 → x =
3

2
.

Thus, the line has an x-intercept of 3/2.

It is often necessary to know if two lines are parallel or perpendicular. Let m1 and m2

be the slopes of the nonvertical lines L1 and L2. Then:
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� L1 and L2 are parallel if and only if m1 = m2.

� L1 and L2 are perpendicular if and only if m2 =
−1
m1

.

In the case of perpendicular lines, we say their slopes are negative reciprocals. Below is a
visual representation of a pair of parallel lines and a pair of perpendicular lines.

x

y

Parallel Lines Perpendicular Lines

90

x

y

Example 1.25: Equation of a Line

For each part below, find an equation of a line satisfying the requirements:

(a) Through the two points (0, 3) and (−2, 4).

(b) With slope 7 and through point (1,−2).

(c) With slope 2 and y-intercept 4.

(d) With x-intercept 8 and y-intercept −3.

(e) Through point (5, 3) and parallel to the line 2x+ 4y + 2 = 0.

(f) With y-intercept 4 and perpendicular to the line y = −2
3
x+ 3.

Solution. (a) We use the slope formula on (x1, y1) = (0, 3) and (x2, y2) = (−2, 4) to find m:

m =
(4)− (3)

(−2)− (0)
=

1

−2 = −1
2
.

Now using the point-slope formula we get an equation to be:

y − 3 = −1
2
(x− 0) → y = −1

2
x+ 3.

(b) Using the point-slope formula with m = 7 and (x1, y1) = (1,−2) gives:

y − (−2) = 7(x− 1) → y = 7x− 9.

(c) Using the slope-intercept formula with m = 2 and b = 4 we get y = 2x+ 4.
(d) Note that the intercepts give us two points: (x1, y1) = (8, 0) and (x2, y2) = (0,−3). Now
follow the steps in part (a):

m =
−3− 0

0− 8
=

3

8
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. Using the point-slope formula we get an equation to be:

y − (−3) = 3

8
(x− 0) → y =

3

8
x− 3

.
(e) The line 2x+ 4y + 2 = 0 can be written as:

4y = −2x− 2 → y = −1
2
x− 1

2
.

This line has slope −1/2. Since our line is parallel to it, we have m = −1/2. Now we have
a point (x1, y1) = (5, 3) and slope m = −1/2, thus, the point-slope formula gives:

y − 3 = −1
2
(x− 5) .

(f) The line y = −2
3
x+ 3 has slope m = −2/3. Since our line is perpendicular to it, the

slope of our line is the negative reciprocal, hence, m = 3/2. Now we have b = 4 and m = 3/2,
thus by the slope-intercept formula, an equation of the line is

y =
3

2
x+ 4.

♣
Example 1.26: Parallel and Perpendicular Lines

Are the two lines 7x+2y+3 = 0 and 6x−4y+2 = 0 perpendicular? Are they parallel?
If they are not parallel, what is their point of intersection?

Solution. The first line is:

7x+ 2y + 3 = 0 → 2y = −7x− 3 → y = −7
2
x− 3

2
.

It has slope m1 = −7/2. The second line is:

6x− 4y + 2 = 0 → −4y = −6x− 2 → y =
3

2
x+

1

2
.

It has slope m2 = 3/2. Since m1 ·m2 6= −1 (they are not negative reciprocals), the lines are
not perpendicular. Since m1 6= m2 the lines are not parallel.

We find points of intersection by setting y-values to be the same and solving. In particular,
we have

−7
2
x− 3

2
=

3

2
x+

1

2
.

Solving for x gives x = −2/5. Then substituting this into either equation gives y = −1/10.
Therefore, the lines intersect at the point (−2/5,−1/10). ♣
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1.2. ANALYTIC GEOMETRY

1.2.2. Distance between Two Points and Midpoints

Given two points (x1, y1) and (x2, y2), recall that their horizontal distance from one another
is ∆x = x2 − x1 and their vertical distance from one another is ∆y = y2 − y1. Actually, the
word “distance” normally denotes “positive distance”. ∆x and ∆y are signed distances, but
this is clear from context. The (positive) distance from one point to the other is the length
of the hypotenuse of a right triangle with legs |∆x| and |∆y|, as shown in figure 1.2. The
Pythagorean Theorem states that the distance between the two points is the square root of
the sum of the squares of the horizontal and vertical sides:
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(x1, y1)

(x2, y2)

∆x

∆y

Figure 1.2: Distance between two points (here, ∆x and ∆y are positive).

Distance Formula

The distance between points (x1, y1) and (x2, y2) is

distance =
√

(∆x)2 + (∆y)2 =
√

(x2 − x1)2 + (y2 − y1)2.

Example 1.27: Distance Between Two Points

The distance, d, between points A(2, 1) and B(3, 3) is

d =
√

(3− 2)2 + (3− 1)2 =
√
5.

As a special case of the distance formula, suppose we want to know the distance of a
point (x, y) to the origin. According to the distance formula, this is

√

(x− 0)2 + (y − 0)2 =
√

x2 + y2.

A point (x, y) is at a distance r from the origin if and only if
√

x2 + y2 = r, or, if we square
both sides: x2 + y2 = r2. As illustrated in the next section, this is the equation of the circle
of radius, r, centered at the origin.

Furthermore, given two points we can determine the midpoint of the line segment join-
ing the two points.

Midpoint Formula

The midpoint of the line segment joining two points (x1, y1) and (x2, y2) is the point
with coordinates:

midpoint =

(

x1 + x2

2
,
y1 + y2

2

)

.
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Example 1.28: Midpoint of a Line Segment

Find the midpoint of the line segment joining the given points: (1, 0) and (5,−2).

Solution. Using the midpoint formula on (x1, y1) = (1, 0) and (x2, y2) = (5,−2) we get:
(

(1) + (5)

2
,
(0) + (−2)

2

)

= (3,−1).

Thus, the midpoint of the line segment occurs at (3,−1). ♣

1.2.3. Conics

In this section we review equations of parabolas, circles, ellipses and hyperbolas. We will give
the equations of various conics in standard form along with a sketch. A useful mnemonic
is the following.

Mnemonic

In each conic formula presented, the terms ‘x−h’ and ‘y− k’ will always appear. The
point (h, k) will alway represent either the centre or vertex of the particular conic.

Vertical Parabola: The equation of a vertical parabola is:

y − k = a(x− h)2

x

y

x

y

� (h, k) is the vertex of the parabola.

� a is the vertical stretch factor.

� If a > 0, the parabola opens upward.

� If a < 0, the parabola opens downward.

Horizontal Parabola: The equation of a horizontal parabola is:

x− h = a(y − k)2

x

y

x

y
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1.2. ANALYTIC GEOMETRY

� (h, k) is the vertex of the parabola.

� a is the horizontal stretch factor.

� If a > 0, the parabola opens right.

� If a < 0, the parabola opens left.

Circle: The equation of a circle is:

(x− h)2 + (y − k)2 = r2

x

y

� (h, k) is the centre of the circle. � r is the radius of the circle.

Ellipse: The equation of an ellipse is:

(x− h)2

a2
+

(y − k)2

b2
= 1

x

y

� (h, k) is the centre of the ellipse.

� a is the horizontal distance from the centre to the edge of the ellipse.

� b is the vertical distance from the centre to the edge of the ellipse.

Horizontal Hyperbola: The equation of a horizontal hyperbola is:

(x− h)2

a2
− (y − k)2

b2
= 1

� (h, k) is the centre of the hyperbola.

� a, b are the reference box values. The
box has a centre of (h, k).

� a is the horizontal distance from the
centre to the edge of the box.

� b is the vertical distance from the centre
to the edge of the box.
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Given the equation of a horizontal hyperbola, one may sketch it by first placing a dot
at the point (h, k). Then draw a box around (h, k) with horizontal distance a and vertical
distance b to the edge of the box. Then draw dotted lines (called the asymptotes of the
hyperbola) through the corners of the box. Finally, sketch the hyperbola in a horizontal
direction as illustrated below.

x

y

x

y

x

y

x

y

Vertical Hyperbola: The equation of a vertical hyperbola is:

(x− h)2

a2
− (y − k)2

b2
= −1

� (h, k) is the centre of the hyperbola.

� a, b are the reference box values. The
box has a centre of (h, k).

� a is the horizontal distance from the
centre to the edge of the box.

� b is the vertical distance from the centre
to the edge of the box.

Given the equation of a vertical hyperbola, one may sketch it by following the same steps
as with a horizontal hyperbola, but sketching the hyperbola going in a vertical direction.

x

y

x

y

x

y

x

y
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Determining the Type of Conic

An equation of the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

gives rise to a graph that can be generated by performing a conic section (parabolas,
circles, ellipses, hyperbolas). Note that the Bxy term involves conic rotation. The
Dx, Ex, and F terms affect the vertex and centre. For simplicity, we will omit the
Bxy term. To determine the type of graph we focus our analysis on the values of A
and C.

� If A = C, the graph is a circle.

� If AC > 0 (and A 6= C), the graph is an ellipse.

� If AC = 0, the graph is a parabola.

� If AC < 0, the graph is a hyperbola.

Example 1.29: Center and Radius of a Circle

Find the centre and radius of the circle y2 + x2 − 12x+ 8y + 43 = 0.

Solution. We need to complete the square twice, once for the x terms and once for the y
terms. We’ll do both at the same time. First let’s collect the terms with x together, the
terms with y together, and move the number to the other side.

(x2 − 12x) + (y2 + 8y) = −43

We add 36 to both sides for the x term (−12 → −12
2

= −6 → (−6)2 = 36), and 16 to both
sides for the y term (8→ 8

2
= 4→ (4)2 = 16):

(x2 − 12x+ 36) + (y2 + 8y + 16) = −43 + 36 + 16

Factoring gives:
(x− 6)2 + (y + 4)2 = 32.

Therefore, the centre of the circle is (6,−4) and the radius is 3. ♣

Example 1.30: Type of Conic

What type of conic is 4x2 − y2 − 8x+ 8 = 0? Put it in standard form.

Solution. Here we have A = 4 and C = −1. Since AC < 0, the conic is a hyperbola. Let
us complete the square for the x and y terms. First let’s collect the terms with x together,
the terms with y together, and move the number to the other side.

(4x2 − 8x)− y2 = −8

Now we factor out 4 from the x terms.

4(x2 − 2x)− y2 = −8
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Notice that we don’t need to complete the square for the y terms (it is already completed!).
To complete the square for the x terms we add 1 (−2 → −2

2
= −1 → (−1)2 = 1), taking

into consideration that the a value is 4:

4 (x2 − 2x+ 1)− y2 = −8 + 4 · 1

Factoring gives:
4(x− 1)2 − y2 = −4

A hyperbola in standard form has ±1 on the right side and a positive x2 on the left side,
thus, we must divide by 4:

(x− 1)2 − y2

4
= −1

Now we can see that the equation represents a vertical hyperbola with centre (1, 0) (and
with a value

√
1 = 1, and b value

√
4 = 2). ♣

Example 1.31: Equation of Parabola

Find an equation of the parabola with vertex (1,−1) that passes through the points
(−4, 24) and (7, 35).

Solution. We first need to determine if it is a vertical parabola or horizontal parabola.
See figure 1.3 for a sketch of the three points (1,−1), (−4, 24) and (7, 35) in the xy-plane.
Note that the vertex is (1,−1). Given the location of the vertex, the parabola cannot open

x

y

Figure 1.3: Figure for Example 1.31

downwards. It also cannot open left or right (because the vertex is between the other two
points - if it were to open to the right, every other point would need to be to the right of the
vertex; if it were to open to the left, every other point would need to be to the left of the
vertex). Therefore, the parabola must open upwards and it is a vertical parabola. It has an
equation of

y − k = a(x− h)2.

As the vertex is (h, k) = (1,−1) we have:

y − (−1) = a(x− 1)2
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1.2. ANALYTIC GEOMETRY

To determine a, we substitute one of the points into the equation and solve. Let us substitute
the point (x, y) = (−4, 24) into the equation:

24− (−1) = a(−4− 1)2 → 25 = 25a → a = 1.

Therefore, the equation of the parabola is:

y + 1 = (x− 1)2.

Note that if we substituted (7, 35) into the equation instead, we would also get a = 1. ♣

Exercises for 1.2

Exercise 1.2.1. Find the equation of the line in the form y = mx+ b:
a) through (1, 1) and (−5,−3),
b) through (−1, 2) with slope −2,
c) through (−1, 1) and (5,−3).

Exercise 1.2.2. Change the following equations to the form y = mx+ b, graph the line, and
find the y-intercept and x-intercept.
a) y−2x = 2
b) x+y = 6
c) x = 2y−1
d) 3 = 2y
e) 2x+3y+6 = 0

Exercise 1.2.3. Determine whether the lines 3x+ 6y = 7 and 2x+ 4y = 5 are parallel.

Exercise 1.2.4. Suppose a triangle in the (x, y)-plane has vertices (−1, 0), (1, 0) and (0, 2).
Find the equations of the three lines that lie along the sides of the triangle in y = mx + b
form.

Exercise 1.2.5. Let x stand for temperature in degrees Celsius (centigrade), and let y stand
for temperature in degrees Fahrenheit. A temperature of 0◦C corresponds to 32◦F, and a
temperature of 100◦C corresponds to 212◦F. Find the equation of the line that relates tem-
perature Fahrenheit y to temperature Celsius x in the form y = mx + b. Graph the line,
and find the point at which this line intersects y = x. What is the practical meaning of this
point?

Exercise 1.2.6. A car rental firm has the following charges for a certain type of car: $25
per day with 100 free miles included, $0.15 per mile for more than 100 miles. Suppose you
want to rent a car for one day, and you know you’ll use it for more than 100 miles. What
is the equation relating the cost y to the number of miles x that you drive the car?

Exercise 1.2.7. A photocopy store advertises the following prices: 5c per copy for the first
20 copies, 4c per copy for the 21st through 100th copy, and 3c per copy after the 100th copy.
Let x be the number of copies, and let y be the total cost of photocopying. (a) Graph the cost
as x goes from 0 to 200 copies. (b) Find the equation in the form y = mx+ b that tells you
the cost of making x copies when x is more than 100.
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Exercise 1.2.8. Market research tells you that if you set the price of an item at $1.50, you
will be able to sell 5000 items; and for every 10 cents you lower the price below $1.50 you
will be able to sell another 1000 items. Let x be the number of items you can sell, and let P
be the price of an item. (a) Express P linearly in terms of x, in other words, express P in
the form P = mx+ b. (b) Express x linearly in terms of P .

Exercise 1.2.9. An instructor gives a 100-point final exam, and decides that a score 90 or
above will be a grade of 4.0, a score of 40 or below will be a grade of 0.0, and between 40 and
90 the grading will be linear. Let x be the exam score, and let y be the corresponding grade.
Find a formula of the form y = mx+ b which applies to scores x between 40 and 90.

Exercise 1.2.10. Find the distance between the pairs of points:
a) (−1, 1) and (1, 1),
b) (5, 3) and (−7,−2),
c) (1, 1) and the origin.

Exercise 1.2.11. Find the midpoint of the line segment joining the point (20,−10) to the
origin.

Exercise 1.2.12. Find the equation of the circle of radius 3 centered at:
a) (0, 0) d) (0, 3)
b) (5, 6) e) (0,−3)
c) (−5,−6) f) (3, 0)

Exercise 1.2.13. For each pair of points A(x1, y1) and B(x2, y2) find an equation of the
circle with center at A that goes through B.
a) A(2, 0), B(4, 3) b) A(−2, 3), B(4, 3)

Exercise 1.2.14. Determine the type of conic and sketch it.
a) x2+y2+10y = 0
b) 9x2−90x+y2+81 = 0
c) 6x+y2−8y = 0

Exercise 1.2.15. Find the standard equation of the circle passing through (−2, 1) and tan-
gent to the line 3x − 2y = 6 at the point (4, 3). Sketch. (Hint: The line through the center
of the circle and the point of tangency is perpendicular to the tangent line.)

1.3 Trigonometry

In this section we review the definitions of trigonometric functions.

1.3.1. Angles and Sectors of Circles

Mathematicians tend to deal mostly with radians and we will see later that some formulas
are more elegant when using radians (rather than degrees). The relationship between degrees
and radians is:

π rad = 180◦.
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Using this formula, some common angles can be derived:

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 270◦ 360◦

Radians 0
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6
π

3π

2
2π

Example 1.32: Degrees to Radians

To convert 45◦ to radians, multiply by
π

180◦
to get

π

4
.

Example 1.33: Radians to Degrees

To convert
5π

6
radians to degrees, multiply by

180◦

π
to get 150◦.

From now on, unless otherwise indicated, we will always use radian measure.
In the diagram below is a sector of a circle with central angle θ and radius r subtending

an arc with length s.

When θ is measure in radians, we have the following formula relating θ, s and r:

θ =
s

r
or s = rθ.

Sector Area

The area of the sector is equal to:

Sector Area =
1

2
r2θ.
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Example 1.34: Angle Subtended by Arc

If a circle has radius 3 cm, then an angle of 2 rad is subtended by an arc of 6 cm
(s = rθ = 3 · 2 = 6).

Example 1.35: Area of Circle

If we substitute θ = 2π (a complete revolution) into the sector area formula we get
the area of a circle:

A =
1

2
r2(2π) = πr2.

1.3.2. Trigonometric Functions

There are six basic trigonometric functions:

� Sine (abbreviated by sin)

� Cosine (abbreviated by cos)

� Tangent (abbreviated by tan)

� Cosecant (abbreviated by csc)

� Secant (abbreviated by sec)

� Cotangent (abbreviated by cot)

We first describe trigonometric functions in terms of ratios of two sides of a right angle
triangle containing the angle θ.

Hypotenuse (hyp)

Adjacent (adj)

Opposite 

(opp)

With reference to the above triangle, for an acute angle θ (that is, 0 ≤ θ < π/2), the six
trigonometric functions can be described as follows:

sin θ =
opp

hyp
csc θ =

hyp

opp

cos θ =
adj

hyp
sec θ =

hyp

adj

tan θ =
opp

adj
cot θ =

adj

opp
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Mnemonic

The mnemonic SOH CAH TOA is useful in remembering how trigonometric functions
of acute angles relate to the sides of a right triangle.

This description does not apply to obtuse or negative angles. To define the six basic
trigonometric functions we first define sine and cosine as the lengths of various line segments
from a unit circle, and then we define the remaining four basic trigonometric functions in
terms of sine and cosine.

Take a line originating at the origin (making an angle of θ with the positive half of
the x-axis) and suppose this line intersects the unit circle at the point (x, y). The x- and
y-coordinates of this point of intersection are equal to cos θ and sin θ, respectively.

1

For angles greater than 2π or less than −2π, simply continue to rotate around the circle. In
this way, sine and cosine become periodic functions with period 2π:

sin θ = sin (θ + 2πk) cos θ = cos (θ + 2πk)

for any angle θ and any integer k.
Above, only sine and cosine were defined directly by the circle. We now define the

remaining four basic trigonometric functions in terms of the functions sin θ and cos θ:

tan θ =
sin θ

cos θ
sec θ =

1

cos θ
csc θ =

1

sin θ
cot θ =

cos θ

sin θ

1.3.3. Computing Exact Trigonometric Ratios

The unit circle is often used to determine the exact value of a particular trigonometric
function.
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Reading from the unit circle one can see that cos 5π/6 = −
√
3/2 and sin 5π/6 = 1/2

(remember the that the x-coordinate is cos θ and the y-coordinate is sin θ). However, we don’t
always have access to the unit circle. In this case, we can compute the exact trigonometric
ratios for θ = 5π/6 by using special triangles and the CAST rule described below.

The first special triangle has angles of 45◦, 45◦, 90◦ (i.e., π/4, π/4, π/2) with side lengths
1, 1,
√
2, while the second special triangle has angles of 30◦, 60◦, 90◦ (i.e., π/6, π/3, π/2) with

side lengths 1, 2,
√
3. They are classically referred to as the 1 − 1 −

√
2 triangle, and the

1− 2−
√
3 triangle, respectively, shown below.

34



1.3. TRIGONOMETRY

Mnemonic

The first triangle should be easy to remember. To remember the second triangle,
place the largest number (2) across from the largest angle (90◦ = π/2). Place the
smallest number (1) across from the smallest angle (30◦ = π/6). Place the middle
number (

√
3 ≈ 1.73) across from the middle angle (60◦ = π/3). Double check using

the Pythagorean Theorem that the sides satisfy a2 + b2 = c2.

The special triangles allow us to compute the exact value (excluding the sign) of trigono-
metric ratios, but to determine the sign, we can use the CAST rule.

The CAST Rule

The CAST rule says that in quadrant I all three of sin θ, cos θ, tan θ are positive. In
quadrant II, only sin θ is positive, while cos θ, tan θ are negative. In quadrant III, only
tan θ is positive, while sin θ, cos θ are negative. In quadrant IV, only cos θ is positive,
while sin θ, tan θ are negative. To remember this, simply label the quadrants by the
letters C-A-S-T starting in the bottom right and labelling counter-clockwise.

C

AS

T

III

III IV

Example 1.36: Determining Trigonometric Ratios Without Unit Circle

Determine sin 5π/6, cos 5π/6, tan 5π/6, sec 5π/6, csc 5π/6 and cot 5π/6 exactly by
using the special triangles and CAST rule.

Solution. We start by drawing the xy-plane and indicating our angle of 5π/6 in standard po-
sition (positive angles rotate counterclockwise while negative angles rotate clockwise). Next,
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we drop a perpendicular to the x-axis (never drop it to the y-axis!).

Notice that we can now figure out the angles in the triangle. Since 180◦ = π, we have an
interior angle of π − 5π/6 = π/6 inside the triangle. As the angles of a triangle add up to
180◦ = π, the other angle must be π/3. This gives one of our special triangles. We label it
accordingly and add the CAST rule to our diagram.

C

AS

T
From the above figure we see that 5π/6 lies in quadrant II where sin θ is positive and cos θ
and tan θ are negative. This gives us the sign of sin θ, cos θ and tan θ. To determine the
value we use the special triangle and SOH CAH TOA.

Using sin θ = opp/hyp we find a value of 1/2. But sin θ is positive in quadrant II,
therefore,

sin
5π

6
= +

1

2
.

Using cos θ = adj/hyp we find a value of
√
3/2. But cos θ is negative in quadrant II,

therefore,

cos
5π

6
= −
√
3

2
.

Using tan θ = opp/adj we find a value of 1/
√
3. But tan θ is negative in quadrant II,

therefore,

tan
5π

6
= − 1√

3
.
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To determine sec θ, csc θ and cot θ we use the definitions:

csc
5π

6
=

1

sin 5π
6

= +2, sec
5π

6
=

1

cos 5π
6

= − 2√
3
, cot

5π

6
=

1

tan 5π
6

= −
√
3.

♣

Example 1.37: CAST Rule

If cos θ = 3/7 and 3π/2 < θ < 2π, then find cot θ.

Solution. We first draw a right angle triangle. Since cos θ = adj/hyp = 3/7, we let the
adjacent side have length 3 and the hypotenuse have length 7.

adj = 3

hyp =
 7

opp =  ?

Using the Pythagorean Theorem, we have 32 + (opp)2 = 72. Thus, the opposite side has
length

√
40.

adj = 3

hyp =
 7

opp = 

To find cot θ we use the definition:

cot θ =
1

tan θ
.

Since we are given 3π/2 < θ < 2π, we are in the fourth quadrant. By the CAST rule, tan θ
is negative in this quadrant. As tan θ = opp/adj, it has a value of

√
40/3, but by the CAST

rule it is negative, that is,

tan θ = −
√
40

3
.

Therefore,

cot θ = − 3√
40

.

♣
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1.3.4. Graphs of Trigonometric Functions

The graph of the functions sin x and cosx can be visually represented as:

Both sin x and cosx have domain (−∞,∞) and range [−1, 1]. That is,

−1 ≤ sin x ≤ 1 − 1 ≤ cosx ≤ 1.

The zeros of sin x occur at the integer multiples of π, that is, sin x = 0 whenever x = nπ,
where n is an integer. Similarly, cosx = 0 whenever x = π/2 + nπ, where n is an integer.

The six basic trigonometric functions can be visually represented as:

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

sine

cosine

tangent

secant

cosecant

cotangent

Both tangent and cotangent have range (−∞,∞), whereas cosecant and secant have
range (−∞,−1] ∪ [1,∞). Each of these functions is periodic. Tangent and cotangent have
period π, whereas sine, cosine, cosecant and secant have period 2π.

1.3.5. Trigonometric Identities

There are numerous trigonometric identities, including those relating to shift/periodicity,
Pythagoras type identities, double-angle formulas, half-angle formulas and addition formulas.
We list these below.
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1. Shifts and periodicity

sin(θ + 2π) = sin θ cos(θ + 2π) = cos θ tan(θ + 2π) = tan θ

sin(θ + π) = − sin θ cos(θ + π) = − cos θ tan(θ + π) = tan θ

sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ

sin
(π

2
− θ
)

= cos θ cos
(π

2
− θ
)

= sin θ tan
(π

2
− θ
)

= cot θ

2. Pythagoras type formulas

� sin2 θ + cos2 θ = 1

� tan2 θ + 1 = sec2 θ

� 1 + cot2 θ = csc2 θ

3. Double-angle formulas

� sin(2θ) = 2 sin θ cos θ

�

cos(2θ) = cos2 θ − sin2 θ
= 2 cos2 θ − 1
= 1− 2 sin2 θ.

4. Half-angle formulas

� cos2 θ =
1 + cos(2θ)

2

� sin2 θ =
1− cos(2θ)

2

5. Addition formulas

� sin(θ+φ) = sin θ cos φ+cos θ sinφ

� cos(θ+φ) = cos θ cosφ−sin θ sinφ

� tan(θ + φ) =
tan θ + tanφ

1− tan θ tanφ

� sin(θ−φ) = sin θ cos φ−cos θ sinφ

� cos(θ−φ) = cos θ cosφ+sin θ sinφ

Example 1.38: Double Angle

Find all values of x with 0 ≤ x ≤ π such that sin 2x = sin x.

Solution. Using the double-angle formula sin 2x = 2 sin x cosx we have:

2 sin x cosx = sin x

2 sin x cosx− sin x = 0

sin x(2 cosx− 1) = 0

Thus, either sin x = 0 or cos x = 1/2. For the first case when sin x = 0, we get x = 0 or
x = π. For the second case when cosx = 1/2, we get x = π/3 (use the special triangles and
CAST rule to get this). Thus, we have three solutions: x = 0, x = π/3, x = π. ♣
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Exercises for 1.3

Exercise 1.3.1. Find all values of θ such that sin(θ) = −1; give your answer in radians.

Exercise 1.3.2. Find all values of θ such that cos(2θ) = 1/2; give your answer in radians.

Exercise 1.3.3. Compute the following:
a) sin(3π) d) csc(4π/3)
b) sec(5π/6) e) tan(7π/4)
c) cos(−π/3) f) cot(13π/4)

Exercise 1.3.4. Use an angle sum identity to compute cos(π/12).

Exercise 1.3.5. Use an angle sum identity to compute tan(5π/12).

Exercise 1.3.6. Verify the following identities
a) cos2(t)/(1−sin(t)) = 1+sin(t)
b) 2 csc(2θ) = sec(θ) csc(θ)
c) sin(3θ)−sin(θ) = 2 cos(2θ) sin(θ)

Exercise 1.3.7. Sketch the following functions:
a) y = 2 sin(x)
b) y = sin(3x)
c) y = sin(−x)

Exercise 1.3.8. Find all of the solutions of 2 sin(t)− 1− sin2(t) = 0 in the interval [0, 2π].
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2. Functions

2.1 What is a Function?

A function y = f(x) is a rule for determining y when we’re given a value of x. For example,
the rule y = f(x) = 2x + 1 is a function. Any line y = mx + b is called a linear function.
The graph of a function looks like a curve above (or below) the x-axis, where for any value
of x the rule y = f(x) tells us how far to go above (or below) the x-axis to reach the curve.

Functions can be defined in various ways: by an algebraic formula or several algebraic
formulas, by a graph, or by an experimentally determined table of values. In the latter
case, the table gives a bunch of points in the plane, which we might then interpolate with a
smooth curve, if that makes sense.

Given a value of x, a function must give at most one value of y. Thus, vertical lines are
not functions. For example, the line x = 1 has infinitely many values of y if x = 1. It is also
true that if x is any number (not 1) there is no y which corresponds to x, but that is not a
problem—only multiple y values is a problem.

One test to identify whether or not a curve in the (x, y) coordinate system is a function
is the following.

Theorem 2.1: The Vertical Line Test

A curve in the (x, y) coordinate system represents a function if and only if no vertical
line intersects the curve more than once.

In addition to lines, another familiar example of a function is the parabola y = f(x) = x2.
We can draw the graph of this function by taking various values of x (say, at regular intervals)
and plotting the points (x, f(x)) = (x, x2). Then connect the points with a smooth curve.
(See figure 2.1.)

The two examples y = f(x) = 2x+1 and y = f(x) = x2 are both functions which can be
evaluated at any value of x from negative infinity to positive infinity. For many functions,
however, it only makes sense to take x in some interval or outside of some “forbidden” region.
The interval of x-values at which we’re allowed to evaluate the function is called the domain
of the function.
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y = f(x) = 1/x

Figure 2.1: Some graphs.

Example 2.2: Domain of the Square-Root Function

The square-root function y = f(x) =
√
x is the rule which says, given an x-value,

take the nonnegative number whose square is x. This rule only makes sense if x ≥ 0.
We say that the domain of this function is x ≥ 0, or more formally {x ∈ R : x ≥ 0}.
Alternately, we can use interval notation, and write that the domain is [0,∞). The
fact that the domain of y =

√
x is [0,∞) means that in the graph of this function (see

figure 2.1) we have points (x, y) only above x-values on the right side of the x-axis.

Another example of a function whose domain is not the entire x-axis is: y = f(x) = 1/x,
the reciprocal function. We cannot substitute x = 0 in this formula. The function makes
sense, however, for any nonzero x, so we take the domain to be: {x ∈ R : x 6= 0}. The
graph of this function does not have any point (x, y) with x = 0. As x gets close to 0 from
either side, the graph goes off toward infinity. We call the vertical line x = 0 an asymptote.

To summarize, two reasons why certain x-values are excluded from the domain of a func-
tion are the following.

Restrictions for the Domain of a Function

1. We cannot divide by zero, and

2. We cannot take the square root of a negative number.

We will encounter some other ways in which functions might be undefined later.

Another reason why the domain of a function might be restricted is that in a given
situation the x-values outside of some range might have no practical meaning. For example,
if y is the area of a square of side x, then we can write y = f(x) = x2. In a purely
mathematical context the domain of the function y = x2 is all of R. However, in the story-
problem context of finding areas of squares, we restrict the domain to positive values of x,
because a square with negative or zero side makes no sense.

In a problem in pure mathematics, we usually take the domain to be all values of x at
which the formulas can be evaluated. However, in a story problem there might be further
restrictions on the domain because only certain values of x are of interest or make practical
sense.
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In a story problem, we often use letters other than x and y. For example, the volume V
of a sphere is a function of the radius r, given by the formula V = f(r) = 4

3
πr3. Also, letters

different from f may be used. For example, if y is the velocity of something at time t, we
may write y = v(t) with the letter v (instead of f) standing for the velocity function (and t
playing the role of x).

The letter playing the role of x is called the independent variable, and the letter
playing the role of y is called the dependent variable (because its value “depends on”
the value of the independent variable). In story problems, when one has to translate from
English into mathematics, a crucial step is to determine what letters stand for variables. If
only words and no letters are given, then we have to decide which letters to use. Some letters
are traditional. For example, almost always, t stands for time.

Example 2.3: Open Box

An open-top box is made from an a× b rectangular piece of cardboard by cutting out
a square of side x from each of the four corners, and then folding the sides up and
sealing them with duct tape. Find a formula for the volume V of the box as a function
of x, and find the domain of this function.

Solution. The box we get will have height x and rectangular base of dimensions a− 2x by
b− 2x. Thus,

V = f(x) = x(a− 2x)(b− 2x).

Here a and b are constants, and V is the variable that depends on x, i.e., V is playing the
role of y.

This formula makes mathematical sense for any x, but in the story problem the domain
is much less. In the first place, x must be positive. In the second place, it must be less than
half the length of either of the sides of the cardboard. Thus, the domain is

{

x ∈ R : 0 < x <
1

2
(minimum of a and b)

}

.

In interval notation we write: the domain is the interval (0,min(a, b)/2). You might think
about whether we could allow 0 or (the minimum of a and b) to be in the domain. They
make a certain physical sense, though we normally would not call the result a box. If we
were to allow these values, what would the corresponding volumes be? Does that volume
make sense? ♣

Example 2.4: Circle of Radius r Centered at the Origin

Is the circle of radius r centered at the origin the graph of a a function?

Solution. The equation for this circle is usually given in the form x2 + y2 = r2. To write
the equation in the form y = f(x) we solve for y, obtaining y = ±

√
r2 − x2. But this is not

a function, because when we substitute a value in (−r, r) for x there are two corresponding
values of y. To get a function, we must choose one of the two signs in front of the square root.
If we choose the positive sign, for example, we get the upper semicircle y = f(x) =

√
r2 − x2

(see figure 2.2). The domain of this function is the interval [−r, r], i.e., x must be between
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CHAPTER 2. FUNCTIONS

−r and r (including the endpoints). If x is outside of that interval, then r2− x2 is negative,
and we cannot take the square root. In terms of the graph, this just means that there are
no points on the curve whose x-coordinate is greater than r or less than −r. ♣
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Figure 2.2: Upper semicircle y =
√
r2 − x2.

Example 2.5: Domain

Find the domain of

y = f(x) =
1√

4x− x2
.

Solution. To answer this question, we must rule out the x-values that make 4x−x2 negative
(because we cannot take the square root of a negative number) and also the x-values that
make 4x − x2 zero (because if 4x − x2 = 0, then when we take the square root we get 0,
and we cannot divide by 0). In other words, the domain consists of all x for which 4x− x2

is strictly positive. The inequality 4x − x2 > 0 was solved in Example 1.12. In interval
notation, the domain is the interval (0, 4). ♣

A function does not always have to be given by a single formula as the next example
demonstrates.

Example 2.6: Piecewise Velocity

Suppose that y = v(t) is the velocity function for a car which starts out from rest
(zero velocity) at time t = 0; then increases its speed steadily to 20 m/sec, taking 10
seconds to do this; then travels at constant speed 20 m/sec for 15 seconds; and finally
applies the brakes to decrease speed steadily to 0, taking 5 seconds to do this. The
formula for y = v(t) is different in each of the three time intervals: first y = 2x, then
y = 20, then y = −4x+ 120. The graph of this function is shown in figure 2.3.
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Figure 2.3: A velocity function.

Exercises for 2.1

Exercise 2.1.1. Find the domain of each of the following functions:
a) y = x2 + 1 h) y = f(x) = 4

√
x

b) y = f(x) =
√
2x− 3 i) y =

√
1− x2

c) y = f(x) = 1/(x+ 1) j) y = f(x) =
√

1− (1/x)

d) y = f(x) = 1/(x2 − 1) k) y = f(x) = 1/
√

1− (3x)2

e) y = f(x) =
√

−1/x l) y = f(x) =
√
x+ 1/(x− 1)

f) y = f(x) = 3
√
x m) y = f(x) = 1/(

√
x− 1)

g) y = f(x) =
√

r2 − (x− h)2 , where r and h are positive constants.

Exercise 2.1.2. A farmer wants to build a fence along a river. He has 500 feet of fencing
and wants to enclose a rectangular pen on three sides (with the river providing the fourth
side). If x is the length of the side perpendicular to the river, determine the area of the pen
as a function of x. What is the domain of this function?

Exercise 2.1.3. A can in the shape of a cylinder is to be made with a total of 100 square
centimeters of material in the side, top, and bottom; the manufacturer wants the can to hold
the maximum possible volume. Write the volume as a function of the radius r of the can;
find the domain of the function.

Exercise 2.1.4. A can in the shape of a cylinder is to be made to hold a volume of one liter
(1000 cubic centimeters). The manufacturer wants to use the least possible material for the
can. Write the surface area of the can (total of the top, bottom, and side) as a function of
the radius r of the can; find the domain of the function.

2.2 Transformations and Compositions
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2.2.1. Tranformations

Transformations are operations we can apply to a function in order to obtain a new
function. The most common transformations include translations, stretches and reflections.
We summarize these below.

Function Conditions How to graph F (x) given the graph of f(x)

F (x) = f(x) + c c > 0 Shift f(x) upwards by c units
F (x) = f(x)− c c > 0 Shift f(x) downwards by c units
F (x) = f(x+ c) c > 0 Shift f(x) to the left by c units
F (x) = f(x− c) c > 0 Shift f(x) to the right by c units
F (x) = −f(x) Reflect f(x) about the x-axis
F (x) = f(−x) Reflect f(x) about the y-axis
F (x) = |f(x)| Take the part of the graph of f(x) that lies

below the x-axis and reflect it about the x-axis

For horizontal and vertical stretches, different resources use different terminology and
notation. Use the one you are most comfortable with! Below, both a, b are positive numbers.
Note that we only use the term stretch in this case:

Function Conditions How to graph F (x) given the graph of f(x)

F (x) = af(x) a > 0 Stretch f(x) vertically by a factor of a
F (x) = f(bx) b > 0 Stretch f(x) horizontally by a factor of 1/b

In the next case, we use both the terms stretch and shrink. We also split up vertical
stretches into two cases (0 < a < 1 and a > 1), and split up horizontal stretches into two
cases (0 < b < 1 and b > 1). Note that having 0 < a < 1 is the same as having 1/c with
c > 1. Also note that stretching by a factor of 1/c is the same as shrinking by a factor c.

Function Conditions How to graph F (x) given the graph of f(x)

F (x) = cf(x) c > 1 Stretch f(x) vertically by a factor of c
F (x) = (1/c)f(x) c > 1 Shrink f(x) vertically by a factor of c
F (x) = f(cx) c > 1 Shrink f(x) horizontally by a factor of c
F (x) = f(x/c) c > 1 Stretch f(x) horizontally by a factor of c

Some resources keep the condition 0 < c < 1 rather than using 1/c. This is illustrated in
the next table.

Function Conditions How to graph F (x) given the graph of f(x)

F (x) = df(x) d > 1 Stretch f(x) vertically by a factor of d
F (x) = df(x) 0 < d < 1 Shrink f(x) vertically by a factor of 1/d
F (x) = f(dx) d > 1 Shrink f(x) horizontally by a factor of d
F (x) = f(dx) 0 < d < 1 Stretch f(x) horizontally by a factor of 1/d
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Example 2.7: Transformations and Graph Sketching

In this example we will use appropriate transformations to sketch the graph of the
function y = |

√
x+ 2− 1| − 1.

Solution. We start with the graph of a function we know how to sketch, in particular,
y =
√
x: To obtain the graph of the function y =

√
x+ 2 from the graph y =

√
x, we must

shift y =
√
x to the left by 2 units. To obtain the graph of the function y =

√
x+ 2−1 from

the graph y =
√
x+ 2, we must shift y =

√
x+ 2 downwards by 1 unit.

x

y

3‐1‐2‐3

0.5

1

2

1.5

‐0.5

‐1

‐1.5

‐2

x

y

1 2 3‐1‐2‐3

0.5

1

2

1.5

‐0.5

‐1

‐1.5

‐2

To obtain the graph of the function y = |
√
x+ 2 − 1| from the graph y =

√
x+ 2 − 1, we

must take the part of the graph of y =
√
x+ 2 − 1 that lies below the x-axis and reflect it

(upwards) about the x-axis. Finally, to obtain the graph of the function y = |
√
x+ 2−1|−1

from the graph y = |
√
x+ 2− 1|, we must shift y = |

√
x+ 2− 1| downwards by 1 unit:

x

y

1 2 3‐1‐2‐3

0.5

1

2

1.5

‐0.5

‐1

‐1.5

‐2

x

y

1 2 3‐1‐2‐3

0.5

1

2

1.5

‐0.5

‐1

‐1.5

‐2

♣

2.2.2. Combining Two Functions

Let f and g be two functions. Then we can form new functions by adding, subtracting,
multiplying, or dividing. These new functions, f + g, f − g, fg and f/g, are defined in the
usual way.

Operations on Functions

(f + g)(x) = f(x) + g(x) (f − g)(x) = f(x)− g(x)

(fg)(x) = f(x)g(x)

(

f

g

)

(x) =
f(x)

g(x)

47



CHAPTER 2. FUNCTIONS

Suppose Df is the domain of f and Dg is the domain of g. Then the domains of f + g,
f − g and fg are the same and are equal to the intersection Df ∩ Dg (that is, everything
that is in common to both the domain of f and the domain of g). Since division by zero is
not allowed, the domain of f/g is {x ∈ Df ∩Dg : g(x) 6= 0}.

Another way to combine two functions f and g together is a procedure called composition.

Function Composition

Given two functions f and g, the composition of f and g, denoted by f ◦g, is defined
as:

(f ◦ g)(x) = f(g(x)).

The domain of f ◦ g is {x ∈ Dg : g(x) ∈ Df}, that is, it contains all values x in the
domain of g such that g(x) is in the domain of f .

Example 2.8: Domain of a Composition

Let f(x) = x2 and g(x) =
√
x. Find the domain of f ◦ g.

Solution. The domain of f is Df = {x ∈ R}. The domain of g is Dg = {x ∈ R : x ≥ 0}.
The function (f ◦ g)(x) = f(g(x)) is:

f(g(x)) =
(√

x
)2

= x.

Typically, h(x) = x would have a domain of {x ∈ R}, but since it came from a composed
function, we must consider g(x) when looking at the domain of f(g(x)). Thus, the domain
of f ◦ g is {x ∈ R : x ≥ 0}. ♣

Example 2.9: Combining Two Functions

Let f(x) = x2 +3 and g(x) = x− 2. Find f + g, f − g, fg, f/g, f ◦ g and g ◦ f . Also,
determine the domains of these new functions.

Solution. For f + g we have:

(f + g)(x) = f(x) + g(x) = (x2 + 3) + (x− 2) = x2 + x+ 1.

For f − g we have:

(f − g)(x) = f(x)− g(x) = (x2 + 3)− (x− 2) = x2 + 3− x+ 2 = x2 − x+ 5.

For fg we have:

(fg)(x) = f(x) · g(x) = (x2 + 3)(x− 2) = x3 − 2x2 + 3x− 6.

For f/g we have:
(

f

g

)

(x) =
f(x)

g(x)
=

x2 + 3

x− 2
.
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For f ◦ g we have:

(f ◦ g)(x) = f(g(x)) = f(x− 2) = (x− 2)2 + 3 = x2 − 4x+ 7.

For g ◦ f we have:

(g ◦ f)(x) = g(f(x)) = g(x2 + 3) = (x2 + 3)− 2 = x2 + 1.

The domains of f + g, f − g, fg, f ◦ g and g ◦ f is {x ∈ R}, while the domain of f/g is
{x ∈ R : x 6= 2}. ♣

As in the above problem, f ◦ g and g ◦ f are generally different functions.

Exercises for 2.2

Exercise 2.2.1. Starting with the graph of y =
√
x, the graph of y = 1/x, and the graph of

y =
√
1− x2 (the upper unit semicircle), sketch the graph of each of the following functions:

a) f(x) =
√
x− 2 g) f(x) = −4 +

√

−(x− 2)

b) f(x) = −1− 1/(x+ 2) h) f(x) = 2
√

1− (x/3)2

c) f(x) = 4 +
√
x+ 2 i) f(x) = 1/(x+ 1)

d) y = f(x) = x/(1− x) j) f(x) = 4 + 2
√

1− (x− 5)2/9
e) y = f(x) = −

√
−x k) f(x) = 1 + 1/(x− 1)

f) f(x) = 2 +
√

1− (x− 1)2 l) f(x) =
√

100− 25(x− 1)2 + 2

Exercise 2.2.2. The graph of f(x) is shown below. Sketch the graphs of the following
functions.

1 2 3
−1

0

1

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

..
..
...
.........
...
..
..
.
..
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
..
.
..
...
..
.....................

...
..
..
..
..
..
.
..
..
..
.
..
.
.
..
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
..
.
..
..
.
..
..
..
...........
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

a) y = f(x− 1) e) y = 2f(3(x− 2)) + 1
b) y = 1 + f(x+ 2) f) y = (1/2)f(3x− 3)
c) y = 1 + 2f(x) g) y = f(1 + x/3) + 2
d) y = 2f(3x) h) y = |f(x)− 2|
Exercise 2.2.3. Suppose f(x) = 3x − 9 and g(x) =

√
x. What is the domain of the

composition (g ◦ f)(x)?

2.3 Exponential Functions

An exponential function is a function of the form f(x) = ax, where a is a constant.
Examples are 2x, 10x and (1/2)x. To more formally define the exponential function we look
at various kinds of input values.
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It is obvious that a5 = a ·a ·a ·a ·a and a3 = a ·a ·a, but when we consider an exponential
function ax we can’t be limited to substituting integers for x. What does a2.5 or a−1.3 or
aπ mean? And is it really true that a2.5a−1.3 = a2.5−1.3? The answer to the first question is
actually quite difficult, so we will evade it; the answer to the second question is “yes.”

We’ll evade the full answer to the hard question, but we have to know something about
exponential functions. You need first to understand that since it’s not “obvious” what 2x

should mean, we are really free to make it mean whatever we want, so long as we keep the
behavior that is obvious, namely, when x is a positive integer. What else do we want to be
true about 2x? We want the properties of the previous two paragraphs to be true for all
exponents: 2x2y = 2x+y and (2x)y = 2xy.

After the positive integers, the next easiest number to understand is 0: 20 = 1. You have
presumably learned this fact in the past; why is it true? It is true precisely because we want
2a2b = 2a+b to be true about the function 2x. We need it to be true that 202x = 20+x = 2x,
and this only works if 20 = 1. The same argument implies that a0 = 1 for any a.

The next easiest set of numbers to understand is the negative integers: for example,
2−3 = 1/23. We know that whatever 2−3 means it must be that 2−323 = 2−3+3 = 20 = 1,
which means that 2−3 must be 1/23. In fact, by the same argument, once we know what 2x

means for some value of x, 2−x must be 1/2x and more generally a−x = 1/ax.
Next, consider an exponent 1/q, where q is a positive integer. We want it to be true that

(2x)y = 2xy, so (21/q)q = 2. This means that 21/q is a q-th root of 2, 21/q =
q
√
2 . This is all

we need to understand that 2p/q = (21/q)p = ( q
√
2 )p and ap/q = (a1/q)p = ( q

√
a )p.

What’s left is the hard part: what does 2x mean when x cannot be written as a fraction,
like x =

√
2 or x = π? What we know so far is how to assign meaning to 2x whenever

x = p/q. If we were to graph ax (for some a > 1) at points x = p/q then we’d see something
like this:

x

y

This is a poor picture, but it illustrates a series of individual points above the rational
numbers on the x-axis. There are really a lot of “holes” in the curve, above x = π, for
example. But (this is the hard part) it is possible to prove that the holes can be “filled in”,
and that the resulting function, called ax, really does have the properties we want, namely
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2.3. EXPONENTIAL FUNCTIONS

that axay = ax+y and (ax)y = axy. Such a graph would then look like this:

x

y

Three Types of Exponential Functions

There are three kinds of exponential functions f(x) = ax depending on whether a > 1,
a = 1 or 0 < a < 1:

x

y

x

y

x

y

Properties of Exponential Functions

The first thing to note is that if a < 0 then problems can occur. Observe that if a = −1
then (−1)x is not defined for every x. For example, x = 1/2 is a square root and gives
(−1)1/2 =

√
−1 which is not a real number.

Exponential Function Properties

� Only defined for positive a: ax is only defined for all real x if a > 0

� Always positive: ax > 0, for all x

� Exponent rules:

1. axay = ax+y

2.
ax

ay
= ax−y

3. (ax)y = axy = ayx = (ay)x

4. axbx = (ab)x

� Long term behaviour: If a > 1, then ax →∞ as x→∞ and ax → 0 as x→ −∞.

The last property can be observed from the graph. If a > 1, then as x gets larger and
larger, so does ax. On the other hand, as x gets large and negative, the function approaches
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the x-axis, that is, ax approaches 0.

Example 2.10: Reflection of Exponential

Determine an equation of the function after reflecting y = 2x about the line x = −2.

Solution. First reflect about the y-axis to get y = 2−x. Now shift by 2× 2 = 4 units to the
left to get y = 2−(x+4). Side note: Can you see why this sequence of transformations is the
same as reflection in the line x = −2? Can you come up with a general rule for these types
of reflections? ♣

Example 2.11: Determine the Exponential Function

Determine the exponential function f(x) = kax that passes through the points (1, 6)
and (2, 18).

Solution. We substitute our two points into the equation to get:

x = 1, y = 6→ 6 = ka1

x = 2, y = 18→ 18 = ka2

This gives us 6 = ka and 18 = ka2. The first equation is k = 6/a and subbing this into the
second gives: 18 = (6/a)a2. Thus, 18 = 6a and a = 3. Now we can see from 6 = ka that
k = 2. Therefore, the exponential function is

f(x) = 2 · 3x.

♣

There is one base that is so important and convenient that we give it a special symbol.
This number is denoted by e = 2.71828 . . . (and is an irrational number). Its importance
stems from the fact that it simplifies many formulas of Calculus and also shows up in other
fields of mathematics.

Example 2.12: Domain of Function with Exponential

Find the domain of f(x) =
1√

ex + 1
.

Solution. For domain, we cannot divide by zero or take the square root of negative numbers.
Note that one of the properties of exponentials is that they are always positive! Thus,
ex + 1 > 0 (in fact, as ex > 0 we actually have that ex + 1 is at least one). Therefore, ex + 1
is never zero nor negative, and gives no restrictions on x. Thus, the domain is R. ♣
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Exercises for 2.3

Exercise 2.3.1. Determine an equation of the function y = ax passing through the point
(3, 8).

Exercise 2.3.2. Find the domain of y = e−x + e
1
x .

2.4 Inverse Functions

In mathematics, an inverse is a function that serves to “undo” another function. That is,
if f(x) produces y, then putting y into the inverse of f produces the output x. A function
f that has an inverse is called invertible and the inverse is denoted by f−1. It is best to
illustrate inverses using an arrow diagram:

a

b

c

d

1

2

3

4

→

→

→

→

1

2

3

4

→

→

→

→

a

b

c

d

Notice how f maps 1 to a, and f−1 undoes this, that is, f−1 maps a back to 1. Don’t confuse
f−1(x) with exponentiation: the inverse f−1 is different from 1

f(x)
.

Not every function has an inverse. It is easy to see that if a function f(x) is going to have
an inverse, then f(x) never takes on the same value twice. We give this property a special
name.

A function f(x) is called one-to-one if every element of the range corresponds to exactly
one element of the domain. Similar to the Vertical Line Test (VLT) for functions, we have
the Horizontal Line Test (HLT) for the one-to-one property.

Theorem 2.13: The Horizontal Line Test

A function is one-to-one if and only if there is no horizontal line that intersects its
graph more than once.

Example 2.14: Parabola is Not One-to-one

The parabola f(x) = x2 it not one-to-one because it does not satisfy the horizontal
line test. For example, the horizontal line y = 1 intersects the parabola at two points,
when x = −1 and x = 1.

We now formally define the inverse of a function.
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Definition 2.15: Inverse of a Function

Let f(x) and g(x) be two one-to-one functions. If (f ◦ g)(x) = x and (g ◦ f)(x) = x
then we say that f(x) and g(x) are inverses of each other. We denote g(x) (the
inverse of f(x)) by g(x) = f−1(x).

Thus, if f maps x to y, then f−1 maps y back to x. This gives rise to the cancellation
formulas:

f−1(f(x)) = x, for every x in the domain of f(x),

f(f−1(x)) = x, for every x in the domain of f−1(x).

Example 2.16: Finding the Inverse at Specific Values

If f(x) = x9 + 2x7 + x+ 1, find f−1(5) and f−1(1).

Solution. Rather than trying to compute a formula for f−1 and then computing f−1(5),
we can simply find a number c such that f evaluated at c gives 5. Note that subbing in
some simple values (x = −3,−2, 1, 0, 1, 2, 3) and evaluating f(x) we eventually find that
f(1) = 19 + 2(17) + 1 + 1 = 5 and f(0) = 1. Therefore, f−1(5) = 1 and f−1(1) = 0. ♣

To compute the equation of the inverse of a function we use the following guidelines.

Guidelines for Computing Inverses

1. Write down y = f(x).

2. Solve for x in terms of y.

3. Switch the x’s and y’s.

4. The result is y = f−1(x).

Example 2.17: Finding the Inverse Function

We find the inverse of the function f(x) = 2x3 + 1.

Solution. Starting with y = 2x3 + 1 we solve for x as follows:

y − 1 = 2x3 → y − 1

2
= x3 → x =

3

√

y − 1

2
.

Therefore, f−1(x) =
3

√

x− 1

2
. ♣

This example shows how to find the inverse of a function algebraically. But what about
finding the inverse of a function graphically? Step 3 (switching x and y) gives us a good
graphical technique to find the inverse, namely, for each point (a, b) where f(a) = b, sketch
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the point (b, a) for the inverse. More formally, to obtain f−1(x) reflect the graph f(x) about
the line y = x.

x

y

Exercises for 2.4

Exercise 2.4.1. Is the function f(x) = |x| one-to-one?

Exercise 2.4.2. If h(x) = ex + x+ 1, find h−1(2).

Exercise 2.4.3. Find a formula for the inverse of the function f(x) =
x+ 2

x− 2
.

2.5 Logarithms

Recall the three kinds of exponential functions f(x) = ax depending on whether 0 < a < 1,
a = 1 or a > 1:

x

y

x

y

x

y

So long as a 6= 1, the function f(x) = ax satisfies the horizontal line test and therefore has
an inverse. We call the inverse of ax the logarithmic function with base a and denote
it by loga. In particular,

loga x = y ⇐⇒ ay = x.
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The cancellation formulas for logs are:

loga(a
x) = x, for every x ∈ R,

aloga(x) = x, for every x > 0.

Since the function f(x) = ax for a 6= 1 has domain R and range (0,∞), the logarithmic
function has domain (0,∞) and range R. For the most part, we only focus on logarithms
with a base larger than 1 (i.e., a > 1) as these are the most important.

x

y

Notice that every logarithm passes through the point (1, 0) in the same way that every
exponential function passes through the point (0, 1).

Some properties of logarithms are as follows.

Logarithm Properties

Let A,B be positive numbers and b > 0 (b 6= 1) be a base.

� logb(AB) = logb A+ logb B,

� logb

(

A

B

)

= logb A− logb B,

� logb(A
n) = n logb A, where n is any real number.

Example 2.18: Compute Lorarithms

To compute log2(24)− log2(3) we can do the following:

log2(24)− log2(3) = log2

(

24

3

)

= log2(8) = 3,
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since 23 = 8.

The Natural Logarithm

As mentioned earlier for exponential functions, the number e ≈ 2.71828 . . . is the most
convenient base to use in Calculus. For this reason we give the logarithm with base e a
special name: the natural logarithm. We also give it special notation:

loge x = ln x.

You may pronounce ln as either: “el - en”, “lawn”, or refer to it as “natural log”. The
above properties of logarithms also apply to the natural logarithm.

Often we need to turn a logarithm (in a different base) into a natural logarithm. This
gives rise to the change of base formula.

Change of Base Formula

loga x =
ln x

ln a
.

Example 2.19: Combine Logarithms

Write lnA+ 2 lnB − lnC as a single logarithm.

Solution. Using properties of logarithms, we have,

lnA+ 2 lnB − lnC = lnA+ lnB2 − lnC
= ln(AB2)− lnC

= ln
AB2

C

♣

Example 2.20: Solve Exponential Equations using Logarithms

If ex+2 = 6e2x, then solve for x.

Solution. Taking the natural logarithm of both sides and noting the cancellation formulas
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(along with ln e = 1), we have:

ex+2 = 6e2x

ln ex+2 = ln(6e2x)

x+ 2 = ln 6 + ln e2x

x+ 2 = ln 6 + 2x

x = 2− ln 6

♣

Example 2.21: Solve Logarithm Equations using Exponentials

If ln(2x− 1) = 2 ln(x), then solve for x.

Solution. “Taking e” of both sides and noting the cancellation formulas, we have:

eln(2x−1) = e2 ln(x)

(2x− 1) = eln(x
2)

2x− 1 = x2

x2 − 2x+ 1 = 0

(x− 1)2 = 0

Therefore, the solution is x = 1. ♣

Exercises for 2.5

Exercise 2.5.1. Expand log10((x+ 45)7(x− 2)).

Exercise 2.5.2. Expand log2
x3

3x− 5 + (7/x)
.

Exercise 2.5.3. Write log2 3x+ 17 log2(x− 2)− 2 log2(x
2 + 4x+ 1) as a single logarithm.

Exercise 2.5.4. Solve log2(1 +
√
x) = 6 for x.

Exercise 2.5.5. Solve 2x
2

= 8 for x.

Exercise 2.5.6. Solve log2(log3(x)) = 1 for x.
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2.6 Inverse Trigonometric Functions

The trigonometric functions frequently arise in problems, and often it is necessary to invert
the functions, for example, to find an angle with a specified sine. Of course, there are many
angles with the same sine, so the sine function doesn’t actually have an inverse that reliably
“undoes” the sine function. If you know that sin x = 0.5, you can’t reverse this to discover x,
that is, you can’t solve for x, as there are infinitely many angles with sine 0.5. Nevertheless,
it is useful to have something like an inverse to the sine, however imperfect. The usual
approach is to pick out some collection of angles that produce all possible values of the sine
exactly once. If we “discard” all other angles, the resulting function does have a proper
inverse.

The sine takes on all values between −1 and 1 exactly once on the interval [−π/2, π/2].

If we truncate the sine, keeping only the interval [−π/2, π/2], then this truncated sine has
an inverse function. We call this the inverse sine or the arcsine, and write it in one of two
common notation: y = arcsin(x), or y = sin−1(x).

Recall that a function and its inverse undo each other in either order, for example,
( 3
√
x)3 = x and

3
√
x3 = x. This does not work with the sine and the “inverse sine” because

the inverse sine is the inverse of the truncated sine function, not the real sine function. It
is true that sin(arcsin(x)) = x, that is, the sine undoes the arcsine. It is not true that the
arcsine undoes the sine, for example, sin(5π/6) = 1/2 and arcsin(1/2) = π/6, so doing first
the sine then the arcsine does not get us back where we started. This is because 5π/6 is not
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in the domain of the truncated sine. If we start with an angle between −π/2 and π/2 then
the arcsine does reverse the sine: sin(π/6) = 1/2 and arcsin(1/2) = π/6.

Example 2.22: Arcsine of Common Values

Compute sin−1(0), sin−1(1) and sin−1(−1).

Solution. These come directly from the graph of y = arcsin x:

sin−1 (0) = 0 sin−1(1) =
π

2
sin−1(−1) = −π

2

♣
We can do something similar for the cosine function. As with the sine, we must first

truncate the cosine so that it can be inverted, in particular, we use the interval [0, π].

Note that the truncated cosine uses a different interval than the truncated sine, so that if
y = arccos(x) we know that 0 ≤ y ≤ π.
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Example 2.23: Arccosine of Common Values

Compute cos−1(0), cos−1(1) and cos−1(−1).

Solution. These come directly from the graph of y = arccosx:

cos−1 (0) =
π

2
cos−1(1) = 0 cos−1(−1) = π

♣
Finally we look at the tangent; the other trigonometric functions also have “partial

inverses” but the sine, cosine and tangent are enough for most purposes. The truncated
tangent uses an interval of (−π/2, π/2).

Reflecting the truncated tangent in the line y = x gives the arctangent function.
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Example 2.24: Arctangent of Common Values

Compute tan−1(0). What value does tan−1 x approach as x gets larger and larger?
What value does tan−1 x approach as x gets large (and negative)?

Solution. These come directly from the graph of y = arctan x. In particular, tan−1(0) = 0.
As x gets larger and larger, tan−1 x approaches a value of π

2
, whereas, as x gets large but

negative, tan−1 x approaches a value of −π
2
. ♣

The cancellation rules are tricky since we restricted the domains of the trigonometric
functions in order to obtain inverse trig functions:

Cancellation Rules

sin(sin−1 x) = x, x ∈ [−1, 1] sin−1(sin x) = x, x ∈
[

−π
2
,
π

2

]

cos(cos−1 x) = x, x ∈ [−1, 1] cos−1(cosx) = x, x ∈ [0, π]

tan(tan−1 x) = x, x ∈ (−∞,∞) tan−1(tanx) = x, x ∈
(

−π
2
,
π

2

)

Example 2.25: Arcsine of 1/2

Find sin−1 (1/2).

Solution. Since sin−1(x) outputs values in [−π/2, π/2], the answer must be in this interval.
Let θ = sin−1(1/2). We need to compute θ. Take the sine of both sides to get sin θ =
sin(sin−1(1/2)) = 1/2 by the cancellation rule. There are many angles θ that work, but we

want the one in the interval [−π/2, π/2]. Thus, θ = π/6 and hence, sin−1

(

1

2

)

=
π

6
. ♣

Example 2.26: Arccosine and the Cancellation Rule

Compute cos−1(cos(0)), cos−1(cos(π)), cos−1(cos(2π)), cos−1(cos(3π)).

Solution. Since cos−1(x) outputs values in [0, π], the answers must be in this interval. The
first two we can cancel using the cancellation rules:

cos−1(cos(0)) = 0 and cos−1(cos(π)) = π.

The third one we cannot cancel:

cos−1(cos(2π)) is NOT equal to 2π.

But we know that cos(2π) = cos(0):

cos−1(cos(2π)) = cos−1(cos(0)) = 0

Similarly with the fourth one, we can NOT cancel yet. Using cos(3π) = cos(3π − 2π) =
cos(π):

cos−1(cos(3π)) = cos−1(cos(π)) = π

♣
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Example 2.27: The Triangle Technique

Rewrite the expression cos(sin−1 x) without trig functions. Note that the domain of
this function is all x ∈ [−1, 1].

Solution. Let θ = sin−1 x. We need to compute cos θ. Taking the sine of both sides gives
sin θ = sin(sin−1(x)) = x by the cancellation rule. We then draw a right triangle using
sin θ = x/1:

If z is the remaining side, then by the Pythagorean Theorem:

z2 + x2 = 1 → z2 = 1− x2 → z = ±
√
1− x2

and hence z = +
√
1− x2 since θ ∈ [−π/2, π/2]. Thus, cos θ =

√
1− x2 by SOH CAH TOA,

so, cos(sin−1 x) =
√
1− x2. ♣

Example 2.28: The Triangle Technique 2

For x ∈ (0, 1), rewrite the expression sin(2 cos−1 x). Compute sin(2 cos−1(1/2)).

Solution. Let θ = cos−1 x so that cos θ = x. The question now asks for us to compute
sin(2θ). We then draw a right triangle using cos θ = x/1:

To find sin(2θ) we use the double angle formula sin(2θ) = 2 sin θ cos θ. But sin θ =
√
1− x2

and cos θ = x. Therefore, sin(2 cos−1 x) = 2x
√
1− x2. When x = 1/2 we have sin(2 cos−1(1/2)) =√

3

2
. ♣

2.7 Hyperbolic Functions

The hyperbolic functions appear with some frequency in applications, and are quite similar
in many respects to the trigonometric functions. This is a bit surprising given our initial
definitions.
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Definition 2.29: Hyperbolic Sine and Cosine

The hyperbolic cosine is the function

cosh x =
ex + e−x

2
,

and the hyperbolic sine is the function

sinh x =
ex − e−x

2
.

Notice that cosh is even (that is, cosh(−x) = cosh(x)) while sinh is odd (sinh(−x) =
− sinh(x)), and cosh x+ sinh x = ex. Also, for all x, cosh x > 0, while sinh x = 0 if and only
if ex − e−x = 0, which is true precisely when x = 0.

Theorem 2.30: Range of Hyperbolic Cosine

The range of cosh x is [1,∞).

Proof. Let y = cosh x. We solve for x:

y =
ex + e−x

2
2y = ex + e−x

2yex = e2x + 1
0 = e2x − 2yex + 1

ex =
2y ±

√

4y2 − 4

2
ex = y ±

√

y2 − 1

From the last equation, we see y2 ≥ 1, and since y ≥ 0, it follows that y ≥ 1.
Now suppose y ≥ 1, so y ±

√

y2 − 1 > 0. Then x = ln(y ±
√

y2 − 1) is a real number,
and y = cosh x, so y is in the range of cosh(x). ♣

Definition 2.31: Hyperbolic Functions

We can also define hyperbolic functions for the other trigonometric functions as you
would expect:

tanh x =
sinh x

cosh x
cschx =

1

sinh x
sechx =

1

cosh x
cothx =

1

tanh x
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The graph of sinh x is shown below:

The graph of cosh x is shown below:

Example 2.32: Computing Hyperbolic Tangent

Compute tanh(ln 2).

Solution. This uses the definitions of the hyperbolic functions.

tanh(ln 2) =
sinh(ln 2)

cosh(ln 2)
=

eln 2 − e− ln 2

2
eln 2 + e− ln 2

2

=

2− (1/2)

2
2 + (1/2)

2

=
2− (1/2)

2 + (1/2)
=

3

5

♣
Certainly the hyperbolic functions do not closely resemble the trigonometric functions

graphically. But they do have analogous properties, beginning with the following identity.

Theorem 2.33: Hyperbolic Identity

For all x in R, cosh2 x− sinh2 x = 1.
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Proof. The proof is a straightforward computation:

cosh2 x− sinh2 x =
(ex + e−x)2

4
− (ex − e−x)2

4
=

e2x + 2 + e−2x − e2x + 2− e−2x

4
=

4

4
= 1.

♣
This immediately gives two additional identities:

1− tanh2 x = sech2x and coth2x− 1 = csch2x.

The identity of the theorem also helps to provide a geometric motivation. Recall that
the graph of x2 − y2 = 1 is a hyperbola with asymptotes x = ±y whose x-intercepts are
±1. If (x, y) is a point on the right half of the hyperbola, and if we let x = cosh t, then

y = ±
√
x2 − 1 = ±

√

cosh2 x− 1 = ± sinh t. So for some suitable t, cosh t and sinh t are the
coordinates of a typical point on the hyperbola. In fact, it turns out that t is twice the area
shown in the first graph of figure 2.4. Even this is analogous to trigonometry; cos t and sin t
are the coordinates of a typical point on the unit circle, and t is twice the area shown in the
second graph of figure 2.4.

Figure 2.4: Geometric definitions. Here, t is twice the shaded area in each figure.

Since cosh x > 0, sinh x is increasing and hence one-to-one, so sinh x has an inverse,
arcsinhx. Also, sinh x > 0 when x > 0, so cosh x is injective on [0,∞) and has a (partial)
inverse, arccoshx. The other hyperbolic functions have inverses as well, though arcsechx is
only a partial inverse.

Exercises for 2.7

Exercise 2.7.1. Show that the range of sinh x is all real numbers. (Hint: show that if

y = sinh x then x = ln(y +
√

y2 + 1).)
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Exercise 2.7.2. Show that the range of tanh x is (−1, 1). What are the ranges of coth, sech,
and csch? (Use the fact that they are reciprocal functions.)

Exercise 2.7.3. Prove that for every x, y ∈ R, sinh(x + y) = sinh x cosh y + cosh x sinh y.
Obtain a similar identity for sinh(x− y).

Exercise 2.7.4. Prove that for every x, y ∈ R, cosh(x + y) = cosh x cosh y + sinh x sinh y.
Obtain a similar identity for cosh(x− y).

Exercise 2.7.5. Show that sinh(2x) = 2 sinh x cosh x and cosh(2x) = cosh2 x + sinh2 x for
every x. Conclude also that (cosh(2x)− 1)/2 = sinh2 x.

Exercise 2.7.6. What are the domains of the six inverse hyperbolic functions?

Exercise 2.7.7. Sketch the graphs of all six inverse hyperbolic functions.
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3. Limits

3.1 The Limit

The value a function f approaches as its input x approaches some value is said to be the
limit of f . Limits are essential to the study of calculus and, as we will see, are used in
defining continuity, derivatives, and integrals.

Consider the function

f(x) =
x2 − 1

x− 1
.

Notice that x = 1 does not belong to the domain of f(x). Regardless, we would like to
know how f(x) behaves close to the point x = 1. We start with a table of values:

x f(x)

0.5 1.5
0.9 1.9
0.99 1.99
1.01 2.01
1.1 2.1
1.5 2.5

It appears that for values of x close to 1 we have that f(x) is close to 2. In fact, we
can make the values of f(x) as close to 2 as we like by taking x sufficiently close to 1. We
express this by saying the limit of the function f(x) as x approaches 1 is equal to 2 and use
the notation:

lim
x→1

f(x) = 2.

Definition 3.1: Limit (Useable Definition)

In general, we will write
lim
x→a

f(x) = L,

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently
close to a (on either side of a) but not equal to a.

We read the expression limx→a f(x) = L as “the limit of f(x) as x approaches a is equal
to L”. When evaluating a limit, you are essentially answering the following question: What
number does the function approach while x gets closer and closer to a (but not equal to a)?
The phrase but not equal to a in the definition of a limit means that when finding the limit
of f(x) as x approaches a we never actually consider x = a. In fact, as we just saw in the
example above, a may not even belong to the domain of f . All that matters for limits is
what happens to f close to a, not necessarily what happens to f at a.

69



CHAPTER 3. LIMITS

One-sided limits

Consider the following piecewise defined function:

x

y

Observe from the graph that as x gets closer and closer to 1 from the left, then f(x) ap-
proaches +1. Similarly, as x gets closer and closer 1 from the right, then f(x) approaches
+2. We use the following notation to indicate this:

lim
x→1−

f(x) = 1 and lim
x→1+

f(x) = 2.

The symbol x → 1− means that we only consider values of x sufficiently close to 1 which
are less than 1. Similarly, the symbol x → 1+ means that we only consider values of x
sufficiently close to 1 which are greater than 1.

Definition 3.2: Left and Right-Hand Limit (Useable Definition)

In general, we will write
lim
x→a−

f(x) = L,

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently
close to a and x less than a. This is called the left-hand limit of f(x) as x approaches
a. Similarly, we write

lim
x→a+

f(x) = L,

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently
close to a and x greater than a. This is called the right-hand limit of f(x) as x
approaches a.

We note the following fact:

lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

Or more concisely:
lim
x→a−

f(x) = lim
x→a+

f(x) = L

. A consequence of this fact is that if the one-sided limits are different, then the two-sided
limit lim

x→a
f(x) does not exist, often denoted as: (DNE).
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Exercises for Section 3.1

Exercise 3.1.1. Use a calculator to estimate lim
x→0

sin x

x
.

Exercise 3.1.2. Use a calculator to estimate lim
x→0

tan(3x)

tan(5x)
.

3.2 Precise Definition of a Limit

The definiton given for a limit previously is more of a working definition. In this section we
pursue the actual, official definition of a limit.

Definition 3.3: Precise Definition of Limit

Suppose f is a function. We say that lim
x→a

f(x) = L if for every ǫ > 0 there is a δ > 0

so that whenever 0 < |x− a| < δ, |f(x)− L| < ǫ.

The ǫ and δ here play exactly the role they did in the preceding discussion. The definition
says, in a very precise way, that f(x) can be made as close as desired to L (that’s the
|f(x)−L| < ǫ part) by making x close enough to a (the 0 < |x− a| < δ part). Note that we
specifically make no mention of what must happen if x = a, that is, if |x − a| = 0. This is
because in the cases we are most interested in, substituting a for x doesn’t make sense.

Make sure you are not confused by the names of important quantities. The generic
definition talks about f(x), but the function and the variable might have other names. The
x was the variable of the original function; when we were trying to compute a slope or a
velocity, x was essentially a fixed quantity, telling us at what point we wanted the slope. In
the velocity problem, it was literally a fixed quantity, as we focused on the time t = 2. The
quantity a of the definition in all the examples was zero: we were always interested in what
happened as ∆x became very close to zero.

Armed with a precise definition, we can now prove that certain quantities behave in a
particular way. The bad news is that even proofs for simple quantities can be quite tedious
and complicated. The good news is that we rarely need to do such proofs, because most
expressions act the way you would expect, and this can be proved once and for all.

Example 3.4: Epsilon Delta

Let’s show carefully that lim
x→2

x+ 4 = 6.

Solution. This is not something we “need” to prove, since it is “obviously” true. But if we
couldn’t prove it using our official definition there would be something very wrong with the
definition.

As is often the case in mathematical proofs, it helps to work backwards. We want to
end up showing that under certain circumstances x + 4 is close to 6; precisely, we want to

71



CHAPTER 3. LIMITS

show that |x + 4 − 6| < ǫ, or |x − 2| < ǫ. Under what circumstances? We want this to be
true whenever 0 < |x − 2| < δ. So the question becomes: can we choose a value for δ that
guarantees that 0 < |x − 2| < δ implies |x − 2| < ǫ? Of course: no matter what ǫ is, δ = ǫ
works. ♣

So it turns out to be very easy to prove something “obvious,” which is nice. It doesn’t
take long before things get trickier, however.

Example 3.5: Epsilon Delta

It seems clear that lim
x→2

x2 = 4. Let’s try to prove it.

Solution. We will want to be able to show that |x2 − 4| < ǫ whenever 0 < |x − 2| < δ,
by choosing δ carefully. Is there any connection between |x− 2| and |x2 − 4|? Yes, and it’s
not hard to spot, but it is not so simple as the previous example. We can write |x2 − 4| =
|(x+2)(x− 2)|. Now when |x− 2| is small, part of |(x+2)(x− 2)| is small, namely (x− 2).
What about (x + 2)? If x is close to 2, (x + 2) certainly can’t be too big, but we need to
somehow be precise about it. Let’s recall the “game” version of what is going on here. You
get to pick an ǫ and I have to pick a δ that makes things work out. Presumably it is the
really tiny values of ǫ I need to worry about, but I have to be prepared for anything, even
an apparently “bad” move like ǫ = 1000. I expect that ǫ is going to be small, and that the
corresponding δ will be small, certainly less than 1. If δ ≤ 1 then |x+2| < 5 when |x−2| < δ
(because if x is within 1 or 2, then x is between 1 and 3 and x+ 2 is between 3 and 5). So
then I’d be trying to show that |(x+2)(x−2)| < 5|x−2| < ǫ. So now how can I pick δ so that
|x−2| < δ implies 5|x−2| < ǫ? This is easy: use δ = ǫ/5, so 5|x−2| < 5(ǫ/5) = ǫ. But what
if the ǫ you choose is not small? If you choose ǫ = 1000, should I pick δ = 200? No, to keep
things “sane” I will never pick a δ bigger than 1. Here’s the final “game strategy”: when you
pick a value for ǫ, I will pick δ = ǫ/5 or δ = 1, whichever is smaller. Now when |x− 2| < δ,
I know both that |x+ 2| < 5 and that |x− 2| < ǫ/5. Thus |(x+ 2)(x− 2)| < 5(ǫ/5) = ǫ.

This has been a long discussion, but most of it was explanation and scratch work. If this
were written down as a proof, it would be quite short, like this:

Proof that lim
x→2

x2 = 4. Given any ǫ, pick δ = ǫ/5 or δ = 1, whichever is smaller. Then

when |x−2| < δ, |x+2| < 5 and |x−2| < ǫ/5. Hence |x2−4| = |(x+2)(x−2)| < 5(ǫ/5) = ǫ.
♣

It probably seems obvious that lim
x→2

x2 = 4, and it is worth examining more closely why

it seems obvious. If we write x2 = x · x, and ask what happens when x approaches 2, we
might say something like, “Well, the first x approaches 2, and the second x approaches 2,
so the product must approach 2 · 2.” In fact this is pretty much right on the money, except
for that word “must.” Is it really true that if x approaches a and y approaches b then xy
approaches ab? It is, but it is not really obvious, since x and y might be quite complicated.
The good news is that we can see that this is true once and for all, and then we don’t have
to worry about it ever again. When we say that x might be “complicated” we really mean
that in practice it might be a function. Here is then what we want to know:
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Theorem 3.6: Limit Product

Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M . Then lim
x→a

f(x)g(x) = LM .

Proof. We have to use the official definition of limit to make sense of this. So given any ǫ
we need to find a δ so that 0 < |x− a| < δ implies |f(x)g(x)− LM | < ǫ. What do we have
to work with? We know that we can make f(x) close to L and g(x) close to M , and we have
to somehow connect these facts to make f(x)g(x) close to LM .

We use, as is so often the case, a little algebraic trick:

|f(x)g(x)− LM | = |f(x)g(x)− f(x)M + f(x)M − LM |
= |f(x)(g(x)−M) + (f(x)− L)M |
≤ |f(x)(g(x)−M)| + |(f(x)− L)M |
= |f(x)||g(x)−M | + |f(x)− L||M |.

This is all straightforward except perhaps for the “≤”. That is an example of the triangle
inequality, which says that if a and b are any real numbers then |a + b| ≤ |a| + |b|. If you
look at a few examples, using positive and negative numbers in various combinations for a
and b, you should quickly understand why this is true. We will not prove it formally.

Since lim
x→a

f(x) = L, there is a value δ1 so that 0 < |x − a| < δ1 implies |f(x) − L| <
|ǫ/(2M)|. This means that 0 < |x− a| < δ1 implies |f(x)−L||M | < ǫ/2. You can see where
this is going: if we can make |f(x)||g(x)−M | < ǫ/2 also, then we’ll be done.

We can make |g(x)−M | smaller than any fixed number by making x close enough to a;
unfortunately, ǫ/(2f(x)) is not a fixed number, since x is a variable. Here we need another
little trick, just like the one we used in analyzing x2. We can find a δ2 so that |x− a| < δ2
implies that |f(x)−L| < 1, meaning that L−1 < f(x) < L+1. This means that |f(x)| < N ,
where N is either |L − 1| or |L + 1|, depending on whether L is negative or positive. The
important point is that N doesn’t depend on x. Finally, we know that there is a δ3 so that
0 < |x− a| < δ3 implies |g(x)−M | < ǫ/(2N). Now we’re ready to put everything together.
Let δ be the smallest of δ1, δ2, and δ3. Then |x− a| < δ implies that |f(x)− L| < |ǫ/(2M)|,
|f(x)| < N , and |g(x)−M | < ǫ/(2N). Then

|f(x)g(x)− LM | ≤ |f(x)||g(x)−M |+ |f(x)− L||M |
< N

ǫ

2N
+
∣

∣

∣

ǫ

2M

∣

∣

∣
|M |

=
ǫ

2
+

ǫ

2
= ǫ.

This is just what we needed, so by the official definition, lim
x→a

f(x)g(x) = LM . ♣
The concept of a one-sided limit can also be made precise.

Definition 3.7: One-sided Limit

Suppose that f(x) is a function. We say that lim
x→a−

f(x) = L if for every ǫ > 0 there is

a δ > 0 so that whenever 0 < a− x < δ, |f(x)−L| < ǫ. We say that lim
x→a+

f(x) = L if

for every ǫ > 0 there is a δ > 0 so that whenever 0 < x− a < δ, |f(x)− L| < ǫ.
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Exercises for Section 3.2

Exercise 3.2.1. Give an ǫ–δ proof of the fact that lim
x→4

(2x− 5) = 3.

3.3 Computing Limits: Graphically

In this section we look at an example to illustrate the concept of a limit graphically.
The graph of a function f(x) is shown below. We will analyze the behaviour of f(x)

around x = −5, x = −2, x = −1 and x = 0, and x = 4.

x

y

Observe that f(x) is indeed a function (it passes the vertical line test). We now analyze
the function at each point separately.

x = −5 : Observe that at x = −5 there is no closed circle, thus f(−5) is undefined. From
the graph we see that as x gets closer and closer to −5 from the left, then f(x) approaches
2, so

lim
x→−5−

f(x) = 2.

Similarly, as x gets closer and closer −5 from the right, then f(x) approaches −3, so

lim
x→−5+

f(x) = −3.

As the right-hand limit and left-hand limit are not equal at −5, we know that

lim
x→−5

f(x) does not exist.

x = −2 : Observe that at x = −2 there is a closed circle at 0, thus f(−2) = 0. From the
graph we see that as x gets closer and closer to −2 from the left, then f(x) approaches 3.5,
so

lim
x→−2−

f(x) = 3.5.
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Similarly, as x gets closer and closer −2 from the right, then f(x) again approaches 3.5, so

lim
x→−2+

f(x) = 3.5.

As the right-hand limit and left-hand limit are both equal to 3.5, we know that

lim
x→−2

f(x) = 3.5.

Do not be concerned that the limit does not equal 0. This is a discontinuity, which is
completely valid, and will be discussed in a later section.

We leave it to the reader to analyze the behaviour of f(x) for x close to −1 and 0.
Summarizing, we have:

f(−5) is undefined f(−2) = 0 f(−1) = −2 f(0) = −2

lim
x→−5−

f(x) = 2 lim
x→−2−

f(x) = 3.5 lim
x→−1−

f(x) = 0 lim
x→0−

f(x) = −2

lim
x→−5+

f(x) = −3 lim
x→−2+

f(x) = 3.5 lim
x→−1+

f(x) = −2 lim
x→0+

f(x) = −2

lim
x→−5

f(x) = DNE lim
x→−2

f(x) = 3.5 lim
x→−1

f(x) = DNE lim
x→0

f(x) = −2

Exercises for Section 3.3

Exercise 3.3.1. Evaluate the expressions by reference to this graph:

x
K4 K2 0 2 4 6

K2

2

4

6

8

10
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(a) lim
x→4

f(x) (b) lim
x→−3

f(x) (c) lim
x→0

f(x)

(d) lim
x→0−

f(x) (e) lim
x→0+

f(x) (f) f(−2)
(g) lim

x→2−
f(x) (h) lim

x→−2−
f(x) (i) lim

x→0
f(x+ 1)

(j) f(0) (k) lim
x→1−

f(x− 4) (l) lim
x→0+

f(x− 2)

3.4 Computing Limits: Algebraically

Properties of limits

With reference to Theorem 3.6, we can derive a handful of theorems to give us the tools to
compute many limits without explicitly working with the precise definition of a limit.

Theorem 3.8: Limit Properties

Suppose that lim
x→a

f(x) = L and lim
x→a

g(x) = M , and k is some constant. Then

� lim
x→a

kf(x) = k lim
x→a

f(x) = kL

� lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = L+M

� lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x) = L−M

� lim
x→a

(f(x)g(x)) = lim
x→a

f(x) · lim
x→a

g(x) = LM

� lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
=

L

M
, if M is not 0

Roughly speaking, these rules say that to compute the limit of an algebraic expression,
it is enough to compute the limits of the “innermost bits” and then combine these limits.
This often means that it is possible to simply plug in a value for the variable, since lim

x→a
x = a.

Example 3.9: Limit Properties

Compute lim
x→1

x2 − 3x+ 5

x− 2
.

Solution. If we apply the theorem in all its gory detail, we get

lim
x→1

x2 − 3x+ 5

x− 2
=

lim
x→1

(x2 − 3x+ 5)

lim
x→1

(x− 2)

=
(lim
x→1

x2)− (lim
x→1

3x) + (lim
x→1

5)

(lim
x→1

x)− (lim
x→1

2)
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=
(lim
x→1

x)2 − 3(lim
x→1

x) + 5

(lim
x→1

x)− 2

=
12 − 3 · 1 + 5

1− 2

=
1− 3 + 5

−1 = −3

♣
It is worth commenting on the trivial limit lim

x→1
5. From one point of view this might seem

meaningless, as the number 5 can’t “approach” any value, since it is simply a fixed number.
However, 5 can, and should, be interpreted here as the function that has value 5 everywhere,
f(x) = 5, with graph a horizontal line. From this point of view it makes sense to ask what
happens to the values of the function (height of the graph) as x approaches 1.

We’re primarily interested in limits that aren’t so easy, namely, limits in which a denom-
inator approaches zero. There are a handful of algebraic tricks that work on many of these
limits.

Example 3.10: Zero Denominator

Compute lim
x→1

x2 + 2x− 3

x− 1
.

Solution.We can’t simply plug in x = 1 because that makes the denominator zero. However:

lim
x→1

x2 + 2x− 3

x− 1
= lim

x→1

(x− 1)(x+ 3)

x− 1

= lim
x→1

(x+ 3) = 4

♣
The technique used to solve the previous example can be referred to as factor and cancel.

Its validity comes from the fact that we are allowed to cancel x− 1 from the numerator and
denominator. Remember in Calculus that we have to make sure we don’t cancel zeros, so
we require x− 1 6= 0 in order to cancel it. But looking back at the definition of a limit using
x → 1, the key point for this example is that we are taking values of x close to 1 but not
equal to 1. This is exactly what we wanted (x 6= 1) in order to cancel this common factor.

While theorem 3.8 is very helpful, we need a bit more to work easily with limits. Since
the theorem applies when some limits are already known, we need to know the behavior
of some functions that cannot themselves be constructed from the simple arithmetic opera-
tions of the theorem, such as

√
x. Also, there is one other extraordinarily useful way to put

functions together: composition. If f(x) and g(x) are functions, we can form two functions
by composition: f(g(x)) and g(f(x)). For example, if f(x) =

√
x and g(x) = x2 + 5, then

f(g(x)) =
√
x2 + 5 and g(f(x)) = (

√
x)2 + 5 = x + 5. Here is a companion to theorem 3.8
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for composition:

Theorem 3.11: Limit of Composition

Suppose that lim
x→a

g(x) = L and lim
x→L

f(x) = f(L). Then

lim
x→a

f(g(x)) = f(L).

Note the special form of the condition on f : it is not enough to know that lim
x→L

f(x) = M ,

though it is a bit tricky to see why. Many of the most familiar functions do have this prop-
erty, and this theorem can therefore be applied. For example:

Theorem 3.12: Continuity of Roots

Suppose that n is a positive integer. Then

lim
x→a

n
√
x = n
√
a,

provided that a is positive if n is even.

This theorem is not too difficult to prove from the definition of limit.
Another of the most common algebraic tricks is called rationalization. Rationalizing

makes use of the difference of squares formula (a− b)(a+ b) = a2 − b2. Here is an example.

Example 3.13: Rationalizing

Compute lim
x→−1

√
x+ 5− 2

x+ 1
.

Solution.

lim
x→−1

√
x+ 5− 2

x+ 1
= lim

x→−1

√
x+ 5− 2

x+ 1
·
√
x+ 5 + 2√
x+ 5 + 2

= lim
x→−1

x+ 5− 4

(x+ 1)(
√
x+ 5 + 2)

= lim
x→−1

x+ 1

(x+ 1)(
√
x+ 5 + 2)

= lim
x→−1

1√
x+ 5 + 2

=
1

4

At the very last step we have used theorems 3.11 and 3.12. ♣
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Example 3.14: Left and Right Limit

Evaluate lim
x→0+

x

|x| .

Solution. The function f(x) = x/|x| is undefined at 0; when x > 0, |x| = x and so f(x) = 1;
when x < 0, |x| = −x and f(x) = −1. Thus

lim
x→0−

x

|x| = lim
x→0−

−1 = −1

while
lim
x→0+

x

|x| = lim
x→0+

1 = 1.

The limit of f(x) must be equal to both the left and right limits; since they are different,

the limit lim
x→0

x

|x| does not exist. ♣

Exercises for 3.4

Exercise 3.4.1. Compute the limits. If a limit does not exist, explain why.

a) lim
x→3

x2 + x− 12

x− 3
h) lim

x→4
3x3 − 5x

b) lim
x→1

x2 + x− 12

x− 3
i) lim

x→0

4x− 5x2

x− 1

c) lim
x→−4

x2 + x− 12

x− 3
j) lim

x→1

x2 − 1

x− 1

d) lim
x→2

x2 + x− 12

x− 2
k) lim

x→0+

√
2− x2

x

e) lim
x→1

√
x+ 8− 3

x− 1
l) lim

x→0+

√
2− x2

x+ 1

f) lim
x→0+

√

1

x
+ 2−

√

1

x
m) lim

x→a

x3 − a3

x− a
g) lim

x→2
3 n) lim

x→2
(x2 + 4)3

3.5 Infinite Limits and Limits at Infinity

We occasionally want to know what happens to some quantity when a variable gets very
large or “goes to infinity”.
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Example 3.15: Limit at Infinity

What happens to the function cos(1/x) as x goes to infinity? It seems clear that as x
gets larger and larger, 1/x gets closer and closer to zero, so cos(1/x) should be getting
closer and closer to cos(0) = 1.

As with ordinary limits, this concept of “limit at infinity” can be made precise. Roughly,
we want lim

x→∞
f(x) = L to mean that we can make f(x) as close as we want to L by making

x large enough.

Definition 3.16: Limit at Infinity (Formal Definition)

If f is a function, we say that lim
x→∞

f(x) = L if for every ǫ > 0 there is an N > 0 so

that whenever x > N , |f(x)− L| < ǫ. We may similarly define lim
x→−∞

f(x) = L.

We include this definition for completeness, but we will not explore it in detail. Suffice it
to say that such limits behave in much the same way that ordinary limits do; in particular
there is a direct analog of theorem 3.8.

Example 3.17: Limit at Infinity

Compute lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
.

Solution. As x goes to infinity both the numerator and denominator go to infinity. We
divide the numerator and denominator by x2:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

2− 3

x
+

7

x2

1 +
47

x
+

1

x2

.

Now as x approaches infinity, all the quotients with some power of x in the denominator
approach zero, leaving 2 in the numerator and 1 in the denominator, so the limit again is 2.

♣
In the previous example, we divided by the highest power of x that occurs in the denom-

inator in order to evaluate the limit. We illustrate another technique similar to this.

Example 3.18: Limit at Infinity

Compute the following limit:

lim
x→∞

2x2 + 3

5x2 + x
.

Solution. As x becomes large, both the numerator and denominator become large, so it
isn’t clear what happens to their ratio. The highest power of x in the denominator is x2,
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therefore we will divide every term in both the numerator and denominator by x2 as follows:

lim
x→∞

2x2 + 3

5x2 + x
= lim

x→∞

2 + 3/x2

5 + 1/x
.

Most of the limit rules from last lecture also apply to infinite limits, so we can write this as:

=
lim
x→∞

2 + 3 lim
x→∞

1

x2

lim
x→∞

5 + lim
x→∞

1

x

=
2 + 3(0)

5 + 0
=

2

5
.

Note that we used the theorem above to get that lim
x→∞

1

x
= 0 and lim

x→∞

1

x2
= 0.

A shortcut technique is to analyze only the leading terms of the numerator and denomi-
nator. A leading term is a term that has the highest power of x. If there are multiple terms
with the same exponent, you must include all of them.
Top: The leading term is 2x2.
Bottom: The leading term is 5x2.
Now only looking at leading terms and ignoring the other terms we get:

lim
x→∞

2x2 + 3

5x2 + x
= lim

x→∞

2x2

5x2
=

2

5
.

♣
We next look at limits whose value is infinity (or minus infinity).

Definition 3.19: Infinite Limit (Useable Definition)

In general, we will write
lim
x→a

f(x) =∞

if we can make the value of f(x) arbitrarily large by taking x to be sufficiently close
to a (on either side of a) but not equal to a. Similarly, we will write

lim
x→a

f(x) = −∞

if we can make the value of f(x) arbitrarily large and negative by taking x to be
sufficiently close to a (on either side of a) but not equal to a.

This definition can be modified for one-sided limits as well as limits with x→ a replaced
by x→∞ or x→ −∞.
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Example 3.20: Limit at Infinity

Compute the following limit: lim
x→∞

(x3 − x).

Solution. One might be tempted to write:

lim
x→∞

x3 − lim
x→∞

x =∞−∞,

however, we do not know what∞−∞ is, as∞ is not a real number and so cannot be treated
like one. We instead write:

lim
x→∞

(x3 − x) = lim
x→∞

x(x2 − 1).

As x becomes arbitrarily large, then both x and x2 − 1 become arbitrarily large, and hence
their product x(x2 − 1) will also become arbitrarily large. Thus we see that

lim
x→∞

(x3 − x) =∞.

♣

Example 3.21: Limit at Infinity and Basic Functions

We can easily evaluate the following limits by observation:

1. lim
x→∞

6√
x3

= 0 2. lim
x→−∞

x− x2 = −∞

3. lim
x→∞

x3 + x =∞ 4. lim
x→∞

cos(x) = DNE

5. lim
x→∞

ex =∞ 6. lim
x→−∞

ex = 0

7. lim
x→0+

ln x = −∞ 8. lim
x→0

cos(1/x) = DNE

Often, the shorthand notation
1

0+
= +∞ and

1

0−
= −∞ is used to represent the following

two limits respectively:

lim
x→0+

1

x
= +∞ and lim

x→0−

1

x
= −∞.

Using the above convention we can compute the following limits.
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Example 3.22: Limit at Infinity and Basic Functions

Compute lim
x→0+

e1/x, lim
x→0−

e1/x and lim
x→0

e1/x.

Solution. We have:

lim
x→0+

e
1
x = e

1
0+ = e+∞ =∞.

lim
x→0−

e
1
x = e

1
0− = e−∞ = 0.

Thus, as left-hand limit 6= right-hand limit,

lim
x→0

e
1
x = DNE.

♣

Vertical Asymptotes

The line x = a is called a vertical asymptote of f(x) if at least one of the following is true:

lim
x→a

f(x) =∞ lim
x→a−

f(x) =∞ lim
x→a+

f(x) =∞

lim
x→a

f(x) = −∞ lim
x→a−

f(x) = −∞ lim
x→a+

f(x) = −∞

Example 3.23: Vertical Asymptotes

Find the vertical asymptotes of f(x) =
2x

x− 4
.

Solution. In the definition of vertical asymptotes we need a certain limit to be ±∞. Candi-
dates would be to consider values not in the domain of f(x), such as a = 4. As x approaches
4 but is larger than 4 then x − 4 is a small positive number and 2x is close to 8, so the
quotient 2x/(x− 4) is a large positive number. Thus we see that

lim
x→4+

2x

x− 4
=∞.

Thus, at least one of the conditions in the definition above is satisfied. Therefore x = 4 is a
vertical asymptote. ♣

Horizontal Asymptotes

The line y = L is a horizontal asymptote of f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L.
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Example 3.24: Horizontal Asymptotes

Find the horizontal asymptotes of f(x) =
|x|
x
.

Solution. We must compute two infinite limits. First,

lim
x→∞

|x|
x
.

Notice that for x arbitrarily large that x > 0, so that |x| = x. In particular, for x in the
interval (0,∞) we have

lim
x→∞

|x|
x

= lim
x→∞

x

x
= 1.

Second, we must compute

lim
x→−∞

|x|
x
.

Notice that for x arbitrarily large negative that x < 0, so that |x| = −x. In particular, for
x in the interval (−∞, 0) we have

lim
x→−∞

|x|
x

= lim
x→−∞

−x
x

= −1.

Therefore there are two horizontal asymptotes, namely, y = 1 and y = −1. ♣

Exercises for 3.5

Exercise 3.5.1. Compute the following limits.

a) lim
x→∞

√
x2 + x−

√
x2 − x g) lim

x→∞

x+ x1/2 + x1/3

x2/3 + x1/4
m) lim

x→∞

x+ x−2

2x+ x−2

b) lim
x→∞

ex + e−x

ex − e−x
h) lim

t→∞

1−
√

t
t+1

2−
√

4t+1
t+2

n) lim
x→∞

5 + x−1

1 + 2x−1

c) lim
t→1+

(1/t)− 1

t2 − 2t + 1
i) lim

t→∞

1− t
t−1

1−
√

t
t−1

o) lim
x→∞

4x√
2x2 + 1

d) lim
t→∞

t+ 5− 2/t− 1/t3

3t+ 12− 1/t2
j) lim

x→−∞

x+ x−1

1 +
√
1− x

p) lim
x→∞

(x+ 5)

(

1

2x
+

1

x+ 2

)

e) lim
y→∞

√
y + 1 +

√
y − 1

y
k) lim

x→1+

√
x

x− 1
q) lim

x→0+
(x+ 5)

(

1

2x
+

1

x+ 2

)

f) lim
x→0+

3 + x−1/2 + x−1

2 + 4x−1/2
l) lim

x→∞

x−1 + x−1/2

x+ x−1/2
r) lim

x→2

x3 − 6x− 2

x3 − 4x

Exercise 3.5.2. The function f(x) =
x√

x2 + 1
has two horizontal asymptotes. Find them

and give a rough sketch of f with its horizontal asymptotes.
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3.6 A Trigonometric Limit

In this section we aim to compute the limit:

lim
x→0

sin x

x
.

We start by analyzing the graph of y =
sin x

x
:

x

y

0.2

0.4

0.6

0.8

1.0

2 4 6 8‐2‐4‐6‐8

Notice that x = 0 is not in the domain of this function. Nevertheless, we can look at the
limit as x approaches 0. From the graph we find that the limit is 1 (there is an open circle
at x = 0 indicating 0 is not in the domain). We just convinced you this limit formula holds
true based on the graph, but how does one attempt to prove this limit more formally? To
do this we need to be quite clever, and to employ some indirect reasoning. The indirect
reasoning is embodied in a theorem, frequently called the squeeze theorem.

Theorem 3.25: Squeeze Theorem

Suppose that g(x) ≤ f(x) ≤ h(x) for all x close to a but not equal to a. If lim
x→a

g(x) =

L = lim
x→a

h(x), then lim
x→a

f(x) = L.

This theorem can be proved using the official definition of limit. We won’t prove it here,
but point out that it is easy to understand and believe graphically. The condition says
that f(x) is trapped between g(x) below and h(x) above, and that at x = a, both g and h
approach the same value. This means the situation looks something like Figure 3.1.

For example, imagine the blue curve is f(x) = x2 sin(π/x), the upper (red) and lower
(green) curves are h(x) = x2 and g(x) = −x2. Since the sine function is always between −1
and 1, −x2 ≤ x2 sin(π/x) ≤ x2, and it is easy to see that limx→0−x2 = 0 = limx→0 x

2. It is
not so easy to see directly (i.e. algebraically) that limx→0 x

2 sin(π/x) = 0, because the π/x
prevents us from simply plugging in x = 0. The squeeze theorem makes this “hard limit” as
easy as the trivial limits involving x2.
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Figure 3.1: The squeeze theorem.

To compute lim
x→0

(sin x)/x, we will find two simpler functions g and h so that g(x) ≤
(sin x)/x ≤ h(x), and so that limx→0 g(x) = limx→0 h(x). Not too surprisingly, this will
require some trigonometry and geometry. Referring to figure 3.2, x is the measure of the
angle in radians. Since the circle has radius 1, the coordinates of point A are (cosx, sin x),
and the area of the small triangle is (cosx sin x)/2. This triangle is completely contained
within the circular wedge-shaped region bordered by two lines and the circle from (1, 0) to
point A. Comparing the areas of the triangle and the wedge we see (cosx sin x)/2 ≤ x/2,
since the area of a circular region with angle θ and radius r is θr2/2. With a little algebra
this turns into (sin x)/x ≤ 1/ cosx, giving us the h we seek.
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Figure 3.2: Visualizing sin x/x.

To find g, we note that the circular wedge is completely contained inside the larger
triangle. The height of the triangle, from (1, 0) to point B, is tan x, so comparing areas we
get x/2 ≤ (tan x)/2 = sin x/(2 cosx). With a little algebra this becomes cosx ≤ (sin x)/x.
So now we have

cosx ≤ sin x

x
≤ 1

cosx
.

Finally, the two limits limx→0 cosx and limx→0 1/ cosx are easy, because cos(0) = 1. By the
squeeze theorem, limx→0(sin x)/x = 1 as well.
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3.6. A TRIGONOMETRIC LIMIT

Using the above, we can compute a similar limit:

lim
x→0

cosx− 1

x
.

This limit is just as hard as sin x/x, but closely related to it, so that we don’t have to do a
similar calculation; instead we can do a bit of tricky algebra.

cosx− 1

x
=

cos x− 1

x

cos x+ 1

cos x+ 1
=

cos2 x− 1

x(cos x+ 1)
=

− sin2 x

x(cos x+ 1)
= −sin x

x

sin x

cos x+ 1
.

To compute the desired limit it is sufficient to compute the limits of the two final fractions,
as x goes to 0. The first of these is the hard limit we’ve just done, namely 1. The second
turns out to be simple, because the denominator presents no problem:

lim
x→0

sin x

cosx+ 1
=

sin 0

cos 0 + 1
=

0

2
= 0.

Thus,

lim
x→0

cosx− 1

x
= 0.

Example 3.26: Limit of Other Trig Functions

Compute the following limit lim
x→0

sin 5x cosx

x
.

Solution. We have

lim
x→0

sin 5x cosx

x
= lim

x→0

5 sin 5x cosx

5x

= lim
x→0

5 cosx

(

sin 5x

5x

)

= 5 · (1) · (1) = 5

since cos(0) = 1 and lim
x→0

sin 5x

5x
= 1. ♣

Let’s do a harder one now.

Example 3.27: Limit of Other Trig Functions

Compute the following limit: lim
x→0

tan3 2x

x2 sin 7x
.
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Solution. Recall that the tan3(2x) means that tan(2x) is being raised to the third power.

lim
x→0

tan3(2x)

x2 sin(7x)
= lim

x→0

(sin(2x))3

x2 sin(7x) cos3(2x)
Rewrite in terms of sin and cos

= lim
x→0

(2x)3
(

sin(2x)
2x

)3

x2(7x)
(

sin(7x)
7x

)

cos3(2x)
Make sine terms look like:

sin θ

θ

= lim
x→0

8x3(1)3

7x3(1)(13)
Replace lim

x→0

sin nx

nx
with 1. Also, cos(0) = 1.

= lim
x→0

8

7
Cancel x3’s.

=
8

7
.

♣

Example 3.28: Applying the Squeeze Theorem

Compute the following limit: lim
x→0+

x3 cos

(

1√
x

)

.

Solution. We use the Squeeze Theorem to evaluate this limit. We know that cosα satisfies
−1 ≤ cosα ≤ 1 for any choice of α. Therefore we can write:

−1 ≤ cos

(

1√
x

)

≤ 1

Since x→ 0+ implies x > 0, multiplying by x3 gives:

−x3 ≤ x3 cos

(

1√
x

)

≤ x3.

lim
x→0+

(−x3) ≤ lim
x→0+

(

x3 cos

(

1√
x

))

≤ lim
x→0+

x3.

But using our rules we know that

lim
x→0+

(−x3) = 0, lim
x→0+

x3 = 0

and the Squeeze Theorem says that the only way this can happen is if

lim
x→0+

x3 cos

(

1√
x

)

= 0.

♣
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3.7. CONTINUITY

When solving problems using the Squeeze Theorem it is also helpful to have the following
theorem.

Theorem 3.29: Monotone Limits

If f(x) ≤ g(x) when x is near a (except possibly at a) and the limits of f and g both
exist as x approaches a, then lim

x→a
f(x) ≤ lim

x→a
g(x).

Exercises for 3.6

Exercise 3.6.1. Compute the following limits.

a) lim
x→0

sin(5x)

x

b) lim
x→0

sin(7x)

sin(2x)

c) lim
x→0

cot(4x)

csc(3x)

d) lim
x→0

tan x

x

e) lim
x→π/4

sin x− cosx

cos(2x)

Exercise 3.6.2. For all x ≥ 0, 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7. Find lim
x→4

f(x).

Exercise 3.6.3. For all x, 2x ≤ g(x) ≤ x4 − x2 + 2. Find lim
x→1

g(x).

Exercise 3.6.4. Use the Squeeze Theorem to show that lim
x→0

x4 cos(2/x) = 0.

3.7 Continuity

The graph shown in Figure 3.3(a) represents a continuous function. Geometrically, this is
because there are no jumps in the graphs. That is, if you pick a point on the graph and
approach it from the left and right, the values of the function approach the value of the
function at that point. For example, we can see that this is not true for function values near
x = 1 on the graph in Figure 3.3(b) which is not continuous at that location.
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x

y

1 2

1

2

3

1

2

3

x

y

1 2

Figure 3.3: (a) A continuous function. (b) A function with a discontinuity at x = 1.

Definition 3.30: Continuous at a Point

A function f is continuous at a point a if

lim
x→a

f(x) = f(a).

Some readers may prefer to think of continuity at a point as a three part definition. That
is, a function f(x) is continuous at x = a if the following three condidtions hold:

(i) f(a) is defined (that is, a belongs to the domain of f),

(ii) lim
x→a

f(x) exists (that is, left-hand limit = right-hand limit),

(iii) lim
x→a

f(x) = f(a) (that is, the numbers from (i) and (ii) are equal).

The figures below show graphical examples of functions where either (i), (ii) or (iii) can
fail to hold.
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3.7. CONTINUITY

On the other hand, we say that f is discontinuous at a if f is not continuous at
a. Furthermore, a function f is continuous on an interval if it is continuous at every
number in the interval. For convenience, we say f(x) is simply continuous if it is continuous
everywhere, that is, continuous at every real number a.

We can extend the notion of continuity at a point a to a function being left (or right)
continuous at a. In particular, a function f is left continuous at a point a if lim

x→a−
f(x) =
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f(a) and right continuous at a point a if lim
x→a+

f(x) = f(a).

Below we list some common functions that are known to be continous at every number
in their domains.

Example 3.31: Examples of Continuous Functions

� polynomials (for all x), e.g., y = mx+ b, y = ax2 + bx+ c,

� rational functions (except at points x which give division by zero),

�

n
√
x (for all x if n is odd, and for x ≥ 0 if n is even),

� sin x (for all x) and cosx (for all x).

Graphically, you can think of continuity as being able to draw your function without
having to lift your pencil off the paper. If your pencil has to jump off the page to continue
drawing the function, then the function is not continuous at that point. This is illustrated
in Figure 3.3(b) where if we tried to draw the function (from left to right) we need to lift our
pencil off the page once we reach the point x = 1 in order to be able to continue drawing
the function.

Recall the function graphed in a previous section as shown in Figure 3.4.
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x

y

Figure 3.4: A function with discontinuities at x = −5, x = −2, x = −1 and x = 4.

We can draw this function without lifting our pencil except at the points x = −5, x = −2,
x = −1, and x = 4. Thus, f(x) is continuous at every real number except at these four
numbers. At x = −5, x = −2, x = −1, and x = 4, the function f(x) is discontinuous.

At x = −2 we have a removable discontinuity because we could remove this dis-
continuity simply by redefining f(−2) to be 3.5. At x = −5 and x = −1 we have jump
discontinuities because the function jumps from one value to another. From the right of
x = 4, we have an infinite discontinuity because the function goes off to infinity.

Formally, we say f(x) has a removable discontinuity at x = a if limx→a f(x) exists
but is not equal to f(a). Note that we do not require f(a) to be defined in this case, that
is, a need not belong to the domain of f(x).

The continuity of functions is preserved under the operations of addition, subtraction,
multiplication and division (in the case that the function in the denominator is nonzero).
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Theorem 3.32: Operations of Continuous Functions

If f and g are continous at a, and c is a constant, then the following functions are also
continuous at a:

(i) f ± g;

(ii) cf ;

(iii) fg;

(iv) f/g (provided g(a) 6= 0).

For rational functions with removable discontinuities as a result of a zero, we can define a
new function filling in these gaps to create a piecewise function that is continuous everywhere.

Example 3.33: Continuous at a Point

What value of c will make the following function f(x) continuous at 2?

f(x) =















x2 − x− 2

x− 2
if x 6= 2

c if x = 2

Solution. In order to be continuous at 2 we require

lim
x→2

f(x) = f(2)

to hold. We use the three part definition listed previously to check this.
1. First, f(2) = c, and c is some real number. Thus, f(2) is defined.
2. Now, we must evaluate the limit. Rather than computing both one-sided limits, we

just compute the limit directly. For x close to 2 (but not equal to 2) we can replace f(x)
with x2−x−2

x−2
to get:

lim
x→2

f(x) = lim
x→2

x2 − x− 2

x− 2
= lim

x→2

(x− 2)(x+ 1)

x− 2
= lim

x→2
(x+ 1) = 3.

Therefore the limit exists and equals 3.
3. Finally, for f to be continuous at 2, we need that the numbers in the first two items

to be equal. Therefore, we require c = 3. Thus, when c = 3, f(x) is continuous at 2, for any
other value of c, f(x) is discontinuous at 2. ♣

Continuous functions are where the direct substitution property hold. This fact can often
be used to compute the limit of a continuous function.
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Example 3.34: Evaluate a Limit

Evaluate the following limit: lim
x→π

√
x+ sin x

1 + x+ cosx
.

Solution. We will use a continuity argument to justify that direct substitution can be
applied. By the list above,

√
x, sin x, 1, x and cosx are all continuous functions at π. Then√

x+ sin x and 1 + x+ cosx are both continuous at π. Finally,

√
x+ sin x

1 + x+ cosx

is a continuous function at π since 1 + π + cosπ 6= 0. Hence, we can directly substitute to
get the limit:

lim
x→π

√
x+ sin x

1 + x+ cosx
=

√
π + sin π

1 + π + cos π
=

√
π

π
=

1√
π
.

♣
Continuity is also preserved under the composition of functions.

Theorem 3.35: Continuity of Function Composition

If g is continuous at a and f is continuous at g(a), then the composition function f ◦ g
is continuous at a.

Intermediate Value Theorem

Whether or not an equation has a solution is an important question in mathematics. Con-
sider the following two questions:

Example 3.36: Motivation for the Intermediate Value Theorem

1. Does ex + x2 = 0 have a solution?

2. Does ex + x = 0 have a solution?

Solution. 1. The first question is easy to answer since for any exponential function we know
that ax > 0, and we also know that whenever you square a number you get a nonnegative
answer: x2 ≥ 0. Hence, ex + x2 > 0, and thus, is never equal to zero. Therefore, the first
equation has no solution.

2. For the second question, it is difficult to see if ex + x = 0 has a solution. If we tried
to solve for x, we would run into problems. Let’s make a table of values to see what kind of
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values we get (recall that e ≈ 2.7183):

x ex + x
−2 e−2 − 2 ≈ −1.9
−1 e−1 − 1 ≈ −0.6
0 e0 + 0 = 1
1 e + 1 ≈ 3.7

Sketching this gives:

(‐2, ‐1.9)

(‐1, ‐0.6)

(0, 1)

x

y (1, 3.7)

Let f(x) = ex + x. Notice that if we choose a = −1 and b = 0 then we have f(a) < 0 and
f(b) > 0. A point where the function f(x) crosses the x-axis gives a solution to ex + x = 0.
Since f(x) = ex + x is continuous (both ex and x are continuous), then the function must
cross the x-axis somewhere between −1 and 0:

(‐1, ‐0.6)

(0, 1)

x

y

X

continuous, so can't 

jump over x‐axis
→

Therefore, our equation has a solution.
Note that by looking at smaller and smaller intervals (a, b) with f(a) < 0 and f(b) > 0,

we can get a better and better approximation for a solution to ex + x = 0. For example,
taking the interval (−0.4,−0.6) gives f(−0.4) < 0 and f(−0.6) > 0, thus, there is a solution
to f(x) = 0 between −0.4 and −0.6. It turns out that the solution to ex + x = 0 is
x ≈ −0.56714. ♣

We now generalize the argument used in the previous example. In that example we had a
continuous function that went from negative to positive and hence, had to cross the x-axis at
some point. In fact, we don’t need to use the x-axis, any line y = N will work so long as the
function is continuous and below the line y = N at some point and above the line y = N at
another point. This is known as the Intermediate Values Theorem and it is formally stated
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as follows:

Theorem 3.37: Intermediate Value Theorem

If f is continuous on the interval [a, b] and N is between f(a) and f(b), where f(a) 6=
f(b), then there is a number c in (a, b) such that f(c) = N .

The Intermediate Value Theorem guarantees that if f(x) is continuous and f(a) < N <
f(b), the line y = N intersects the function at some point x = c. Such a number c is between
a and b and has the property that f(c) = N (see Figure 3.7(a)). We can also think of the
theorem as saying if we draw the line y = N between the lines y = f(a) and y = f(b), then
the function cannot jump over the line y = N . On the other hand, if f(x) is not continuous,
then the theorem may not hold. See Figure 3.7(b) where there is no number c in (a, b) such
that f(c) = N . Finally, we remark that there may be multiple choices for c (i.e., lots of
numbers between a and b with y-coordinate N). See Figure 3.7(c) for such an example.

x

y

f(a)

f(b)

N

x

y

a b

f(a)

f(b)

N

c x

y

a b

f(a)

f(b)

N

c c c1 2 3

Figure 3.5: (a) A continuous function where IVT holds for a single value c. (b) A discon-
tinuous function where IVT fails to hold. (c) A continuous function where IVT holds for
multiple values in (a, b).

The Intermediate Value Theorem is most frequently used for N = 0.

Example 3.38: Intermediate Value Theorem

Show that there is a solution of 3
√
x+ x = 1 in the interval (0, 8).

Solution. Let f(x) = 3
√
x + x − 1, N = 0, a = 0, and b = 8. Since 3

√
x, x and −1

are continuous on R, and the sum of continuous functions is again continuous, we have
that f(x) is continuous on R, thus in particular, f(x) is continuous on [0, 8]. We have
f(a) = f(0) = 3

√
0 + 0 − 1 = −1 and f(b) = f(8) = 3

√
8 + 8 − 1 = 9. Thus N = 0 lies

between f(a) = −1 and f(b) = 9, so the conditions of the Intermediate Value Theorem are
satisfied. So, there exists a number c in (0, 8) such that f(c) = 0. This means that c satisfies
3
√
c+ c− 1 = 0, in otherwords, is a solution for the equation given.
Alternatively we can let f(x) = 3

√
x + x, N = 1, a = 0 and b = 8. Then as before

f(x) is the sum of two continuous functions, so is also continuous everywhere, in particular,
continuous on the interval [0, 8]. We have f(a) = f(0) = 3

√
0 + 0 = 0 and f(b) = f(8) =
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3
√
8 + 8 = 10. Thus N = 1 lies between f(a) = 0 and f(b) = 10, so the conditions of the

Intermediate Value Theorem are satisfied. So, there exists a number c in (0, 8) such that
f(c) = 1. This means that c satisfies 3

√
c+c = 1, in otherwords, is a solution for the equation

given. ♣

Example 3.39: Roots of Function

Explain why the function f = x3 + 3x2 + x− 2 has a root between 0 and 1.

Solution. By theorem 3.8, f is continuous. Since f(0) = −2 and f(1) = 3, and 0 is between
−2 and 3, there is a c ∈ (0, 1) such that f(c) = 0. ♣

This example also points the way to a simple method for approximating roots.

Example 3.40: Approximating Roots

Approximate the root of the previous example to one decimal place.

Solution. If we compute f(0.1), f(0.2), and so on, we find that f(0.6) < 0 and f(0.7) > 0,
so by the Intermediate Value Theorem, f has a root between 0.6 and 0.7. Repeating the
process with f(0.61), f(0.62), and so on, we find that f(0.61) < 0 and f(0.62) > 0, so f has
a root between 0.61 and 0.62, and the root is 0.6 rounded to one decimal place. ♣

Exercises for 3.7

Exercise 3.7.1. Consider the function

h(x) =

{

2x− 3, if x < 1,
0, if x ≥ 1.

Show that it is continuous at the point x = 0. Is h a continuous function?

Exercise 3.7.2. Find the values of a that make the function f(x) continuous for all real
numbers.

f(x) =

{

4x+ 5, if x ≥ −2,
x2 + a, if x < −2.

Exercise 3.7.3. Find the values of the constant c so that the function g(x) is continuous on
(−∞,∞), where

g(x) =

{

2− 2c2x, if x < −1,
6− 7cx2, if x ≥ −1.

Exercise 3.7.4. Approximate a root of f = x3 − 4x2 + 2x+ 2 to one decimal place.

Exercise 3.7.5. Approximate a root of f = x4 + x3 − 5x+ 1 to one decimal place.

Exercise 3.7.6. Show that the equation 3
√
x+ x = 1 has a solution in the interval (0, 8).
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4. Derivatives

4.1 The Rate of Change of a Function

Suppose that y is a function of x, say y = f(x). It is often useful to know how sensitive the
value of y is to small changes in x.

Example 4.1: Small Changes in x

Consider y = f(x) =
√
625− x2 (the upper semicircle of radius 25 centered at the

origin), and let’s compute the changes of y resulting from small changes of x around
x = 7.

Solution. When x = 7, we find that y =
√
625− 49 = 24. Suppose we want to know how

much y changes when x increases a little, say to 7.1 or 7.01.
In the case of a straight line y = mx+ b, the slope m = ∆y/∆x measures the change in

y per unit change in x. This can be interpreted as a measure of “sensitivity”; for example,
if y = 100x+ 5, a small change in x corresponds to a change one hundred times as large in
y, so y is quite sensitive to changes in x.

Let us look at the same ratio ∆y/∆x for our function y = f(x) =
√
625− x2 when x

changes from 7 to 7.1. Here ∆x = 7.1− 7 = 0.1 is the change in x, and

∆y = f(x+∆x)− f(x) = f(7.1)− f(7)

=
√
625− 7.12 −

√
625− 72

≈ 23.9706− 24 = −0.0294.

Thus, ∆y/∆x ≈ −0.0294/0.1 = −0.294. This means that y changes by less than one third
the change in x, so apparently y is not very sensitive to changes in x at x = 7. We say
“apparently” here because we don’t really know what happens between 7 and 7.1. Perhaps
y changes dramatically as x runs through the values from 7 to 7.1, but at 7.1 y just happens
to be close to its value at 7. This is not in fact the case for this particular function, but we
don’t yet know why. ♣

The quantity ∆y/∆x ≈ −0.294 may be interpreted as the slope of the line through (7, 24)
and (7.1, 23.9706), called a chord of the circle. In general, if we draw the chord from the
point (7, 24) to a nearby point on the semicircle (7+∆x, f(7+∆x)), the slope of this chord
is the so-called difference quotient

f(7 + ∆x)− f(7)

∆x
=

√

625− (7 + ∆x)2 − 24

∆x
.
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For example, if x changes only from 7 to 7.01, then the difference quotient (slope of the
chord) is approximately equal to (23.997081− 24)/0.01 = −0.2919. This is slightly different
than for the chord from (7, 24) to (7.1, 23.9706).

As ∆x is made smaller (closer to 0), 7+∆x gets closer to 7 and the chord joining (7, f(7))
to (7+∆x, f(7+∆x)) shifts slightly, as shown in Figure 4.1. The chord gets closer and closer
to the tangent line to the circle at the point (7, 24). (The tangent line is the line that just
grazes the circle at that point, i.e., it doesn’t meet the circle at any second point.) Thus,
as ∆x gets smaller and smaller, the slope ∆y/∆x of the chord gets closer and closer to the
slope of the tangent line. This is actually quite difficult to see when ∆x is small, because of
the scale of the graph. The values of ∆x used for the figure are 1, 5, 10 and 15, not really
very small values. The tangent line is the one that is uppermost at the right hand endpoint.
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Figure 4.1: Chords approximating the tangent line.

So far we have found the slopes of two chords that should be close to the slope of the
tangent line, but what is the slope of the tangent line exactly? Since the tangent line touches
the circle at just one point, we will never be able to calculate its slope directly, using two
“known” points on the line. What we need is a way to capture what happens to the slopes
of the chords as they get “closer and closer” to the tangent line.

Instead of looking at more particular values of ∆x, let’s see what happens if we do some
algebra with the difference quotient using just ∆x. The slope of a chord from (7, 24) to a
nearby point (7 + ∆x, f(7 + ∆x)) is given by

f(7 + ∆x)− f(7)

∆x
=

√

625− (7 + ∆x)2 − 24

∆x

=

(

√

625− (7 + ∆x)2 − 24

∆x

)(

√

625− (7 + ∆x)2 + 24
√

625− (7 + ∆x)2 + 24

)

=
625− (7 + ∆x)2 − 242

∆x(
√

625− (7 + ∆x)2 + 24)

=
49− 49− 14∆x−∆x2

∆x(
√

625− (7 + ∆x)2 + 24)
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=
∆x(−14 −∆x)

∆x(
√

625− (7 + ∆x)2 + 24)

=
−14 −∆x

√

625− (7 + ∆x)2 + 24

Now, can we tell by looking at this last formula what happens when ∆x gets very close to
zero? The numerator clearly gets very close to −14 while the denominator gets very close to√
625− 72 + 24 = 48. The fraction is therefore very close to −14/48 = −7/24 ∼= −0.29167.

In fact, the slope of the tangent line is exactly −7/24.
What about the slope of the tangent line at x = 12? Well, 12 can’t be all that different

from 7; we just have to redo the calculation with 12 instead of 7. This won’t be hard, but it
will be a bit tedious. What if we try to do all the algebra without using a specific value for
x? Let’s copy from above, replacing 7 by x.

f(x+∆x)− f(x)

∆x
=

√

625− (x+∆x)2 −
√
625− x2

∆x

=

√

625− (x+∆x)2 −
√
625− x2

∆x

√

625− (x+∆x)2 +
√
625− x2

√

625− (x+∆x)2 +
√
625− x2

=
625− (x+∆x)2 − 625 + x2

∆x(
√

625− (x+∆x)2 +
√
625− x2)

=
625− x2 − 2x∆x−∆x2 − 625 + x2

∆x(
√

625− (x+∆x)2 +
√
625− x2)

=
∆x(−2x −∆x)

∆x(
√

625− (x+∆x)2 +
√
625− x2)

=
−2x−∆x

√

625− (x+∆x)2 +
√
625− x2

Now what happens when ∆x is very close to zero? Again it seems apparent that the
quotient will be very close to

−2x√
625− x2 +

√
625− x2

=
−2x

2
√
625− x2

=
−x√

625− x2
.

Replacing x by 7 gives −7/24, as before, and now we can easily do the computation for 12
or any other value of x between −25 and 25.

So now we have a single expression, −x/
√
625− x2, that tells us the slope of the tangent

line for any value of x. This slope, in turn, tells us how sensitive the value of y is to small
changes in the value of x.

The expression −x/
√
625− x2 defines a new function called the derivative of the original

function (since it is derived from the original function). If the original is referred to as f
or y then the derivative is often written f ′ or y′ (pronounced “f prime” or “y prime”). So
in this case we might write f ′(x) = −x/

√
625− x2 or y′ = −x/

√
625− x2. At a particular

point, say x = 7, we write f ′(7) = −7/24 and we say that “f prime of 7 is −7/24” or “the
derivative of f at 7 is −7/24.”

To summarize, we compute the derivative of f(x) by forming the difference quotient

f(x+∆x)− f(x)

∆x
,
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which is the slope of a line, then we figure out what happens when ∆x gets very close to 0.
At this point, we should note that the idea of letting ∆x get closer and closer to 0 is

precisely the idea of a limit that we discussed in the last chapter. The limit here is a limit
as ∆x approaches 0. Using limit notation, we can write f ′(x) = lim∆x→0

f(x+∆x)−f(x)
∆x

.
In the particular case of a circle, there’s a simple way to find the derivative. Since the

tangent to a circle at a point is perpendicular to the radius drawn to the point of contact, its
slope is the negative reciprocal of the slope of the radius. The radius joining (0, 0) to (7, 24)
has slope 24/7. Hence, the tangent line has slope −7/24. In general, a radius to the point
(x,
√
625− x2) has slope

√
625− x2/x, so the slope of the tangent line is −x/

√
625− x2,

as before. It is NOT always true that a tangent line is perpendicular to a line from the
origin—don’t use this shortcut in any other circumstance.

As above, and as you might expect, for different values of x we generally get different
values of the derivative f ′(x). Could it be that the derivative always has the same value?
This would mean that the slope of f , or the slope of its tangent line, is the same everywhere.
One curve that always has the same slope is a line; it seems odd to talk about the tangent
line to a line, but if it makes sense at all the tangent line must be the line itself. It is not
hard to see that the derivative of f(x) = mx+ b is f ′(x) = m.

Velocity

We started this section by saying, “It is often useful to know how sensitive the value of y is
to small changes in x.” We have seen one purely mathematical example of this, involving
the function f(x) =

√
625− x2. Here is a more applied example.

With careful measurement it might be possible to discover that the height of a dropped
ball t seconds after it is released is h(t) = h0 − kt2. (Here h0 is the initial height of the ball,
when t = 0, and k is some number determined by the experiment.) A natural question is
then, “How fast is the ball going at time t?” We can certainly get a pretty good idea with
a little simple arithmetic. To make the calculation more concrete, let’s use units of meters
and seconds and say that h0 = 100 meters and k = 4.9. Suppose we’re interested in the
speed at t = 2. We know that when t = 2 the height is 100− 4 · 4.9 = 80.4 meters. A second
later, at t = 3, the height is 100 − 9 · 4.9 = 55.9 meters. The change in height during that
second is 55.9− 80.4 = −24.5 meters. The negative sign means the height has decreased, as
we expect for a falling ball, and the number 24.5 is the average speed of the ball during the
time interval, in meters per second.

We might guess that 24.5 meters per second is not a terrible estimate of the speed at
t = 2, but certainly we can do better. At t = 2.5 the height is 100−4.9(2.5)2 = 69.375 meters.
During the half second from t = 2 to t = 2.5, the change in height is 69.375−80.4 = −11.025
meters giving an average speed of 11.025/(1/2) = 22.05 meters per second. This should be
a better estimate of the speed at t = 2. So it’s clear now how to get better and better
approximations: compute average speeds over shorter and shorter time intervals. Between
t = 2 and t = 2.01, for example, the ball drops 0.19649 meters in one hundredth of a second,
at an average speed of 19.649 meters per second.

We still might reasonably ask for the precise speed at t = 2 (the instantaneous speed)
rather than just an approximation to it. For this, once again, we need a limit. Let’s calculate
the average speed during the time interval from t = 2 to t = 2 + ∆t without specifying a
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particular value for ∆t. The change in height during the time interval from t = 2 to t = 2+∆t
is

h(2 + ∆t)− h(2) = (100− 4.9(2 + ∆t)2)− 80.4

= 100− 4.9(4 + 4∆t+∆t2)− 80.4

= 100− 19.6− 19.6∆t− 4.9∆t2 − 80.4

= −19.6∆t− 4.9∆t2

= −∆t(19.6 + 4.9∆t)

The average speed during this time interval is then

∆t(19.6 + 4.9∆t)

∆t
= 19.6 + 4.9∆t.

When ∆t is very small, this is very close to 19.6. Indeed, lim∆x→0(19.6 + 4.9∆t) = 19.6.
So the exact speed at t = 2 is 19.6 meters per second.

At this stage we need to make a distinction between speed and velocity. Velocity is signed
speed, that is, speed with a direction indicated by a sign (positive or negative). Our algebra
above actually told us that the instantaneous velocity of the ball at t = 2 is −19.6 meters
per second. The number 19.6 is the speed and the negative sign indicates that the motion
is directed downwards (the direction of decreasing height).

In the language of the previous section, we might have started with f(x) = 100 − 4.9x2

and asked for the slope of the tangent line at x = 2. We would have answered that question
by computing

lim
∆x→0

f(2 + ∆x)− f(2)

∆x
= lim

∆x→0

−19.6∆x− 4.9∆x2

∆x
= −19.6− 4.9∆x = 19.6

The algebra is the same. Thus, the velocity of the ball is the value of the derivative of a
certain function, namely, of the function that gives the position of the ball.

The upshot is that this problem, finding the velocity of the ball, is exactly the same
problem mathematically as finding the slope of a curve. This may already be enough evidence
to convince you that whenever some quantity is changing (the height of a curve or the height
of a ball or the size of the economy or the distance of a space probe from earth or the
population of the world) the rate at which the quantity is changing can, in principle, be
computed in exactly the same way, by finding a derivative.

Exercises for Section 4.1

Exercise 4.1.1. Draw the graph of the function y = f(x) =
√
169− x2 between x = 0 and

x = 13. Find the slope ∆y/∆x of the chord between the points of the circle lying over (a)
x = 12 and x = 13, (b) x = 12 and x = 12.1, (c) x = 12 and x = 12.01, (d) x = 12 and
x = 12.001. Now use the geometry of tangent lines on a circle to find (e) the exact value of
the derivative f ′(12). Your answers to (a)–(d) should be getting closer and closer to your
answer to (e).

103



CHAPTER 4. DERIVATIVES

Exercise 4.1.2. Use geometry to find the derivative f ′(x) of the function f(x) =
√
625− x2

in the text for each of the following x: (a) 20, (b) 24, (c) −7, (d) −15. Draw a graph of the
upper semicircle, and draw the tangent line at each of these four points.

Exercise 4.1.3. Draw the graph of the function y = f(x) = 1/x between x = 1/2 and x = 4.
Find the slope of the chord between (a) x = 3 and x = 3.1, (b) x = 3 and x = 3.01, (c)
x = 3 and x = 3.001. Now use algebra to find a simple formula for the slope of the chord
between (3, f(3)) and (3 + ∆x, f(3 + ∆x)). Determine what happens when ∆x approaches
0. In your graph of y = 1/x, draw the straight line through the point (3, 1/3) whose slope is
this limiting value of the difference quotient as ∆x approaches 0.

Exercise 4.1.4. Find an algebraic expression for the difference quotient
(

f(1 + ∆x) −
f(1)

)

/∆x when f(x) = x2 − (1/x). Simplify the expression as much as possible. Then
determine what happens as ∆x approaches 0. That value is f ′(1).

Exercise 4.1.5. Draw the graph of y = f(x) = x3 between x = 0 and x = 1.5. Find the
slope of the chord between (a) x = 1 and x = 1.1, (b) x = 1 and x = 1.001, (c) x = 1 and
x = 1.00001. Then use algebra to find a simple formula for the slope of the chord between
1 and 1 + ∆x. (Use the expansion (A + B)3 = A3 + 3A2B + 3AB2 + B3.) Determine what
happens as ∆x approaches 0, and in your graph of y = x3 draw the straight line through the
point (1, 1) whose slope is equal to the value you just found.

Exercise 4.1.6. Find an algebraic expression for the difference quotient (f(x + ∆x) −
f(x))/∆x when f(x) = mx + b. Simplify the expression as much as possible. Then de-
termine what happens as ∆x approaches 0. That value is f ′(x).

Exercise 4.1.7. Sketch the unit circle. Discuss the behavior of the slope of the tangent
line at various angles around the circle. Which trigonometric function gives the slope of the
tangent line at an angle θ? Why? Hint: think in terms of ratios of sides of triangles.

Exercise 4.1.8. Sketch the parabola y = x2. For what values of x on the parabola is the
slope of the tangent line positive? Negative? What do you notice about the graph at the
point(s) where the sign of the slope changes from positive to negative and vice versa?

Exercise 4.1.9. An object is traveling in a straight line so that its position (that is, distance
from some fixed point) is given by this table:

time (seconds) 0 1 2 3
distance (meters) 0 10 25 60

Find the average speed of the object during the following time intervals: [0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]. If you had to guess the speed at t = 2 just on the basis of these, what
would you guess?

Exercise 4.1.10. Let y = f(t) = t2, where t is the time in seconds and y is the distance in
meters that an object falls on a certain airless planet. Draw a graph of this function between
t = 0 and t = 3. Make a table of the average speed of the falling object between (a) 2 sec
and 3 sec, (b) 2 sec and 2.1 sec, (c) 2 sec and 2.01 sec, (d) 2 sec and 2.001 sec. Then use
algebra to find a simple formula for the average speed between time 2 and time 2 + ∆t. (If
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you substitute ∆t = 1, 0.1, 0.01, 0.001 in this formula you should again get the answers to
parts (a)–(d).) Next, in your formula for average speed (which should be in simplified form)
determine what happens as ∆t approaches zero. This is the instantaneous speed. Finally,
in your graph of y = t2 draw the straight line through the point (2, 4) whose slope is the
instantaneous velocity you just computed; it should of course be the tangent line.

Exercise 4.1.11. If an object is dropped from an 80-meter high window, its height y above
the ground at time t seconds is given by the formula y = f(t) = 80 − 4.9t2. (Here we
are neglecting air resistance; the graph of this function was shown in figure 1.1.) Find the
average velocity of the falling object between (a) 1 sec and 1.1 sec, (b) 1 sec and 1.01 sec,
(c) 1 sec and 1.001 sec. Now use algebra to find a simple formula for the average velocity
of the falling object between 1 sec and 1 + ∆t sec. Determine what happens to this average
velocity as ∆t approaches 0. That is the instantaneous velocity at time t = 1 second (it will
be negative, because the object is falling).

4.2 The Derivative Function

In Section 4.1, we have seen how to create, or derive, a new function f ′(x) from a function
f(x), and that this new function carries important information. In one example we saw that
f ′(x) tells us how steep the graph of f(x) is; in another we saw that f ′(x) tells us the velocity
of an object if f(x) tells us the position of the object at time x. As we said earlier, this
same mathematical idea is useful whenever f(x) represents some changing quantity and we
want to know something about how it changes, or roughly, the “rate” at which it changes.
Most functions encountered in practice are built up from a small collection of “primitive”
functions in a few simple ways, for example, by adding or multiplying functions together
to get new, more complicated functions. To make good use of the information provided by
f ′(x) we need to be able to compute it for a variety of such functions.

We will begin to use different notations for the derivative of a function. While initially
confusing, each is often useful so it is worth maintaining multiple versions of the same thing.

Consider again the function f(x) =
√
625− x2. We have computed the derivative f ′(x) =

−x/
√
625− x2, and have already noted that if we use the alternate notation y =

√
625− x2

then we might write y′ = −x/
√
625− x2. Another notation is quite different, and in time it

will become clear why it is often a useful one. Recall that to compute the the derivative of
f we computed

lim
∆x→0

√

625− (7 + ∆x)2 − 24

∆x
.

The denominator here measures a distance in the x direction, sometimes called the “run”,
and the numerator measures a distance in the y direction, sometimes called the “rise,” and
“rise over run” is the slope of a line. Recall that sometimes such a numerator is abbreviated
∆y, exchanging brevity for a more detailed expression. So in general, we define a derivative
by the following equation.
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Definition 4.2: Defnition of Derivative

The derivative of y = f(x) with respect to x is

y′ = lim
∆x→0

∆y

∆x
.

Some textbooks use h in place of ∆x in the definition of derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

To recall the form of the limit, we sometimes say instead that

dy

dx
= lim

∆x→0

∆y

∆x
.

In other words, dy/dx is another notation for the derivative, and it reminds us that it is
related to an actual slope between two points. This notation is called Leibniz notation,
after Gottfried Leibniz, who developed the fundamentals of calculus independently, at about
the same time that Isaac Newton did. Again, since we often use f and f(x) to mean the
original function, we sometimes use df/dx and df(x)/dx to refer to the derivative. If the
function f(x) is written out in full we often write the last of these something like this

f ′(x) =
d

dx

√
625− x2

with the function written to the side, instead of trying to fit it into the numerator.

Example 4.3: Derivative of y = t2

Find the derivative of y = f(t) = t2.

Solution. We compute

y′ = lim
∆t→0

∆y

∆t

= lim
∆t→0

(t+∆t)2 − t2

∆t

= lim
∆t→0

t2 + 2t∆t +∆t2 − t2

∆t

= lim
∆t→0

2t∆t+∆t2

∆t

= lim
∆t→0

2t+∆t = 2t.

♣
Remember that ∆t is a single quantity, not a “∆” times a “t”, and so ∆t2 is (∆t)2 not

∆(t2). Doing the same example using the second formula for the derivative with t in place
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of x gives the following. Note that we compute f(t + h) by substituting t + h in place of t
everywhere we see t in the expression f(t), while making no other changes (at least initially).
For example, if f(t) = t+

√

(t + 3)2 − t then f(t+h) = (t+h)+
√

((t+ h) + 3)2 − (t+ h) =

t+ h +
√

(t + h+ 3)2 − t− h

Example 4.4: Derivative of y = t2

Find the derivative of y = f(t) = t2.

Solution. We compute

f ′(t) = lim
h→0

f(t+ h)− f(t)

h

= lim
h→0

(t+ h)2 − t2

h

= lim
h→0

t2 + 2th + h2 − t2

h

= lim
h→0

2th+ h2

h

= lim
h→0

2t+ h = 2t.

♣

Example 4.5: Derivative

Find the derivative of y = f(x) = 1/x.

Solution. The computation:

y′ = lim
∆x→0

∆y

∆x

= lim
∆x→0

1
x+∆x

− 1
x

∆x

= lim
∆x→0

x
x(x+∆x)

− x+∆x
x(x+∆x)

∆x

= lim
∆x→0

x−(x+∆x)
x(x+∆x)

∆x

= lim
∆x→0

x− x−∆x

x(x+∆x)∆x

= lim
∆x→0

−∆x

x(x+∆x)∆x
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= lim
∆x→0

−1
x(x+∆x)

=
−1
x2

♣
Note: If you happen to know some “derivative formulas” from an earlier course, for the

time being you should pretend that you do not know them. In examples like the ones above
and the exercises below, you are required to know how to find the derivative formula starting
from basic principles. We will later develop some formulas so that we do not always need to
do such computations, but we will continue to need to know how to do the more involved
computations.

To recap, given any function f and any number x in the domain of f , we define f ′(x) =

limh→0
f(x+h)−f(x)

h
wherever this limit exists, and we call the number f ′(x) the derivative of

f at x. Geometrically, f ′(x) is the slope of the tangent line to the graph of f at the point
(x, f(x)). The following symbols also represent the derivative:

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
f(x).

The symbol d/dx is called a differential operator which means to take the derivative of the
function f(x) with respect to the variable x.

In the next example we emphasize the geometrical interpretation of derivative.

Example 4.6: Geometrical Interpretation of Derivative

Consider the function f(x) given by the graph below. Verify that the graph of f ′(x)
is indeed the derivative of f(x) by analyzing slopes of tangent lines to the graph at
different points.

x

y

f(x)

f '(x)

Solution. We must think about the tangent lines to the graph of f , because the slopes of
these lines are the values of f ′(x).

We start by checking the graph of f for horizontal tangent lines, since horizontal lines
have a slope of 0. We find that the tangent line is horizontal at the points where x has the
values -1.9 and 1.8 (approximately). At each of these values of x, we must have f ′(x) = 0,
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which means that the graph of f ′ has an x-intercept (a point where the graph intersects the
x-axis).

Note that horizontal tangent lines have a slope of zero and these occur approximately
at the points (−1.9,−3.2) and (1.8, 3.2) of the graph. Therefore f ′(x) will cross the x-axis
when x = −1.9 and x = 1.8.

Analyzing the slope of the tangent line of f(x) at x = 0 gives approximately 3.0, thus,
f ′(0) = 3.0. Similarly, analyzing the slope of the tangent lines of f(x) at x = 1 and x = −1
give approximately 2.0 for both, thus, f ′(1) = f ′(−1) = 2.0. ♣

In the next example we verify that the slope of a straight line is m.

Example 4.7: Derivative of a Linear Function

Let m, b be any two real numbers. Determine f ′(x) if f(x) = mx+ b.

Solution. By the definition of derivative (using h in place of ∆x) we have,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(m(x+ h) + b)− (mx+ b)

h

= lim
h→0

mh

h
= lim

h→0
m = m.

This is not surprising. We know that f ′(x) always represents the slope of a tangent line
to the graph of f . In this example, since the graph of f is a straight line y = mx+ b already,
every tangent line is the same line y = mx + b. Since this line has a slope of m, we must
have f ′(x) = m. ♣

Exercises for Section 4.2

Exercise 4.2.1. Find the derivatives of the following functions.
a) y = f(x) =

√
169− x2

b) y = f(t) = 80−4.9t2
c) y = f(x) = x2−(1/x)
d) y = f(x) = ax2+bx+c, where a, b, and c are constants.
e) y = f(x) = x3

f) y = f(x) = 2/
√
2x+ 1

g) y = g(t) = (2t−1)/(t+2)

Exercise 4.2.2. Shown is the graph of a function f(x). Sketch the graph of f ′(x) by esti-
mating the derivative at a number of points in the interval: estimate the derivative at regular
intervals from one end of the interval to the other, and also at “special” points, as when the
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derivative is zero. Make sure you indicate any places where the derivative does not exist.
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Exercise 4.2.3. Shown is the graph of a function f(x). Sketch the graph of f ′(x) by esti-
mating the derivative at a number of points in the interval: estimate the derivative at regular
intervals from one end of the interval to the other, and also at “special” points, as when the
derivative is zero. Make sure you indicate any places where the derivative does not exist.
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Exercise 4.2.4. Find an equation for the tangent line to the graph of f(x) = 5−x− 3x2 at
the point x = 2

Exercise 4.2.5. Find a value for a so that the graph of f(x) = x2 + ax− 3 has a horizontal
tangent line at x = 4.
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4.2. THE DERIVATIVE FUNCTION

4.2.1. Differentiable

Now that we have introduced the derivative of a function at a point, we can begin to use
the adjective differentiable.

Definition 4.8: Differentiable at a Point

A function f is differentiable at point a if f ′(a) exists.

Definition 4.9: Differentiable on an Interval

A function f is differentiable on an open interval if it is differentiable at every point
in the interval.

Sometimes one encounters a point in the domain of a function y = f(x) where there is
no derivative, because there is no tangent line. In order for the notion of the tangent line
at a point to make sense, the curve must be “smooth” at that point. This means that if you
imagine a particle traveling at some steady speed along the curve, then the particle does
not experience an abrupt change of direction. There are two types of situations you should
be aware of—corners and cusps—where there’s a sudden change of direction and hence no
derivative.

Example 4.10: Derivative of the Absolute Value

Discuss the derivative of the absolute value function y = f(x) = |x|.

Solution. If x is positive, then this is the function y = x, whose derivative is the constant 1.
(Recall that when y = f(x) = mx + b, the derivative is the slope m.) If x is negative, then
we’re dealing with the function y = −x, whose derivative is the constant −1. If x = 0, then
the function has a corner, i.e., there is no tangent line. A tangent line would have to point
in the direction of the curve—but there are two directions of the curve that come together
at the origin.

x

y

f(x)=|x|

We can summarize this as

y′ =







1, if x > 0,
−1, if x < 0,

undefined, if x = 0.

In particular, the absolute value function f(x) = |x| is not differentiable at x = 0. ♣
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We note that the following theorem can be proved using limits.

Theorem 4.11: Differentiable implies Continuity

If f is differentiable at a, then f is continuous at a.

However, if f is continuous at a it is not necessarily true that f is differentiable at a. For
example, it was shown that f(x) = |x| is not differentiable at x = 0 in the previous example,
however, one can observe that f(x) = |x| is continuous everywhere.

Example 4.12: Derivative of y = x2/3

Discuss the derivative of the function y = x2/3, shown in figure 4.2.

Solution. We will later see how to compute this derivative; for now we use the fact that
y′ = (2/3)x−1/3. Visually this looks much like the absolute value function, but it technically
has a cusp, not a corner. The absolute value function has no tangent line at 0 because there
are (at least) two obvious contenders—the tangent line of the left side of the curve and the
tangent line of the right side. The function y = x2/3 does not have a tangent line at 0, but
unlike the absolute value function it can be said to have a single direction: as we approach
0 from either side the tangent line becomes closer and closer to a vertical line; the curve is
vertical at 0. But as before, if you imagine traveling along the curve, an abrupt change in
direction is required at 0: a full 180 degree turn. ♣
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Figure 4.2: A cusp on x2/3.

In practice we won’t worry much about the distinction between these examples; in both
cases the function has a “sharp point” where there is no tangent line and no derivative.

4.2.2. Second and Other Derivatives

If f is a differentiable function then its derivative f ′ is also a function and so we can take
the derivative of f ′. The new function, denoted by f ′′, is called the second derivative of
f , since it is the derivative of the derivative of f .

The following symbols represent the second derivative:

f ′′(x) = y′′ =
d2y

dx2
=

d

dx

(

dy

dx

)

.
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We can continue this process to get the third derivative of f .
In general, the nth derivative of f is denoted by f (n) and is obtained from f by differ-

entiating n times. If y = f(x), then we write:

y(n) = f (n)(x) =
dny

dxn
.

4.2.3. Velocities

Suppose f(t) is a position function of an object, representing the displacement of the object
from the origin at time t. In terms of derivatives, the velocity of an object is:

v(a) = f ′(a)

The change of velocity with respect to time is called the acceleration and can be found as
follows:

a(t) = v′(t) = f ′′(t).

Acceleration is the derivative of the velocity function and the second derivative of the posi-
tion function.

Example 4.13: Position, Velocity and Acceleration

Suppose the position function of an object is f(t) = t2 metres at t seconds. Find the
velocity and acceleration of the object at time t = 1s.

Solution. By the definition of velocity and acceleration we need to compute f ′(t) and f ′′(t).
Using the definition of derivative, we have,

f ′(t) = lim
h→0

(t+ h)2 − t2

h
= lim

h→0

2th + h2

h
= lim

h→0
(2t+ h) = 2t.

Therefore, v(t) = f ′(t) = 2t. Thus, the velocity at time t = 1 is v(1) = 2 m/s. We now have
that the acceleration at time t is:

a(t) = f ′′(t) = lim
h→0

2(t+ h)− 2t

h
= lim

h→0

2h

h
= 2.

Therefore, a(t) = 2. Substituting t = 1 into the function a(t) gives a(1) = 2 m/s2. ♣

4.3 Derivative Rules

Using the definition of the derivative of a function is quite tedious. In this section we
introduce a number of different shortcuts that can be used to compute the derivative. Recall
that the definition of derivative is:

Given any number x for which the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
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exists, we assign to x the number f ′(x).
Next, we give some basic derivative rules for finding derivatives without having to use

the limit definition directly.

Theorem 4.14: Derivative of a Constant Function

Let c be a constant, then
d

dx
(c) = 0.

Proof. Let f(x) = c be a constant function. By the definition of derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0
0 = 0.

♣

Example 4.15: Derivative of a Constant Function

The derivative of f(x) = 17 is f ′(x) = 0 since the derivative of a constant is 0.

Theorem 4.16: The Power Rule

If n is a positive integer, then
d

dx
(xn) = nxn−1.

Proof. We use the formula:

xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

which can be verified by mulitplying out the right side. Let f(x) = xn be a power function
for some positive integer n. Then at any number a we have:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

xn − an

x− a
= lim

x→a
(xn−1 + xn−2a+ · · ·+ xan−2 + an−1) = nan−1.

♣
It turns out that the Power Rule holds for any real number n (though it is a bit more

difficult to prove).

Theorem 4.17: The Power Rule (General)

If n is any real number, then
d

dx
(xn) = nxn−1.
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Example 4.18: Derivative of a Power Function

By the power rule, the derivative of g(x) = x4 is g′(x) = 4x3.

Theorem 4.19: The Constant Multiple Rule

If c is a constant and f is a differentiable function, then

d

dx
[cf(x)] = c

d

dx
f(x).

Proof. For convenience let g(x) = cf(x). Then:

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

cf(x+ h)− cf(x)

h

= lim
h→0

c

[

f(x+ h)− f(x)

h

]

= c lim
h→0

f(x+ h)− f(x)

h
= cf ′(x),

where c can be moved in front of the limit by the Limit Rules. ♣

Example 4.20: Derivative of a Multiple of a Function

By the constant multiple rule and the previous example, the derivative of F (x) =
2 · (17 + x4) is

F ′(x) = 2(4x3) = 8x3.

Theorem 4.21: The Sum/Difference Rule

If f and g are both differentiable functions, then

d

dx
[f(x)± g(x)] =

d

dx
f(x)± d

dx
g(x).

Proof. For convenience let r(x) = f(x)± g(x). Then:

r′(x) = lim
h→0

r(x+ h)− r(x)

h

= lim
h→0

[f(x+ h)± g(x+ h)]− [f(x)± g(x)]

h

= lim
h→0

[

f(x+ h)− f(x)

h
± g(x+ h)− g(x)

h

]

= lim
h→0

f(x+ h)− f(x)

h
± lim

h→0

g(x+ h)− g(x)

h

= f ′(x) + g′(x)
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♣

Example 4.22: Derivative of a Sum/Difference of Functions

By the sum/difference rule, the derivative of h(x) = 17 + x4 is

h′(x) = f ′(x) + g′(x) = 0 + 4x3 = 4x3.

Theorem 4.23: The Product Rule

If f and g are both differentiable functions, then

d

dx
[f(x) · g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)].

Proof. For convenience let r(x) = f(x) · g(x). As in the previous proof, we want to separate
the functions f and g. The trick is to add and subtract f(x + h)g(x) in the numerator.
Then:

r′(x) = lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

[

f(x+ h)
g(x+ h)− g(x)

h
+ g(x)

f(x+ h)− f(x)

h

]

= lim
h→0

f(x+ h) · lim
h→0

g(x+ h)− g(x)

h
+ lim

h→0
g(x) · lim

h→0

f(x+ h)− f(x)

h

= f(x)g′(x) + g(x)f ′(x)

♣

Example 4.24: Derivative of a Product of Functions

Find the derivative of h(x) = (3x− 1)(2x+ 3).

Solution. One way to do this question is to expand the expression. Alternatively, we use
the product rule with f(x) = 3x− 1 and g(x) = 2x+ 3. Note that f ′(x) = 3 and g′(x) = 2,
so,

h′(x) = (3) · (2x+ 3) + (3x− 1) · (2) = 6x+ 9 + 6x− 2 = 12x+ 7.

♣
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Theorem 4.25: The Quotient Rule

If f and g are both differentiable functions, then

d

dx

[

f(x)

g(x)

]

=
g(x) d

dx
[f(x)]− f(x) d

dx
[g(x)]

[g(x)]2
.

Proof. The proof is similar to the previous proof but the trick is to add and subtract the
term f(x)g(x) in the numerator. We omit the details. ♣

Example 4.26: Derivative of a Quotient of Functions

Find the derivative of h(x) =
3x− 1

2x+ 3
.

Solution. By the quotient rule (using f(x) = 3x− 1 and g(x) = 2x+ 3) we have:

h′(x) =
d
dx
(3x− 1) · (2x+ 3)− (3x− 1) · d

dx
(2x+ 3)

(2x+ 3)2

=
3(2x+ 3)− (3x− 1)(2)

(2x+ 3)2
=

11

(2x+ 3)2
.

♣

Example 4.27: Second Derivative

Find the second derivative of f(x) = 5x3 + 3x2.

Solution. We must differentiate f(x) twice:

f ′(x) = 15x2 + 6x,

f ′′(x) = 30x+ 6.

♣

Exercises for Section 4.3

Exercise 4.3.1. Find the derivatives of the following functions.
a) x100 f) x−9/7 k)

√
625− x2 + 3x3 + 12

b) x−100 g) 5x3 + 12x2 − 15 l) x3(x3 − 5x+ 10)

c)
1

x5
h) −4x5 + 3x2 − 5/x2 m) (x2 + 5x− 3)(x5)

d) xπ i) 5(−3x2 + 5x+ 1) n)
√
x
√
625− x2y)cot x

e) x3/4 j) (x+ 1)(x2 + 2x− 3) o)

√
625− x2

x20
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Exercise 4.3.2. Find an equation for the tangent line to f(x) = x3/4− 1/x at x = −2.

Exercise 4.3.3. Find an equation for the tangent line to f(x) = 3x2 − π3 at x = 4.

Exercise 4.3.4. Suppose the position of an object at time t is given by f(t) = −49t2/10 +
5t + 10. Find a function giving the speed of the object at time t. The acceleration of an
object is the rate at which its speed is changing, which means it is given by the derivative of
the speed function. Find the acceleration of the object at time t.

Exercise 4.3.5. Let f(x) = x3 and c = 3. Sketch the graphs of f , cf , f ′, and (cf)′ on the
same diagram.

Exercise 4.3.6. The general polynomial P of degree n in the variable x has the form P (x) =
n
∑

k=0

akx
k = a0 + a1x+ . . .+ anx

n. What is the derivative (with respect to x) of P?

Exercise 4.3.7. Find a cubic polynomial whose graph has horizontal tangents at (−2, 5) and
(2, 3).

Exercise 4.3.8. Prove that
d

dx
(cf(x)) = cf ′(x) using the definition of the derivative.

Exercise 4.3.9. Suppose that f and g are differentiable at x. Show that f−g is differentiable
at x using the two linearity properties from this section.

Exercise 4.3.10. Use the product rule to compute the derivative of f(x) = (2x−3)2. Sketch
the function. Find an equation of the tangent line to the curve at x = 2. Sketch the tangent
line at x = 2.

Exercise 4.3.11. Suppose that f , g, and h are differentiable functions. Show that (fgh)′(x) =
f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x).

Exercise 4.3.12. Compute the derivative of
x3

x3 − 5x+ 10
.

Exercise 4.3.13. Compute the derivative of
x2 + 5x− 3

x5 − 6x3 + 3x2 − 7x+ 1
.

Exercise 4.3.14. Compute the derivative of

√
x√

625− x2
.

Exercise 4.3.15. Compute the derivative of

√
625− x2

x20
.

Exercise 4.3.16. Find an equation for the tangent line to f(x) = (x2−4)/(5−x) at x = 3.

Exercise 4.3.17. Find an equation for the tangent line to f(x) = (x− 2)/(x3 + 4x− 1) at
x = 1.

Exercise 4.3.18. If f ′(4) = 5, g′(4) = 12, (fg)(4) = f(4)g(4) = 2, and g(4) = 6, compute

f(4) and
d

dx

f

g
at 4.
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4.4 Derivative Rules for Trigonometric Functions

We next look at the derivative of the sine function. In order to prove the derivative formula
for sine, we recall two limit computations from earlier:

lim
x→0

sin x

x
= 1 and lim

x→0

cos x− 1

x
= 0,

and the double angle formula

sin (A +B) = sinA cosB + sinB cosA.

Theorem 4.28: Derivative of Sine Function

(sin x)′ = cosx

Proof. Let f(x) = sin x. Using the definition of derivative we have:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

sin(x+ h)− sin x

h

= lim
h→0

sin x cos h+ cosx sin h− sin x

h

= lim
h→0

sin x · lim
h→0

cosh− 1

h
+ lim

h→0
cosx · lim

h→0

sin h

h

= sin x · 0 + cosx · 1

= cosx

since

lim
x→0

sin x

x
= 1 and lim

x→0

cosx− 1

x
= 0.

♣
A formula for the derivative of the cosine function can be found in a similar fashion:

d

dx
(cosx) = − sin x.

Using the quotient rule we get formulas for the remaining trigonometric ratios. To sum-
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marize, here are the derivatives of the six trigonometric functions:

d

dx
(sin(x)) = cos(x)

d

dx
(tan(x)) = sec2(x)

d

dx
(csc(x)) = − csc(x) sec(x)

d

dx
(cos(x)) = − sin(x)

d

dx
(cot(x)) = − csc2(x)

d

dx
(sec(x)) = sec(x) tan(x)

Example 4.29: Derivative of Product of Trigonometric Functions

Find the derivative of f(x) = sin x tan x.

Solution. Using the Product Rule we obtain

f ′(x) = cosx tan x+ sin x sec2 x.

♣

Exercises for Section 4.3

Exercise 4.4.1. Find the derivatives of the following functions.
a) sin x cosx b) cot x c) csc x− x tan x

Exercise 4.4.2. Find the points on the curve y = x+2 cosx that have a horizontal tangent
line.

4.5 The Chain Rule

Let h(x) =
√
625− x2. The rules stated previously do not allow us to find h′(x). However,

h(x) is a composition of two functions. Let f(x) =
√
x and g(x) = 625 − x2. Then we see

that
h(x) = (f ◦ g)(x).

From our rules we know that f ′(x) = 1
2
x−1/2 and g′(x) = −2x, thus it would be convenient

to have a rule which allows us to differentiate f ◦ g in terms of f ′ and g′. This gives rise to
the chain rule.

The Chain Rule

If g is differentiable at x and f is differentiable at g(x), then the composite function
h = f ◦ g [recall f ◦ g is defined as f(g(x))] is differentiable at x and h′(x) is given by:

h′(x) = f ′(g(x)) · g′(x).
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The chain rule has a particularly simple expression if we use the Leibniz notation for the
derivative. The quantity f ′(g(x)) is the derivative of f with x replaced by g; this can be
written df/dg. As usual, g′(x) = dg/dx. Then the chain rule becomes

df

dx
=

df

dg

dg

dx
.

This looks like trivial arithmetic, but it is not: dg/dx is not a fraction, that is, not literal
division, but a single symbol that means g′(x). Nevertheless, it turns out that what looks
like trivial arithmetic, and is therefore easy to remember, is really true.

It will take a bit of practice to make the use of the chain rule come naturally—it is more
complicated than the earlier differentiation rules we have seen.

Example 4.30: Chain Rule

Compute the derivative of
√
625− x2.

Solution. We already know that the answer is −x/
√
625− x2, computed directly from the

limit. In the context of the chain rule, we have f(x) =
√
x, g(x) = 625 − x2. We know

that f ′(x) = (1/2)x−1/2, so f ′(g(x)) = (1/2)(625 − x2)−1/2. Note that this is a two step
computation: first compute f ′(x), then replace x by g(x). Since g′(x) = −2x we have

f ′(g(x))g′(x) =
1

2
√
625− x2

(−2x) = −x√
625− x2

.

♣

Example 4.31: Chain Rule

Compute the derivative of 1/
√
625− x2.

Solution. This is a quotient with a constant numerator, so we could use the quotient rule,
but it is simpler to use the chain rule. The function is (625 − x2)−1/2, the composition of
f(x) = x−1/2 and g(x) = 625− x2. We compute f ′(x) = (−1/2)x−3/2 using the power rule,
and then

f ′(g(x))g′(x) =
−1

2(625− x2)3/2
(−2x) = x

(625− x2)3/2
.

♣
In practice, of course, you will need to use more than one of the rules we have developed

to compute the derivative of a complicated function.
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Example 4.32: Derivative of Quotient

Compute the derivative of

f(x) =
x2 − 1

x
√
x2 + 1

.

Solution. The “last” operation here is division, so to get started we need to use the quotient
rule first. This gives

f ′(x) =
(x2 − 1)′x

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)

=
2x2
√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)
.

Now we need to compute the derivative of x
√
x2 + 1. This is a product, so we use the product

rule:
d

dx
x
√
x2 + 1 = x

d

dx

√
x2 + 1 +

√
x2 + 1.

Finally, we use the chain rule:

d

dx

√
x2 + 1 =

d

dx
(x2 + 1)1/2 =

1

2
(x2 + 1)−1/2(2x) =

x√
x2 + 1

.

And putting it all together:

f ′(x) =
2x2
√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)
.

=

2x2
√
x2 + 1− (x2 − 1)

(

x
x√

x2 + 1
+
√
x2 + 1

)

x2(x2 + 1)
.

This can be simplified of course, but we have done all the calculus, so that only algebra is
left. ♣

Example 4.33: Chain of Composition

Compute the derivative of

√

1 +

√

1 +
√
x.

Solution. Here we have a more complicated chain of compositions, so we use the chain rule

twice. At the outermost “layer” we have the function g(x) = 1 +

√

1 +
√
x plugged into

f(x) =
√
x, so applying the chain rule once gives

d

dx

√

1 +

√

1 +
√
x =

1

2

(

1 +

√

1 +
√
x

)−1/2
d

dx

(

1 +

√

1 +
√
x

)

.
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Now we need the derivative of

√

1 +
√
x. Using the chain rule again:

d

dx

√

1 +
√
x =

1

2

(

1 +
√
x
)−1/2 1

2
x−1/2.

So the original derivative is

d

dx

√

1 +

√

1 +
√
x =

1

2

(

1 +

√

1 +
√
x

)−1/2
1

2

(

1 +
√
x
)−1/2 1

2
x−1/2.

=
1

8
√
x
√

1 +
√
x

√

1 +
√

1 +
√
x

♣
Using the chain rule, the power rule, and the product rule, it is possible to avoid using

the quotient rule entirely.

Example 4.34: Derivative of Quotient without Quotient Rule

Compute the derivative of f(x) =
x3

x2 + 1
.

Solution. Write f(x) = x3(x2 + 1)−1, then

f ′(x) = x3 d

dx
(x2 + 1)−1 + 3x2(x2 + 1)−1

= x3(−1)(x2 + 1)−2(2x) + 3x2(x2 + 1)−1

= −2x4(x2 + 1)−2 + 3x2(x2 + 1)−1

=
−2x4

(x2 + 1)2
+

3x2

x2 + 1

=
−2x4

(x2 + 1)2
+

3x2(x2 + 1)

(x2 + 1)2

=
−2x4 + 3x4 + 3x2

(x2 + 1)2
=

x4 + 3x2

(x2 + 1)2

Note that we already had the derivative on the second line; all the rest is simplification. It
is easier to get to this answer by using the quotient rule, so there’s a trade off: more work
for fewer memorized formulas. ♣

Exercises for Section 4.5

Find the derivatives of the functions. For extra practice, and to check your answers, do some
of these in more than one way if possible.
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Exercise 4.5.1. x4 − 3x3 + (1/2)x2 + 7x− π

Exercise 4.5.2. x3 − 2x2 + 4
√
x

Exercise 4.5.3. (x2 + 1)3

Exercise 4.5.4. x
√
169− x2

Exercise 4.5.5. (x2 − 4x+ 5)
√
25− x2

Exercise 4.5.6.
√
r2 − x2, r is a constant

Exercise 4.5.7.
√
1 + x4

Exercise 4.5.8.
1

√

5−√x
.

Exercise 4.5.9. (1 + 3x)2

Exercise 4.5.10.
(x2 + x+ 1)

(1− x)

Exercise 4.5.11.

√
25− x2

x

Exercise 4.5.12.

√

169

x
− x

Exercise 4.5.13.
√

x3 − x2 − (1/x)

Exercise 4.5.14. 100/(100− x2)3/2

Exercise 4.5.15.
3
√
x+ x3

Exercise 4.5.16.

√

(x2 + 1)2 +
√

1 + (x2 + 1)2

Exercise 4.5.17. (x+ 8)5

Exercise 4.5.18. (4− x)3

Exercise 4.5.19. (x2 + 5)3

Exercise 4.5.20. (6− 2x2)3

Exercise 4.5.21. (1− 4x3)−2

Exercise 4.5.22. 5(x+ 1− 1/x)

Exercise 4.5.23. 4(2x2 − x+ 3)−2

Exercise 4.5.24.
1

1 + 1/x

Exercise 4.5.25.
−3

4x2 − 2x+ 1
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Exercise 4.5.26. (x2 + 1)(5− 2x)/2

Exercise 4.5.27. (3x2 + 1)(2x− 4)3

Exercise 4.5.28.
x+ 1

x− 1

Exercise 4.5.29.
x2 − 1

x2 + 1

Exercise 4.5.30.
(x− 1)(x− 2)

x− 3

Exercise 4.5.31.
2x−1 − x−2

3x−1 − 4x−2

Exercise 4.5.32. 3(x2 + 1)(2x2 − 1)(2x+ 3)

Exercise 4.5.33.
1

(2x+ 1)(x− 3)

Exercise 4.5.34. ((2x+ 1)−1 + 3)−1

Exercise 4.5.35. (2x+ 1)3(x2 + 1)2

Exercise 4.5.36. Find an equation for the tangent line to f(x) = (x− 2)1/3/(x3 + 4x− 1)2

at x = 1.

Exercise 4.5.37. Find an equation for the tangent line to y = 9x−2 at (3, 1).

Exercise 4.5.38. Find an equation for the tangent line to (x2 − 4x+ 5)
√
25− x2 at (3, 8).

Exercise 4.5.39. Find an equation for the tangent line to
(x2 + x+ 1)

(1− x)
at (2,−7).

Exercise 4.5.40. Find an equation for the tangent line to

√

(x2 + 1)2 +
√

1 + (x2 + 1)2 at

(1,

√

4 +
√
5).

4.6 Derivatives of the Exponential and Loga-
rithmic Functions

As with the sine function, we don’t know anything about derivatives that allows us to
compute the derivatives of the exponential and logarithmic functions without going back to
basics. Let’s do a little work with the definition again:

d

dx
ax = lim

∆x→0

ax+∆x − ax

∆x
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= lim
∆x→0

axa∆x − ax

∆x

= lim
∆x→0

ax
a∆x − 1

∆x

= ax lim
∆x→0

a∆x − 1

∆x

There are two interesting things to note here: As in the case of the sine function we are left
with a limit that involves ∆x but not x, which means that if lim

∆x→0
(a∆x− 1)/∆x exists, then

it is a constant number. This means that ax has a remarkable property: its derivative is a
constant times itself.

We earlier remarked that the hardest limit we would compute is lim
x→0

sin x/x = 1; we now

have a limit that is just a bit too hard to include here. In fact the hard part is to see that
lim

∆x→0
(a∆x − 1)/∆x even exists—does this fraction really get closer and closer to some fixed

value? Yes it does, but we will not prove this fact.
We can look at some examples. Consider (2x − 1)/x for some small values of x: 1,

0.828427124, 0.756828460, 0.724061864, 0.70838051, 0.70070877 when x is 1, 1/2, 1/4, 1/8,
1/16, 1/32, respectively. It looks like this is settling in around 0.7, which turns out to be true
(but the limit is not exactly 0.7). Consider next (3x − 1)/x: 2, 1.464101616, 1.264296052,
1.177621520, 1.13720773, 1.11768854, at the same values of x. It turns out to be true that
in the limit this is about 1.1. Two examples don’t establish a pattern, but if you do more
examples you will find that the limit varies directly with the value of a: bigger a, bigger
limit; smaller a, smaller limit. As we can already see, some of these limits will be less than
1 and some larger than 1. Somewhere between a = 2 and a = 3 the limit will be exactly 1;
the value at which this happens is called e, so that

lim
∆x→0

e∆x − 1

∆x
= 1.

As you might guess from our two examples, e is closer to 3 than to 2, and in fact e ≈ 2.718.
Now we see that the function ex has a truly remarkable property:

d

dx
ex = lim

∆x→0

ex+∆x − ex

∆x

= lim
∆x→0

exe∆x − ex

∆x

= lim
∆x→0

ex
e∆x − 1

∆x

= ex lim
∆x→0

e∆x − 1

∆x

= ex

That is, ex is its own derivative, or in other words the slope of ex is the same as its height, or
the same as its second coordinate: The function f(x) = ex goes through the point (z, ez) and
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has slope ez there, no matter what z is. It is sometimes convenient to express the function
ex without an exponent, since complicated exponents can be hard to read. In such cases we
use exp(x), e.g., exp(1 + x2) instead of e1+x2

.
What about the logarithm function? This too is hard, but as the cosine function was

easier to do once the sine was done, so is the logarithm easier to do now that we know the
derivative of the exponential function. Let’s start with loge x, which as you probably know
is often abbreviated ln x and called the “natural logarithm” function.

Consider the relationship between the two functions, namely, that they are inverses, that
one “undoes” the other. Graphically this means that they have the same graph except that
one is “flipped” or “reflected” through the line y = x:
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Figure 4.3: The exponential and logarithmic functions.

This means that the slopes of these two functions are closely related as well: For example,
the slope of ex is e at x = 1; at the corresponding point on the ln(x) curve, the slope must
be 1/e, because the “rise” and the “run” have been interchanged. Since the slope of ex is e
at the point (1, e), the slope of ln(x) is 1/e at the point (e, 1).
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Figure 4.4: The exponential and logarithmic functions.

More generally, we know that the slope of ex is ez at the point (z, ez), so the slope of ln(x)
is 1/ez at (ez, z). In other words, the slope of ln x is the reciprocal of the first coordinate at
any point; this means that the slope of ln x at (x, ln x) is 1/x. The upshot is:

d

dx
ln x =

1

x
.

We have discussed this from the point of view of the graphs, which is easy to understand but
is not normally considered a rigorous proof—it is too easy to be led astray by pictures that
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seem reasonable but that miss some hard point. It is possible to do this derivation without
resorting to pictures, and indeed we will see an alternate approach soon.

Note that ln x is defined only for x > 0. It is sometimes useful to consider the function
ln |x|, a function defined for x 6= 0. When x < 0, ln |x| = ln(−x) and

d

dx
ln |x| = d

dx
ln(−x) = 1

−x(−1) =
1

x
.

Thus whether x is positive or negative, the derivative is the same.
What about the functions ax and loga x? We know that the derivative of ax is some

constant times ax itself, but what constant? Remember that “the logarithm is the exponent”
and you will see that a = elna. Then

ax = (eln a)x = ex ln a,

and we can compute the derivative using the chain rule:

d

dx
ax =

d

dx
(eln a)x =

d

dx
ex lna = (ln a)ex ln a = (ln a)ax.

The constant is simply ln a. Likewise we can compute the derivative of the logarithm function
loga x. Since

x = elnx

we can take the logarithm base a of both sides to get

loga(x) = loga(e
lnx) = ln x loga e.

Then
d

dx
loga x =

1

x
loga e.

This is a perfectly good answer, but we can improve it slightly. Since

a = elna

loga(a) = loga(e
ln a) = ln a loga e

1 = ln a loga e
1

ln a
= loga e,

we can replace loga e to get
d

dx
loga x =

1

x ln a
.

You may if you wish memorize the formulas.

Derivative Formulas for ax and loga x

d

dx
ax = (ln a)ax and

d

dx
loga x =

1

x ln a
.

Because the “trick” a = eln a is often useful, and sometimes essential, it may be better to
remember the trick, not the formula.
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4.6. DERIVATIVES OF THE EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

Example 4.35: Derivative of Exponential Function

Compute the derivative of f(x) = 2x.

Solution.

d

dx
2x =

d

dx
(eln 2)x

=
d

dx
ex ln 2

=

(

d

dx
x ln 2

)

ex ln 2

= (ln 2)ex ln 2 = 2x ln 2

♣

Example 4.36: Derivative of Exponential Function

Compute the derivative of f(x) = 2x
2

= 2(x
2).

Solution.

d

dx
2x

2

=
d

dx
ex

2 ln 2

=

(

d

dx
x2 ln 2

)

ex
2 ln 2

= (2 ln 2)xex
2 ln 2

= (2 ln 2)x2x
2

♣

Example 4.37: Power Rule

Recall that we have not justified the power rule except when the exponent is a positive
or negative integer.

Solution. We can use the exponential function to take care of other exponents.

d

dx
xr =

d

dx
er lnx

=

(

d

dx
r ln x

)

er lnx
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= (r
1

x
)xr

= rxr−1

♣

Exercises for Section 4.6

Find the derivatives of the functions.

Exercise 4.6.1. 3x
2

Exercise 4.6.2.
sin x

ex

Exercise 4.6.3. (ex)2

Exercise 4.6.4. sin(ex)

Exercise 4.6.5. esinx

Exercise 4.6.6. xsinx

Exercise 4.6.7. x3ex

Exercise 4.6.8. x+ 2x

Exercise 4.6.9. (1/3)x
2

Exercise 4.6.10. e4x/x

Exercise 4.6.11. ln(x3 + 3x)

Exercise 4.6.12. ln(cos(x))

Exercise 4.6.13.
√

ln(x2)/x

Exercise 4.6.14. ln(sec(x) + tan(x))

Exercise 4.6.15. xcos(x)

Exercise 4.6.16. x ln x

Exercise 4.6.17. ln(ln(3x))

Exercise 4.6.18.
1 + ln(3x2)

1 + ln(4x)

Exercise 4.6.19.
x8(x− 23)1/2

27x6(4x− 6)8

Exercise 4.6.20. Find the value of a so that the tangent line to y = ln(x) at x = a is a line
through the origin. Sketch the resulting situation.

Exercise 4.6.21. If f(x) = ln(x3 + 2) compute f ′(e1/3).

Exercise 4.6.22. If y = loga x then ay = x. Use implicit differentiation to find y′.
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4.7 Implicit Differentiation

As we have seen, there is a close relationship between the derivatives of ex and lnx because
these functions are inverses. Rather than relying on pictures for our understanding, we would
like to be able to exploit this relationship computationally. In fact this technique can help
us find derivatives in many situations, not just when we seek the derivative of an inverse
function.

We will begin by illustrating the technique to find what we already know, the derivative of
ln x. Let’s write y = ln x and then x = elnx = ey, that is, x = ey. We say that this equation
defines the function y = ln x implicitly because while it is not an explicit expression y = . . .,
it is true that if x = ey then y is in fact the natural logarithm function. Now, for the time
being, pretend that all we know of y is that x = ey; what can we say about derivatives? We
can take the derivative of both sides of the equation:

d

dx
x =

d

dx
ey.

Then using the chain rule on the right hand side:

1 =

(

d

dx
y

)

ey = y′ey.

Then we can solve for y′:

y′ =
1

ey
=

1

x
.

There is one little difficulty here. To use the chain rule to compute d/dx(ey) = y′ey we need
to know that the function y has a derivative. All we have shown is that if it has a derivative
then that derivative must be 1/x. When using this method we will always have to assume
that the desired derivative exists, but fortunately this is a safe assumption for most such
problems.

The example y = ln x involved an inverse function defined implicitly, but other functions
can be defined implicitly, and sometimes a single equation can be used to implicitly define
more than one function.

Here’s a familiar example.

Example 4.38: Derivative of Circle Equation

The equation r2 = x2 + y2 describes a circle of radius r. The circle is not a function
y = f(x) because for some values of x there are two corresponding values of y. If we
want to work with a function, we can break the circle into two pieces, the upper and
lower semicircles, each of which is a function. Let’s call these y = U(x) and y = L(x);
in fact this is a fairly simple example, and it’s possible to give explicit expressions for
these: U(x) =

√
r2 − x2 and L(x) = −

√
r2 − x2 . But it’s somewhat easier, and quite

useful, to view both functions as given implicitly by r2 = x2+y2: both r2 = x2+U(x)2
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and r2 = x2 + L(x)2 are true, and we can think of r2 = x2 + y2 as defining both U(x)
and L(x).
Now we can take the derivative of both sides as before, remembering that y is not
simply a variable but a function—in this case, y is either U(x) or L(x) but we’re not
yet specifying which one. When we take the derivative we just have to remember to
apply the chain rule where y appears.

d

dx
r2 =

d

dx
(x2 + y2)

0 = 2x+ 2yy′

y′ =
−2x
2y

= −x
y

Now we have an expression for y′, but it contains y as well as x. This means that if
we want to compute y′ for some particular value of x we’ll have to know or compute
y at that value of x as well. It is at this point that we will need to know whether y is
U(x) or L(x). Occasionally it will turn out that we can avoid explicit use of U(x) or
L(x) by the nature of the problem.

Example 4.39: Slope of the Circle

Find the slope of the circle 4 = x2 + y2 at the point (1,−
√
3).

Solution. Since we know both the x and y coordinates of the point of interest, we do not
need to explicitly recognize that this point is on L(x), and we do not need to use L(x) to
compute y – but we could. Using the calculation of y′ from above,

y′ = −x
y
= − 1

−
√
3
=

1√
3
.

It is instructive to compare this approach to others.
We might have recognized at the start that (1,−

√
3) is on the function y = L(x) =

−
√
4− x2. We could then take the derivative of L(x), using the power rule and the chain

rule, to get

L′(x) = −1
2
(4− x2)−1/2(−2x) = x√

4− x2
.

Then we could compute L′(1) = 1/
√
3 by substituting x = 1.

Alternately, we could realize that the point is on L(x), but use the fact that y′ = −x/y.
Since the point is on L(x) we can replace y by L(x) to get

y′ = − x

L(x)
= − x√

4− x2
,

without computing the derivative of L(x) explicitly. Then we substitute x = 1 and get the
same answer as before. ♣
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In the case of the circle it is possible to find the functions U(x) and L(x) explicitly, but
there are potential advantages to using implicit differentiation anyway. In some cases it is
more difficult or impossible to find an explicit formula for y and implicit differentiation is
the only way to find the derivative.

Example 4.40: Derivative of Function defined Implicitly

Find the derivative of any function defined implicitly by yx2 + y2 = x.

Solution. We treat y as an unspecified function and use the chain rule:

d

dx
(yx2 + y2) =

d

dx
x

(y · 2x+ y′ · x2) + 2yy′ = 1

y′ · x2 + 2yy′ = −y · 2x
y′ =

−2xy
x2 + 2y

♣

Example 4.41: Derivative of Function defined Implicitly

Find the derivative of any function defined implicitly by yx2 + ey = x.

Solution. We treat y as an unspecified function and use the chain rule:

d

dx
(yx2 + ey) =

d

dx
x

(y · 2x+ y′ · x2) + y′ey = 1

y′x2 + y′ey = 1− 2xy

y′(x2 + ey) = 1− 2xy

y′ =
1− 2xy

x2 + ey

♣
You might think that the step in which we solve for y′ could sometimes be difficult—after

all, we’re using implicit differentiation here because we can’t solve the equation yx2+ ey = x
for y, so maybe after taking the derivative we get something that is hard to solve for y′. In
fact, this never happens. All occurrences y′ come from applying the chain rule, and whenever
the chain rule is used it deposits a single y′ multiplied by some other expression. So it will
always be possible to group the terms containing y′ together and factor out the y′, just as in
the previous example. If you ever get anything more difficult you have made a mistake and
should fix it before trying to continue.

It is sometimes the case that a situation leads naturally to an equation that defines a
function implicitly.
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Example 4.42: Equation and Derivative of Ellipse

Discuss the equation and derivative of the ellispe.

Solution. Consider all the points (x, y) that have the property that the distance from (x, y)
to (x1, y1) plus the distance from (x, y) to (x2, y2) is 2a (a is some constant). These points
form an ellipse, which like a circle is not a function but can be viewed as two functions
pasted together. Since we know how to write down the distance between two points, we can
write down an implicit equation for the ellipse:

√

(x− x1)2 + (y − y1)2 +
√

(x− x2)2 + (y − y2)2 = 2a.

Then we can use implicit differentiation to find the slope of the ellipse at any point, though
the computation is rather messy. ♣

Example 4.43: Derivative of Function defined Implicitly

Find
dy

dx
by implicit differentiation if

2x3 + x2y − y9 = 3x+ 4.

Solution. Differentiating both sides with respect to x gives:

6x2 +

(

2xy + x2 dy

dx

)

− 9y8
dy

dx
= 3,

x2 dy

dx
− 9y8

dy

dx
= 3− 6x2 − 2xy

(

x2 − 9y8
) dy

dx
= 3− 6x2 − 2xy

dy

dx
=

3− 6x2 − 2xy

x2 − 9y8
.

♣
In the previous examples we had functions involving x and y, and we thought of y as a

function of x. In these problems we differentiated with respect to x. So when faced with x’s
in the function we differentiated as usual, but when faced with y’s we differentiated as usual
except we multiplied by a dy

dx
for that term because we were using Chain Rule.

In the following example we will assume that both x and y are functions of t and want to
differentiate the equation with respect to t. This means that every time we differentiate an
x we will be using the Chain Rule, so we must multiply by dx

dt
, and whenever we differentiate

a y we multiply by dy
dt
.
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Example 4.44: Derivative of Function of an Additional Variable

Thinking of x and y as functions of t, differentiate the following equation with respect
to t:

x2 + y2 = 100.

Solution. Using the Chain Rule we have:

2x
dx

dt
+ 2y

dy

dt
= 0.

♣

Example 4.45: Derivative of Function of an Additional Variable

If y = x3 + 5x and
dx

dt
= 7, find

dy

dt
when x = 1.

Solution. Differentiating each side of the equation y = x3 + 5x with respect to t gives:

dy

dt
= 3x2dx

dt
+ 5

dx

dt
.

When x = 1 and dx
dt

= 7 we have:

dy

dt
= 3(12)(7) + 5(7) = 21 + 35 = 56.

♣

Logarithmic Differentiation

Previously we’ve seen how to do the derivative of a number to a function (af(x))′, and also a
function to a number [(f(x))n]′. But what about the derivative of a function to a function
[(f(x))g(x)]′?

In this case, we use a procedure known as logarithmic differentiation.

Steps for Logarithmic Differentiation

� Take ln of both sides of y = f(x) to get ln y = ln f(x) and simplify using
logarithm properties,

� Differentiate implicitly with respect to x and solve for
dy

dx
,

� Replace y with its function of x (i.e., f(x)).
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Example 4.46: Logarithmic Differentiation

Differentiate y = xx.

Solution. We take ln of both sides:

ln y = ln xx.

Using log properties we have:
ln y = x ln x.

Differentiating implicitly gives:
y′

y
= (1) ln x+ x

1

x
.

y′

y
= ln x+ 1.

Solving for y′ gives:
y′ = y(1 + ln x).

Replace y = xx gives:
y′ = xx(1 + ln x).

Another method to find this derivative is as follows:

d

dx
xx =

d

dx
ex lnx

=

(

d

dx
x ln x

)

ex lnx

= (x
1

x
+ lnx)xx

= (1 + lnx)xx

♣
In fact, logarithmic differentiation can be used on more complicated products and quo-

tients (not just when dealing with functions to the power of functions).

Example 4.47: Logarithmic Differentiation

Differentiate (assuming x > 0):

y =
(x+ 2)3(2x+ 1)9

x8(3x+ 1)4
.

Solution. Using product & quotient rules for this problem is a complete nightmare! Let’s
apply logarithmic differentiation instead. Take ln of both sides:

ln y = ln

(

(x+ 2)3(2x+ 1)9

x8(3x+ 1)4

)

.

136



4.7. IMPLICIT DIFFERENTIATION

Applying log properties:

ln y = ln
(

(x+ 2)3(2x+ 1)9
)

− ln
(

x8(3x+ 1)4
)

.

ln y = ln
(

(x+ 2)3
)

+ ln
(

(2x+ 1)9
)

−
[

ln
(

x8
)

+ ln
(

(3x+ 1)4
)]

.

ln y = 3 ln(x+ 2) + 9 ln(2x+ 1)− 8 lnx− 4 ln(3x+ 1).

Now, differentiating implicitly with respect to x gives:

y′

y
=

3

x+ 2
+

18

2x+ 1
− 8

x
− 12

3x+ 1
.

Solving for y′ gives:

y′ = y

(

3

x+ 2
+

18

2x+ 1
− 8

x
− 12

3x+ 1

)

.

Replace y = (x+2)3(2x+1)9

x8(3x+1)4
gives:

y′ =
(x+ 2)3(2x+ 1)9

x8(3x+ 1)4

(

3

x+ 2
+

18

2x+ 1
− 8

x
− 12

3x+ 1

)

.

♣

Exercises for Section 4.7

Exercise 4.7.1. Find a formula for the derivative y′ at the point (x, y):
a) y2 = 1 + x2 e)

√
x+
√
y = 9

b) x2 + xy + y2 = 7 f) tan(x/y) = x+ y
c) x3 + xy2 = y3 + yx2 g) sin(x+ y) = xy

d) 4 cosx sin y = 1 h)
1

x
+

1

y
= 7

Exercise 4.7.2. A hyperbola passing through (8, 6) consists of all points whose distance from
the origin is a constant more than its distance from the point (5,2). Find the slope of the
tangent line to the hyperbola at (8, 6).

Exercise 4.7.3. The graph of the equation x2 − xy + y2 = 9 is an ellipse. Find the lines
tangent to this curve at the two points where it intersects the x-axis. Show that these lines
are parallel.

Exercise 4.7.4. Repeat the previous problem for the points at which the ellipse intersects
the y-axis.

Exercise 4.7.5. Find the points on the ellipse from the previous two problems where the
slope is horizontal and where it is vertical.

Exercise 4.7.6. Find an equation for the tangent line to x4 = y2 + x2 at (2,
√
12). (This

curve is the kampyle of Eudoxus.)

137



CHAPTER 4. DERIVATIVES

Exercise 4.7.7. Find an equation for the tangent line to x2/3+y2/3 = a2/3 at a point (x1, y1)
on the curve, with x1 6= 0 and y1 6= 0. (This curve is an astroid.)

Exercise 4.7.8. Find an equation for the tangent line to (x2 + y2)2 = x2 − y2 at a point
(x1, y1) on the curve, with x1 6= 0,−1, 1. (This curve is a lemniscate.)

Exercise 4.7.9. Two curves are orthogonal if at each point of intersection, the angle
between their tangent lines is π/2. Two families of curves, A and B, are orthogonal
trajectories of each other if given any curve C in A and any curve D in B the curves C
and D are orthogonal. For example, the family of horizontal lines in the plane is orthogonal
to the family of vertical lines in the plane.

a) Show that x2 − y2 = 5 is orthogonal to 4x2 + 9y2 = 72. (Hint: You need to find the
intersection points of the two curves and then show that the product of the derivatives at
each intersection point is −1.)

b) Show that x2 + y2 = r2 is orthogonal to y = mx. Conclude that the family of circles
centered at the origin is an orthogonal trajectory of the family of lines that pass through the
origin.

Note that there is a technical issue when m = 0. The circles fail to be differentiable
when they cross the x-axis. However, the circles are orthogonal to the x-axis. Explain why.
Likewise, the vertical line through the origin requires a separate argument.

c) For k 6= 0 and c 6= 0 show that y2− x2 = k is orthogonal to yx = c. In the case where
k and c are both zero, the curves intersect at the origin. Are the curves y2 − x2 = 0 and
yx = 0 orthogonal to each other?

d) Suppose that m 6= 0. Show that the family of curves {y = mx+b | b ∈ R} is orthogonal
to the family of curves {y = −(x/m) + c | c ∈ R}.

4.8 Derivatives of Inverse Functions

Suppose we wanted to find the derivative of the inverse, but do not have an actual formula
for the inverse function? Then we can use the following derivative formula for the inverse
evaluated at a.

Derivative of f−1(a)

Given an invertible function f(x), the derivative of its inverse function f−1(x) evalu-
ated at x = a is:

[

f−1
]′
(a) =

1

f ′ [f−1(a)]

To see why this is true, start with the function y = f−1(x). Write this as x = f(y) and
differentiate both sides implicitly with respect to x using the chain rule:

1 = f ′(y) · dy
dx

.

Thus,
dy

dx
=

1

f ′(y)
,
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but y = f−1(x), thus,
[

f−1
]′
(x) =

1

f ′ [f−1(x)]
.

At the point x = a this becomes:

[

f−1
]′
(a) =

1

f ′ [f−1(a)]

Example 4.48: Derivatives of Inverse Functions

Suppose f(x) = x5 + 2x3 + 7x+ 1. Find [f−1]
′
(1).

Solution. It’s difficult to find the inverse of f(x) (and then take the derivative). Thus, we
use the above formula evaluated at 1:

[

f−1
]′
(1) =

1

f ′ [f−1(1)]
.

Note that to use this formula we need to know what f−1(1) is, and the derivative f ′(x). To
find f−1(1) we make a table of values (plugging in x = −3,−2,−1, 0, 1, 2, 3 into f(x)) and
see what value of x gives 1. We omit the table and simply observe that f(0) = 1. Thus,

f−1(1) = 0.

Now we have:
[

f−1
]′
(1) =

1

f ′ (0)
.

The derivative of f(x) is:
f ′(x) = 5x4 + 6x2 + 7.

And so, f ′(0) = 7. Therefore,
[

f−1
]′
(1) =

1

7
.

♣

Exercises for 4.8

Exercise 4.8.1. Given f(x) = 1 + ln(x− 2), compute [f−1]
′
(1).
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5. Applications of Derivatives

5.1 Linear and Higher Order Approximations

In this section we explore how to use the derivatives of a function to approximate some
values of f , some changes in the values of f , and also the roots of f .

5.1.1. Linear Approximations

We begin by the first derivative as an application of the tangent line to approximate f .
Recall that the tangent line to f(x) at a point x = a is given by

L(x) = f ′(a)(x− a) + f(a).

The tangent line in this context is also called the linear approximation to f at a.
If f is differentiable at a then L is a good approximation of f so long as x is “not too

far” from a. Put another way, if f is differentiable at a then under a microscope f will look
very much like a straight line, and thus will look very much like L; since L(x) is often much
easier to compute than f(x), then it makes sense to use L as an approximation. Figure 5.1
shows a tangent line to y = x2 at three different magnifications.

Figure 5.1: The linear approximation to y = x2.

Thus in practice if we want to approximate a difficult value of f(b), then we may be able
to approximate this value using a linear approximation, provided that we can compute the
tangent line at some point a close to b. Here is an example.

141



CHAPTER 5. APPLICATIONS OF DERIVATIVES

Example 5.1: Linear Approximation

Let f(x) =
√
x+ 4, what is f(6)?

Solution. We are asked to calculate f(6) =
√
6 + 4 =

√
10 which is not easy to do without a

calculator. However 9 is (relatively) close to 10 and of course f(5) =
√
9 is easy to compute,

and we use this to approximate
√
10.

To do so we have f ′(x) = 1/(2
√
x+ 4), and thus the linear approximation to f at x = 5

is

L(x) =

(

1

2
√
5 + 4

)

(x− 5) +
√
5 + 4 =

x− 5

6
+ 3.

Now to estimate
√
10, we substitute 6 into the linear approximation instead of f(x), to

obtain √
6 + 4 ≈ 6− 5

6
+ 3 =

19

6
= 31/6 = 3.16̄ ≈ 3.17

It turns out the exact value of
√
10 is actually 3.16227766. . . but our estimate of 3.17 was

very easy to obtain and is relatively accurate. This estimate is only accurate to one decimal
place. ♣

With modern calculators and computing software it may not appear necessary to use
linear approximations, but in fact they are quite useful. For example in cases requiring an
explicit numerical approximation, they allow us to get a quick estimate which can be used
as a “reality check” on a more complex calculation. Further in some complex calculations
involving functions, the linear approximation makes an otherwise intractable calculation pos-
sible without serious loss of accuracy.

Example 5.2: Linear Approximation of Sine

Find the linear approximation of sin x at x = 0, and use it to compute small values of
sin x.

Solution. If f(x) = sin x, then f ′(x) = cosx, and thus the linear approximation of sin x at
x = 0 is:

L(x) = cos(0)(x− 0) + sin(0) = x.

Thus when x is small this is quite a good approximation and is used frequently by engineers
and scientists to simplify some calculations.

For example you can use your calculator (in radian mode since the derivative of sin x is
cosx only in radian) to see that

sin(0.1) = 0.099833416 . . .

and thus L(0.1) = 0.1 is a very good and quick approximation without any calculator! ♣
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Exercises for 5.1.1

Exercise 5.1.1. Find the linearization L(x) of f(x) = ln(1 + x) at a = 0. Use this lin-
earization to approximate f(0.1).

Exercise 5.1.2. Use linear approximation to estimate (1.9)3.

Exercise 5.1.3. Show in detail that the linear approximation of sin x at x = 0 is L(x) = x
and the linear approximation of cos x at x = 0 is L(x) = 1.

Exercise 5.1.4. Use f(x) = 3
√
x+ 1 to approximate 3

√
9 by choosing an appropriate point

x = a. Are we over- or under-estimating the value of 3
√
9? Explain.

5.1.2. Differentials

Very much related to linear approximations are the differentials dx and dy, used not to
approximate values of f , but instead the change (or rise) in the values of f .

Definition 5.3: Differentials dx and dy

Let y = f(x) be a differentiable function. We define a new independent variable dx,
and a new dependent variable dy = f ′(x) dx. Notice that dy is a function both of x
(since f ′(x) is a function of x) and of dx. We call both dx and dy differentials.

Now fix a point a and let ∆x = x − a and ∆y = f(x) − f(a). If x is near a then ∆x is
clearly small. If we set dx = ∆x then we obtain

dy = f ′(a) dx ≈ ∆y

∆x
∆x = ∆y.

Thus, dy can be used to approximate ∆y, the actual change in the function f between a and
x. This is exactly the approximation given by the tangent line:

dy = f ′(a)(x− a) = f ′(a)(x− a) + f(a)− f(a) = L(x)− f(a).

While L(x) approximates f(x), dy approximates how f(x) has changed from f(a). Figure 5.2
illustrates the relationships.
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←−−− dx = ∆x −−−→
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∆y

|↓

↑|
dy

|↓

Figure 5.2: Differentials.
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Here is a concrete example.

Example 5.4: Rise of Natural Logarithm

Approximate the rise of f(x) = ln x from x = 1 to x = 1.1, using linear approximation.

Solution. Note that ln(1.1) is not readily calculated (without a calculator) hence why we
wish to use linear approximation to approximate f(1.1)− f(1).

We fix a = 1 and as above we have ∆x = x− 1 and ∆y = f(x)− f(1) = ln x, and obtain

dy = f ′(1)dx ≈ ∆y

∆x
∆x = ∆y.

But f ′(x) = 1/x and thus f ′(1) = 1/1 = 1, we obtain in this case

dy = dx ≈ ∆y.

Finally for x = 1.1, we can easily approximate the rise of f as

f(1.1)− f(1) = ∆y ≈ dy = 1.1− 1 = 0.1.

The correct value of ln(1.1) = ln 1 is 0.0953. . . and thus we were relatively close. ♣

Exercises for 5.1.2

Exercise 5.1.5. Let f(x) = x4. If a = 1 and dx = ∆x = 1/2, what are ∆y and dy?

Exercise 5.1.6. Let f(x) =
√
x. If a = 1 and dx = ∆x = 1/10, what are ∆y and dy?

Exercise 5.1.7. Let f(x) = sin(2x). If a = π and dx = ∆x = π/100, what are ∆y and dy?

Exercise 5.1.8. Use differentials to estimate the amount of paint needed to apply a coat of
paint 0.02 cm thick to a sphere with diameter 40 meters. (Recall that the volume of a sphere
of radius r is V = (4/3)πr3. Notice that you are given that dr = 0.02.)

5.1.3. Taylor Polynomials

We can go beyond first order derivatives to create polynomials approximating a function as
closely as we wish, these are called Taylor Polynomials.

While our linear approximation L(x) = f ′(a)(x−a)+f(a) at a point a was a polynomial
of degree 1 such that both L(a) = f(a) and L′(a) = f ′(a), we can now form a polynomial

Tn(x) = a0 + a1(x− a) + a2(x− a)2 + a3(x− a)3 + · · ·+ an(x− a)n

which has the same first n derivatives at x = a as the function f .
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5.1. LINEAR AND HIGHER ORDER APPROXIMATIONS

By successively computing the derivatives of Tn, we obtain:

a0 = f(a) = f(a)
0!

a1 =
f ′(a)
1!

a2 =
f ′′(a)
2!

· · ·
ak =

f(k)(a)
k!

· · · an = f(n)(a)
n!

where f (k)(x) is the kth derivative of f(x), and n! = n(n− 1)(n− 2) . . . (2)(1), referred to as
factorial notation.

Here is an example.

Example 5.5: Approximate e using Taylor Polynomials

Approximate ex using Taylor polynomials at a = 0, and use this to approximate e.

Solution. In this case we use the function f(x) = ex at a = 0, and therefore

Tn(x) = a0 + a1x+ axx
2 + a3x

3 + . . .+ anx
n

Since all derivatives f (k)(x) = ex, we get:

a0 = f(0) = 1

a1 =
f ′(0)
1!

= 1

a2 =
f ′′(0)
2!

= 1
2!

a3 =
f ′′′(0)

3!
= 1

3!

· · ·
ak =

f(k)(0)
k!

= 1
k!

· · ·
an = f(n)(0)

n!
= 1

n!

Thus
T1(x) = 1 + x = L(x)

T2(x) = 1 + x+ x2

2!

T3(x) = 1 + x+ x2

2!
+ x3

3!

and in general

Tn(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
.

Finally we can approximate e = f(1) by simply calculating Tn(1). A few values are:

T1(1) = 1 + 1 = 2

T2(1) = 1 + 1 + 12

2!
= 2.5

T4(1) = 1 + 1 + 12

2!
+ 13

3!
= 2.6

T8(1) = 2.71825396825
T20(1) = 2.71828182845
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We can continue this way for larger values of n, but T20(1) is already a pretty good
approximation of e, and we took only 20 terms! ♣

A field of mathematics, called numerical analysis, can be used to determine the number
of terms needed to properly estimate ex or any other function to a desired accuracy.

These techniques have several practical applications, one of which is mp3 music encoders
who use a truncated expression (like above) to compress an audio track down to 10% or less
of the original file size. Though such an encoder is quite sophisticated, and uses a slightly
varied underlying formula, the idea is still the same: Take a simple-to-express polynomial
representation of a function, and take enough terms to retain all key aspects; in this case,
sound quality. An mp3 with a bitrate of 128 is an approximation with 128 terms (at a
frequency of 44kHz, i.e. 44000 times per second). How good is this new compressed track?
The 128 bitrate was originally regarded as CD quality, so evaluating to 128 terms was
considered good enough to be indistinguishable to the human ear. More recent study has
suggested that 128 terms is not good enough for the keen audiophile, but bitrates of either
160 or 192 have been shown to be more than adequate.

Exercises for 5.1.3

Exercise 5.1.9. Find the 5th degree Taylor polynomial for f(x) = sin x around a = 0.
a) Use this Taylor polynomial to approximate sin(0.1).
b) Use a calculator to find sin(0.1). How does this compare to our approximation in part a)?

Exercise 5.1.10. Find the 3rd degree Taylor polynomial for f(x) = 1
1−x
− 1 around a = 0.

Explain why this approximation would not be useful for calculating f(5).

Exercise 5.1.11. Consider f(x) = ln x around a = 1.
a) Find a general formula for f (n)(x) for n ≥ 1.
b) Find a general formula for the Taylor Polynomial, Tn(x).

5.1.4. Newton’s Method

A well known numeric method is Newton′s Method (also sometimes referred to as Newton−
Raphson′s Method), named after Isaac Newton and Joseph Raphson. This method is used
to find roots, or x-intercepts, of a function. While we may be able to find the roots of a
polynomial which we can easily factor, we saw in the previous chapter on Limits, that for
example the function ex + x = 0 has a solution (i.e. root, or x-intercept) at x ≈ −0.56714.
By the Intermediate V alue Theorem we know that the function ex + x = 0 does have
a solution. We cannot here simply solve for such a root algebraically, but we can use a
numerical method such as Newton′s. Such a process is typically classified as an iterative
method, a name given to a technique which involves repeating similar steps until the desired
accuracy is obtained. Many computer algorithms are coded with a for-loop, repeating an
iterative step to converge to a solution.

The idea is to start with an initial value x0 (approximating the root), and use linear
approximation to create values x1, x2, · · · getting closer and closer to a root.
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The first value x1 corresponds to the intercept of the tangent line of f(x0) with the x-axis,
which is:

x1 = x0 −
f(x0)

f ′(x0)

x

y

f(x0)

x1 x0

Figure 5.3: First iteration of Newton’s Method.

We can see in Figure 5.3, that if we compare the point (x0, 0) to (x1, 0), we would likely
come to the conclusion that (x1, 0) is closer to the actual root of f(x) than our original guess,
(x0, 0). As will be discussed, the choice of x0 must be done correctly, and it may occur that
x1 does not yield a better estimate of the root.

Newton’s method is simply to repeat this process again and again in an effort to obtain
a more accurate solution. Thus at the next step we obtain:

x2 = x1 −
f(x1)

f ′(x1)

x

y

f(x1)

x1 x0x

Figure 5.4: Second iteration of Newton’s Method.
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We can now clearly see how (x2, 0) is a better estimate of the root of f(x), rather than
any of the previous points. Moving forward, we will get:

x3 = x2 −
f(x2)

f ′(x2)

Rest assured, (x3, 0) will be an even better estimate of the root! We express the general
iterative step as:

xn+1 = xn −
f(xn)

f ′(xn)

The idea is to iterate these steps to obtain the desired accuracy. Here is an example.

Example 5.6: Newton method to approximate roots

Use Newton’s method to approximate the roots of f(x) = x3 − x+ 1.

Solution. You can try to find solve the equation algebraically to see that this is a difficult
task, and thus it make sense to try a numerical method such as Newton’s.

To find an initial value x0, note that f(−1) = −5 and f(0) = 1, and by the Intermediate
Value Theorem this f has a root between these two values, and we decide to start with
x0 = −1 (you can try other values to see what happens).

Note that f ′(x) = 3x2 − 1, and thus we get

xn+1 = xn −
f(xn)

f ′(xn)
= x+ n− x3

n − xn + 1

3x2
n − 1

Thus we can produce the following values (try it):

x0 = −1
x1 = −1.5000
x2 = −1.347826..
x3 = −1.325200..
x4 = −1.324718..
x5 = −1.324717..
x6 = −1.324717..
· · ·

and we can now approximate the root as −1.324717. ♣
As with any numerical method, we need to be aware of the weaknesses of any technique

we are using.
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x

y

xa

a
xb x

b

Figure 5.5: Function with three distinct solutions.

If we know our root is somewhere near a, we would make our guess x0 = a. Generally
speaking, a good practice is to make our guess as close to the actual root as possible. In
some cases we may have no idea where the root is, so it would be prudent to perform the
algorithm several times on several different initial guesses and analyze the results.

For example we can see in Figure 5.5 that f(x) in fact has three roots, and depending
on our initial guess, we may get the algorithm to converge to different roots. If we did not
know where the roots were, we would try the technique several times. In one instance, if our
initial guess was xa, we’d likely converge to (a, 0). Then if we were to choose another guess,
xb, then we’d likely converge to (b, 0). Eventually, using various initial guesses we’d get one
of three roots: a, b, or c. Under these circumstances we can clearly see the effectiveness of
this numeric method.

x

y

x0

f(x0)

f(x1)
f(x )

x

x1 x

Figure 5.6: Newton’s Method applied to sin x.
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As another example if we attempt to use Newton′s Method on f(x) = sin x using x0 =
π/2, then f ′(x0) = 0 so x1 is undefined and we cannot proceed. Even in general xn+1 is
typically nowhere near xn, and in general not converging to the root nearest to our initial
guess of x0. In effect, the algorithm keeps ”bouncing around”. An example of which is
depicted in Figure 5.6. Based on our initial guess for such a function, the algorithm may or
may not converge to a root, or it may or may not converge to the root closest to the initial
guess. This gives rise to the more common issue: Selection of the initial guess, x0.

Here is a summary.
Key Points in using Newton’s method to approximate a root of f(x)

1. Choosing x0 as close as possible to the root we wish to find.

2. A guess for x0 which makes the algorithm “bounce around” is considered unstable.

3. Even the smallest changes to x0 can have drastic effects: We may converge to an-
other root, we may converge very slowly (requiring many more iterations), or we may
encounter an unstable point.

4. We may encounter a stationary point if we choose x0 such that f ′(x) = 0 (i.e. at a
critical point!) in which case the algorithm fails.

This is all to say that your initial guess for x0 can be extremely important.

Exercises for 5.1.4

Exercise 5.1.12. Use Newton’s Method to find all roots of f(x) = 3x2 − 9x − 12. (Hint:
use Intermediate Value Theorem to choose an appropriate x0)

Exercise 5.1.13. Consider f(x) = x3 − x2 + x− 1.
a) Using initial approximation x0 = 2, find x4.
b) What is the exact value of the root of f? How does this compare to our approximation x4 in part a)?
c) What would happen if we chose x0 = 0 as our initial approximation?

Exercise 5.1.14. Consider f(x) = sin x. What happens when we choose x0 = π/2? Explain.

5.2 L’Hôpital’s Rule

The following application of derivatives allows us to compute certain limits.

Definition 5.7: Indeterminate Limits

A limit is said to be indeterminate if lim
x→a

f(x)

g(x)
gives rise to one of the following

types:

±“0
0

”
, ±“∞∞

” , ±“0 · ∞” , 1“∞”.
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Theorem 5.8: L’Hôpital’s Rule

Given a limit lim
x→a

f(x)

g(x)
is indeterminate, then L = lim

x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This theorem is somewhat difficult to prove, in part because it incorporates so many
different possibilities, so we will not prove it here. We also will not need to worry about the
precise definition of “sufficiently nice”, as the functions we encounter will be suitable.

We should also note that there may be instances where we would need to apply L’Hôpital’s
Rule multiple times, but we must confirm that limx→a

f ′(x)
g′(x)

is still indeterminate before we
attempt to apply L’Hôpital’s Rule again.

Example 5.9: L’Hôpital’s Rule

Compute lim
x→π

x2 − π2

sin x
.

Solution. We use L’Hôpital’s Rule: Since the numerator and denominator both approach
zero,

lim
x→π

x2 − π2

sin x
= lim

x→π

2x

cosx
,

provided the latter exists. But in fact this is an easy limit, since the denominator now
approaches −1, so

lim
x→π

x2 − π2

sin x
=

2π

−1 = −2π.

♣

Example 5.10: L’Hôpital’s Rule

Compute lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
.

Solution. As x goes to infinity, both the numerator and denominator go to infinity, so we
may apply L’Hôpital’s Rule:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

4x− 3

2x+ 47
.

In the second quotient, it is still the case that the numerator and denominator both go to
infinity, so we are allowed to use L’Hôpital’s Rule again:

lim
x→∞

4x− 3

2x+ 47
= lim

x→∞

4

2
= 2.

So the original limit is 2 as well. ♣
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Example 5.11: L’Hôpital’s Rule

Compute lim
x→0

sec x− 1

sin x
.

Solution. Both the numerator and denominator approach zero, so applying L’Hôpital’s
Rule:

lim
x→0

sec x− 1

sin x
= lim

x→0

sec x tan x

cos x
=

1 · 0
1

= 0.

♣

Example 5.12: L’Hôpital’s Rule

Compute lim
x→0+

x ln x.

Solution. This doesn’t appear to be suitable for L’Hôpital’s Rule, but it also is not “obvi-
ous”. As x approaches zero, ln x goes to−∞, so the product looks like (something very small)·
(something very large and negative). This could be anything: it depends on how small and
how large each piece of the function turns out to be. As defined earlier, this is a type of
±“0 · ∞”, which is indeterminate. So we can in fact apply L’Hôpital’s Rule:

x ln x =
ln x

1/x
=

ln x

x−1
.

Now as x approaches zero, both the numerator and denominator approach infinity (one −∞
and one +∞, but only the size is important). Using L’Hôpital’s Rule:

lim
x→0+

ln x

x−1
= lim

x→0+

1/x

−x−2
= lim

x→0+

1

x
(−x2) = lim

x→0+
−x = 0.

One way to interpret this is that since lim
x→0+

x ln x = 0, the x approaches zero much faster

than the ln x approaches −∞. ♣
Finally, we illustrate how a limit of the type “1∞” can be indeterminate.

Example 5.13: L’Hôpital’s Rule

Evaluate lim
x→1+

x1/(x−1).

Solution. Plugging in x = 1 (from the right) gives a limit of the type “1∞”. To deal with
this type of limit we will use logarithms. Let

L = lim
x→1+

x1/(x−1).

Now, take the natural log of both sides:

lnL = lim
x→1+

ln
(

x1/(x−1)
)

.
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Using log properties we have:

lnL = lim
x→1+

ln x

x− 1
.

The right side limit is now of the type 0/0, therefore, we can apply L’Hôpital’s Rule:

lnL = lim
x→1+

ln x

x− 1
= lim

x→1+

1/x

1
= 1

Thus, lnL = 1 and hence, our original limit (denoted by L) is: L = e1 = e. That is,

L = lim
x→1+

x1/(x−1) = e.

In this case, even though our limit had a type of “1∞”, it actually had a value of e. ♣

Exercises for 5.2

Compute the following limits.

Exercise 5.2.1. lim
x→0

cos x− 1

sin x

Exercise 5.2.2. lim
x→∞

ex

x3

Exercise 5.2.3. lim
x→∞

ln x

x

Exercise 5.2.4. lim
x→∞

ln x√
x

Exercise 5.2.5. lim
x→0

√
9 + x− 3

x

Exercise 5.2.6. lim
x→2

2−
√
x+ 2

4− x2

Exercise 5.2.7. lim
x→1

√
x− 1

1/3
√
x− 1

Exercise 5.2.8. lim
x→0

(1− x)1/4 − 1

x

Exercise 5.2.9. lim
t→0

(

t+
1

t

)

((4− t)3/2 − 8)

Exercise 5.2.10. lim
t→0+

(

1

t
+

1√
t

)

(
√
t + 1− 1)

Exercise 5.2.11. lim
x→0

x2

√
2x+ 1− 1
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Exercise 5.2.12. lim
u→1

(u− 1)3

(1/u)− u2 + 3/u− 3

Exercise 5.2.13. lim
x→0

2 + (1/x)

3− (2/x)

Exercise 5.2.14. lim
x→0+

1 + 5/
√
x

2 + 1/
√
x

Exercise 5.2.15. lim
x→π/2

cosx

(π/2)− x

Exercise 5.2.16. lim
x→0

ex − 1

x

Exercise 5.2.17. lim
x→0

x2

ex − x− 1

Exercise 5.2.18. lim
x→1

ln x

x− 1

Exercise 5.2.19. lim
x→0

ln(x2 + 1)

x

Exercise 5.2.20. lim
x→1

x lnx

x2 − 1

Exercise 5.2.21. lim
x→0

sin(2x)

ln(x+ 1)

Exercise 5.2.22. lim
x→1

x1/4 − 1

x

Exercise 5.2.23. lim
x→1

√
x− 1

x− 1

Exercise 5.2.24. lim
x→0

3x2 + x+ 2

x− 4

Exercise 5.2.25. lim
x→0

√
x+ 1− 1√
x+ 4− 2

Exercise 5.2.26. lim
x→0

√
x+ 1− 1√
x+ 2− 2

Exercise 5.2.27. lim
x→0+

√
x+ 1 + 1√
x+ 1− 1

Exercise 5.2.28. lim
x→0

√
x2 + 1− 1√
x+ 1− 1

Exercise 5.2.29. lim
x→1

(x+ 5)

(

1

2x
+

1

x+ 2

)

Exercise 5.2.30. lim
x→2

x3 − 6x− 2

x3 + 4
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5.3 Curve Sketching

5.3.1. Maxima and Minima

A local maximum point on a function is a point (x, y) on the graph of the function whose
y coordinate is larger than all other y coordinates on the graph at points “close to” (x, y).
More precisely, (x, f(x)) is a local maximum if there is an interval (a, b) with a < x < b and
f(x) ≥ f(z) for every z in (a, b). Similarly, (x, y) is a local minimum point if it has locally
the smallest y coordinate. Again being more precise: (x, f(x)) is a local minimum if there is
an interval (a, b) with a < x < b and f(x) ≤ f(z) for every z in (a, b). A local extremum
is either a local minimum or a local maximum.

Local maximum and minimum points are quite distinctive on the graph of a function,
and are therefore useful in understanding the shape of the graph. In many applied problems
we want to find the largest or smallest value that a function achieves (for example, we might
want to find the minimum cost at which some task can be performed) and so identifying
maximum and minimum points will be useful for applied problems as well. Some examples
of local maximum and minimum points are shown in figure 5.7.
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Figure 5.7: Some local maximum points (A) and minimum points (B).

If (x, f(x)) is a point where f(x) reaches a local maximum or minimum, and if the
derivative of f exists at x, then the graph has a tangent line and the tangent line must be
horizontal. This is important enough to state as a theorem, though we will not prove it.

Theorem 5.14: Fermat’s Theorem

If f(x) has a local extremum at x = a and f is differentiable at a, then f ′(a) = 0.

Thus, the only points at which a function can have a local maximum or minimum are
points at which the derivative is zero, as in the left hand graph in figure 5.7, or the derivative
is undefined, as in the right hand graph. Any value of x for which f ′(x) is zero or undefined
is called a critical value for f . When looking for local maximum and minimum points,
you are likely to make two sorts of mistakes: You may forget that a maximum or minimum
can occur where the derivative does not exist, and so forget to check whether the derivative
exists everywhere. You might also assume that any place that the derivative is zero is a local
maximum or minimum point, but this is not true. A portion of the graph of f(x) = x3 is
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CHAPTER 5. APPLICATIONS OF DERIVATIVES

shown in figure 5.8. The derivative of f is f ′(x) = 3x2, and f ′(0) = 0, but there is neither a
maximum nor minimum at (0, 0).
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Figure 5.8: No maximum or minimum even though the derivative is zero.

Since the derivative is zero or undefined at both local maximum and local minimum
points, we need a way to determine which, if either, actually occurs. The most elementary
approach, but one that is often tedious or difficult, is to test directly whether the y coor-
dinates “near” the potential maximum or minimum are above or below the y coordinate at
the point of interest. Of course, there are too many points “near” the point to test, but a
little thought shows we need only test two provided we know that f is continuous (recall
that this means that the graph of f has no jumps or gaps).

Suppose, for example, that we have identified three points at which f ′ is zero or nonexis-
tent: (x1, y1), (x2, y2), (x3, y3), and x1 < x2 < x3 (see figure 5.9). Suppose that we compute
the value of f(a) for x1 < a < x2, and that f(a) < f(x2). What can we say about the
graph between a and x2? Could there be a point (b, f(b)), a < b < x2 with f(b) > f(x2)?
No: if there were, the graph would go up from (a, f(a)) to (b, f(b)) then down to (x2, f(x2))
and somewhere in between would have a local maximum point. (This is not obvious; it is a
result of the Extreme Value Theorem.) But at that local maximum point the derivative of f
would be zero or nonexistent, yet we already know that the derivative is zero or nonexistent
only at x1, x2, and x3. The upshot is that one computation tells us that (x2, f(x2)) has the
largest y coordinate of any point on the graph near x2 and to the left of x2. We can perform
the same test on the right. If we find that on both sides of x2 the values are smaller, then
there must be a local maximum at (x2, f(x2)); if we find that on both sides of x2 the values
are larger, then there must be a local minimum at (x2, f(x2)); if we find one of each, then
there is neither a local maximum or minimum at x2.

x1 a b x2 x3

• •
•

•

Figure 5.9: Testing for a maximum or minimum.

It is not always easy to compute the value of a function at a particular point. The task
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is made easier by the availability of calculators and computers, but they have their own
drawbacks—they do not always allow us to distinguish between values that are very close
together. Nevertheless, because this method is conceptually simple and sometimes easy to
perform, you should always consider it.

Example 5.15: Simple Cubic

Find all local maximum and minimum points for the function f(x) = x3 − x.

Solution. The derivative is f ′(x) = 3x2 − 1. This is defined everywhere and is zero at
x = ±

√
3/3. Looking first at x =

√
3/3, we see that f(

√
3/3) = −2

√
3/9. Now we test

two points on either side of x =
√
3/3, making sure that neither is farther away than the

nearest critical value; since
√
3 < 3,

√
3/3 < 1, so we can use x = 0 and x = 1. Since

f(0) = 0 > −2
√
3/9 and f(1) = 0 > −2

√
3/9, there must be a local minimum at x =

√
3/3.

For x = −
√
3/3, we see that f(−

√
3/3) = 2

√
3/9. This time we can use x = 0 and x = −1,

and we find that f(−1) = f(0) = 0 < 2
√
3/9, so there must be a local maximum at

x = −
√
3/3. ♣

Of course this example is made very simple by our choice of points to test, namely x = −1,
0, 1. We could have used other values, say −5/4, 1/3, and 3/4, but this would have made
the calculations considerably more tedious, and we should always choose very simple points
to test if we can.

Example 5.16: Max and Min

Find all local maximum and minimum points for f(x) = sin x+ cosx.

Solution. The derivative is f ′(x) = cosx−sin x. This is always defined and is zero whenever
cosx = sin x. Recalling that the cosx and sin x are the x and y coordinates of points on a
unit circle, we see that cos x = sin x when x is π/4, π/4± π, π/4± 2π, π/4± 3π, etc. Since
both sine and cosine have a period of 2π, we need only determine the status of x = π/4
and x = 5π/4. We can use 0 and π/2 to test the critical value x = π/4. We find that
f(π/4) =

√
2, f(0) = 1 <

√
2 and f(π/2) = 1, so there is a local maximum when x = π/4

and also when x = π/4± 2π, π/4± 4π, etc. We can summarize this more neatly by saying
that there are local maxima at π/4± 2kπ for every integer k.

We use π and 2π to test the critical value x = 5π/4. The relevant values are f(5π/4) =
−
√
2, f(π) = −1 > −

√
2, f(2π) = 1 > −

√
2, so there is a local minimum at x = 5π/4,

5π/4± 2π, 5π/4± 4π, etc. More succinctly, there are local minima at 5π/4± 2kπ for every
integer k. ♣

Exercises for 5.3.1

Find all local maximum and minimum points (x, y) by the method of this section.

Exercise 5.3.1. y = x2 − x
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Exercise 5.3.2. y = 2 + 3x− x3

Exercise 5.3.3. y = x3 − 9x2 + 24x

Exercise 5.3.4. y = x4 − 2x2 + 3

Exercise 5.3.5. y = 3x4 − 4x3

Exercise 5.3.6. y = (x2 − 1)/x

Exercise 5.3.7. y = 3x2 − (1/x2)

Exercise 5.3.8. y = cos(2x)− x

Exercise 5.3.9. f(x) = x2 − 98x+ 4

Exercise 5.3.10. For any real number x there is a unique integer n such that n ≤ x < n+1,
and the greatest integer function is defined as ⌊x⌋ = n. Where are the critical values of the
greatest integer function? Which are local maxima and which are local minima?

Exercise 5.3.11. Explain why the function f(x) = 1/x has no local maxima or minima.

Exercise 5.3.12. How many critical points can a quadratic polynomial function have?

Exercise 5.3.13. Show that a cubic polynomial can have at most two critical points. Give
examples to show that a cubic polynomial can have zero, one, or two critical points.

Exercise 5.3.14. Explore the family of functions f(x) = x3 + cx+ 1 where c is a constant.
How many and what types of local extremes are there? Your answer should depend on the
value of c, that is, different values of c will give different answers.

Exercise 5.3.15. We generalize the preceding two questions. Let n be a positive integer and
let f be a polynomial of degree n. How many critical points can f have? (Hint: Recall the
Fundamental Theorem of Algebra, which says that a polynomial of degree n has at most
n roots.)

5.3.2. The First Derivative Test

The method of the previous section for deciding whether there is a local maximum or mini-
mum at a critical value is not always convenient. We can instead use information about the
derivative f ′(x) to decide; since we have already had to compute the derivative to find the
critical values, there is often relatively little extra work involved in this method.

How can the derivative tell us whether there is a maximum, minimum, or neither at
a point? Suppose that f is differentiable at and around x = a, and suppose further that
f ′(a) = 0. Then we have several possibilities:

1. There is a local maximum at x = a. This means f ′(x) > 0 as we approach x = a from
the left (i.e. when x is in the vicinity of a, and x < a). Then f ′(x) < 0 as we move to
the right of x = a (i.e. when x is in the vicinity of a, and x > a).
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2. There is a local minimum at x = a. This means f ′(x) < 0 as we approach x = a from
the left (i.e. when x is in the vicinity of a, and x < a). Then f ′(x) > 0 as we move to
the right of x = a (i.e. when x is in the vicinity of a, and x > a).

3. There is neither a local maximum or local minimum at x = a. If f ′(x) does not change
from negative to positive, or from positive to negative, as we move from the left of
x = a to the right of x = a (that is, f ′(x) is positive on both sides of x = a, or negative
on both sides of x = a) then there is neither a maximum nor minimum when x = a.

See the first graph in figure 5.7 and the graph in figure 5.8 for examples.

Example 5.17: Local maximum and minimum

Find all local maximum and minimum points for f(x) = sin x + cosx using the first
derivative test.

Solution. The derivative is f ′(x) = cos x − sin x and from example 5.16 the critical values
we need to consider are π/4 and 5π/4.

We analyze the graphs of sin x and cosx. Just to the left of π/4 the cosine is larger than
the sine, so f ′(x) is positive; just to the right the cosine is smaller than the sine, so f ′(x) is
negative. This means there is a local maximum at π/4. Just to the left of 5π/4 the cosine is
smaller than the sine, and to the right the cosine is larger than the sine. This means that the
derivative f ′(x) is negative to the left and positive to the right, so f has a local minimum
at 5π/4. ♣

Exercises for 5.3.2

Find all critical points and identify them as local maximum points, local minimum points,
or neither.

Exercise 5.3.16. y = x2 − x

Exercise 5.3.17. y = 2 + 3x− x3

Exercise 5.3.18. y = x3 − 9x2 + 24x

Exercise 5.3.19. y = x4 − 2x2 + 3

Exercise 5.3.20. y = 3x4 − 4x3

Exercise 5.3.21. y = (x2 − 1)/x

Exercise 5.3.22. y = 3x2 − (1/x2)

Exercise 5.3.23. y = cos(2x)− x

Exercise 5.3.24. f(x) = (5− x)/(x+ 2)

Exercise 5.3.25. f(x) = |x2 − 121|
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Exercise 5.3.26. f(x) = x3/(x+ 1)

Exercise 5.3.27. f(x) = sin2 x

Exercise 5.3.28. Find the maxima and minima of f(x) = sec x.

Exercise 5.3.29. Let f(θ) = cos2(θ) − 2 sin(θ). Find the intervals where f is increasing
and the intervals where f is decreasing in [0, 2π]. Use this information to classify the critical
points of f as either local maximums, local minimums, or neither.

Exercise 5.3.30. Let r > 0. Find the local maxima and minima of the function f(x) =√
r2 − x2 on its domain [−r, r].

Exercise 5.3.31. Let f(x) = ax2 + bx+ c with a 6= 0. Show that f has exactly one critical
point using the first derivative test. Give conditions on a and b which guarantee that the
critical point will be a maximum. It is possible to see this without using calculus at all;
explain.

5.3.3. The Second Derivative Test

The basis of the first derivative test is that if the derivative changes from positive to negative
at a point at which the derivative is zero then there is a local maximum at the point, and
similarly for a local minimum. If f ′ changes from positive to negative it is decreasing; this
means that the derivative of f ′, f ′′, might be negative, and if in fact f ′′ is negative then f ′ is
definitely decreasing. From this we determine that there is a local maximum at the point in
question. Note that f ′ might change from positive to negative while f ′′ is zero, in which case
f ′′ gives us no information about the critical value. Similarly, if f ′ changes from negative to
positive there is a local minimum at the point, and f ′ is increasing. If f ′′ > 0 at the point,
this tells us that f ′ is increasing, and so there is a local minimum.

Example 5.18: Second Derivative

Consider again f(x) = sin x+ cosx, with f ′(x) = cosx− sin x and f ′′(x) = − sin x −
cosx. Use the second derivative test to determine which critical points are local
maximum or minima.

Solution. Since f ′′(π/4) = −
√
2/2−

√
2/2 = −

√
2 < 0, we know there is a local maximum

at π/4. Since f ′′(5π/4) = −−
√
2/2−−

√
2/2 =

√
2 > 0, there is a local minimum at 5π/4.

♣
When it works, the second derivative test is often the easiest way to identify local max-

imum and minimum points. Sometimes the test fails, and sometimes the second derivative
is quite difficult to evaluate; in such cases we must fall back on one of the previous tests.
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Example 5.19: Second Derivative

Let f(x) = x4 and g(x) = −x4. Classify the critical points of f(x) and g(x) as either
maximum or minimum.

Solution. The derivatives for f(x) are f ′(x) = 4x3 and f ′′(x) = 12x2. Zero is the only
critical value, but f ′′(0) = 0, so the second derivative test tells us nothing. However, f(x) is
positive everywhere except at zero, so clearly f(x) has a local minimum at zero.

On the other hand, for g(x) = −x4, g′(x) = −4x3 and g′′(x) = −12x2. So g(x) also has
zero as its only only critical value, and the second derivative is again zero, but −x4 has a
local maximum at zero. ♣

Exercises for 5.3.3

Find all local maximum and minimum points by the second derivative test.

Exercise 5.3.32. y = x2 − x

Exercise 5.3.33. y = 2 + 3x− x3

Exercise 5.3.34. y = x3 − 9x2 + 24x

Exercise 5.3.35. y = x4 − 2x2 + 3

Exercise 5.3.36. y = 3x4 − 4x3

Exercise 5.3.37. y = (x2 − 1)/x

Exercise 5.3.38. y = 3x2 − (1/x2)

Exercise 5.3.39. y = cos(2x)− x

Exercise 5.3.40. y = 4x+
√
1− x

Exercise 5.3.41. y = (x+ 1)/
√
5x2 + 35

Exercise 5.3.42. y = x5 − x

Exercise 5.3.43. y = 6x+ sin 3x

Exercise 5.3.44. y = x+ 1/x

Exercise 5.3.45. y = x2 + 1/x

Exercise 5.3.46. y = (x+ 5)1/4

Exercise 5.3.47. y = tan2 x

Exercise 5.3.48. y = cos2 x− sin2 x

Exercise 5.3.49. y = sin3 x
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5.3.4. Concavity and Inflection Points

We know that the sign of the derivative tells us whether a function is increasing or decreasing;
for example, when f ′(x) > 0, f(x) is increasing. The sign of the second derivative f ′′(x) tells
us whether f ′ is increasing or decreasing; we have seen that if f ′ is zero and increasing at
a point then there is a local minimum at the point. If f ′ is zero and decreasing at a point
then there is a local maximum at the point. Thus, we extracted information about f from
information about f ′′.

We can get information from the sign of f ′′ even when f ′ is not zero. Suppose that
f ′′(a) > 0. This means that near x = a, f ′ is increasing. If f ′(a) > 0, this means that f
slopes up and is getting steeper; if f ′(a) < 0, this means that f slopes down and is getting
less steep. The two situations are shown in figure 5.10. A curve that is shaped like this is
called concave up.
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Figure 5.10: f ′′(a) > 0: f ′(a) positive and increasing, f ′(a) negative and increasing.

Now suppose that f ′′(a) < 0. This means that near x = a, f ′ is decreasing. If f ′(a) > 0,
this means that f slopes up and is getting less steep; if f ′(a) < 0, this means that f slopes
down and is getting steeper. The two situations are shown in figure 5.11. A curve that is
shaped like this is called concave down.
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Figure 5.11: f ′′(a) < 0: f ′(a) positive and decreasing, f ′(a) negative and decreasing.

If we are trying to understand the shape of the graph of a function, knowing where it is
concave up and concave down helps us to get a more accurate picture. Of particular interest
are points at which the concavity changes from up to down or down to up; such points are
called inflection points. If the concavity changes from up to down at x = a, f ′′ changes
from positive to the left of a to negative to the right of a, and usually f ′′(a) = 0. We can
identify such points by first finding where f ′′(x) is zero and then checking to see whether
f ′′(x) does in fact go from positive to negative or negative to positive at these points. Note
that it is possible that f ′′(a) = 0 but the concavity is the same on both sides; f(x) = x4 at
x = 0 is an example.
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Example 5.20: Concavity

Describe the concavity of f(x) = x3 − x.

Solution. The derivatives are f ′(x) = 3x2 − 1 and f ′′(x) = 6x. Since f ′′(0) = 0, there is
potentially an inflection point at zero. Since f ′′(x) > 0 when x > 0 and f ′′(x) < 0 when
x < 0 the concavity does change from concave down to concave up at zero, and the curve is
concave down for all x < 0 and concave up for all x > 0. ♣

Note that we need to compute and analyze the second derivative to understand concavity,
so we may as well try to use the second derivative test for maxima and minima. If for some
reason this fails we can then try one of the other tests.

Exercises for 5.3.4

Describe the concavity of the functions below.

Exercise 5.3.50. y = x2 − x

Exercise 5.3.51. y = 2 + 3x− x3

Exercise 5.3.52. y = x3 − 9x2 + 24x

Exercise 5.3.53. y = x4 − 2x2 + 3

Exercise 5.3.54. y = 3x4 − 4x3

Exercise 5.3.55. y = (x2 − 1)/x

Exercise 5.3.56. y = 3x2 − (1/x2)

Exercise 5.3.57. y = sin x+ cosx

Exercise 5.3.58. y = 4x+
√
1− x

Exercise 5.3.59. y = (x+ 1)/
√
5x2 + 35

Exercise 5.3.60. y = x5 − x

Exercise 5.3.61. y = 6x+ sin 3x

Exercise 5.3.62. y = x+ 1/x

Exercise 5.3.63. y = x2 + 1/x

Exercise 5.3.64. y = (x+ 5)1/4

Exercise 5.3.65. y = tan2 x

Exercise 5.3.66. y = cos2 x− sin2 x

Exercise 5.3.67. y = sin3 x
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Exercise 5.3.68. Identify the intervals on which the graph of the function f(x) = x4−4x3+
10 is of one of these four shapes: concave up and increasing; concave up and decreasing;
concave down and increasing; concave down and decreasing.

Exercise 5.3.69. Describe the concavity of y = x3+ bx2 + cx+ d. You will need to consider
different cases, depending on the values of the coefficients.

Exercise 5.3.70. Let n be an integer greater than or equal to two, and suppose f is a
polynomial of degree n. How many inflection points can f have? Hint: Use the second
derivative test and the fundamental theorem of algebra.

5.3.5. Asymptotes and Other Things to Look For

A vertical asymptote is a place where the function becomes infinite, typically because the
formula for the function has a denominator that becomes zero. For example, the reciprocal
function f(x) = 1/x has a vertical asymptote at x = 0, and the function tanx has a vertical
asymptote at x = π/2 (and also at x = −π/2, x = 3π/2, etc.). Whenever the formula for a
function contains a denominator it is worth looking for a vertical asymptote by checking to
see if the denominator can ever be zero, and then checking the limit at such points. Note
that there is not always a vertical asymptote where the derivative is zero: f(x) = (sin x)/x
has a zero denominator at x = 0, but since lim

x→0
(sin x)/x = 1 there is no asymptote there.

A horizontal asymptote is a horizontal line to which f(x) gets closer and closer as x
approaches∞ (or as x approaches −∞). For example, the reciprocal function has the x-axis
for a horizontal asymptote. Horizontal asymptotes can be identified by computing the limits
lim
x→∞

f(x) and lim
x→−∞

f(x). Since lim
x→∞

1/x = lim
x→−∞

1/x = 0, the line y = 0 (that is, the x-axis)

is a horizontal asymptote in both directions.
Some functions have asymptotes that are neither horizontal nor vertical, but some other

line. Such asymptotes are somewhat more difficult to identify and we will ignore them.
If the domain of the function does not extend out to infinity, we should also ask what

happens as x approaches the boundary of the domain. For example, the function y = f(x) =
1/
√
r2 − x2 has domain −r < x < r, and y becomes infinite as x approaches either r or −r.

In this case we might also identify this behavior because when x = ±r the denominator of
the function is zero.

If there are any points where the derivative fails to exist (a cusp or corner), then we
should take special note of what the function does at such a point.

Finally, it is worthwhile to notice any symmetry. A function f(x) that has the same
value for −x as for x, i.e., f(−x) = f(x), is called an “even function.” Its graph is sym-
metric with respect to the y-axis. Some examples of even functions are: xn when n is an
even number, cosx, and sin2 x. On the other hand, a function that satisfies the property
f(−x) = −f(x) is called an “odd function.” Its graph is symmetric with respect to the
origin. Some examples of odd functions are: xn when n is an odd number, sin x, and tanx.
Of course, most functions are neither even nor odd, and do not have any particular symmetry.
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Example 5.21: Graph Sketching

Sketch the graph of y = f(x) where f(x) =
2x2

x2 − 1

Solution.

� The domain is {x : x2 − 1 6= 0} = {x : x 6= ±1} = (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

� There is an x-intercept at x = 0. The y intercept is y = 0.

� f(−x) = f(x), so f is an even function (symmetric about y-axis)

� lim
x→±∞

2x2

x2 − 1
= lim

x→±∞

2

1− 1/x2
= 2, so y = 2 is a horizontal asymptote.

Now the denominator is 0 at x = ±1, so we compute:

lim
x→1+

2x2

x2 − 1
= +∞, lim

x→1−

2x2

x2 − 1
= −∞, lim

x→−1+

2x2

x2 − 1
= −∞, lim

x→−1−

2x2

x2 − 1
= +∞.

So the lines x = 1 and x = −1 are vertical asymptotes.

� For critical values we take the derivative:

f ′(x) =
4x(x2 − 1)− 2x2 · 2x

(x2 − 1)2
=

−4x
(x2 − 1)2

.

Note that f ′(x) = 0 when x = 0 (the top is zero). Also, f ′(x) = DNE when x = ±1
(the bottom is zero). As x = ±1 is not in the domain of f(x), the only critical number
is x = 0 (recall that to be a critical number we need it to be in the domain of the
original function).

Drawing a number line and including all of the split points of f ′(x) we have:

‐1 0

‐+

f '(0.5) < 0f '(‐0.5) > 0

decinc
1

+ ‐

f '(‐2) > 0 f '(2) < 0

decinc

Thus f is increasing on (−∞,−1) ∪ (−1, 0) and decreasing on (0, 1) ∪ (1,∞).

By the first derivative test, x = 0 is a local max.

� For possible inflection points we take the second derivative:

f ′′(x) =
12x2 + 4

(x2 − 1)3

The top is never zero. Also, the bottom is only zero when x = ±1 (neither of which
are in the domain of f(x)). Thus, there are no possible inflection points to consider.
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Drawing a number line and including all of the split points of f ′′(x) we have:

‐1 1

+ ‐ +

f ''(‐2) > 0 f ''(0) < 0 f ''(2) > 0

CU CD CU

Hence f is concave up on (−∞,−1) ∪ (1,∞), concave down on (−1, 1).

� We put this information together and sketch the graph.

We combine some of this information on a single number line to see what shape the graph
has on certain intervals:

‐1 0
decinc

1
decinc

CDCDCU CUVA VA
local
max

Note that there is a horizontal asymptote at y = 2 and that the curve has x-int of x = 0
and y-int of y = 0. Therefore, a sketch of f(x) is as follows:

1

2

3

4

5

6

7

1 2 3 4 5‐1‐2‐3‐4‐5

‐1

‐2

‐3

‐4

♣

Exercises for 5.3.5

Sketch the curves. Identify clearly any interesting features, including local maximum and
minimum points, inflection points, asymptotes, and intercepts.

Exercise 5.3.71. y = x5 − 5x4 + 5x3

Exercise 5.3.72. y = x3 − 3x2 − 9x+ 5
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Exercise 5.3.73. y = (x− 1)2(x+ 3)2/3

Exercise 5.3.74. x2 + x2y2 = a2y2, a > 0.

Exercise 5.3.75. y = xex

Exercise 5.3.76. y = (ex + e−x)/2

Exercise 5.3.77. y = e−x cos x

Exercise 5.3.78. y = ex − sin x

Exercise 5.3.79. y = ex/x

Exercise 5.3.80. y = 4x+
√
1− x

Exercise 5.3.81. y = (x+ 1)/
√
5x2 + 35

Exercise 5.3.82. y = x5 − x

Exercise 5.3.83. y = 6x+ sin 3x

Exercise 5.3.84. y = x+ 1/x

Exercise 5.3.85. y = x2 + 1/x

Exercise 5.3.86. y = (x+ 5)1/4

Exercise 5.3.87. y = tan2 x

Exercise 5.3.88. y = cos2 x− sin2 x

Exercise 5.3.89. y = sin3 x

Exercise 5.3.90. y = x(x2 + 1)

Exercise 5.3.91. y = x3 + 6x2 + 9x

Exercise 5.3.92. y = x/(x2 − 9)

Exercise 5.3.93. y = x2/(x2 + 9)

Exercise 5.3.94. y = 2
√
x− x

Exercise 5.3.95. y = 3 sin(x)− sin3(x), for x ∈ [0, 2π]

Exercise 5.3.96. y = (x− 1)/(x2)
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5.4 The Mean Value Theorem

Here are two interesting questions involving derivatives:

1. Suppose two different functions have the same derivative; what can you say about the
relationship between the two functions?

2. Suppose you drive a car from toll booth on a toll road to another toll booth at an
average speed of 70 miles per hour. What can be concluded about your actual speed
during the trip? In particular, did you exceed the 65 mile per hour speed limit?

While these sound very different, it turns out that the two problems are very closely
related. We know that “speed” is really the derivative by a different name; let’s start by
translating the second question into something that may be easier to visualize. Suppose that
the function f(t) gives the position of your car on the toll road at time t. Your change in
position between one toll booth and the next is given by f(t1) − f(t0), assuming that at
time t0 you were at the first booth and at time t1 you arrived at the second booth. Your
average speed for the trip is (f(t1)−f(t0))/(t1− t0). If we think about the graph of f(t), the
average speed is the slope of the line that connects the two points (t0, f(t0)) and (t1, f(t1)).
Your speed at any particular time t between t0 and t1 is f ′(t), the slope of the curve. Now
question (2) becomes a question about slope. In particular, if the slope between endpoints
is 70, what can be said of the slopes at points between the endpoints?

As a general rule, when faced with a new problem it is often a good idea to examine one or
more simplified versions of the problem, in the hope that this will lead to an understanding
of the original problem. In this case, the problem in its “slope” form is somewhat easier to
simplify than the original, but equivalent, problem.

Here is a special instance of the problem. Suppose that f(t0) = f(t1). Then the two end-
points have the same height and the slope of the line connecting the endpoints is zero. What
can we say about the slope between the endpoints? It shouldn’t take much experimentation
before you are convinced of the truth of this statement: Somewhere between t0 and t1 the
slope is exactly zero, that is, somewhere between t0 and t1 the slope is equal to the slope
of the line between the endpoints. This suggests that perhaps the same is true even if the
endpoints are at different heights, and again a bit of experimentation will probably convince
you that this is so. But we can do better than “experimentation”—we can prove that this
is so.

We start with the simplified version:

Theorem 5.22: Rolle’s Theorem

(Rolle’s Theorem) Suppose that f(x) has a derivative on the interval (a, b), is contin-
uous on the interval [a, b], and f(a) = f(b). Then at some value c ∈ (a, b), f ′(c) = 0.

Proof. We know that f(x) has a maximum and minimum value on [a, b] (because it is
continuous), and we also know that the maximum and minimum must occur at an endpoint,
at a point at which the derivative is zero, or at a point where the derivative is undefined.
Since the derivative is never undefined, that possibility is removed.
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If the maximum or minimum occurs at a point c, other than an endpoint, where f ′(c) = 0,
then we have found the point we seek. Otherwise, the maximum and minimum both occur
at an endpoint, and since the endpoints have the same height, the maximum and minimum
are the same. This means that f(x) = f(a) = f(b) at every x ∈ [a, b], so the function is a
horizontal line, and it has derivative zero everywhere in (a, b). Then we may choose any c
at all to get f ′(c) = 0. ♣

Rolle’s Theorem is illustrated below for a function f(x) where f ′(x) = 0 holds for two
values of x = c1 and x = c2:

x

y

f(a)=f(b)

a b

f '(c  )=01

f '(c  )=02

c  1 c  2

Perhaps remarkably, this special case is all we need to prove the more general one as well.

Theorem 5.23: Mean Value Theorem

Suppose that f(x) has a derivative on the interval (a, b) and is continuous on the

interval [a, b]. Then at some value c ∈ (a, b), f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let m =
f(b)− f(a)

b− a
, and consider a new function g(x) = f(x)−m(x − a)− f(a).

We know that g(x) has a derivative everywhere, since g′(x) = f ′(x) −m. We can compute
g(a) = f(a)−m(a− a)− f(a) = 0 and

g(b) = f(b)−m(b− a)− f(a) = f(b)− f(b)−f(a)
b−a

(b− a)− f(a)
= f(b)− (f(b)− f(a))− f(a) = 0.

So the height of g(x) is the same at both endpoints. This means, by Rolle’s Theorem, that
at some c, g′(c) = 0. But we know that g′(c) = f ′(c)−m, so

0 = f ′(c)−m = f ′(c)− f(b)− f(a)

b− a
,

which turns into

f ′(c) =
f(b)− f(a)

b− a
,

exactly what we want. ♣
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The Mean Value Theorem is illustrated below showing the existence of a point x = c for
a function f(x) where the tangent line at x = c (with slope f ′(c)) is parallel to the secant

line connecting A(a, f(a)) and B(b, f(b)) (with slope
f(b)− f(a)

b− a
):

sl
ope =

 f 
'(c

)

sl
ope =

  f
(b

)‐
f(

a)

b ‐ 
a

c
x

y

a b

A

B

Returning to the original formulation of question (2), we see that if f(t) gives the position
of your car at time t, then the Mean Value Theorem says that at some time c, f ′(c) = 70,
that is, at some time you must have been traveling at exactly your average speed for the
trip, and that indeed you exceeded the speed limit.

Now let’s return to question (1). Suppose, for example, that two functions are known to
have derivative equal to 5 everywhere, f ′(x) = g′(x) = 5. It is easy to find such functions:
5x, 5x + 47, 5x − 132, etc. Are there other, more complicated, examples? No—the only
functions that work are the “obvious” ones, namely, 5x plus some constant. How can we see
that this is true?

Although “5” is a very simple derivative, let’s look at an even simpler one. Suppose that
f ′(x) = g′(x) = 0. Again we can find examples: f(x) = 0, f(x) = 47, f(x) = −511 all
have f ′(x) = 0. Are there non-constant functions f with derivative 0? No, and here’s why:
Suppose that f(x) is not a constant function. This means that there are two points on the
function with different heights, say f(a) 6= f(b). The Mean Value Theorem tells us that at
some point c, f ′(c) = (f(b)− f(a))/(b− a) 6= 0. So any non-constant function does not have
a derivative that is zero everywhere; this is the same as saying that the only functions with
zero derivative are the constant functions.

Let’s go back to the slightly less easy example: suppose that f ′(x) = g′(x) = 5. Then
(f(x) − g(x))′ = f ′(x) − g′(x) = 5 − 5 = 0. So using what we discovered in the previous
paragraph, we know that f(x)− g(x) = k, for some constant k. So any two functions with
derivative 5 must differ by a constant; since 5x is known to work, the only other examples
must look like 5x+ k.

Now we can extend this to more complicated functions, without any extra work. Suppose
that f ′(x) = g′(x). Then as before (f(x) − g(x))′ = f ′(x) − g′(x) = 0, so f(x) − g(x) = k.
Again this means that if we find just a single function g(x) with a certain derivative, then
every other function with the same derivative must be of the form g(x) + k.
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Example 5.24: Given Derivative

Describe all functions that have derivative 5x− 3.

Solution. It’s easy to find one: g(x) = (5/2)x2 − 3x has g′(x) = 5x − 3. The only other
functions with the same derivative are therefore of the form f(x) = (5/2)x2 − 3x+ k.

Alternately, though not obviously, you might have first noticed that g(x) = (5/2)x2 −
3x + 47 has g′(x) = 5x − 3. Then every other function with the same derivative must
have the form f(x) = (5/2)x2 − 3x + 47 + k. This looks different, but it really isn’t.
The functions of the form f(x) = (5/2)x2 − 3x + k are exactly the same as the ones of
the form f(x) = (5/2)x2 − 3x + 47 + k. For example, (5/2)x2 − 3x + 10 is the same as
(5/2)x2 − 3x+ 47 + (−37), and the first is of the first form while the second has the second
form. ♣

This is worth calling a theorem:

Theorem 5.25: Functions with the Same Derivative

If f ′(x) = g′(x) for every x ∈ (a, b), then for some constant k, f(x) = g(x) + k on the
interval (a, b).

Example 5.26: Same Derivative

Describe all functions with derivative sin x+ ex. One such function is − cosx+ ex, so
all such functions have the form − cos x+ ex + k.

Exercises for Section 5.4

Exercise 5.4.1. Let f(x) = x2. Find a value c ∈ (−1, 2) so that f ′(c) equals the slope
between the endpoints of f(x) on [−1, 2].

Exercise 5.4.2. Verify that f(x) = x/(x + 2) satisfies the hypotheses of the Mean Value
Theorem on the interval [1, 4] and then find all of the values, c, that satisfy the conclusion
of the theorem.

Exercise 5.4.3. Verify that f(x) = 3x/(x + 7) satisfies the hypotheses of the Mean Value
Theorem on the interval [−2, 6] and then find all of the values, c, that satisfy the conclusion
of the theorem.

Exercise 5.4.4. Let f(x) = tan x. Show that f(π) = f(2π) = 0 but there is no number
c ∈ (π, 2π) such that f ′(c) = 0. Why does this not contradict Rolle’s theorem?

Exercise 5.4.5. Let f(x) = (x − 3)−2. Show that there is no value c ∈ (1, 4) such that
f ′(c) = (f(4)− f(1))/(4− 1). Why is this not a contradiction of the Mean Value Theorem?

Exercise 5.4.6. Describe all functions with derivative x2 + 47x− 5.
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Exercise 5.4.7. Describe all functions with derivative
1

1 + x2
.

Exercise 5.4.8. Describe all functions with derivative x3 − 1

x
.

Exercise 5.4.9. Describe all functions with derivative sin(2x).

Exercise 5.4.10. Show that the equation 6x4 − 7x + 1 = 0 does not have more than two
distinct real roots.

Exercise 5.4.11. Let f be differentiable on R. Suppose that f ′(x) 6= 0 for every x. Prove
that f has at most one real root.

Exercise 5.4.12. Prove that for all real x and y | cosx− cos y| ≤ |x− y|. State and prove
an analogous result involving sine.

Exercise 5.4.13. Show that
√
1 + x ≤ 1 + (x/2) if −1 < x < 1.

5.5 Optimization Problems

Many important applied problems involve finding the best way to accomplish some task.
Often this involves finding the maximum or minimum value of some function: the minimum
time to make a certain journey, the minimum cost for doing a task, the maximum power
that can be generated by a device, and so on. Many of these problems can be solved by
finding the appropriate function and then using techniques of calculus to find the maximum
or the minimum value required.

Generally such a problem will have the following mathematical form: Find the largest
(or smallest) value of f(x) when a ≤ x ≤ b. Sometimes a or b are infinite, but frequently
the real world imposes some constraint on the values that x may have.

Such a problem differs in two ways from the local maximum and minimum problems we
encountered when graphing functions: We are interested only in the function between a and
b, and we want to know the largest or smallest value that f(x) takes on, not merely values
that are the largest or smallest in a small interval. That is, we seek not a local maximum or
minimum but a global (or absolute) maximum or minimum.
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Guidelines to solving an optimization problem.

1. Understand clearly what is to be maximized or minimized and what the con-
traints are.

2. Draw a diagram (if appropriate) and label it.

3. Decide what the variables are. For example, A for area, r for radius, C for cost.

4. Write a formula for the function for which you wish to find the maximum or
minimum.

5. Express that formula in terms of only one variable, that is, in the form f(x).
Usually this is accomplished by using the given constraints.

6. Set f ′(x) = 0 and solve. Check all critical values and endpoints to determine the
extreme value(s) of f(x).
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y = a

(x, x2)
•

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .........

Figure 5.12: Rectangle in a parabola.

Example 5.27: Largest Rectangle

Find the largest rectangle (that is, the rectangle with largest area) that fits inside the
graph of the parabola y = x2 below the line y = a (a is an unspecified constant value),
with the top side of the rectangle on the horizontal line y = a; see figure 5.12.)

Solution. We want to find the maximum value of some function A(x) representing area.
Perhaps the hardest part of this problem is deciding what x should represent. The lower
right corner of the rectangle is at (x, x2), and once this is chosen the rectangle is completely
determined. So we can let the x in A(x) be the x of the parabola f(x) = x2. Then the area
is

A(x) = (2x)(a− x2) = −2x3 + 2ax.

We want the maximum value of A(x) when x is in [0,
√
a]. (You might object to allowing

x = 0 or x =
√
a, since then the “rectangle” has either no width or no height, so is not
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“really” a rectangle. But the problem is somewhat easier if we simply allow such rectangles,
which have zero area.)

Setting 0 = A′(x) = 6x2 + 2a we get x =
√

a/3 as the only critical value. Testing this

and the two endpoints, we have A(0) = A(
√
a) = 0 and A(

√

a/3) = (4/9)
√
3a3/2. The

maximum area thus occurs when the rectangle has dimensions 2
√

a/3× (2/3)a. ♣
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(h− R, r)

Figure 5.13: Cone in a sphere.

Example 5.28: Largest Cone

If you fit the largest possible cone inside a sphere, what fraction of the volume of the
sphere is occupied by the cone? (Here by “cone” we mean a right circular cone, i.e.,
a cone for which the base is perpendicular to the axis of symmetry, and for which the
cross-section cut perpendicular to the axis of symmetry at any point is a circle.)

Solution. Let R be the radius of the sphere, and let r and h be the base radius and height
of the cone inside the sphere. What we want to maximize is the volume of the cone: πr2h/3.
Here R is a fixed value, but r and h can vary. Namely, we could choose r to be as large as
possible—equal to R—by taking the height equal to R; or we could make the cone’s height
h larger at the expense of making r a little less than R. See the cross-section depicted in
figure 5.13. We have situated the picture in a convenient way relative to the x and y axes,
namely, with the center of the sphere at the origin and the vertex of the cone at the far left
on the x-axis.

Notice that the function we want to maximize, πr2h/3, depends on two variables. This
is frequently the case, but often the two variables are related in some way so that “really”
there is only one variable. So our next step is to find the relationship and use it to solve for
one of the variables in terms of the other, so as to have a function of only one variable to
maximize. In this problem, the condition is apparent in the figure: the upper corner of the
triangle, whose coordinates are (h− R, r), must be on the circle of radius R. That is,

(h−R)2 + r2 = R2.

We can solve for h in terms of r or for r in terms of h. Either involves taking a square root,
but we notice that the volume function contains r2, not r by itself, so it is easiest to solve
for r2 directly: r2 = R2 − (h− R)2. Then we substitute the result into πr2h/3:

V (h) = π(R2 − (h− R)2)h/3
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= −π
3
h3 + 2

3
πh2R

We want to maximize V (h) when h is between 0 and 2R. Now we solve 0 = f ′(h) =
−πh2 + (4/3)πhR, getting h = 0 or h = 4R/3. We compute V (0) = V (2R) = 0 and
V (4R/3) = (32/81)πR3. The maximum is the latter; since the volume of the sphere is
(4/3)πR3, the fraction of the sphere occupied by the cone is

(32/81)πR3

(4/3)πR3
=

8

27
≈ 30%.

♣

Example 5.29: Containers of Given Volume

You are making cylindrical containers to contain a given volume. Suppose that the
top and bottom are made of a material that is N times as expensive (cost per unit
area) as the material used for the lateral side of the cylinder.
Find (in terms of N) the ratio of height to base radius of the cylinder that minimizes
the cost of making the containers.

Solution. Let us first choose letters to represent various things: h for the height, r for the
base radius, V for the volume of the cylinder, and c for the cost per unit area of the lateral
side of the cylinder; V and c are constants, h and r are variables. Now we can write the cost
of materials:

c(2πrh) +Nc(2πr2).

Again we have two variables; the relationship is provided by the fixed volume of the cylinder:
V = πr2h. We use this relationship to eliminate h (we could eliminate r, but it’s a little
easier if we eliminate h, which appears in only one place in the above formula for cost). The
result is

f(r) = 2cπr
V

πr2
+ 2Ncπr2 =

2cV

r
+ 2Ncπr2.

We want to know the minimum value of this function when r is in (0,∞). We now set

0 = f ′(r) = −2cV/r2 + 4Ncπr, giving r = 3
√

V/(2Nπ). Since f ′′(r) = 4cV/r3 + 4Ncπ is
positive when r is positive, there is a local minimum at the critical value, and hence a global
minimum since there is only one critical value.

Finally, since h = V/(πr2),

h

r
=

V

πr3
=

V

π(V/(2Nπ))
= 2N,

so the minimum cost occurs when the height h is 2N times the radius. If, for example, there
is no difference in the cost of materials, the height is twice the radius (or the height is equal
to the diameter). ♣
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Example 5.30: Rectangles of Given Area

Of all rectangles of area 100, which has the smallest perimeter?

Solution. First we must translate this into a purely mathematical problem in which we
want to find the minimum value of a function. If x denotes one of the sides of the rectangle,
then the adjacent side must be 100/x (in order that the area be 100). So the function we
want to minimize is

f(x) = 2x+ 2
100

x

since the perimeter is twice the length plus twice the width of the rectangle. Not all values
of x make sense in this problem: lengths of sides of rectangles must be positive, so x > 0. If
x > 0 then so is 100/x, so we need no second condition on x.

We next find f ′(x) and set it equal to zero: 0 = f ′(x) = 2−200/x2. Solving f ′(x) = 0 for
x gives us x = ±10. We are interested only in x > 0, so only the value x = 10 is of interest.
Since f ′(x) is defined everywhere on the interval (0,∞), there are no more critical values,
and there are no endpoints. Is there a local maximum, minimum, or neither at x = 10? The
second derivative is f ′′(x) = 400/x3, and f ′′(10) > 0, so there is a local minimum. Since
there is only one critical value, this is also the global minimum, so the rectangle with smallest
perimeter is the 10× 10 square. ♣

Example 5.31: Maximize your Profit

You want to sell a certain number n of items in order to maximize your profit. Market
research tells you that if you set the price at $1.50, you will be able to sell 5000 items,
and for every 10 cents you lower the price below $1.50 you will be able to sell another
1000 items. Suppose that your fixed costs (“start-up costs”) total $2000, and the per
item cost of production (“marginal cost”) is $0.50.
Find the price to set per item and the number of items sold in order to maximize
profit, and also determine the maximum profit you can get.

Solution. The first step is to convert the problem into a function maximization problem.
Since we want to maximize profit by setting the price per item, we should look for a function
P (x) representing the profit when the price per item is x. Profit is revenue minus costs, and
revenue is number of items sold times the price per item, so we get P = nx− 2000− 0.50n.
The number of items sold is itself a function of x, n = 5000 + 1000(1.5 − x)/0.10, because
(1.5− x)/0.10 is the number of multiples of 10 cents that the price is below $1.50. Now we
substitute for n in the profit function:

P (x) = (5000 + 1000(1.5− x)/0.10)x− 2000− 0.5(5000 + 1000(1.5− x)/0.10)
= −10000x2 + 25000x− 12000

We want to know the maximum value of this function when x is between 0 and 1.5. The
derivative is P ′(x) = −20000x + 25000, which is zero when x = 1.25. Since P ′′(x) =
−20000 < 0, there must be a local maximum at x = 1.25, and since this is the only critical
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value it must be a global maximum as well. (Alternately, we could compute P (0) = −12000,
P (1.25) = 3625, and P (1.5) = 3000 and note that P (1.25) is the maximum of these.) Thus
the maximum profit is $3625, attained when we set the price at $1.25 and sell 7500 items.

♣
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A

D B C

b

Figure 5.14: Minimizing travel time.

Example 5.32: Minimize Travel Time

Suppose you want to reach a point A that is located across the sand from a nearby
road (see figure 5.14). Suppose that the road is straight, and b is the distance from A
to the closest point C on the road. Let v be your speed on the road, and let w, which
is less than v, be your speed on the sand. Right now you are at the point D, which is
a distance a from C. At what point B should you turn off the road and head across
the sand in order to minimize your travel time to A?

Solution. Let x be the distance short of C where you turn off, i.e., the distance from B
to C. We want to minimize the total travel time. Recall that when traveling at constant
velocity, time is distance divided by velocity.

You travel the distance DB at speed v, and then the distance BA at speed w. Since
DB = a− x and, by the Pythagorean theorem, BA =

√
x2 + b2, the total time for the trip

is

f(x) =
a− x

v
+

√
x2 + b2

w
.

We want to find the minimum value of f when x is between 0 and a. As usual we set
f ′(x) = 0 and solve for x:

0 = f ′(x) = −1

v
+

x

w
√
x2 + b2

w
√
x2 + b2 = vx

w2(x2 + b2) = v2x2

w2b2 = (v2 − w2)x2

x =
wb√

v2 − w2

Notice that a does not appear in the last expression, but a is not irrelevant, since we are
interested only in critical values that are in [0, a], and wb/

√
v2 − w2 is either in this interval
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or not. If it is, we can use the second derivative to test it:

f ′′(x) =
b2

(x2 + b2)3/2w
.

Since this is always positive there is a local minimum at the critical point, and so it is a
global minimum as well.

If the critical value is not in [0, a] it is larger than a. In this case the minimum must
occur at one of the endpoints. We can compute

f(0) =
a

v
+

b

w

f(a) =

√
a2 + b2

w

but it is difficult to determine which of these is smaller by direct comparison. If, as is likely in
practice, we know the values of v, w, a, and b, then it is easy to determine this. With a little
cleverness, however, we can determine the minimum in general. We have seen that f ′′(x) is
always positive, so the derivative f ′(x) is always increasing. We know that at wb/

√
v2 − w2

the derivative is zero, so for values of x less than that critical value, the derivative is negative.
This means that f(0) > f(a), so the minimum occurs when x = a.

So the upshot is this: If you start farther away from C than wb/
√
v2 − w2 then you

always want to cut across the sand when you are a distance wb/
√
v2 − w2 from point C. If

you start closer than this to C, you should cut directly across the sand. ♣

Exercises for Section 5.5

Exercise 5.5.1. Find the dimensions of the rectangle of largest area having fixed perimeter
100.

Exercise 5.5.2. Find the dimensions of the rectangle of largest area having fixed perimeter
P .

Exercise 5.5.3. A box with square base and no top is to hold a volume 100. Find the
dimensions of the box that requires the least material for the five sides. Also find the ratio of
height to side of the base.

Exercise 5.5.4. A box with square base is to hold a volume 200. The bottom and top are
formed by folding in flaps from all four sides, so that the bottom and top consist of two layers
of cardboard. Find the dimensions of the box that requires the least material. Also find the
ratio of height to side of the base.

Exercise 5.5.5. A box with square base and no top is to hold a volume V . Find (in terms
of V ) the dimensions of the box that requires the least material for the five sides. Also find
the ratio of height to side of the base. (This ratio will not involve V .)
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Exercise 5.5.6. You have 100 feet of fence to make a rectangular play area alongside the
wall of your house. The wall of the house bounds one side. What is the largest size possible
(in square feet) for the play area?

Exercise 5.5.7. You have l feet of fence to make a rectangular play area alongside the wall
of your house. The wall of the house bounds one side. What is the largest size possible (in
square feet) for the play area?

Exercise 5.5.8. Marketing tells you that if you set the price of an item at $10 then you will
be unable to sell it, but that you can sell 500 items for each dollar below $10 that you set the
price. Suppose your fixed costs total $3000, and your marginal cost is $2 per item. What is
the most profit you can make?

Exercise 5.5.9. Find the area of the largest rectangle that fits inside a semicircle of radius
10 (one side of the rectangle is along the diameter of the semicircle).

Exercise 5.5.10. Find the area of the largest rectangle that fits inside a semicircle of radius
r (one side of the rectangle is along the diameter of the semicircle).

Exercise 5.5.11. For a cylinder with surface area 50, including the top and the bottom, find
the ratio of height to base radius that maximizes the volume.

Exercise 5.5.12. For a cylinder with given surface area S, including the top and the bottom,
find the ratio of height to base radius that maximizes the volume.

Exercise 5.5.13. You want to make cylindrical containers to hold 1 liter using the least
amount of construction material. The side is made from a rectangular piece of material, and
this can be done with no material wasted. However, the top and bottom are cut from squares
of side 2r, so that 2(2r)2 = 8r2 of material is needed (rather than 2πr2, which is the total
area of the top and bottom). Find the dimensions of the container using the least amount of
material, and also find the ratio of height to radius for this container.

Exercise 5.5.14. You want to make cylindrical containers of a given volume V using the
least amount of construction material. The side is made from a rectangular piece of material,
and this can be done with no material wasted. However, the top and bottom are cut from
squares of side 2r, so that 2(2r)2 = 8r2 of material is needed (rather than 2πr2, which is the
total area of the top and bottom). Find the optimal ratio of height to radius.

Exercise 5.5.15. Given a right circular cone, you put an upside-down cone inside it so that
its vertex is at the center of the base of the larger cone and its base is parallel to the base of
the larger cone. If you choose the upside-down cone to have the largest possible volume, what
fraction of the volume of the larger cone does it occupy? (Let H and R be the height and
base radius of the larger cone, and let h and r be the height and base radius of the smaller
cone. Hint: Use similar triangles to get an equation relating h and r.)

Exercise 5.5.16. A container holding a fixed volume is being made in the shape of a cylinder
with a hemispherical top. (The hemispherical top has the same radius as the cylinder.) Find
the ratio of height to radius of the cylinder which minimizes the cost of the container if (a)
the cost per unit area of the top is twice as great as the cost per unit area of the side, and
the container is made with no bottom; (b) the same as in (a), except that the container is
made with a circular bottom, for which the cost per unit area is 1.5 times the cost per unit
area of the side.
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Exercise 5.5.17. A piece of cardboard is 1 meter by 1/2 meter. A square is to be cut from
each corner and the sides folded up to make an open-top box. What are the dimensions of
the box with maximum possible volume?

Exercise 5.5.18. (a) A square piece of cardboard of side a is used to make an open-top box
by cutting out a small square from each corner and bending up the sides. How large a square
should be cut from each corner in order that the box have maximum volume? (b) What if the
piece of cardboard used to make the box is a rectangle of sides a and b?

Exercise 5.5.19. A window consists of a rectangular piece of clear glass with a semicircular
piece of colored glass on top; the colored glass transmits only 1/2 as much light per unit
area as the the clear glass. If the distance from top to bottom (across both the rectangle and
the semicircle) is 2 meters and the window may be no more than 1.5 meters wide, find the
dimensions of the rectangular portion of the window that lets through the most light.

Exercise 5.5.20. A window consists of a rectangular piece of clear glass with a semicircular
piece of colored glass on top. Suppose that the colored glass transmits only k times as much
light per unit area as the clear glass (k is between 0 and 1). If the distance from top to bottom
(across both the rectangle and the semicircle) is a fixed distance H, find (in terms of k) the
ratio of vertical side to horizontal side of the rectangle for which the window lets through the
most light.

Exercise 5.5.21. You are designing a poster to contain a fixed amount A of printing (mea-
sured in square centimeters) and have margins of a centimeters at the top and bottom and b
centimeters at the sides. Find the ratio of vertical dimension to horizontal dimension of the
printed area on the poster if you want to minimize the amount of posterboard needed.

Exercise 5.5.22. What fraction of the volume of a sphere is taken up by the largest cylinder
that can be fit inside the sphere?

Exercise 5.5.23. The U.S. post office will accept a box for shipment only if the sum of the
length and girth (distance around) is at most 108 in. Find the dimensions of the largest
acceptable box with square front and back.

Exercise 5.5.24. Find the dimensions of the lightest cylindrical can containing 0.25 liter
(=250 cm3) if the top and bottom are made of a material that is twice as heavy (per unit
area) as the material used for the side.

Exercise 5.5.25. A conical paper cup is to hold 1/4 of a liter. Find the height and radius
of the cone which minimizes the amount of paper needed to make the cup. Use the formula
πr
√
r2 + h2 for the area of the side of a cone.

Exercise 5.5.26. A conical paper cup is to hold a fixed volume of water. Find the ratio of
height to base radius of the cone which minimizes the amount of paper needed to make the
cup. Use the formula πr

√
r2 + h2 for the area of the side of a cone, called the lateral area

of the cone.

Exercise 5.5.27. Find the fraction of the area of a triangle that is occupied by the largest
rectangle that can be drawn in the triangle (with one of its sides along a side of the triangle).
Show that this fraction does not depend on the dimensions of the given triangle.

Exercise 5.5.28. How are your answers to Problem 5.5.8 affected if the cost per item for
the x items, instead of being simply $2, decreases below $2 in proportion to x (because of
economy of scale and volume discounts) by 1 cent for each 25 items produced?
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5.6 Related Rates

Suppose we have two variables x and y (in most problems the letters will be different, but
for now let’s use x and y) which are both changing with time. A “related rates” problem is
a problem in which we know one of the rates of change at a given instant—say, ẋ = dx/dt—
and we want to find the other rate ẏ = dy/dt at that instant. (The use of ẋ to mean dx/dt
goes back to Newton and is still used for this purpose, especially by physicists.)

If y is written in terms of x, i.e., y = f(x), then this is easy to do using the chain rule:

ẏ =
dy

dt
=

dy

dx
· dx
dt

=
dy

dx
ẋ.

That is, find the derivative of f(x), plug in the value of x at the instant in question, and
multiply by the given value of ẋ = dx/dt to get ẏ = dy/dt.

Example 5.33: Speed at which a Coordinate is Changing

Suppose an object is moving along a path described by y = x2, that is, it is moving
on a parabolic path. At a particular time, say t = 5, the x coordinate is 6 and we
measure the speed at which the x coordinate of the object is changing and find that
dx/dt = 3.
At the same time, how fast is the y coordinate changing?

Solution. Using the chain rule, dy/dt = 2x · dx/dt. At t = 5 we know that x = 6 and
dx/dt = 3, so dy/dt = 2 · 6 · 3 = 36. ♣

In many cases, particularly interesting ones, x and y will be related in some other way,
for example x = f(y), or F (x, y) = k, or perhaps F (x, y) = G(x, y), where F (x, y) and
G(x, y) are expressions involving both variables. In all cases, you can solve the related rates
problem by taking the derivative of both sides, plugging in all the known values (namely, x,
y, and ẋ), and then solving for ẏ.

To summarize, here are the steps in doing a related rates problem.

Steps for Solving Related Rates Problems

� 1. Decide what the two variables are.

� 2. Find an equation relating them.

� 3. Take d/dt of both sides.

� 4. Plug in all known values at the instant in question.

� 5. Solve for the unknown rate.
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Example 5.34: Receding Airplanes

A plane is flying directly away from you at 500 mph at an altitude of 3 miles. How
fast is the plane’s distance from you increasing at the moment when the plane is flying
over a point on the ground 4 miles from you?

Solution. To see what’s going on, we first draw a schematic representation of the situation,
as in figure 5.15.

Because the plane is in level flight directly away from you, the rate at which x changes
is the speed of the plane, dx/dt = 500. The distance between you and the plane is y; it
is dy/dt that we wish to know. By the Pythagorean Theorem we know that x2 + 9 = y2.
Taking the derivative:

2xẋ = 2yẏ.

We are interested in the time at which x = 4; at this time we know that 42 + 9 = y2, so
y = 5. Putting together all the information we get

2(4)(500) = 2(5)ẏ.

Thus, ẏ = 400 mph. ♣
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Figure 5.15: Receding airplane.

Example 5.35: Spherical Balloon

You are inflating a spherical balloon at the rate of 7 cm3/sec. How fast is its radius
increasing when the radius is 4 cm?

Solution. Here the variables are the radius r and the volume V . We know dV/dt, and
we want dr/dt. The two variables are related by the equation V = 4πr3/3. Taking the
derivative of both sides gives dV/dt = 4πr2ṙ. We now substitute the values we know at the
instant in question: 7 = 4π42ṙ, so ṙ = 7/(64π) cm/sec. ♣
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Example 5.36: Conical Container

Water is poured into a conical container at the rate of 10 cm3/sec. The cone points
directly down, and it has a height of 30 cm and a base radius of 10 cm; see figure 5.16.
How fast is the water level rising when the water is 4 cm deep (at its deepest point)?

Solution. The water forms a conical shape within the big cone; its height and base radius
and volume are all increasing as water is poured into the container. This means that we
actually have three things varying with time: the water level h (the height of the cone of
water), the radius r of the circular top surface of water (the base radius of the cone of water),
and the volume of water V . The volume of a cone is given by V = πr2h/3. We know dV/dt,
and we want dh/dt. At first something seems to be wrong: we have a third variable, r,
whose rate we don’t know.

However, the dimensions of the cone of water must have the same proportions as those
of the container. That is, because of similar triangles, r/h = 10/30 so r = h/3. Now we can
eliminate r from the problem entirely: V = π(h/3)2h/3 = πh3/27. We take the derivative
of both sides and plug in h = 4 and dV/dt = 10, obtaining 10 = (3π · 42/27)(dh/dt). Thus,
dh/dt = 90/(16π) cm/sec. ♣
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Figure 5.16: Conical water tank.

Example 5.37: Swing Set

A swing consists of a board at the end of a 10 ft long rope. Think of the board as
a point P at the end of the rope, and let Q be the point of attachment at the other
end. Suppose that the swing is directly below Q at time t = 0, and is being pushed
by someone who walks at 6 ft/sec from left to right.
Find (a) how fast the swing is rising after 1 sec; (b) the angular speed of the rope in
deg/sec after 1 sec.

Solution. We start out by asking: What is the geometric quantity whose rate of change we
know, and what is the geometric quantity whose rate of change we’re being asked about?
Note that the person pushing the swing is moving horizontally at a rate we know. In other
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words, the horizontal coordinate of P is increasing at 6 ft/sec. In the xy-plane let us make
the convenient choice of putting the origin at the location of P at time t = 0, i.e., a distance
10 directly below the point of attachment. Then the rate we know is dx/dt, and in part (a)
the rate we want is dy/dt (the rate at which P is rising). In part (b) the rate we want is
θ̇ = dθ/dt, where θ stands for the angle in radians through which the swing has swung from
the vertical. (Actually, since we want our answer in deg/sec, at the end we must convert
dθ/dt from rad/sec by multiplying by 180/π.)
(a) From the diagram we see that we have a right triangle whose legs are x and 10− y, and
whose hypotenuse is 10. Hence x2 + (10− y)2 = 100. Taking the derivative of both sides we
obtain: 2xẋ + 2(10− y)(0− ẏ) = 0. We now look at what we know after 1 second, namely
x = 6 (because x started at 0 and has been increasing at the rate of 6 ft/sec for 1 sec), thus
y = 2 (because we get 10−y = 8 from the Pythagorean theorem applied to the triangle with
hypotenuse 10 and leg 6), and ẋ = 6. Putting in these values gives us 2 · 6 · 6 − 2 · 8ẏ = 0,
from which we can easily solve for ẏ: ẏ = 4.5 ft/sec.
(b) Here our two variables are x and θ, so we want to use the same right triangle as in part
(a), but this time relate θ to x. Since the hypotenuse is constant (equal to 10), the best way
to do this is to use the sine: sin θ = x/10. Taking derivatives we obtain (cos θ)θ̇ = 0.1ẋ.
At the instant in question (t = 1 sec), when we have a right triangle with sides 6–8–10,
cos θ = 8/10 and ẋ = 6. Thus (8/10)θ̇ = 6/10, i.e., θ̇ = 6/8 = 3/4 rad/sec, or approximately
43 deg/sec. ♣
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Figure 5.17: Swing.

We have seen that sometimes there are apparently more than two variables that change
with time, but in reality there are just two, as the others can be expressed in terms of just
two. However sometimes there really are several variables that change with time; as long as
you know the rates of change of all but one of them you can find the rate of change of the
remaining one. As in the case when there are just two variables, take the derivative of both
sides of the equation relating all of the variables, and then substitute all of the known values
and solve for the unknown rate.
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Example 5.38: Distance Changing Rate

A road running north to south crosses a road going east to west at the point P . Car
A is driving north along the first road, and car B is driving east along the second
road. At a particular time car A is 10 kilometers to the north of P and traveling at
80 km/hr, while car B is 15 kilometers to the east of P and traveling at 100 km/hr.
How fast is the distance between the two cars changing?

Solution. Let a(t) be the distance of car A north of P at time t, and b(t) the distance
of car B east of P at time t, and let c(t) be the distance from car A to car B at time t.
By the Pythagorean Theorem, c(t)2 = a(t)2 + b(t)2. Taking derivatives we get 2c(t)c′(t) =
2a(t)a′(t) + 2b(t)b′(t), so

ċ =
aȧ + bḃ

c
=

aȧ+ bḃ√
a2 + b2

.

Substituting known values we get:

ċ =
10 · 80 + 15 · 100√

102 + 152
=

460√
13
≈ 127.6km/hr

at the time of interest. ♣
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Figure 5.18: Cars moving apart.

Notice how this problem differs from example 5.34. In both cases we started with the
Pythagorean Theorem and took derivatives on both sides. However, in example 5.34 one of
the sides was a constant (the altitude of the plane), and so the derivative of the square of
that side of the triangle was simply zero. In this example, on the other hand, all three sides
of the right triangle are variables, even though we are interested in a specific value of each
side of the triangle (namely, when the sides have lengths 10 and 15). Make sure that you
understand at the start of the problem what are the variables and what are the constants.

Exercises for Section 5.6

Exercise 5.6.1. A cylindrical tank standing upright (with one circular base on the ground)
has radius 20 cm. How fast does the water level in the tank drop when the water is being
drained at 25 cm3/sec?
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Exercise 5.6.2. A cylindrical tank standing upright (with one circular base on the ground)
has radius 1 meter. How fast does the water level in the tank drop when the water is being
drained at 3 liters per second?

Exercise 5.6.3. A ladder 13 meters long rests on horizontal ground and leans against a
vertical wall. The foot of the ladder is pulled away from the wall at the rate of 0.6 m/sec.
How fast is the top sliding down the wall when the foot of the ladder is 5 m from the wall?

Exercise 5.6.4. A ladder 13 meters long rests on horizontal ground and leans against a
vertical wall. The top of the ladder is being pulled up the wall at 0.1 meters per second. How
fast is the foot of the ladder approaching the wall when the foot of the ladder is 5 m from the
wall?

Exercise 5.6.5. A rotating beacon is located 2 miles out in the water. Let A be the point
on the shore that is closest to the beacon. As the beacon rotates at 10 rev/min, the beam of
light sweeps down the shore once each time it revolves. Assume that the shore is straight.
How fast is the point where the beam hits the shore moving at an instant when the beam is
lighting up a point 2 miles along the shore from the point A?

Exercise 5.6.6. A baseball diamond is a square 90 ft on a side. A player runs from first base
to second base at 15 ft/sec. At what rate is the player’s distance from third base decreasing
when she is half way from first to second base?

Exercise 5.6.7. Sand is poured onto a surface at 15 cm3/sec, forming a conical pile whose
base diameter is always equal to its altitude. How fast is the altitude of the pile increasing
when the pile is 3 cm high?

Exercise 5.6.8. A boat is pulled in to a dock by a rope with one end attached to the front of
the boat and the other end passing through a ring attached to the dock at a point 5 ft higher
than the front of the boat. The rope is being pulled through the ring at the rate of 0.6 ft/sec.
How fast is the boat approaching the dock when 13 ft of rope are out?

Exercise 5.6.9. A balloon is at a height of 50 meters, and is rising at the constant rate of
5 m/sec. A bicyclist passes beneath it, traveling in a straight line at the constant speed of 10
m/sec. How fast is the distance between the bicyclist and the balloon increasing 2 seconds
later?

Exercise 5.6.10. A pyramid-shaped vat has square cross-section and stands on its tip. The
dimensions at the top are 2 m × 2 m, and the depth is 5 m. If water is flowing into
the vat at 3 m3/min, how fast is the water level rising when the depth of water (at the
deepest point) is 4 m? Note: the volume of any “conical” shape (including pyramids) is
(1/3)(height)(area of base).

Exercise 5.6.11. A woman 5 ft tall walks at the rate of 3.5 ft/sec away from a streetlight
that is 12 ft above the ground. At what rate is the tip of her shadow moving? At what rate
is her shadow lengthening?

Exercise 5.6.12. A man 1.8 meters tall walks at the rate of 1 meter per second toward a
streetlight that is 4 meters above the ground. At what rate is the tip of his shadow moving?
At what rate is his shadow shortening?
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Exercise 5.6.13. A police helicopter is flying at 150 mph at a constant altitude of 0.5 mile
above a straight road. The pilot uses radar to determine that an oncoming car is at a distance
of exactly 1 mile from the helicopter, and that this distance is decreasing at 190 mph. Find
the speed of the car.

Exercise 5.6.14. A police helicopter is flying at 200 kilometers per hour at a constant
altitude of 1 km above a straight road. The pilot uses radar to determine that an oncoming
car is at a distance of exactly 2 kilometers from the helicopter, and that this distance is
decreasing at 250 kph. Find the speed of the car.

Exercise 5.6.15. A light shines from the top of a pole 20 m high. An object is dropped
from the same height from a point 10 m away, so that its height at time t seconds is h(t) =
20− 9.8t2/2. How fast is the object’s shadow moving on the ground one second later?
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6. Integration

6.1 Displacement and Area

Example 6.1: Object Moving in a Straight Line

An object moves in a straight line so that its speed at time t is given by v(t) = 3t in,
say, cm/sec. If the object is at position 10 on the straight line when t = 0, where is
the object at any time t?

Solution. There are two reasonable ways to approach this problem. If s(t) is the position of
the object at time t, we know that s′(t) = v(t). Based on our knowledge of derivatives, we
therefore know that s(t) = 3t2/2 + k, and because s(0) = 10 we easily discover that k = 10,
so s(t) = 3t2/2 + 10. For example, at t = 1 the object is at position 3/2 + 10 = 11.5. This
is certainly the easiest way to deal with this problem. Not all similar problems are so easy,
as we will see; the second approach to the problem is more difficult but also more general.

We start by considering how we might approximate a solution. We know that at t = 0
the object is at position 10. How might we approximate its position at, say, t = 1? We
know that the speed of the object at time t = 0 is 0; if its speed were constant then in the
first second the object would not move and its position would still be 10 when t = 1. In
fact, the object will not be too far from 10 at t = 1, but certainly we can do better. Let’s
look at the times 0.1, 0.2, 0.3, . . . , 1.0, and try approximating the location of the object
at each, by supposing that during each tenth of a second the object is going at a constant
speed. Since the object initially has speed 0, we again suppose it maintains this speed, but
only for a tenth of second; during that time the object would not move. During the tenth
of a second from t = 0.1 to t = 0.2, we suppose that the object is traveling at 0.3 cm/sec,
namely, its actual speed at t = 0.1. In this case the object would travel (0.3)(0.1) = 0.03
centimeters: 0.3 cm/sec times 0.1 seconds. Similarly, between t = 0.2 and t = 0.3 the object
would travel (0.6)(0.1) = 0.06 centimeters. Continuing, we get as an approximation that the
object travels

(0.0)(0.1) + (0.3)(0.1) + (0.6)(0.1) + · · ·+ (2.7)(0.1) = 1.35

centimeters, ending up at position 11.35. This is a better approximation than 10, certainly,
but is still just an approximation. (We know in fact that the object ends up at position 11.5,
because we’ve already done the problem using the first approach.) Presumably, we will get
a better approximation if we divide the time into one hundred intervals of a hundredth of a
second each, and repeat the process:

(0.0)(0.01) + (0.03)(0.01) + (0.06)(0.01) + · · ·+ (2.97)(0.01) = 1.485.

We thus approximate the position as 11.485. Since we know the exact answer, we can see
that this is much closer, but if we did not already know the answer, we wouldn’t really know
how close.
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We can keep this up, but we’ll never really know the exact answer if we simply compute
more and more examples. Let’s instead look at a “typical” approximation. Suppose we
divide the time into n equal intervals, and imagine that on each of these the object travels
at a constant speed. Over the first time interval we approximate the distance traveled as
(0.0)(1/n) = 0, as before. During the second time interval, from t = 1/n to t = 2/n, the
object travels approximately 3(1/n)(1/n) = 3/n2 centimeters. During time interval number
i, the object travels approximately (3(i− 1)/n)(1/n) = 3(i− 1)/n2 centimeters, that is, its
speed at time (i− 1)/n, 3(i− 1)/n, times the length of time interval number i, 1/n. Adding
these up as before, we approximate the distance traveled as

(0)
1

n
+ 3

1

n2
+ 3(2)

1

n2
+ 3(3)

1

n2
+ · · ·+ 3(n− 1)

1

n2

centimeters. What can we say about this? At first it looks rather less useful than the
concrete calculations we’ve already done, but in fact a bit of algebra reveals it to be much
more useful. We can factor out a 3 and 1/n2 to get

3

n2
(0 + 1 + 2 + 3 + · · ·+ (n− 1)),

that is, 3/n2 times the sum of the first n − 1 positive integers. Now we make use of a fact
you may have run across before, Gauss’s Equation:

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
.

In our case we’re interested in k = n− 1, so

1 + 2 + 3 + · · ·+ (n− 1) =
(n− 1)(n)

2
=

n2 − n

2
.

This simplifies the approximate distance traveled to

3

n2

n2 − n

2
=

3

2

n2 − n

n2
=

3

2

(

n2

n2
− n

n2

)

=
3

2

(

1− 1

n

)

.

Now this is quite easy to understand: as n gets larger and larger this approximation gets
closer and closer to (3/2)(1− 0) = 3/2, so that 3/2 is the exact distance traveled during one
second, and the final position is 11.5.

So for t = 1, at least, this rather cumbersome approach gives the same answer as the first
approach. But really there’s nothing special about t = 1; let’s just call it t instead. In this
case the approximate distance traveled during time interval number i is 3(i−1)(t/n)(t/n) =
3(i− 1)t2/n2, that is, speed 3(i− 1)(t/n) times time t/n, and the total distance traveled is
approximately

(0)
t

n
+ 3(1)

t2

n2
+ 3(2)

t2

n2
+ 3(3)

t2

n2
+ · · ·+ 3(n− 1)

t2

n2
.

As before we can simplify this to

3t2

n2
(0 + 1 + 2 + · · ·+ (n− 1)) =

3t2

n2

n2 − n

2
=

3

2
t2
(

1− 1

n

)

.

In the limit, as n gets larger, this gets closer and closer to (3/2)t2 and the approximated
position of the object gets closer and closer to (3/2)t2+10, so the actual position is (3/2)t2+
10, exactly the answer given by the first approach to the problem. ♣
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Example 6.2: Area under the Line

Find the area under the curve y = 3x between x = 0 and any positive value x.

Solution. There is here no obvious analogue to the first approach in the previous example,
but the second approach works fine. (Since the function y = 3x is so simple, there is
another approach that works here, but it is even more limited in potential application than
is approach number one.) How might we approximate the desired area? We know how to
compute areas of rectangles, so we approximate the area by rectangles. Jumping straight to
the general case, suppose we divide the interval between 0 and x into n equal subintervals,
and use a rectangle above each subinterval to approximate the area under the curve. There
are many ways we might do this, but let’s use the height of the curve at the left endpoint
of the subinterval as the height of the rectangle, as in figure 6.1. The height of rectangle
number i is then 3(i− 1)(x/n), the width is x/n, and the area is 3(i− 1)(x2/n2). The total
area of the rectangles is

(0)
x

n
+ 3(1)

x2

n2
+ 3(2)

x2

n2
+ 3(3)

x2

n2
+ · · ·+ 3(n− 1)

x2

n2
.

By factoring out 3x2/n2 this simplifies to

3x2

n2
(0 + 1 + 2 + · · ·+ (n− 1)) =

3x2

n2

n2 − n

2
=

3

2
x2

(

1− 1

n

)

.

As n gets larger this gets closer and closer to 3x2/2, which must therefore be the true area
under the curve. ♣

. . .

.

.

..

..

..

.

..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
.

Figure 6.1: Approximating the area under y = 3x with rectangles.

What you will have noticed, of course, is that while the problem in the second example
appears to be much different than the problem in the first example, and while the easy
approach to problem one does not appear to apply to problem two, the “approximation”
approach works in both, and moreover the calculations are identical. As we will see, there
are many, many problems that appear much different on the surface but turn out to be the
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same as these problems, in the sense that when we try to approximate solutions we end up
with mathematics that looks like the two examples, though of course the function involved
will not always be so simple.

Even better, we now see that while the second problem did not appear to be amenable to
approach one, it can in fact be solved in the same way. The reasoning is this: we know that
problem one can be solved easily by finding a function whose derivative is 3t. We also know
that mathematically the two problems are the same, because both can be solved by taking
a limit of a sum, and the sums are identical. Therefore, we don’t really need to compute
the limit of either sum because we know that we will get the same answer by computing a
function with the derivative 3t or, which is the same thing, 3x.

It’s true that the first problem had the added complication of the “10”, and we certainly
need to be able to deal with such minor variations, but that turns out to be quite simple.
The lesson then is this: whenever we can solve a problem by taking the limit of a sum of a
certain form, instead of computing the (often nasty) limit we can find a new function with
a certain derivative.

Exercises for Section 6.1

Exercise 6.1.1. Suppose an object moves in a straight line so that its speed at time t is
given by v(t) = 2t+ 2, and that at t = 1 the object is at position 5. Find the position of the
object at t = 2.

Exercise 6.1.2. Suppose an object moves in a straight line so that its speed at time t is
given by v(t) = t2 + 2, and that at t = 0 the object is at position 5. Find the position of the
object at t = 2.

Exercise 6.1.3. Find the area under y = 2x between x = 0 and any positive value for x.

Exercise 6.1.4. Find the area under y = 4x between x = 0 and any positive value for x.

Exercise 6.1.5. Find the area under y = 4x between x = 2 and any positive value for x
bigger than 2.

Exercise 6.1.6. Find the area under y = 4x between any two positive values for x, say
a < b.

Exercise 6.1.7. Let f(x) = x2 + 3x + 2. Approximate the area under the curve between
x = 0 and x = 2 using 4 rectangles and also using 8 rectangles.

Exercise 6.1.8. Let f(x) = x2 − 2x + 3. Approximate the area under the curve between
x = 1 and x = 3 using 4 rectangles.

6.2 The Fundamental Theorem of Calculus

Let’s recast the first example from the previous section. Suppose that the speed of the object
is 3t at time t. How far does the object travel between time t = a and time t = b? We are
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no longer assuming that we know where the object is at time t = 0 or at any other time. It
is certainly true that it is somewhere, so let’s suppose that at t = 0 the position is k. Then
just as in the example, we know that the position of the object at any time is 3t2/2+k. This
means that at time t = a the position is 3a2/2+k and at time t = b the position is 3b2/2+k.
Therefore the change in position is 3b2/2+ k− (3a2/2+ k) = 3b2/2− 3a2/2. Notice that the
k drops out; this means that it doesn’t matter that we don’t know k, it doesn’t even matter
if we use the wrong k, we get the correct answer.

What about the second approach to this problem, in the new form? We now want to
approximate the change in position between time a and time b. We take the interval of
time between a and b, divide it into n subintervals, and approximate the distance traveled
during each. The starting time of subinterval number i is now a + (i − 1)(b − a)/n, which
we abbreviate as ti−1, so that t0 = a, t1 = a+ (b− a)/n, and so on. The speed of the object
is f(t) = 3t, and each subinterval is (b − a)/n = ∆t seconds long. The distance traveled
during subinterval number i is approximately f(ti−1)∆t, and the total change in distance is
approximately

f(t0)∆t + f(t1)∆t+ · · ·+ f(tn−1)∆t.

The exact change in position is the limit of this sum as n goes to infinity. We abbreviate
this sum using sigma notation:

n−1
∑

i=0

f(ti)∆t = f(t0)∆t + f(t1)∆t + · · ·+ f(tn−1)∆t.

The notation on the left side of the equal sign uses a large capital sigma, a Greek letter, and
the left side is an abbreviation for the right side. The answer we seek is

lim
n→∞

n−1
∑

i=0

f(ti)∆t.

Since this must be the same as the answer we have already obtained, we know that

lim
n→∞

n−1
∑

i=0

f(ti)∆t =
3b2

2
− 3a2

2
.

The significance of 3t2/2, into which we substitute t = b and t = a, is of course that it is a
function whose derivative is f(t). As we have discussed, by the time we know that we want
to compute

lim
n→∞

n−1
∑

i=0

f(ti)∆t,

it no longer matters what f(t) stands for—it could be a speed, or the height of a curve, or
something else entirely. We know that the limit can be computed by finding any function
with derivative f(t), substituting a and b, and subtracting. We summarize this in a theorem.
First, we introduce some new notation and terms.

We write
∫ b

a

f(t) dt = lim
n→∞

n−1
∑

i=0

f(ti)∆t
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if the limit exists. That is, the left hand side means, or is an abbreviation for, the right hand
side. The symbol

∫

is called an integral sign, and the whole expression is read as “the
integral of f(t) from a to b.” What we have learned is that this integral can be computed
by finding a function, say F (t), with the property that F ′(t) = f(t), and then computing
F (b)− F (a). The function F (t) is called an antiderivative of f(t). Now the theorem:

Theorem 6.3: Fundamental Theorem of Calculus

Suppose that f(x) is continuous on the interval [a, b]. If F (x) is any antiderivative of
f(x), then

∫ b

a

f(x) dx = F (b)− F (a).

Let’s rewrite this slightly:
∫ x

a

f(t) dt = F (x)− F (a).

We’ve replaced the variable x by t and b by x. These are just different names for quantities,
so the substitution doesn’t change the meaning. It does make it easier to think of the two
sides of the equation as functions. The expression

∫ x

a

f(t) dt

is a function: plug in a value for x, get out some other value. The expression F (x)− F (a)
is of course also a function, and it has a nice property:

d

dx
(F (x)− F (a)) = F ′(x) = f(x),

since F (a) is a constant and has derivative zero. In other words, by shifting our point of
view slightly, we see that the odd looking function

G(x) =

∫ x

a

f(t) dt

has a derivative, and that in fact G′(x) = f(x). This is really just a restatement of the
Fundamental Theorem of Calculus, and indeed is often called the Fundamental Theorem of
Calculus. To avoid confusion, some people call the two versions of the theorem “The Fun-
damental Theorem of Calculus, part I” and “The Fundamental Theorem of Calculus, part
II”, although unfortunately there is no universal agreement as to which is part I and which
part II. Since it really is the same theorem, differently stated, some people simply call them
both “The Fundamental Theorem of Calculus.”

Theorem 6.4: Fundamental Theorem of Calculus

Suppose that f(x) is continuous on the interval [a, b] and let

G(x) =

∫ x

a

f(t) dt.

Then G′(x) = f(x).
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We have not really proved the Fundamental Theorem. In a nutshell, we gave the following
argument to justify it: Suppose we want to know the value of

∫ b

a

f(t) dt = lim
n→∞

n−1
∑

i=0

f(ti)∆t.

We can interpret the right hand side as the distance traveled by an object whose speed is
given by f(t). We know another way to compute the answer to such a problem: find the
position of the object by finding an antiderivative of f(t), then substitute t = a and t = b
and subtract to find the distance traveled. This must be the answer to the original problem
as well, even if f(t) does not represent a speed.

What’s wrong with this? In some sense, nothing. As a practical matter it is a very con-
vincing argument, because our understanding of the relationship between speed and distance
seems to be quite solid. From the point of view of mathematics, however, it is unsatisfac-
tory to justify a purely mathematical relationship by appealing to our understanding of the
physical universe, which could, however unlikely it is in this case, be wrong.

A complete proof is a bit too involved to include here, but we will indicate how it goes.
First, if we can prove the second version of the Fundamental Theorem, theorem 6.4, then we
can prove the first version from that:

Proof. Proof of Theorem 6.3.
We know from theorem 6.4 that

G(x) =

∫ x

a

f(t) dt

is an antiderivative of f(x), and therefore any antiderivative F (x) of f(x) is of the form
F (x) = G(x) + k. Then

F (b)− F (a) = G(b) + k − (G(a) + k) = G(b)−G(a)

=

∫ b

a

f(t) dt−
∫ a

a

f(t) dt.

It is not hard to see that

∫ a

a

f(t) dt = 0, so this means that

F (b)− F (a) =

∫ b

a

f(t) dt,

which is exactly what theorem 6.3 says. ♣
So the real job is to prove theorem 6.4. We will sketch the proof, using some facts that

we do not prove. First, the following identity is true of integrals:

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.

This can be proved directly from the definition of the integral, that is, using the limits of
sums. It is quite easy to see that it must be true by thinking of either of the two applications
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of integrals that we have seen. It turns out that the identity is true no matter what c is, but
it is easiest to think about the meaning when a ≤ c ≤ b.

First, if f(t) represents a speed, then we know that the three integrals represent the
distance traveled between time a and time b; the distance traveled between time a and time
c; and the distance traveled between time c and time b. Clearly the sum of the latter two is
equal to the first of these.

Second, if f(t) represents the height of a curve, the three integrals represent the area
under the curve between a and b; the area under the curve between a and c; and the area
under the curve between c and b. Again it is clear from the geometry that the first is equal
to the sum of the second and third.

Proof. Proof of Theorem 6.4.
We want to compute G′(x), so we start with the definition of the derivative in terms of

a limit:

G′(x) = lim
∆x→0

G(x+∆x)−G(x)

∆x

= lim
∆x→0

1

∆x

(
∫ x+∆x

a

f(t) dt−
∫ x

a

f(t) dt

)

= lim
∆x→0

1

∆x

(
∫ x

a

f(t) dt+

∫ x+∆x

x

f(t) dt−
∫ x

a

f(t) dt

)

= lim
∆x→0

1

∆x

∫ x+∆x

x

f(t) dt.

Now we need to know something about

∫ x+∆x

x

f(t) dt

when ∆x is small; in fact, it is very close to ∆xf(x), but we will not prove this. Once again,
it is easy to believe this is true by thinking of our two applications: The integral

∫ x+∆x

x

f(t) dt

can be interpreted as the distance traveled by an object over a very short interval of time.
Over a sufficiently short period of time, the speed of the object will not change very much,
so the distance traveled will be approximately the length of time multiplied by the speed at
the beginning of the interval, namely, ∆xf(x). Alternately, the integral may be interpreted
as the area under the curve between x and x+∆x. When ∆x is very small, this will be very
close to the area of the rectangle with base ∆x and height f(x); again this is ∆xf(x). If we
accept this, we may proceed:

lim
∆x→0

1

∆x

∫ x+∆x

x

f(t) dt = lim
∆x→0

∆xf(x)

∆x
= f(x),

which is what we wanted to show. ♣
It is still true that we are depending on an interpretation of the integral to justify the

argument, but we have isolated this part of the argument into two facts that are not too

196



6.2. THE FUNDAMENTAL THEOREM OF CALCULUS

hard to prove. Once the last reference to interpretation has been removed from the proofs
of these facts, we will have a real proof of the Fundamental Theorem.

Now we know that to solve certain kinds of problems, those that lead to a sum of a
certain form, we “merely” find an antiderivative and substitute two values and subtract.
Unfortunately, finding antiderivatives can be quite difficult. While there are a small number
of rules that allow us to compute the derivative of any common function, there are no such
rules for antiderivatives. There are some techniques that frequently prove useful, but we will
never be able to reduce the problem to a completely mechanical process.

Due to the close relationship between an integral and an antiderivative, the integral sign
is also used to mean “antiderivative”. You can tell which is intended by whether the limits
of integration are included:

∫ 2

1

x2 dx

is an ordinary integral, also called a definite integral, because it has a definite value,
namely

∫ 2

1

x2 dx =
23

3
− 13

3
=

7

3
.

We use
∫

x2 dx

to denote the antiderivative of x2, also called an indefinite integral. So this is evaluated
as

∫

x2 dx =
x3

3
+ C.

It is customary to include the constant C to indicate that there are really an infinite number
of antiderivatives. We do not need this C to compute definite integrals, but in other circum-
stances we will need to remember that the C is there, so it is best to get into the habit of
writing the C. When we compute a definite integral, we first find an antiderivative and then
substitute. It is convenient to first display the antiderivative and then do the substitution;
we need a notation indicating that the substitution is yet to be done. A typical solution
would look like this:

∫ 2

1

x2 dx =
x3

3

∣

∣

∣

∣

2

1

=
23

3
− 13

3
=

7

3
.

The vertical line with subscript and superscript is used to indicate the operation “substitute
and subtract” that is needed to finish the evaluation.

We seem to have found a pattern. When attempting to solve a previous question, we
found the antiderivative of x2 to be x3/3+ c (as it was when solving the indefinite integral).
Likewise, when we first began, we were trying to determine a position based on velocity, and
3t gave rise to 3t2/2 + k.

As will be formalized later, we see that in these cases, the power is increased to n + 1,
but we also divide through by this factor, n+ 1. So x becomes x2/2, x2 becomes x3/3, and
x3 will become x4/4.

Now we will also try with negative and fraction values in the following example.
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Example 6.5: Fundamental Theorem of Calculus

Evaluate

∫ 4

1

x3 +
√
x+

1

x2
dx.

Solution.
∫ 4

1

x3 +
√
x+

1

x2
dx =

x4

4
+

2x3/2

3
− x−1

∣

∣

∣

∣

4

1

=

(

(4)4

4
+

2(4)3/2

3
− 4−1

)

−
(

(1)4

4
+

2(1)3/2

3
− 1−1

)

=
415

6

♣

Properties of Definite Integrals

Some properties are as follows:

Order of limits matters:

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

If interval is empty, integral is zero:

∫ a

a

f(x) dx = 0

Constant Multiple Rule:

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

Sum/Difference Rule:

∫ b

a

f(x)± g(x) dx =

∫ b

a

f(x) dx±
∫ b

a

g(x) dx

Can split up interval [a, b] = [a, c] ∪ [c, b]:

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

The variable does not matter!:

∫ b

a

f(x) dx =

∫ b

a

f(t) dt

The reason for the last property is that a definite integral is a number, not a function, so
the variable is just a placeholder that won’t appear in the final answer.

Some additional properties are comparison types of properties.
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Comparison Properties of Definite Integrals

If f(x) ≥ 0 for x ∈ [a, b], then:

∫ b

a

f(x) dx ≥ 0.

If f(x) ≥ g(x) for x ∈ [a, b], then:

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

If m ≤ f(x) ≤M for x ∈ [a, b], then: m(b− a) ≤
∫ b

a

f(x) dx ≤M(b − a).

We next evaluate a definite integral using three different techniques.

Example 6.6: Three Different Techniques

Evaluate

∫ 2

0

x+ 1 dx by

1. Using FTC II (the shortcut)

2. Using the definition of a definite integral (the limit sum definition)

3. Interpreting the problem in terms of areas (graphically)

Solution. 1. The shortcut (FTC II) is the method of choice as it is the fastest. Integrating
and using the ‘top minus bottom’ rule we have:

∫ 2

0

x+ 1 dx =
x2

2
+ x

∣

∣

∣

∣

2

0

=

[

22

2
+ 2

]

−
[

02

2
+ 0

]

= 4.

2. We now use the definition of a definite integral. We divide the interval [0, 2] into n
subintervals of equal width ∆x, and from each interval choose a point x∗

i . Using the formulas

∆x =
b− a

n
and xi = a+ i∆x,

we have

∆x =
2

n
and xi = 0 + i∆x =

2i

n
.

Then taking x∗
i ’s as right endpoints for convenience (so that x∗

i = xi), we have:

∫ 2

0

x+ 1 dx = lim
n→∞

n
∑

i=1

f(x∗
i )∆x

= lim
n→∞

n
∑

i=1

f

(

2i

n

)

2

n
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= lim
n→∞

n
∑

i=1

(

2i

n
+ 1

)

2

n

= lim
n→∞

n
∑

i=1

(

4i

n2
+

2

n

)

= lim
n→∞

(

n
∑

i=1

4i

n2
+

n
∑

i=1

2

n

)

= lim
n→∞

(

4

n2

n
∑

i=1

i+
2

n

n
∑

i=1

1

)

= lim
n→∞

(

4

n2

n(n + 1)

2
+

2

n
n

)

= lim
n→∞

(

2 +
2

n
+ 2

)

= 4.

3. Finally, let’s evaluate the net area under x+ 1 from 0 to 2.

x

y y = x + 1

Area

1 2 30 4

1

2

3

4

x

y y = x + 1

1 2 30 4

1

2

3

4

Thus, the area is the sum of the areas of a rectangle and a triangle. Hence,

∫ 2

0

x+ 1 dx = Net Area

= Area of rectangle + Area of triangle

= (2)(1) +
1

2
(2)(2)

= 4.

♣
We next apply FTC to differentiate a function.
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Example 6.7: Using FTC

Differentiate the following function:

g(x) =

∫ x

−2

cos(1 + 5t) sin t dt.

Solution. We simply apply the Fundamental Theorem of Calculus directly to get:

g′(x) = cos(1 + 5x) sin x.

♣
Using the Chain Rule we can derive a formula for some more complicated problems. We

have:
d

dx

∫ v(x)

a

f(t) dt = f(v(x)) · v′(x).

Now what if the upper limit is constant and the lower limit is a function of x? Then we
interchange the limits and add a minus sign to get:

d

dx

∫ a

u(x)

f(t) dt = − d

dx

∫ u(x)

a

f(t) dt = −f(u(x)) · u′(x).

Combining these two we can get a formula where both limits are a function of x. We
break up the integral as follows:

∫ v(x)

u(x)

f(t) dt =

∫ a

u(x)

f(t) dt+

∫ v(x)

a

f(t) dt.

We just need to make sure f(a) exists after we break up the integral. Then differentiating
and using the above two formulas gives:

FTC I + Chain Rule:

d

dx

∫ v(x)

u(x)

f(t) dt = f(v(x))v′(x)− f(u(x))u′(x)

Many textbooks do not show this formula and instead to solve these types of problems
will use FTC I along with the tricks we used to derive the formula above. Either method is
perfectly fine.

201



CHAPTER 6. INTEGRATION

Example 6.8: FTC I + Chain Rule

Differentiate the following integral:

∫ x2

10x

t3 sin(1 + t) dt.

Solution. We will use the formula above. We have f(t) = t3 sin(1 + t), u(x) = 10x and
v(x) = x2. Then u′(x) = 10 and v′(x) = 2x. Thus,

d

dx

∫ x2

10x

t3 sin(1 + t) dt = (x2)3 sin(1 + (x2))(2x)− (10x)3 sin(1 + (10x))(10)

= 2x7 sin(1 + x2)− 10000x3 sin(1 + 10x)

♣

Example 6.9: FTC I + Chain Rule

Differentiate the following integral with respect to x:

∫ 2x

x3

1 + cos t dt

Solution. Using the formula we have:

d

dx

∫ 2x

x3

1 + cos t dt = (1 + cos(2x))(2)− (1 + cos(x3))(3x2).

♣

Exercises for Section 6.2

Find the antiderivatives of the functions:

Exercise 6.2.1.

∫ 4

1

t2 + 3t dt

Exercise 6.2.2.

∫ π

0

sin t dt

Exercise 6.2.3.

∫ 10

1

1

x
dx

Exercise 6.2.4.

∫ 5

0

ex dx
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Exercise 6.2.5.

∫ 3

0

x3 dx

Exercise 6.2.6.

∫ 2

1

x5 dx

Exercise 6.2.7. Find the derivative of G(x) =

∫ x

1

t2 − 3t dt

Exercise 6.2.8. Find the derivative of G(x) =

∫ x2

1

t2 − 3t dt

Exercise 6.2.9. Find the derivative of G(x) =

∫ x

1

et
2

dt

Exercise 6.2.10. Find the derivative of G(x) =

∫ x2

1

et
2

dt

Exercise 6.2.11. Find the derivative of G(x) =

∫ x

1

tan(t2) dt

Exercise 6.2.12. Find the derivative of G(x) =

∫ x2

1

tan(t2) dt

6.3 Indefinite Integrals

In this section we focus on computing indefinite integrals. The process of finding the indefi-
nite integral is called integration (or integrating f(x)).

Example 6.10: Indefinite Integral

Evaluate the following indefinite integral:

∫

x5 + 3x− 2 dx.

Solution. Since this is asking for the most general anti-derivative we have:

∫

x5 + 3x− 2 dx =
x6

6
+

3x2

2
− 2x+ C

where C is a constant. ♣
Common mistakes: One habit students make with integrals is to drop the dx at the

end of the integral. This is required! Think of the integral as a set of parenthesis. Both are
required so it is clear where the integrand ends and what variable you are integrating with
respect to.

Another common mistake is to forget the +C for indefinite integrals.
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Note that we don’t have properties to deal with products or quotients of functions, that
is,

∫

f(x) · g(x) dx 6=
∫

f(x) dx

∫

g(x) dx.

∫

f(x)

g(x)
dx 6=

∫

f(x) dx
∫

g(x) dx
.

With derivatives, we had the product and quotient rules to deal with these cases. For
integrals, we have no such rules, but we will learn a variety of different techniques to deal
these cases.

The following integral rules can be proved by taking the derivative of the functions on
the right side.

Integral Rules

Some properties and rules to know:

Constant Rule:

∫

k dx = kx+ C.

Constant Multiple Rule:

∫

kf(x) dx = k

∫

f(x) dx, k is constant.

Sum/Difference Rule:

∫

f(x)± g(x) dx =

∫

f(x) dx±
∫

g(x) dx.

Power Rule:

∫

xn dx =
xn+1

n + 1
+ C, n 6= −1.

Log Rule:

∫

1

x
dx = ln |x|+ C, x 6= 0.

Exponent Rule:

∫

ekx dx =
1

k
ekx + C, k 6= 0.

Sine Rule:

∫

sin x dx = − cosx+ C.

Cosine Rule:

∫

cosx dx = sin x+ C.

Example 6.11: Indefinite Integral

If f ′(x) = x4 + 2x− 8 sin x then what is f(x)?
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Solution. The answer is:

f(x) =

∫

f ′(x) dx =

∫

(

x4 + 2x− 8 sin x
)

dx

=

∫

x4 dx+ 2

∫

x dx− 8

∫

sin x dx

=
x5

5
+ x2 + 8 cosx+ C,

where C is a constant. ♣

Example 6.12: Indefinite Integral

∫

3x2 dx = 3

∫

x2 dx

= 3
x3

3
+ C

= x3 + C

Example 6.13: Indefinite Integral

∫

2√
x
dx = 2

∫

x− 1
2 dx

= 2
x− 1

2
+1

−1
2
+ 1

+ C

= 4
√
x+ C

Example 6.14: Indefinite Integral

∫
(

1

x
+ e7x + xπ + 7

)

dx =

∫

1

x
dx+

∫

e7x dx+

∫

xπ dx+

∫

7 dx

= ln |x|+ 1

7
e7x +

xπ+1

π + 1
+ 7x+ C

Differential Equations

An equation involving derivatives where we want to solve for the original function is called
a differential equation. For example, f ′(x) = 2x is a differential equation with general
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solution f(x) = x2 + C. Some solutions (i.e., particular values of C) are shown below.

As seen with integral curves, we may have an infinite family of solutions satisfying the
differential equation. However, if we were given a point (called an initial value) on the
curve then we could determine f(x) completely. Such a problem is known as an initial value
problem.

Example 6.15: Initial Value Problem

If f ′(x) = 2x and f(0) = 2 then determine f(x).

Solution. As previously stated, we have a solution of:

f(x) = x2 + C.

But f(0) = 2 implies:
2 = 02 + C → C = 2.

Therefore, f(x) = x2 + 2 is the solution to the initial value problem. ♣

Exercises for Section 6.3

Find the antiderivatives of the functions:

Exercise 6.3.1. 8
√
x

Exercise 6.3.2. 3t2 + 1

Exercise 6.3.3. 4/
√
x

Exercise 6.3.4. 2/z2
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Exercise 6.3.5. 7s−1

Exercise 6.3.6. (5x+ 1)2

Exercise 6.3.7. (x− 6)2

Exercise 6.3.8. x3/2

Exercise 6.3.9.
2

x
√
x

Exercise 6.3.10. |2t− 4|
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7. Techniques of Integration

Over the next few sections we examine some techniques that are frequently successful when
seeking antiderivatives of functions.

7.1 Substitution Rule

Needless to say, most problems we encounter will not be so simple. Here’s a slightly more
complicated example: find

∫

2x cos(x2) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from
an application of the chain rule. Multiplied on the “outside” is 2x, which is the derivative
of the “inside” function x2. Checking:

d

dx
sin(x2) = cos(x2)

d

dx
x2 = 2x cos(x2),

so
∫

2x cos(x2) dx = sin(x2) + C.

To summarize: if we suspect that a given function is the derivative of another via the
chain rule, we let u denote a likely candidate for the inner function, then translate the given
function so that it is written entirely in terms of u, with no x remaining in the expression.
If we can integrate this new function of u, then the antiderivative of the original function is
obtained by replacing u by the equivalent expression in x.

Theorem 7.1: Substitution Rule

If u = g(x) is a differentiable function whose range is an interval I and f is continuous
on I, then

∫

f(g(x))g′(x) dx =

∫

f(u) du.

Even in simple cases you may prefer to use this mechanical procedure, since it often helps
to avoid silly mistakes. For example, consider again this simple problem:

∫

2x cos(x2) dx.

Let u = x2, then du/dx = 2x or du = 2x dx. Since we have exactly 2x dx in the original
integral, we can replace it by du:

∫

2x cos(x2) dx =

∫

cosu du = sin u+ C = sin(x2) + C.
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This is not the only way to do the algebra, and typically there are many paths to the correct
answer. Another possibility, for example, is: Since du/dx = 2x, dx = du/2x, and then the
integral becomes

∫

2x cos(x2) dx =

∫

2x cosu
du

2x
=

∫

cosu du.

The important thing to remember is that you must eliminate all instances of the original
variable x.

Example 7.2: Substitution Rule

Evaluate

∫

(ax+b)n dx, assuming a, b are constants, a 6= 0, and n is a positive integer.

Solution. We let u = ax+ b so du = a dx or dx = du/a. Then

∫

(ax+ b)n dx =

∫

1

a
un du =

1

a(n+ 1)
un+1 + C =

1

a(n+ 1)
(ax+ b)n+1 + C.

♣

Example 7.3: Substitution Rule

Evaluate

∫

sin(ax+ b) dx, assuming that a and b are constants and a 6= 0.

Solution. Again we let u = ax+ b so du = a dx or dx = du/a. Then

∫

sin(ax+ b) dx =

∫

1

a
sin u du =

1

a
(− cosu) + C = −1

a
cos(ax+ b) + C.

♣

Strategy for Substitution Rule

A general strategy to follow is:

1. Choose a possible u = u(x). Tip: Choose a substitution u so that its derivate
also appears in the integral (up to a constant).

2. Calculate du = u′(x) dx.

3. Either replace u′(x) dx by du, or replace dx by
du

u′(x)
, and cancel.

4. Write the rest of the integrand in terms of u. If this is not possible, the substi-
tution will not work: you must go back to step 1.

5. Find the indefinite integral. (Again, if this is not possible, try a different substi-
tution, or a different method).

6. Rewrite the result in terms of x.
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Example 7.4: Substitution

Evaluate the following integral:

∫

2x√
1− 4x2

dx.

Solution. We try the substitution:

u = 1− 4x2.

Then,
du = −8x dx

But on the top we have 2x dx, so rewriting the differential gives:

−1
4
du = 2x dx.

Then the integral is:
∫

2x√
1− 4x2

dx =

∫

(

1− 4x2
)−1/2

(2xdx)

=

∫

u−1/2

(

−1
4
du

)

=

(−1
4

)

u1/2

1/2
+ C

= −
√
1− 4x2

2
+ C

♣

Example 7.5: Substitution

Evaluate the following integral:

∫

cosx(sin x)5 dx.

Solution. In this question we will let u = sin x. Then,

du = cosx dx.

Thus, the integral becomes:
∫

cosx(sin x)5 dx =

∫

u5 du

=
u6

6
+ C

=
(sin x)6

6
+ C

♣
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Example 7.6: Substitution

Evaluate the following integral:

∫

cos(
√
x)√

x
dx.

Solution. We use the substitution:
u = x1/2.

Then,

du =
1

2
x−1/2dx.

Upon rewriting the differential we get:

2 du =
1√
x
dx.

The integral becomes:
∫

cos(
√
x)√

x
dx = 2

∫

cosu du

= 2 sinu+ C

= 2 sin(
√
x) + C

♣

Example 7.7: Substitution

Evaluate the following integral:

∫

2x3
√
x2 + 1 dx.

Solution. This problem is a little bit different than the previous ones. It makes sense to let:

u = x2 + 1,

then
du = 2x dx.

Making this substitution gives:
∫

2x3
√
x2 + 1 dx =

∫

x2
√
x2 + 1(2x) dx

=

∫

x2u1/2 du

This is a problem because our integrals can’t have two variables in them. Usually this means
we chose our u incorrectly. However, in this case we can eliminate the remaining x’s from
our integral by using:

u = x2 + 1 → x2 = u− 1.

212



7.1. SUBSTITUTION RULE

We get:

∫

x2u1/2 du =

∫

(u− 1)u1/2 du

=

∫

u3/2 − u1/2 du

=
2

5
u5/2 − 2

3
u3/2 + C

=
2

5
(x2 + 1)5/2 − 2

3
(x2 + 1)3/2 + C

♣
The next example shows how to use the Substitution Rule when dealing with definite

integrals.

Example 7.8: Substitution Rule

Evaluate

∫ 4

2

x sin(x2) dx.

Solution. First we compute the antiderivative, then evaluate the definite integral. Let
u = x2 so du = 2x dx or x dx = du/2. Then

∫

x sin(x2) dx =

∫

1

2
sin u du =

1

2
(− cos u) + C = −1

2
cos(x2) + C.

Now
∫ 4

2

x sin(x2) dx = −1
2
cos(x2)

∣

∣

∣

∣

4

2

= −1
2
cos(16) +

1

2
cos(4).

A somewhat neater alternative to this method is to change the original limits to match the
variable u. Since u = x2, when x = 2, u = 4, and when x = 4, u = 16. So we can do this:

∫ 4

2

x sin(x2) dx =

∫ 16

4

1

2
sin u du = −1

2
(cosu)

∣

∣

∣

∣

16

4

= −1
2
cos(16) +

1

2
cos(4).

An incorrect, and dangerous, alternative is something like this:

∫ 4

2

x sin(x2) dx =

∫ 4

2

1

2
sin u du = −1

2
cos(u)

∣

∣

∣

∣

4

2

= −1
2
cos(x2)

∣

∣

∣

∣

4

2

= −1
2
cos(16) +

1

2
cos(4).

This is incorrect because

∫ 4

2

1

2
sin u du means that u takes on values between 2 and 4, which

is wrong. It is dangerous, because it is very easy to get to the point −1
2
cos(u)

∣

∣

∣

∣

4

2

and forget
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to substitute x2 back in for u, thus getting the incorrect answer −1
2
cos(4) +

1

2
cos(2). A

somewhat clumsy, but acceptable, alternative is something like this:

∫ 4

2

x sin(x2) dx =

∫ x=4

x=2

1

2
sin u du = −1

2
cos(u)

∣

∣

∣

∣

x=4

x=2

= −1
2
cos(x2)

∣

∣

∣

∣

4

2

= −cos(16)
2

+
cos(4)

2
.

♣
To summarize, we have the following.

Theorem 7.9: Substitution Rule

If g′ is continuous on [a, b] and f is continuous on the range of u = g(x), then

∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Example 7.10: Substitution Rule

Evaluate

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt.

Solution. Let u = sin(πt) so du = π cos(πt) dt or du/π = cos(πt) dt. We change the limits
to sin(π/4) =

√
2/2 and sin(π/2) = 1. Then

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt =

∫ 1

√
2/2

1

π

1

u2
du =

∫ 1

√
2/2

1

π
u−2 du =

1

π

u−1

−1

∣

∣

∣

∣

1

√
2/2

= −1

π
+

√
2

π
.

♣

Exercises for Section 7.1

Find the antiderivatives.

Exercise 7.1.1.

∫

(1− t)9 dt

Exercise 7.1.2.

∫

(x2 + 1)2 dx

Exercise 7.1.3.

∫

x(x2 + 1)100 dx

Exercise 7.1.4.

∫

1
3
√
1− 5t

dt

Exercise 7.1.5.

∫

sin3 x cos x dx
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Exercise 7.1.6.

∫

x
√
100− x2 dx

Exercise 7.1.7.

∫

x2

√
1− x3

dx

Exercise 7.1.8.

∫

cos(πt) cos
(

sin(πt)
)

dt

Exercise 7.1.9.

∫

sin x

cos3 x
dx

Exercise 7.1.10.

∫

tanx dx

Exercise 7.1.11.

∫ π

0

sin5(3x) cos(3x) dx

Exercise 7.1.12.

∫

sec2 x tanx dx

Exercise 7.1.13.

∫

√
π/2

0

x sec2(x2) tan(x2) dx

Exercise 7.1.14.

∫

sin(tan x)

cos2 x
dx

Exercise 7.1.15.

∫ 4

3

1

(3x− 7)2
dx

Exercise 7.1.16.

∫ π/6

0

(cos2 x− sin2 x) dx

Exercise 7.1.17.

∫

6x

(x2 − 7)1/9
dx

Exercise 7.1.18.

∫ 1

−1

(2x3 − 1)(x4 − 2x)6 dx

Exercise 7.1.19.

∫ 1

−1

sin7 x dx

Exercise 7.1.20.

∫

f(x)f ′(x) dx
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7.2 Products of trigonometric functions

Functions consisting of products of the sine and cosine can be integrated by using substi-
tution and trigonometric identities. These can sometimes be tedious, but the technique is
straightforward. A similar technique is applicable to products of secant and tangent (and
also cosecant and cotangent not discussed here).

The trigonometric substitutions we will focus on in this section are summarized in the
table below:

Substitution u = sin x u = cosx u = tan x u = sec x
Derivative du = cos x dx du = − sin x dx du = sec2 x dx du = sec x tanx dx

An example will suffice to explain the approach.

Example 7.11: Odd Power of Sine

Evaluate

∫

sin5 x dx.

Solution. Rewrite the function:

∫

sin5 x dx =

∫

sin x sin4 x dx

=

∫

sin x(sin2 x)2 dx

=

∫

sin x(1− cos2 x)2 dx.

Now use u = cos x, du = − sin x dx:

∫

sin x(1− cos2 x)2 dx =

∫

−(1 − u2)2 du

=

∫

−(1 − 2u2 + u4) du

=

∫

1 + 2u2 − u4 du

= −u+
2

3
u3 − 1

5
u5 + C

= − cos x+
2

3
cos3 x− 1

5
cos5 x+ C.

♣
Observe that by taking the substitution u = cosx in the last example, we ended up with

an even power of sine from which we can use the formula sin2 x + cos2 x = 1 to replace any
remaining sines. We then ended up with a polynomial in u in which we could expand and
integrate quite easily.

This technique works for products of powers of sine and cosine. We summarize it below.
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Products of Sine and Cosine

When evaluating

∫

sinm x cosn x dx:

1. The power of sine is odd (m odd):
(a) Use u = cosx and du = − sin x dx.
(b) Replace dx using (a) and cancel one sin x from the dx replacement to be left
with an even number of sines.
(c) Use sin2 x = 1− cos2 x (= 1− u2) to replace the leftover sines.

2. The power of cosine is odd (n odd):
(a) Use u = sin x and du = cosx dx.
(b) Replace dx using (a) and cancel one cos x from the dx replacement to be left
with an even number of cosines.
(c) Use cos2 x = 1− sin2 x (= 1− u2) to replace the leftover cosines.

3. Both m and n are odd:
Use either 1 or 2 (both will work).

4. Both m and n are even:
Use cos2 x = 1

2
(1 + cos(2x)) and/or sin2 x = 1

2
(1− cos(2x)) to reduce to a form

that can be integrated.

Example 7.12: Odd Power of Cosine and Even Power of Sine

Evaluate

∫

sin6 x cos5 x dx.

Solution. Since the power of cosine is odd, we use the substitution u = sin x and du =

cosx dx, that is, dx =
du

cosx
. Then

∫

sin6 x cos5 x dx is equal to:

=

∫

u6 cos5 x
du

cosx
Using the substitution

=

∫

u6
(

cos2 x
)2

du Canceling a cosx and rewriting cos4 x

=

∫

u6(1− sin2 x)2 du Using trig identity cos2 x = 1− sin2 x

=

∫

u6(1− u2)2 du Writing integral in terms of u’s

=

∫

u6 − 2u8 + u10 du Expand and collect like terms

=
u7

7
− 2u9

9
+

u11

11
+ C Integrating

=
sin7 x

7
− 2 sin9 x

9
+

sin11 x

11
+ C Replacing u back in terms of x
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♣

Example 7.13: Odd Power of Cosine

Evaluate

∫

cos3 x dx.

Solution. Since the power of cosine is odd, we use the substitution u = sin x and du =
cosx dx. This may seem strange at first since we don’t have sin x in the question, but it does
work!

∫

cos3 x dx =

∫

cos3 x
du

cos x
Using the substitution

=

∫

cos2 x du Canceling a cosx

=

∫

(1− sin2 x) du Using trig identity cos2 x = 1− sin2 x

=

∫

(1− u2) du Writing integral in terms of u’s

= u− u3

3
+ C Integrating

= sin x− sin3 x

3
+ C Replacing u back in terms of x

♣

Example 7.14: Product of Even Powers of Sine and Cosine

Evaluate

∫

sin2 x cos2 x dx.

Solution. Use the formulas sin2 x = (1− cos(2x))/2 and cos2 x = (1 + cos(2x))/2 to get:

∫

sin2 x cos2 x dx =

∫

1− cos(2x)

2
· 1 + cos(2x)

2
dx.

We then have
∫

sin2 x cos2 x dx =

∫

1− cos(2x)

2
· 1 + cos(2x)

2
dx

=
1

4

∫

1− cos2 2x dx

=
1

4

(

x−
∫

cos2 2x dx

)

=
1

4

(

x− 1

2

∫

1 + cos 4x dx

)

=
1

4

(

x− 1

2

(

x+
sin 4x

4

))
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=
1

4

(

x− x

2
− sin 4x

8

)

+ C

♣

Example 7.15: Even Power of Sine

Evaluate

∫

sin6 x dx.

Solution. Use sin2 x = (1− cos(2x))/2 to rewrite the function:

∫

sin6 x dx =

∫

(sin2 x)3 dx

=

∫

(1− cos 2x)3

8
dx

=
1

8

∫

1− 3 cos 2x+ 3 cos2 2x− cos3 2x dx.

Now we have four integrals to evaluate. Ignoring the constant for now:
∫

1 dx = x

and
∫

−3 cos 2x dx = −3
2
sin 2x

are easy. The cos3 2x integral is like the previous example:
∫

− cos3 2x dx =

∫

− cos 2x cos2 2x dx

=

∫

− cos 2x(1− sin2 2x) dx

=

∫

−1
2
(1− u2) du

= −1
2

(

u− u3

3

)

= −1
2

(

sin 2x− sin3 2x

3

)

.

And finally we use another trigonometric identity, cos2 x = (1 + cos(2x))/2:

∫

3 cos2 2x dx = 3

∫

1 + cos 4x

2
dx =

3

2

(

x+
sin 4x

4

)

.

So at long last we get

∫

sin6 x dx =
x

8
− 3

16
sin 2x− 1

16

(

sin 2x− sin3 2x

3

)

+
3

16

(

x+
sin 4x

4

)

+ C.
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♣

We next turn our attention to products of secant and tangent. Some we already know
how to do.

∫

sec2 x dx = tan x+ C

∫

sec x tan x dx = sec x+ C

We can also integrate tanx quite easily.

Example 7.16: Integrating Tangent

Evaluate

∫

tan x dx.

Solution. Note that tan x =
sin x

cosx
and let u = cosx, so that du = − sin x dx.

∫

tan x dx =

∫

sin x

cosx
dx Rewriting tanx

=

∫

sin x

u

du

− sin x
Using the substitution

= −
∫

1

u
du Cancelling and pulling the −1 out

= − ln |u|+ C Using formula

∫

1

u
dx = ln |u|+ C

= − ln | cosx|+ C Replacing u back in terms of x
= ln | sec x|+ C Using log properties and sec x = 1/ cosx

♣
Example 7.17: Integrating Tangent Squared

Evaluate

∫

tan2 x dx.

Solution. Note that tan2 x = sec2 x− 1.
∫

tan2 x dx =

∫

sec2 x− 1 dx Rewriting tanx

= tan x− x+ C Since

∫

sec2 x dx = tanx+ C

♣
In problems with tangent and secant, two integrals come up frequently:

∫

sec3 x dx and

∫

sec x dx.

Both have relatively nice expressions but they are a bit tricky to discover.

First we do

∫

sec x dx, which we will need to compute

∫

sec3 x dx.
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Example 7.18: Integral of Secant

Evaluate

∫

sec x dx.

Solution.
∫

sec x dx =

∫

sec x
sec x+ tanx

sec x+ tanx
dx

=

∫

sec2 x+ sec x tan x

sec x+ tan x
dx.

Now let u = sec x+tan x, du = sec x tan x+sec2 x dx, exactly the numerator of the function
we are integrating. Thus

∫

sec x dx =

∫

sec2 x+ sec x tanx

sec x+ tan x
dx

=

∫

1

u
du = ln |u|+ C

= ln | sec x+ tan x|+ C.

♣

Now we compute the integral

∫

sec3 x dx.

Example 7.19: Integral of Secant Cubed

Evaluate

∫

sec3 x dx.

Solution.

sec3 x =
sec3 x

2
+

sec3 x

2
=

sec3 x

2
+

(tan2 x+ 1) sec x

2

=
sec3 x

2
+

sec x tan2 x

2
+

sec x

2

=
sec3 x+ sec x tan2 x

2
+

sec x

2
.

We already know how to integrate sec x, so we just need the first quotient. This is
“simply” a matter of recognizing the product rule in action:

∫

sec3 x+ sec x tan2 x dx = sec x tan x.

So putting these together we get
∫

sec3 x dx =
sec x tan x

2
+

ln | sec x+ tanx|
2

+ C,
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♣
For products of secant and tangent it is best to use the following guidelines.

Products of Secant and Tangent

When evaluating

∫

secm x tann x dx:

1. The power of secant is even (m even):
(a) Use u = tan x and du = sec2 x dx.
(b) Cancel sec2 x from the dx replacement to be left with an even number of
secants.
(c) Use sec2 x = 1 + tan2 x (= 1 + u2) to replace the leftover secants.

2. The power of tangent is odd (n odd):
(a) Use u = sec x and du = sec x tanx dx.
(b) Cancel one sec x and one tan x from the dx replacement.
The number of remaining tangents is even.
(c) Use tan2 x = sec2 x− 1 (= u2 − 1) to replace the leftover tangents.

3. m is even or n is odd:
Use either 1 or 2 (both will work).

4. The power of secant is odd and the power of tangent is even:

No guidelines. Remember that

∫

sec x dx and

∫

sec3 x dx can usually be looked

up.

Example 7.20: Even Power of Secant

Evaluate

∫

sec6 x tan6 x dx.

Solution. Since the power of secant is even, we ue u = tan x, so that du = sec2 x dx.

∫

sec6 x tan6 x dx =

∫

sec6 x (u6)
du

sec2 x
Using the substitution

=

∫

sec4 x(u6) du Cancelling a sec2 x

=

∫

(sec2 x)2(u6) du Rewriting sec4 x

=

∫

(1 + tan2 x)2(u6) du Using sec2 x = 1 + tan2 x

=

∫

(1 + u2)2(u6) du Using the substitution

To integrate this product the easiest method is expand it into a polynomial and integrate
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term-by-term.

∫

sec6 x tan6 x dx =

∫

(u6 + 2u8 + u10) du Expanding

=
u7

7
+

2u9

9
+

u11

11
+ C Integrating

=
tan7 x

7
+

2 tan9 x

9
+

tan11 x

11
+ C Rewriting in terms of x

♣
Example 7.21: Odd Power of Tangent

Evaluate

∫

sec5 x tanx dx.

Solution. Since the power of tangent is odd, we use u = sec x, so that du = sec x tan x dx.
Then we have:

∫

sec5 x tanx dx =

∫

sec5 x tanx
du

sec x tan x
Substituting dx first

=

∫

sec4 x du Cancelling

=

∫

u4 du Using the substitution

=
u5

5
+ C Integrating

=
sec5 x

5
+ C Rewriting in terms of x

♣
Example 7.22: Odd Power of Secant and Even Power of Tangent

Evaluate

∫

sec x tan2 x dx.

Solution. The guidelines don’t help us in this scenario. But since tan2 x = sec2 x − 1, we
have

∫

sec x tan2 x dx =

∫

sec x(sec2 x− 1) dx

=

∫

(sec3 x− sec x) dx

=
1

2
(sec x tanx+ ln | sec x+ tan x|)− ln | sec x+ tan x|+ C

=
1

2
sec x tanx+

1

2
ln | sec x+ tanx| − ln | sec x+ tanx|+ C

=
1

2
sec x tanx− 1

2
ln | sec x+ tan x|+ C
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♣

Exercises for 7.2

Find the antiderivatives.

Exercise 7.2.1.

∫

sin2 x dx

Exercise 7.2.2.

∫

sin3 x dx

Exercise 7.2.3.

∫

sin4 x dx

Exercise 7.2.4.

∫

cos2 x sin3 x dx

Exercise 7.2.5.

∫

cos3 x dx

Exercise 7.2.6.

∫

cos3 x sin2 x dx

Exercise 7.2.7.

∫

sin x(cos x)3/2 dx

Exercise 7.2.8.

∫

sec2 x csc2 x dx

Exercise 7.2.9.

∫

tan3 x sec x dx

Exercise 7.2.10.

∫
(

1

csc x
+

1

sec x

)

dx

Exercise 7.2.11.

∫

cos2 x+ cosx+ 1

cos3 x
dx

Exercise 7.2.12.

∫

x sec2(x2) tan4(x2) dx
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7.3 Trigonometric Substitutions

So far we have seen that it sometimes helps to replace a subexpression of a function by a
single variable. Occasionally it can help to replace the original variable by something more
complicated. This seems like a “reverse” substitution, but it is really no different in principle
than ordinary substitution.

Example 7.23: Sine Subsitution

Evaluate

∫ √
1− x2 dx.

Solution. Let x = sin u so dx = cos u du. Then

∫ √
1− x2 dx =

∫

√

1− sin2 u cosu du =

∫ √
cos2 u cosu du.

We would like to replace
√
cos2 u by cosu, but this is valid only if cosu is positive, since√

cos2 u is positive. Consider again the substitution x = sin u. We could just as well think
of this as u = arcsin x. If we do, then by the definition of the arcsine, −π/2 ≤ u ≤ π/2, so
cosu ≥ 0. Then we continue:

∫ √
cos2 u cos u du =

∫

cos2 u du

=

∫

1 + cos 2u

2
du =

u

2
+

sin 2u

4
+ C

=
arcsin x

2
+

sin(2 arcsin x)

4
+ C.

This is a perfectly good answer, though the term sin(2 arcsin x) is a bit unpleasant. It is
possible to simplify this. Using the identity sin 2x = 2 sin x cosx, we can write sin 2u =

2 sin u cosu = 2 sin(arcsin x)
√

1− sin2 u = 2x
√

1− sin2(arcsin x) = 2x
√
1− x2. Then the

full antiderivative is

arcsin x

2
+

2x
√
1− x2

4
=

arcsin x

2
+

x
√
1− x2

2
+ C.

♣
This type of substitution is usually indicated when the function you wish to integrate

contains a polynomial expression that might allow you to use the fundamental identity
sin2 x+ cos2 x = 1 in one of three forms:

cos2 x = 1− sin2 x sec2 x = 1 + tan2 x tan2 x = sec2 x− 1.

If your function contains 1− x2, as in the example above, try x = sin u; if it contains 1 + x2

try x = tanu; and if it contains x2 − 1, try x = sec u. Sometimes you will need to try
something a bit different to handle constants other than one which we will describe below.
First we discuss inverse substitutions.
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In a traditional substitution we let u = u(x), i.e., our new variable is defined in terms
of x. In an inverse substitution we let x = g(u), i.e., we assume x can be written in terms
of u. We cannot do this arbitrarily since we do NOT get to “choose” x. For example, an
inverse substitution of x = 1 will give an obviously wrong answer. However, when x = g(u)
is an invertible function, then we are really doing a u-substitution with u = g−1(x). Now
the substitution rule applies.

Sometimes with inverse substitutions involving trig functions we use θ instead of u. Thus,
we would take x = sin θ instead of x = sin u. However, as we discussed above, we would like
our inverse substitution x = g(u) to be a one-to-one function, and x = sin u is not one-to-
one. We can overcome this issue by using the restricted trigonometric functions. The three
common trigonometric substitutions are the restricted sine, restricted tangent and restricted
secant. Thus, for sine we use the domain [−π/2, π/2] and for tangent we use (−π/2, π/2).
Depending on the convention chosen, the restricted secant function is usually defined in one
of two ways.

One convention is to restrict secant to the region [0, π/2)∪ (π/2, π] as shown in the middle
graph. The other convention is to use [0, π/2) ∪ [π, 3π/2) as shown in the right graph.
Both choices give a one-to-one restricted secant function and no universal convention has
been adopted. To make the analysis in this section less cumbersome, we will use the domain
[0, π/2) ∪ [π, 3π/2) for the restricted secant function. Then sec−1 x is defined to be the
inverse of this restricted secant function.

Typically trigonometric substitions are used for problems that involve radical expressions.
The table below outlines when each substitution is typically used along with their intervals
of validity.

Expression Substitution Validity

√
a2 − x2 x = a sin θ θ ∈ [−π/2, π/2]

√
a2 + x2 or a2 + x2 x = a tan θ θ ∈ (−π/2, π/2)

√
x2 − a2 x = a sec θ θ ∈ [0, π/2) ∪ [π, 3π/2)

All three substitutions are one-to-one on the listed intervals. When dealing with radicals we
often end up with absolute values since

√
z2 = |z|.
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For each of the three trigonometric substitions above we will verify that we can ignore the
absolute value in each case when encountering a radical.

For x = a sin θ, the expression
√
a2 − x2 becomes

√
a2 − x2 =

√

a2 − a2 sin2 θ =
√

a2(1− sin2 θ) = a
√
cos2 θ = a| cos θ| = a cos θ

This is because cos θ ≥ 0 when θ ∈ [−π/2, π/2]. For x = a tan θ, the expression
√
a2 + x2

becomes

√
a2 + x2 =

√

a2 + a2 tan2 θ =
√

a2(1 + tan2 θ) = a
√
sec2 θ = a| sec θ| = a sec θ

This is because sec θ > 0 when θ ∈ (−π/2, π/2).
Finally, for x = a sec θ, the expression

√
x2 − a2 becomes

√
x2 − a2 =

√
a2 sec2 θ − a2 =

√

a2(sec2 θ − 1) = a
√
tan2 θ = a| tan θ| = a tan θ

This is because tan θ ≥ 0 when θ ∈ [0, π/2) ∪ [π, 3π/2).
Thus, when using an appropriate trigonometric substitution we can usually ignore the

absolute value. After integrating, we typically get an answer in terms of θ (or u) and need
to convert back to x’s. To do so, we use the two guidelines below:

� For trig functions containing θ, use a triangle to convert to x’s.

� For θ by itself, use the inverse trig function.

To emphasize the technique, we redo the computation for

∫ √
1− x2 dx.

Example 7.24: Sine Subsitution

Evaluate

∫ √
1− x2 dx.

Solution. Since
√
1− x2 appears in the integrand we try the trigonometric substitution

x = sin θ. (Here we are using the restricted sine function with θ ∈ [−π/2, π/2] but typically
omit this detail when writing out the solution.) Then dx = cos θ dθ .
∫ √

1− x2 dx =

∫

√

1− sin2 θ cos θ dθ Using our (inverse) substitution

=

∫ √
cos2 θ cos θ dθ Since sin2 θ + cos2 θ = 1

=

∫

| cos θ| · cos θ dθ Since
√
cos2 θ = | cos θ|

=

∫

cos2 θ dθ Since for θ ∈ [−π
2
, π
2
] we have cos θ ≥ 0.

Often we omit the step containing the absolute value by our discussion above. Now, to
integrate a power of cosine we use the guidelines for products of sine and cosine and make
use of the identity

cos2 θ =
1

2
(1 + cos(2θ)).
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Our integral then becomes

∫ √
1− x2 =

1

2

∫

(1 + cos(2θ)) dθ =
θ

2
+

sin(2θ)

4
+ C

To write the answer back in terms of x we use a right triangle. Since sin θ = x/1 we have
the triangle:

The triangle gives sin θ, cos θ, tan θ, but have a sin(2θ). Thus, we use an identity to write

sin(2θ) = 2 sin θ cos θ = 2
(x

1

)

(
√
1− x2

1

)

For θ by itself we use θ = sin−1 x. Thus, the integral is

∫ √
1− x2 dx =

sin−1 x

2
+

x
√
1− x2

2
+ C

♣

Example 7.25: Secant Subsitution

Evaluate

∫

√
25x2 − 4

x
dx.

Solution. We do not have
√
x2 − a2 because of the 25, but if we factor 25 out we get:

∫

√

25(x2 − (4/25))

x
dx =

∫

5

√

x2 − (4/25)

x
dx.

Now, a = 2/5, so let x = 2
5
sec θ. Alternatively, we can think of the integral as being:

∫

√

(5x)2 − 4

x
dx

Then we could let u = 5x followed by u = 2 sec θ, etc. Or equivalently, we can avoid a u-
substitution by letting 5x = 2 sec θ. In either case we are using the trigonometric substitution
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x = 2
5
sec θ, but do use the method that makes the most sense to you! As x = 2

5
sec θ we

have dx = 2
5
sec θ tan θ dθ .

∫

√
25x2 − 4

x
dx =

∫

√

254 sec2 θ
25
− 4

2
5
sec θ

2
5
sec θ tan θ dθ Using the substitution

=

∫

√

4(sec2 θ − 1) · tan θ dθ Cancelling

= 2

∫ √
tan2 θ · tan θ dθ Using tan2 θ + 1 = sec2 θ

= 2

∫

tan2 θ dθ Simplifying

= 2

∫

(sec2 θ − 1) dθ Using tan2 θ + 1 = sec2 θ

= 2(tan θ − θ) + C Since

∫

sec2 θ dθ = tan θ + C

For tan θ, we use a right triangle.

x =
2

5
sec θ → x =

2

5

1

cos θ
→ cos θ =

2

5x

Using SOH CAH TOA, the triangle is then

For θ by itself, we use θ = sec−1(5x/2). Thus,

∫

√
25x2 − 4

x
dx = 2

(
√
25x2 − 4

2
− sec−1

(

5x

2

))

+ C

♣
In the context of the previous example, some resources give alternate guidelines when

choosing a trigonometric substitution.

√
a2 − b2x2 → x =

a

b
sin θ

√
b2x2 + a2 or (b2x2 + a2) → x =

a

b
tan θ

√
b2x2 − a2 → x =

a

b
sec θ

We next look at a tangent substitution.
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Example 7.26: Tangent Substitution

Evaluate

∫

1√
25 + x2

dx.

Solution. Let x = 5 tan θ so that dx = 5 sec2 θ dθ .

∫

1√
25 + x2

dx =

∫

1√
25 + 25 tan2 θ

5 sec2 θ dθ Using our substitution

=

∫

1
√

25(1 + tan2 θ)
· 5 sec2 θ dθ Factor out 25

=

∫

1

5
√
sec2θ

· 5 sec2 θ dθ Using tan2 θ + 1 = sec2 θ

=

∫

sec θ dθ Simplifying

= ln | sec θ + tan θ|+ C By

∫

sec θ dx = ln | sec θ + tan θ|+ C

Since tan θ = x/5, we draw a triangle:

Then

sec θ =
1

cos θ
=

√
25 + x2

5
.

Therefore, the integral is

∫

1√
25 + x2

dx = ln

∣

∣

∣

∣

∣

√
25 + x2

5
+

x

5

∣

∣

∣

∣

∣

+ C

♣
In the next example, we will use the technique of completing the square in order to

rewrite the integrand.
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Example 7.27: Completing the Square

Evaluate

∫

x√
3− 2x− x2

dx.

Solution. First, complete the square to write

3− 2x− x2 = 4− (x+ 1)2

Now, we may let u = x+ 1 so that du = dx (note that x = u− 1) to get:

∫

x
√

4− (x+ 1)2
dx =

∫

u− 1√
4− u2

du

Let u = 2 sin θ giving du = 2 cos θ dθ:

∫

u− 1√
4− u2

du =

∫

2 sin θ − 1

2 cos θ
· 2 cos θ dθ =

∫

(2 sin θ − 1) dθ

Integrating and using a triangle we get:

∫

x√
3− 2x− x2

= −2 cos θ − θ + C

= −
√
4− u2 − sin−1

(u

2

)

+ C

= −
√
3− 2x− x2 − sin−1

(

x+ 1

2

)

+ C

Note that in this problem we could have skipped the u-substitution if instead we let x+1 =

2 sin θ. (For the triangle we would then use sin θ =
x+ 1

2
.) ♣

Exercises for 7.3

Exercise 7.3.1.

∫ √
x2 − 1 dx

Exercise 7.3.2.

∫ √
9 + 4x2 dx

Exercise 7.3.3.

∫

x
√
1− x2 dx

Exercise 7.3.4.

∫

x2
√
1− x2 dx

Exercise 7.3.5.

∫

1√
1 + x2

dx
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Exercise 7.3.6.

∫ √
x2 + 2xdx

Exercise 7.3.7.

∫

1

x2(1 + x2)
dx

Exercise 7.3.8.

∫

x2

√
4− x2

dx

Exercise 7.3.9.

∫ √
x√

1− x
dx

Exercise 7.3.10.

∫

x3

√
4x2 − 1

dx

7.4 Integration by Parts

We have already seen that recognizing the product rule can be useful, when we noticed that
∫

sec3 u+ sec u tan2 u du = sec u tanu.

As with substitution, we do not have to rely on insight or cleverness to discover such an-
tiderivatives; there is a technique that will often help to uncover the product rule.

Start with the product rule:

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x).

We can rewrite this as

f(x)g(x) =

∫

f ′(x)g(x) dx+

∫

f(x)g′(x) dx,

and then
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx.

This may not seem particularly useful at first glance, but it turns out that in many cases we
have an integral of the form

∫

f(x)g′(x) dx

but that
∫

f ′(x)g(x) dx

is easier. This technique for turning one integral into another is called integration by parts,
and is usually written in more compact form. If we let u = f(x) and v = g(x) then
du = f ′(x) dx and dv = g′(x) dx and

∫

u dv = uv −
∫

v du.

To use this technique we need to identify likely candidates for u = f(x) and dv = g′(x) dx.
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Example 7.28: Product of a Linear Function and Logarithm

Evaluate

∫

x ln x dx.

Solution. Let u = ln x so du = 1/x dx. Then we must let dv = x dx so v = x2/2 and
∫

x ln x dx =
x2 ln x

2
−
∫

x2

2

1

x
dx =

x2 lnx

2
−
∫

x

2
dx =

x2 ln x

2
− x2

4
+ C.

♣

Example 7.29: Product of a Linear Function and Trigonometric Function

Evaluate

∫

x sin x dx.

Solution. Let u = x so du = dx. Then we must let dv = sin x dx so v = − cosx and
∫

x sin x dx = −x cosx−
∫

− cosx dx = −x cos x+

∫

cosx dx = −x cosx+ sin x+ C.

♣
Example 7.30: Secant Cubed (again)

Evaluate

∫

sec3 x dx.

Solution. Of course we already know the answer to this, but we needed to be clever to
discover it. Here we’ll use the new technique to discover the antiderivative. Let u = sec x
and dv = sec2 x dx. Then du = sec x tan x and v = tan x and

∫

sec3 x dx = sec x tanx−
∫

tan2 x sec x dx

= sec x tanx−
∫

(sec2 x− 1) sec x dx

= sec x tanx−
∫

sec3 x dx+

∫

sec x dx.

At first this looks useless—we’re right back to

∫

sec3 x dx. But looking more closely:

∫

sec3 x dx = sec x tan x−
∫

sec3 x dx+

∫

sec x dx
∫

sec3 x dx+

∫

sec3 x dx = sec x tan x+

∫

sec x dx

2

∫

sec3 x dx = sec x tan x+

∫

sec x dx
∫

sec3 x dx =
sec x tan x

2
+

1

2

∫

sec x dx

=
sec x tan x

2
+

ln | sec x+ tanx|
2

+ C.
♣
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Example 7.31: Product of a Polynomial and Trigonometric Function

Evaluate

∫

x2 sin x dx.

Solution. Let u = x2, dv = sin x dx; then du = 2x dx and v = − cosx. Now
∫

x2 sin x dx = −x2 cosx+

∫

2x cosx dx.

This is better than the original integral, but we need to do integration by parts again. Let
u = 2x, dv = cosx dx; then du = 2 and v = sin x, and

∫

x2 sin x dx = −x2 cosx+

∫

2x cosx dx

= −x2 cosx+ 2x sin x−
∫

2 sin x dx

= −x2 cosx+ 2x sin x+ 2 cosx+ C.

♣
Such repeated use of integration by parts is fairly common, but it can be a bit tedious to

accomplish, and it is easy to make errors, especially sign errors involving the subtraction in
the formula. There is a nice tabular method to accomplish the calculation that minimizes the
chance for error and speeds up the whole process. We illustrate with the previous example.
Here is the table:

sign u dv
+ x2 sin x
- 2x − cos x
+ 2 − sin x
- 0 cos x

To form this table, we start with u at the top of the second column and repeatedly compute
the derivative; starting with dv at the top of the third column, we repeatedly compute the
antiderivative. In the first column, we place a “−” in every second row. To form the second
table we combine the first and second columns by ignoring the boundary; if you do this by
hand, you may simply start with two columns and add a “−” to every second row.

Alternatively, we can use the following table:

u dv
x2 sin x
−2x − cosx
2 − sin x
0 cosx

To compute with this second table we begin at the top. Multiply the first entry in column
u by the second entry in column dv to get −x2 cosx, and add this to the integral of the
product of the second entry in column u and second entry in column dv. This gives:

−x2 cos x+

∫

2x cosx dx,
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or exactly the result of the first application of integration by parts. Since this integral is not
yet easy, we return to the table. Now we multiply twice on the diagonal, (x2)(− cosx) and
(−2x)(− sin x) and then once straight across, (2)(− sin x), and combine these as

−x2 cosx+ 2x sin x−
∫

2 sinx dx,

giving the same result as the second application of integration by parts. While this integral
is easy, we may return yet once more to the table. Now multiply three times on the diagonal
to get (x2)(− cosx), (−2x)(− sin x), and (2)(cosx), and once straight across, (0)(cosx). We
combine these as before to get

−x2 cos x+ 2x sin x+ 2 cosx+

∫

0 dx = −x2 cosx+ 2x sin x+ 2 cosx+ C.

Typically we would fill in the table one line at a time, until the “straight across” multiplica-
tion gives an easy integral. If we can see that the u column will eventually become zero, we
can instead fill in the whole table; computing the products as indicated will then give the
entire integral, including the “+C ”, as above.

Exercises for 7.4

Find the antiderivatives.

Exercise 7.4.1.

∫

x cosx dx

Exercise 7.4.2.

∫

x2 cosx dx

Exercise 7.4.3.

∫

xex dx

Exercise 7.4.4.

∫

xex
2

dx

Exercise 7.4.5.

∫

sin2 x dx

Exercise 7.4.6.

∫

lnx dx

Exercise 7.4.7.

∫

x arctanx dx

Exercise 7.4.8.

∫

x3 sin x dx

Exercise 7.4.9.

∫

x3 cosx dx
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Exercise 7.4.10.

∫

x sin2 x dx

Exercise 7.4.11.

∫

x sin x cosx dx

Exercise 7.4.12.

∫

arctan(
√
x) dx

Exercise 7.4.13.

∫

sin(
√
x) dx

Exercise 7.4.14.

∫

sec2 x csc2 x dx

7.5 Rational Functions

A rational function is a fraction with polynomials in the numerator and denominator. For
example,

x3

x2 + x− 6
,

1

(x− 3)2
,

x2 + 1

x2 − 1
,

are all rational functions of x. There is a general technique called “partial fractions” that, in
principle, allows us to integrate any rational function. The algebraic steps in the technique
are rather cumbersome if the polynomial in the denominator has degree more than 2, and
the technique requires that we factor the denominator, something that is not always possi-
ble. However, in practice one does not often run across rational functions with high degree
polynomials in the denominator for which one has to find the antiderivative function. So we
shall explain how to find the antiderivative of a rational function only when the denominator
is a quadratic polynomial ax2 + bx+ c.

We should mention a special type of rational function that we already know how to
integrate: If the denominator has the form (ax+ b)n, the substitution u = ax+ b will always
work. The denominator becomes un, and each x in the numerator is replaced by (u− b)/a,
and dx = du/a. While it may be tedious to complete the integration if the numerator has
high degree, it is merely a matter of algebra.

Example 7.32: Substitution and Splitting Up a Fraction

Find

∫

x3

(3− 2x)5
dx.

Solution. Using the substitution u = 3− 2x we get

∫

x3

(3− 2x)5
dx =

1

−2

∫

(

u−3
−2

)3

u5
du =

1

16

∫

u3 − 9u2 + 27u− 27

u5
du

=
1

16

∫

u−2 − 9u−3 + 27u−4 − 27u−5 du
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=
1

16

(

u−1

−1 −
9u−2

−2 +
27u−3

−3 − 27u−4

−4

)

+ C

=
1

16

(

(3− 2x)−1

−1 − 9(3− 2x)−2

−2 +
27(3− 2x)−3

−3 − 27(3− 2x)−4

−4

)

+ C

= − 1

16(3− 2x)
+

9

32(3− 2x)2
− 9

16(3− 2x)3
+

27

64(3− 2x)4
+ C

♣
We now proceed to the case in which the denominator is a quadratic polynomial. We

can always factor out the coefficient of x2 and put it outside the integral, so we can assume
that the denominator has the form x2 + bx + c. There are three possible cases, depending
on how the quadratic factors: either x2 + bx+ c = (x− r)(x− s), x2 + bx+ c = (x− r)2, or
it doesn’t factor. We can use the quadratic formula to decide which of these we have, and
to factor the quadratic if it is possible.

Example 7.33: Factoring a Quadratic

Determine whether x2 + x+ 1 factors, and factor it if possible.

Solution. The quadratic formula tells us that x2 + x+ 1 = 0 when

x =
−1±

√
1− 4

2
.

Since there is no square root of −3, this quadratic does not factor. ♣

Example 7.34: Factoring a Quadratic with Real Roots

Determine whether x2 − x− 1 factors, and factor it if possible.

Solution. The quadratic formula tells us that x2 − x− 1 = 0 when

x =
1±
√
1 + 4

2
=

1±
√
5

2
.

Therefore

x2 − x− 1 =

(

x− 1 +
√
5

2

)(

x− 1−
√
5

2

)

.

♣
If x2 + bx+ c = (x− r)2 then we have the special case we have already seen, that can be

handled with a substitution. The other two cases require different approaches.
If x2 + bx+ c = (x− r)(x− s), we have an integral of the form

∫

p(x)

(x− r)(x− s)
dx

where p(x) is a polynomial. The first step is to make sure that p(x) has degree less than 2.
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Example 7.35:

Rewrite
∫

x3

(x− 2)(x+ 3)
dx

in terms of an integral with a numerator that has degree less than 2.

Solution. To do this we use long division of polynomials to discover that

x3

(x− 2)(x+ 3)
=

x3

x2 + x− 6
= x− 1 +

7x− 6

x2 + x− 6
= x− 1 +

7x− 6

(x− 2)(x+ 3)
.

See http://en.wikipedia.org/wiki/Polynomial_long_division for a review on long di-
vision. Then

∫

x3

(x− 2)(x+ 3)
dx =

∫

x− 1 dx+

∫

7x− 6

(x− 2)(x+ 3)
dx.

The first integral is easy, so only the second requires some work. ♣
Now consider the following simple algebra of fractions:

A

x− r
+

B

x− s
=

A(x− s) +B(x− r)

(x− r)(x− s)
=

(A+B)x−As− Br

(x− r)(x− s)
.

That is, adding two fractions with constant numerator and denominators (x− r) and (x−s)
produces a fraction with denominator (x − r)(x − s) and a polynomial of degree less than
2 for the numerator. We want to reverse this process: starting with a single fraction, we
want to write it as a sum of two simpler fractions. An example should make it clear how to
proceed.

Example 7.36: Partial Fraction Decomposition

Evaluate

∫

x3

(x− 2)(x+ 3)
dx.

Solution. We start by writing
7x− 6

(x− 2)(x+ 3)
as the sum of two fractions. We want to end

up with
7x− 6

(x− 2)(x+ 3)
=

A

x− 2
+

B

x+ 3
.

If we go ahead and add the fractions on the right hand side we get

7x− 6

(x− 2)(x+ 3)
=

(A +B)x+ 3A− 2B

(x− 2)(x+ 3)
.

So all we need to do is find A and B so that 7x−6 = (A+B)x+3A−2B, which is to say, we
need 7 = A+B and −6 = 3A− 2B. This is a problem you’ve seen before: solve a system of
two equations in two unknowns. There are many ways to proceed; here’s one: If 7 = A+B
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then B = 7−A and so −6 = 3A− 2B = 3A− 2(7−A) = 3A− 14 + 2A = 5A− 14. This is
easy to solve for A: A = 8/5, and then B = 7− A = 7− 8/5 = 27/5. Thus

∫

7x− 6

(x− 2)(x+ 3)
dx =

∫

8

5

1

x− 2
+

27

5

1

x+ 3
dx =

8

5
ln |x− 2|+ 27

5
ln |x+ 3|+ C.

The answer to the original problem is now
∫

x3

(x− 2)(x+ 3)
dx =

∫

x− 1 dx+

∫

7x− 6

(x− 2)(x+ 3)
dx

=
x2

2
− x+

8

5
ln |x− 2|+ 27

5
ln |x+ 3|+ C.

♣
Now suppose that x2 + bx + c doesn’t factor. Again we can use long division to ensure

that the numerator has degree less than 2, then we complete the square.

Example 7.37: Denominator Does Not Factor

Evaluate

∫

x+ 1

x2 + 4x+ 8
dx.

Solution. The quadratic denominator does not factor. We could complete the square and
use a trigonometric substitution, but it is simpler to rearrange the integrand:

∫

x+ 1

x2 + 4x+ 8
dx =

∫

x+ 2

x2 + 4x+ 8
dx−

∫

1

x2 + 4x+ 8
dx.

The first integral is an easy substitution problem, using u = x2 + 4x+ 8:
∫

x+ 2

x2 + 4x+ 8
dx =

1

2

∫

du

u
=

1

2
ln |x2 + 4x+ 8|.

For the second integral we complete the square:

x2 + 4x+ 8 = (x+ 2)2 + 4 = 4

(

(

x+ 2

2

)2

+ 1

)

,

making the integral
1

4

∫

1
(

x+2
2

)2
+ 1

dx.

Using u =
x+ 2

2
we get

1

4

∫

1
(

x+2
2

)2
+ 1

dx =
1

4

∫

2

u2 + 1
dx =

1

2
arctan

(

x+ 2

2

)

.

The final answer is now
∫

x+ 1

x2 + 4x+ 8
dx =

1

2
ln |x2 + 4x+ 8| − 1

2
arctan

(

x+ 2

2

)

+ C.

♣
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Exercises for 7.5

Exercise 7.5.1.

∫

1

4− x2
dx

Exercise 7.5.2.

∫

x4

4− x2
dx

Exercise 7.5.3.

∫

1

x2 + 10x+ 25
dx

Exercise 7.5.4.

∫

x2

4− x2
dx

Exercise 7.5.5.

∫

x4

4 + x2
dx

Exercise 7.5.6.

∫

1

x2 + 10x+ 29
dx

Exercise 7.5.7.

∫

x3

4 + x2
dx

Exercise 7.5.8.

∫

1

x2 + 10x+ 21
dx

Exercise 7.5.9.

∫

1

2x2 − x− 3
dx

Exercise 7.5.10.

∫

1

x2 + 3x
dx

7.6 Numerical Integration

We have now seen some of the most generally useful methods for discovering antiderivatives,
and there are others. Unfortunately, some functions have no simple antiderivatives; in such
cases if the value of a definite integral is needed it will have to be approximated. We will
see two methods that work reasonably well and yet are fairly simple; in some cases more
sophisticated techniques will be needed.

Of course, we already know one way to approximate an integral: if we think of the integral
as computing an area, we can add up the areas of some rectangles. While this is quite simple,
it is usually the case that a large number of rectangles is needed to get acceptable accuracy.
A similar approach is much better: we approximate the area under a curve over a small
interval as the area of a trapezoid. In figure 7.1 we see an area under a curve approximated
by rectangles and by trapezoids; it is apparent that the trapezoids give a substantially better
approximation on each subinterval.
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Figure 7.1: Approximating an area with rectangles and with trapezoids.

As with rectangles, we divide the interval into n equal subintervals of length ∆x. A
typical trapezoid is pictured in figure 7.2; it has area

f(xi) + f(xi+1)

2
∆x.

If we add up the areas of all trapezoids we get

f(x0) + f(x1)

2
∆x+

f(x1) + f(x2)

2
∆x+ · · ·+ f(xn−1) + f(xn)

2
∆x

=

(

f(x0)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1) +

f(xn)

2

)

∆x.

For a modest number of subintervals this is not too difficult to do with a calculator; a
computer can easily do many subintervals.

xi xi+1

(xi, f(xi))

(xi+1, f(xi+1))
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Figure 7.2: A single trapezoid.

In practice, an approximation is useful only if we know how accurate it is; for example, we
might need a particular value accurate to three decimal places. When we compute a partic-
ular approximation to an integral, the error is the difference between the approximation and
the true value of the integral. For any approximation technique, we need an error estimate,
a value that is guaranteed to be larger than the actual error. If A is an approximation and E
is the associated error estimate, then we know that the true value of the integral is between
A − E and A + E. In the case of our approximation of the integral, we want E = E(∆x)
to be a function of ∆x that gets small rapidly as ∆x gets small. Fortunately, for many
functions, there is such an error estimate associated with the trapezoid approximation.
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Theorem 7.38: Error for Trapezoid Approximation

Suppose f has a second derivative f ′′ everywhere on the interval [a, b], and |f ′′(x)| ≤M
for all x in the interval. With ∆x = (b − a)/n, an error estimate for the trapezoid
approximation is

E(∆x) =
b− a

12
M(∆x)2 =

(b− a)3

12n2
M.

Let’s see how we can use this.

Example 7.39: Approximate an Integral With Trapezoids

Approximate

∫ 1

0

e−x2

dx to two decimal places.

Solution. The second derivative of f = e−x2

is (4x2 − 2)e−x2

, and it is not hard to see that

on [0, 1], |(4x2 − 2)e−x2| ≤ 2. We begin by estimating the number of subintervals we are
likely to need. To get two decimal places of accuracy, we will certainly need E(∆x) < 0.005
or

1

12
(2)

1

n2
< 0.005

1

6
(200) < n2

5.77 ≈
√

100

3
< n

With n = 6, the error estimate is thus 1/63 < 0.0047. We compute the trapezoid approxi-
mation for six intervals:

(

f(0)

2
+ f(1/6) + f(2/6) + · · ·+ f(5/6) +

f(1)

2

)

1

6
≈ 0.74512.

So the true value of the integral is between 0.74512−0.0047 = 0.74042 and 0.74512+0.0047 =
0.74982. Unfortunately, the first rounds to 0.74 and the second rounds to 0.75, so we can’t be
sure of the correct value in the second decimal place; we need to pick a larger n. As it turns
out, we need to go to n = 12 to get two bounds that both round to the same value, which
turns out to be 0.75. For comparison, using 12 rectangles to approximate the area gives
0.7727, which is considerably less accurate than the approximation using six trapezoids.

In practice it generally pays to start by requiring better than the maximum possible
error; for example, we might have initially required E(∆x) < 0.001, or

1

12
(2)

1

n2
< 0.001

1

6
(1000) < n2

12.91 ≈
√

500

3
< n

Had we immediately tried n = 13 this would have given us the desired answer. ♣
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The trapezoid approximation works well, especially compared to rectangles, because the
tops of the trapezoids form a reasonably good approximation to the curve when ∆x is fairly
small. We can extend this idea: what if we try to approximate the curve more closely, by
using something other than a straight line? The obvious candidate is a parabola: if we can
approximate a short piece of the curve with a parabola with equation y = ax2 + bx + c, we
can easily compute the area under the parabola.

There are an infinite number of parabolas through any two given points, but only one
through three given points. If we find a parabola through three consecutive points (xi, f(xi)),
(xi+1, f(xi+1)), (xi+2, f(xi+2)) on the curve, it should be quite close to the curve over the
whole interval [xi, xi+2], as in figure 7.3. If we divide the interval [a, b] into an even number
of subintervals, we can then approximate the curve by a sequence of parabolas, each cov-
ering two of the subintervals. For this to be practical, we would like a simple formula for
the area under one parabola, namely, the parabola through (xi, f(xi)), (xi+1, f(xi+1)), and
(xi+2, f(xi+2)). That is, we should attempt to write down the parabola y = ax2 + bx + c
through these points and then integrate it, and hope that the result is fairly simple. Although
the algebra involved is messy, this turns out to be possible. The algebra is well within the
capability of a good computer algebra system like Sage, so we will present the result without
all of the algebra.

To find the parabola, we solve these three equations for a, b, and c:

f(xi) = a(xi+1 −∆x)2 + b(xi+1 −∆x) + c
f(xi+1) = a(xi+1)

2 + b(xi+1) + c
f(xi+2) = a(xi+1 +∆x)2 + b(xi+1 +∆x) + c

Not surprisingly, the solutions turn out to be quite messy. Nevertheless, Sage can easily
compute and simplify the integral to get

∫ xi+1+∆x

xi+1−∆x

ax2 + bx+ c dx =
∆x

3
(f(xi) + 4f(xi+1) + f(xi+2)).

Now the sum of the areas under all parabolas is

∆x

3
(f(x0) + 4f(x1) + f(x2) + f(x2) + 4f(x3) + f(x4) + · · ·+ f(xn−2) + 4f(xn−1) + f(xn)) =

∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)).

This is just slightly more complicated than the formula for trapezoids; we need to remem-
ber the alternating 2 and 4 coefficients. This approximation technique is referred to as
Simpson’s Rule.

xi xi+1 xi+2

(xi, f(xi))

(xi+2, f(xi+2))
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Figure 7.3: A parabola (dashed) approximating a curve (solid).
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As with the trapezoid method, this is useful only with an error estimate:

Theorem 7.40: Error for Simpson’s Approximation

Suppose f has a fourth derivative f (4) everywhere on the interval [a, b], and |f (4)(x)| ≤
M for all x in the interval. With ∆x = (b − a)/n, an error estimate for Simpson’s
approximation is

E(∆x) =
b− a

180
M(∆x)4 =

(b− a)5

180n4
M.

Example 7.41: Approximate an Integral With Parabolas

Let us again approximate

∫ 1

0

e−x2

dx to two decimal places.

Solution. The fourth derivative of f = e−x2

is (16x2 − 48x2 + 12)e−x2

; on [0, 1] this is at
most 12 in absolute value. We begin by estimating the number of subintervals we are likely
to need. To get two decimal places of accuracy, we will certainly need E(∆x) < 0.005, but
taking a cue from our earlier example, let’s require E(∆x) < 0.001:

1

180
(12)

1

n4
< 0.001

200

3
< n4

2.86 ≈ [4]

√

200

3
< n

So we try n = 4, since we need an even number of subintervals. Then the error estimate is
12/180/44 < 0.0003 and the approximation is

(f(0) + 4f(1/4) + 2f(1/2) + 4f(3/4) + f(1))
1

3 · 4 ≈ 0.746855.

So the true value of the integral is between 0.746855 − 0.0003 = 0.746555 and 0.746855 +
0.0003 = 0.7471555, both of which round to 0.75. ♣

Exercises for 7.6

In the following problems, compute the trapezoid and Simpson approximations using 4 subin-
tervals, and compute the error estimate for each. (Finding the maximum values of the second
and fourth derivatives can be challenging for some of these; you may use a graphing calculator
or computer software to estimate the maximum values.)

Exercise 7.6.1.

∫ 3

1

x dx

Exercise 7.6.2.

∫ 3

0

x2 dx
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Exercise 7.6.3.

∫ 4

2

x3 dx

Exercise 7.6.4.

∫ 3

1

1

x
dx

Exercise 7.6.5.

∫ 2

1

1

1 + x2
dx

Exercise 7.6.6.

∫ 1

0

x
√
1 + x dx

Exercise 7.6.7.

∫ 5

1

x

1 + x
dx

Exercise 7.6.8.

∫ 1

0

√
x3 + 1 dx

Exercise 7.6.9.

∫ 1

0

√
x4 + 1 dx

Exercise 7.6.10.

∫ 4

1

√

1 + 1/x dx

Exercise 7.6.11. Using Simpson’s rule on a parabola f(x), even with just two subintervals,
gives the exact value of the integral, because the parabolas used to approximate f will be f
itself. Remarkably, Simpson’s rule also computes the integral of a cubic function f(x) =
ax3 + bx2 + cx+ d exactly. Show this is true by showing that

∫ x2

x0

f(x) dx =
x2 − x0

3 · 2 (f(x0) + 4f((x0 + x2)/2) + f(x2)).

This does require a bit of messy algebra, so you may prefer to use Sage.

7.7 Improper Integrals

Recall that the Fundamental Theorem of Calculus says that if f is a continuous function
on the closed interval [a, b], then

∫ b

a

f(x) dx = F (x)

∣

∣

∣

∣

b

a

= F (b)− F (a),

where F is any antiderivative of f .
Both the continuity condition and closed interval must hold to use the Fundamental

Theorem of Calculus, and in this case,

∫ b

a

f(x) dx represents the net area under f(x) from

245



CHAPTER 7. TECHNIQUES OF INTEGRATION

a to b:

We begin with an example where blindly applying the Fundamental Theorem of Calculus
can give an incorrect result.

Example 7.42: Using FTC

Explain why

∫ 1

−1

1

x2
dx is not equal to −2.

Solution. Here is how one might proceed:

∫ 1

−1

1

x2
dx =

∫ 1

−1

x−2 dx = − x−1

∣

∣

∣

∣

1

−1

= − 1

x

∣

∣

∣

∣

1

−1

=

(

−1
1

)

−
(

− 1

(−1)

)

= − 2

However, the above answer is WRONG! Since f(x) = 1/x2 is not continuous on [−1, 1],
we cannot directly apply the Fundamental Theorem of Calculus. Intuitively, we can see why
−2 is not the correct answer by looking at the graph of f(x) = 1/x2 on [−1, 1]. The shaded
area appears to grow without bound as seen in the figure below.

♣
Formalizing this example leads to the concept of an improper integral. There are two

ways to extend the Fundamental Theorem of Calculus. One is to use an infinite interval,
i.e., [a,∞), (−∞, b] or (−∞,∞). The second is to allow the interval [a, b] to contain an
infinite discontinuity of f(x). In either case, the integral is called an improper integral.
One of the most important applications of this concept is probability distributions.

To compute improper integrals, we use the concept of limits along with the Fundamental
Theorem of Calculus.
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Definition 7.43: Definitions for Improper Integrals

If f(x) is continuous on [a,∞), then the improper integral of f over [a,∞) is:

∫ ∞

a

f(x) dx := lim
R→∞

∫ R

a

f(x) dx.

If f(x) is continuous on (−∞, b], then the improper integral of f over (−∞, b] is:

∫ b

−∞
f(x) dx := lim

R→−∞

∫ b

R

f(x) dx.

If the limit exists and is a finite number, we say the improper integral converges. Oth-
erwise, we say the improper integral diverges.

To get an intuitive (though not completely correct) interpretation of improper integrals,

we attempt to analyze

∫ ∞

a

f(x) dx graphically. Here assume f(x) is continuous on [a,∞):

We let R be a fixed number in [a,∞). Then by taking the limit as R approaches ∞, we get
the improper integral:

∫ ∞

a

f(x) dx := lim
R→∞

∫ R

a

f(x) dx.

We can then apply the Fundamental Theorem of Calculus to the last integral as f(x) is
continuous on the closed interval [a,R].

We next define the improper integral for the interval (−∞, ∞).

Definition 7.44: Definitions for Improper Integrals

If both

∫ a

−∞
f(x) dx and

∫ ∞

a

f(x) dx are convergent, then the improper integral of f

over (−∞,∞) is:

∫ ∞

−∞
f(x) dx :=

∫ a

−∞
f(x) dx+

∫ ∞

a

f(x) dx

The above definition requires both of the integrals
∫ a

−∞
f(x) dx and

∫ ∞

a

f(x) dx
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to be convergent for

∫ ∞

−∞
f(x) dx to also be convergent. If either of

∫ a

−∞
f(x) dx or

∫ ∞

a

f(x) dx

is divergent, then so is

∫ ∞

−∞
f(x) dx.

Example 7.45: Improper Integral

Determine whether

∫ ∞

1

1

x
dx is convergent or divergent.

Solution. Using the definition for improper integrals we write this as:

∫ ∞

1

1

x
dx = lim

R→∞

∫ R

1

1

x
dx = lim

R→∞
ln |x|

∣

∣

∣

∣

R

1

= lim
R→∞

ln |R| − ln |1| = lim
R→∞

ln |R| = +∞

Therefore, the integral is divergent. ♣

Example 7.46: Improper Integral

Determine whether

∫ ∞

−∞
x sin(x2) dx is convergent or divergent.

Solution. We must compute both

∫ ∞

0

x sin(x2) dx and

∫ 0

−∞
x sin(x2) dx. Note that we don’t

have to split the integral up at 0, any finite value a will work. First we compute the indefinite
integral. Let u = x2, then du = 2x dx and hence,

∫

x sin(x2) dx =
1

2

∫

sin(u) du = −1
2
cos(x2) + C

Using the definition of improper integral gives:

∫ ∞

0

x sin(x2) dx = lim
R→∞

∫ R

0

x sin(x2) dx = lim
R→∞

[

−1
2
cos(x2)

]
∣

∣

∣

∣

R

0

= −1
2

lim
R→∞

cos(R2) +
1

2

This limit does not exist since cosx oscillates between −1 and +1. In particular, cos x

does not approach any particular value as x gets larger and larger. Thus,

∫ ∞

0

x sin(x2) dx

diverges, and hence,

∫ ∞

−∞
x sin(x2) dx diverges. ♣

When there is a discontinuity in [a, b] or at an endpoint, then the improper integral as
follows.
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Definition 7.47: Definitions for Improper Integrals

If f(x) is continuous on (a, b], then the improper integral of f over (a, b] is:

∫ b

a

f(x) dx := lim
R→a+

∫ b

R

f(x) dx.

If f(x) is continuous on [a, b), then the improper integral of f over [a, b) is:

∫ b

a

f(x) dx := lim
R→b−

∫ R

a

f(x) dx.

If the limit above exists and is a finite number, we say the improper integral converges.
Otherwise, we say the improper integral diverges.

When there is a discontinuity in the interior of [a, b], we use the following definition.

Definition 7.48: Definitions for Improper Integrals

If f has a discontinuity at x = c where c ∈ [a, b], and both both

∫ c

a

f(x) dx and
∫ b

c

f(x) dx are convergent, then f over [a, b] is:

∫ b

a

f(x) dx :=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

Again, we can get an intuitive sense of this concept by analyzing

∫ b

a

f(x) dx graphically.

Here assume f(x) is continuous on (a, b] but discontinuous at x = a:

We let R be a fixed number in (a, b). Then by taking the limit as R approaches a from the
right, we get the improper integral:

∫ b

a

f(x) dx := lim
R→a+

∫ b

R

f(x) dx.

Now we can apply FTC to the last integral as f(x) is continuous on [R, b].
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Example 7.49: A Divergent Integral

Determine if

∫ 1

−1

1

x2
dx is convergent or divergent.

Solution. The function f(x) = 1/x2 has a discontinuity at x = 0, which lies in [−1, 1]. We

must compute

∫ 0

−1

1

x2
dx and

∫ 1

0

1

x2
dx. Let’s start with

∫ 1

0

1

x2
dx:

∫ 1

0

1

x2
dx = lim

R→0+

∫ 1

R

1

x2
dx = lim

R→0+
−1

x

∣

∣

∣

∣

1

R

= −1 + lim
R→0+

1

R

which diverges to +∞. Therefore,

∫ 1

−1

1

x2
dx is divergent since one of

∫ 0

−1

1

x2
dx and

∫ 1

0

1

x2
dx is divergent. ♣

Example 7.50: Integral of the Logarithm

Determine if

∫ 1

0

ln x dx is convergent or divergent. Evaluate it if it is convergent.

Solution. Note that f(x) = ln x is discontinuous at the endpoint x = 0. We first use

integration by parts to compute

∫

lnx dx. We let u = ln x and dv = dx. Then du = (1/x)dx,

v = x, giving:
∫

ln x dx = x ln x−
∫

x · 1
x
dx

= x ln x−
∫

1 dx

= x ln x− x+ C

Now using the definition of improper integral for

∫ 1

0

ln x dx:

∫ 1

0

ln x dx = lim
R→0+

∫ 1

R

ln x dx = lim
R→0+

(x ln x− x)

∣

∣

∣

∣

1

R

= −1 − lim
R→0+

(R lnR) + lim
R→0+

R

Note that lim
R→0+

R = 0. We next compute lim
R→0+

(R lnR). First, we rewrite the expression as

follows:

lim
x→0+

(R lnR) = lim
R→0+

lnR

1/R
.

Now the limit is of the indeterminate type (−∞)/(∞) and l’Hôpital’s Rule can be applied.

lim
R→0+

(R lnR) = lim
R→0+

lnR

1/R
= lim

R→0+

1/R

−1/R2
= lim

R→0+
−R

2

R
= lim

R→0+
(−R) = 0
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Thus, lim
R→0+

(R lnR) = 0. Thus
∫ 1

0

lnx dx = −1,

and the integral is convergent to −1.
Graphically, one might interpret this to mean that the net area under ln x on [0, 1] is −1

(the area in this case lies below the x-axis).

♣
The following test allows us to determine convergence/divergence information about im-

proper integrals that are hard to compute by comparing them to easier ones. We state the
test for [a,∞), but similar versions hold for the other improper integrals.

The Comparison Test

Assume that f(x) ≥ g(x) ≥ 0 for x ≥ a.

(i) If

∫ ∞

a

f(x) dx converges, then

∫ ∞

a

g(x) dx also converges.

(ii) If

∫ ∞

a

g(x) dx diverges, then

∫ ∞

a

f(x) dx also diverges.

Informally, (i) says that if f(x) is larger than g(x), and the area under f(x) is finite
(converges), then the area under g(x) must also be finite (converges). Informally, (ii) says
that if f(x) is larger than g(x), and the area under g(x) is infinite (diverges), then the area
under f(x) must also be infinite (diverges).
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Example 7.51: Comparison Test

Show that

∫ ∞

2

cos2 x

x2
dx converges.

Solution. We use the comparison test to show that it converges. Note that 0 ≤ cos2 x ≤ 1
and hence

0 ≤ cos2 x

x2
≤ 1

x2
.

Thus, taking f(x) = 1/x2 and g(x) = cos2 x/x2 we have f(x) ≥ g(x) ≥ 0. One can easily

see that

∫ ∞

2

1

x2
dx converges. Therefore,

∫ ∞

2

cos2 x

x2
dx also converges. ♣

7.8 Additional exercises

These problems require the techniques of this chapter, and are in no particular order. Some
problems may be done in more than one way.

Exercise 7.8.1.

∫

(t+ 4)3 dt

Exercise 7.8.2.

∫

t(t2 − 9)3/2 dt

Exercise 7.8.3.

∫

(et
2

+ 16)tet
2

dt

Exercise 7.8.4.

∫

sin t cos 2t dt

Exercise 7.8.5.

∫

tan t sec2 t dt

Exercise 7.8.6.

∫

2t+ 1

t2 + t + 3
dt

Exercise 7.8.7.

∫

1

t(t2 − 4)
dt

Exercise 7.8.8.

∫

1

(25− t2)3/2
dt

Exercise 7.8.9.

∫

cos 3t√
sin 3t

dt

Exercise 7.8.10.

∫

t sec2 t dt

Exercise 7.8.11.

∫

et√
et + 1

dt
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Exercise 7.8.12.

∫

cos4 t dt

Exercise 7.8.13.

∫

1

t2 + 3t
dt

Exercise 7.8.14.

∫

1

t2
√
1 + t2

dt

Exercise 7.8.15.

∫

sec2 t

(1 + tan t)3
dt

Exercise 7.8.16.

∫

t3
√
t2 + 1 dt

Exercise 7.8.17.

∫

et sin t dt

Exercise 7.8.18.

∫

(t3/2 + 47)3
√
t dt

Exercise 7.8.19.

∫

t3

(2− t2)5/2
dt

Exercise 7.8.20.

∫

1

t(9 + 4t2)
dt

Exercise 7.8.21.

∫

arctan 2t

1 + 4t2
dt

Exercise 7.8.22.

∫

t

t2 + 2t− 3
dt

Exercise 7.8.23.

∫

sin3 t cos4 t dt

Exercise 7.8.24.

∫

1

t2 − 6t+ 9
dt

Exercise 7.8.25.

∫

1

t(ln t)2
dt

Exercise 7.8.26.

∫

t(ln t)2 dt

Exercise 7.8.27.

∫

t3et dt

Exercise 7.8.28.

∫

t+ 1

t2 + t− 1
dt
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8. Applications of Integration

8.1 Distance, Velocity, Acceleration

We next recall a general principle that will later be applied to distance-velocity-acceleration

problems, among other things. If F (u) is an anti-derivative of f(u), then

∫ b

a

f(u) du =

F (b)−F (a). Suppose that we want to let the upper limit of integration vary, i.e., we replace
b by some variable x. We think of a as a fixed starting value x0. In this new notation the
last equation (after adding F (a) to both sides) becomes:

F (x) = F (x0) +

∫ x

x0

f(u) du.

(Here u is the variable of integration, called a “dummy variable,” since it is not the variable
in the function F (x). In general, it is not a good idea to use the same letter as a variable of

integration and as a limit of integration. That is,

∫ x

x0

f(x)dx is bad notation, and can lead

to errors and confusion.)
An important application of this principle occurs when we are interested in the position

of an object at time t (say, on the x-axis) and we know its position at time t0. Let s(t)
denote the position of the object at time t (its distance from a reference point, such as the
origin on the x-axis). Then the net change in position between t0 and t is s(t)− s(t0). Since
s(t) is an anti-derivative of the velocity function v(t), we can write

s(t) = s(t0) +

∫ t

t0

v(u)du.

Similarly, since the velocity is an anti-derivative of the acceleration function a(t), we have

v(t) = v(t0) +

∫ t

t0

a(u)du.

Example 8.1: Constant Force

Suppose an object is acted upon by a constant force F . Find v(t) and s(t).

Solution. By Newton’s law F = ma, so the acceleration is F/m, where m is the mass of
the object. Then we first have

v(t) = v(t0) +

∫ t

t0

F

m
du = v0 +

F

m
u

∣

∣

∣

∣

t

t0

= v0 +
F

m
(t− t0),
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using the usual convention v0 = v(t0). Then

s(t) = s(t0) +
∫ t

t0

(

v0 +
F
m
(u− t0)

)

du = s0 + (v0u+ F
2m

(u− t0)
2)
∣

∣

t

t0

= s0 + v0(t− t0) +
F
2m

(t− t0)
2.

For instance, when F/m = −g is the constant of gravitational acceleration, then this is the
falling body formula (if we neglect air resistance) familiar from elementary physics:

s0 + v0(t− t0)−
g

2
(t− t0)

2,

or in the common case that t0 = 0,

s0 + v0t−
g

2
t2.

♣
Recall that the integral of the velocity function gives the net distance traveled. If you

want to know the total distance traveled, you must find out where the velocity function
crosses the t-axis, integrate separately over the time intervals when v(t) is positive and when
v(t) is negative, and add up the absolute values of the different integrals. For example, if an
object is thrown straight upward at 19.6 m/sec, its velocity function is v(t) = −9.8t+ 19.6,
using g = 9.8 m/sec for the force of gravity. This is a straight line which is positive for t < 2
and negative for t > 2. The net distance traveled in the first 4 seconds is thus

∫ 4

0

(−9.8t+ 19.6)dt = 0,

while the total distance traveled in the first 4 seconds is

∫ 2

0

(−9.8t+ 19.6)dt+

∣

∣

∣

∣

∫ 4

2

(−9.8t + 19.6)dt

∣

∣

∣

∣

= 19.6 + | − 19.6| = 39.2

meters, 19.6 meters up and 19.6 meters down.

Example 8.2: Net and Total Distance

The acceleration of an object is given by a(t) = cos(πt), and its velocity at time t = 0
is 1/(2π). Find both the net and the total distance traveled in the first 1.5 seconds.

Solution. We compute

v(t) = v(0) +

∫ t

0

cos(πu)du =
1

2π
+

1

π
sin(πu)

∣

∣

∣

∣

t

0

=
1

π

(1

2
+ sin(πt)

)

.

The net distance traveled is then

s(3/2)− s(0) =

∫ 3/2

0

1

π

(

1

2
+ sin(πt)

)

dt

256



8.1. DISTANCE, VELOCITY, ACCELERATION

=
1

π

(

t

2
− 1

π
cos(πt)

)∣

∣

∣

∣

3/2

0

=
3

4π
+

1

π2
≈ 0.340 meters.

To find the total distance traveled, we need to know when (0.5 + sin(πt)) is positive and
when it is negative. This function is 0 when sin(πt) is −0.5, i.e., when πt = 7π/6, 11π/6,
etc. The value πt = 7π/6, i.e., t = 7/6, is the only value in the range 0 ≤ t ≤ 1.5. Since
v(t) > 0 for t < 7/6 and v(t) < 0 for t > 7/6, the total distance traveled is

∫ 7/6

0

1

π

(

1

2
+ sin(πt)

)

dt+
∣

∣

∣

∫ 3/2

7/6

1

π

(

1

2
+ sin(πt)

)

dt
∣

∣

∣

=
1

π

(

7

12
+

1

π
cos(7π/6) +

1

π

)

+
1

π

∣

∣

∣

3

4
− 7

12
+

1

π
cos(7π/6)

∣

∣

∣

=
1

π

(

7

12
+

1

π

√
3

2
+

1

π

)

+
1

π

∣

∣

∣

3

4
− 7

12
+

1

π

√
3

2
.
∣

∣

∣

≈ 0.409 meters.

♣

Exercises for Section 8.1

Exercise 8.1.1. An object moves so that its velocity at time t is v(t) = −9.8t + 20 m/s.
Describe the motion of the object between t = 0 and t = 5, find the total distance traveled by
the object during that time, and find the net distance traveled.

Exercise 8.1.2. An object moves so that its velocity at time t is v(t) = sin t. Set up and
evaluate a single definite integral to compute the net distance traveled between t = 0 and
t = 2π.

Exercise 8.1.3. An object moves so that its velocity at time t is v(t) = 1+2 sin t m/s. Find
the net distance traveled by the object between t = 0 and t = 2π, and find the total distance
traveled during the same period.

Exercise 8.1.4. Consider the function f(x) = (x+2)(x+1)(x− 1)(x− 2) on [−2, 2]. Find
the total area between the curve and the x-axis (measuring all area as positive).

Exercise 8.1.5. Consider the function f(x) = x2 − 3x + 2 on [0, 4]. Find the total area
between the curve and the x-axis (measuring all area as positive).

Exercise 8.1.6. Evaluate the three integrals:

A =

∫ 3

0

(−x2 + 9) dx B =

∫ 4

0

(−x2 + 9) dx C =

∫ 3

4

(−x2 + 9) dx,

and verify that A = B + C.
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8.2 Area between curves

We have seen how integration can be used to find an area between a curve and the x-axis.
With very little change we can find some areas between curves; indeed, the area between a
curve and the x-axis may be interpreted as the area between the curve and a second “curve”
with equation y = 0.

Suppose we would like to find the area below f(x) = −x2 + 4x + 3 and above g(x) =
−x3 +7x2− 10x+5 over the interval 1 ≤ x ≤ 2. We can approximate the area between two
curves by dividing the area into thin sections and approximating the area of each section by
a rectangle, as indicated in figure 8.1. The area of a typical rectangle is ∆x(f(xi)− g(xi)),
so the total area is approximately

n−1
∑

i=0

(f(xi)− g(xi))∆x.

This is exactly the sort of sum that turns into an integral in the limit, namely the integral

∫ 2

1

f(x)− g(x) dx.

Then
∫ 2

1

f(x)− g(x) dx =

∫ 2

1

(−x2 + 4x+ 3)− (−x3 + 7x2 − 10x+ 5) dx =
49

12
.

0

5

10

0 1 2 3

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
..
...
..
...
..
...
..
...
...
...
...
...
...
...
...
...
...
..
..
...
..
...
...
..
...
..
...
...
..
...
..
...
...
...
...
..
...
...
..
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
....
...
....
...
....
....
...
....
....
....
....
....
....
....
.....
....
.....
.....
.....
.....
.....
.....
......
......
......
......
.......
........
........
........
..........
............
...............

........................
..........................................................................................................................................................................................................................................

..

.

..

.

..

..
.
..
.
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
...
..
..
...
...
..
...
...
...
....
...
.....
.....
.......
............................................................................................................................................................

........
......
.....
....
.....
....
...
....
...
...
...
...
...
...
..
...
..
...
..
...
..
...
...
...
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Figure 8.1: Approximating area between curves with rectangles.

This procedure can informally this can be thought of as follows.

Area Between Two Curves

Area =

∫ b

a

(top curve)− (bottom curve) dx, a ≤ x ≤ b.
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More formally, the area A of the region bounded by the curves y = f(x) and y = g(x)
and the lines x = a and x = b is:

A =

∫ b

a

|f(x)− g(x)| dx.

Example 8.3: Area between Curves

Find the area between f(x) = −x2 +4x and g(x) = x2− 6x+5; the curves are shown
in figure 8.2.

Solution. Here we are not given a specific interval, so it must be the case that there is a
“natural” region involved. Since the curves are both parabolas, the only reasonable inter-
pretation is the region between the two intersection points, which can be computed as:

5±
√
15

2
.

If we let a = (5−
√
15)/2 and b = (5 +

√
15)/2, the total area is

∫ b

a

−x2 + 4x− (x2 − 6x+ 5) dx =

∫ b

a

−2x2 + 10x− 5 dx

= −2x
3

3
+ 5x2 − 5x

∣

∣

∣

∣

b

a

= 5
√
15.

after a bit of simplification. ♣
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Figure 8.2: Area bounded by two curves.

Some general guidelines to compute the area between two curves follows.

Guidelines for Area Between Two Curves

1. Find the intersection points.

2. Draw a sketch of the two curves.

3. Using the sketch determine which curve is the top curve and which curve is the
bottom curve. You may need to split the area up into multiple regions.

4. Put the above information into the appropriate formula (once for each region):

Area =

∫ b

a

(top curve)− (bottom curve) dx, a ≤ x ≤ b.

5. Evaluate the integral using the Fundamental Theorem of Calculus (you should
get a positive number representing an area).

Example 8.4: Area Between Two Curves

Determine the area enclosed by y = x2, y =
√
x, x = 0 and x = 2.

Solution. The points of intersection of y = x2 and y =
√
x are

x2 =
√
x → x4 = x → x4 − x = 0 → x(x3 − 1) = 0.

Thus, either x = 0 or x = 1. Sketching the curves gives:
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8.2. AREA BETWEEN CURVES

The area we want to compute is the shaded region. Since the top curve changes at x = 1,
we need to use the formula twice. For A1 we have a = 0, b = 1, the top curve is y =

√
x and

the bottom curve is y = x2. For A2 we have a = 1, b = 2, the top curve is y = x2 and the
bottom curve is y =

√
x.

Area = A1+A2 =

∫ 1

0

(
√
x− x2) dx+

∫ 2

1

(x2 −
√
x) dx

For the first integral we have:

∫ 1

0

(
√
x− x2) dx =

(

2

3
x3/2 − 1

3
x3

)
∣

∣

∣

∣

1

0

=
1

3

Thus,

Area =
1

3
+

(

1

3
x3 − 2

3
x3/2

)
∣

∣

∣

∣

2

1

=
1

3
+

[(

8

3
− 2(
√
2)3

3

)

−
(

1

3
− 2

3

)

]

=
10− 4

√
2

3

♣

Example 8.5: Area Between Sine and Cosine

Determine the area enclosed by y = sin x and y = cos x on the interval [0, 2π].

Solution. The curves y = sin x and y = cosx intersect when:

sin x = cosx → tan x = 1 → x =
π

4
+ πk, k an integer.

We have the following sketch:

The area we want to compute is the shaded region. The top curve changes at x = π/4 and
x = 5π/4, thus, we need to split the area up into three regions: from 0 to π/4; from π/4 to
5π/4; and from 5π/4 to 2π.

Area =

∫ π
4

0

(cos x− sin x) dx+

∫ 5π
4

π
4

(sin x− cosx) dx+

∫ 2π

5π
4

(cos x− sin x) dx

= (sin x+ cosx)

∣

∣

∣

∣

π/4

0

+ (− cosx− sin x)

∣

∣

∣

∣

5π/4

π/4

+ (sin x+ cosx)

∣

∣

∣

∣

2π

5π/4
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=
(√

2− 1
)

+
(√

2 +
√
2
)

+
(

1 +
√
2
)

= 4
√
2

♣
Sometimes the given curves are not functions of x. In this instances, it may be more

useful to use the following.

The area A of the region bounded by the curves x = f(y) and x = g(y) and the lines y = c
and y = d is:

A =

∫ d

c

|f(y)− g(y)| dy.

Informally this can be thought of as follows:

Area Between Two Curves

Area =

∫ d

c

(right curve)− (left curve) dy, c ≤ y ≤ d.

Example 8.6: Area Between Two Curves

Determine the area enclosed by x = y2 and x = 8.

Solution. Note that x = y2 and x = 8 intersect when:

y2 = 8 → y = ±
√
8 → y = ±2

√
2
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8.2. AREA BETWEEN CURVES

Sketching the two curves gives:

From the sketch c = −2
√
2, d = 2

√
2, the right curve is x = 8 and the left curve is x = y2.

Area =

∫ d

c

[right− left] dy =

∫ 2
√
2

−2
√
2

(8− y2) dy =

(

8y − 1

3
y3
)∣

∣

∣

∣

2
√
2

−2
√
2

=

[

8(2
√
2)− 1

3
(2
√
2)3
]

−
[

8(−2
√
2)− 1

3
(−2
√
2)3
]

=
64
√
2

3

♣

Exercises for Section 8.2

Find the area bounded by the curves.

Exercise 8.2.1. y = x4 − x2 and y = x2 (the part to the right of the y-axis)

Exercise 8.2.2. x = y3 and x = y2

Exercise 8.2.3. x = 1− y2 and y = −x− 1

Exercise 8.2.4. x = 3y − y2 and x+ y = 3

Exercise 8.2.5. y = cos(πx/2) and y = 1− x2 (in the first quadrant)

Exercise 8.2.6. y = sin(πx/3) and y = x (in the first quadrant)

Exercise 8.2.7. y =
√
x and y = x2

Exercise 8.2.8. y =
√
x and y =

√
x+ 1, 0 ≤ x ≤ 4

Exercise 8.2.9. x = 0 and x = 25− y2

Exercise 8.2.10. y = sin x cosx and y = sin x, 0 ≤ x ≤ π

Exercise 8.2.11. y = x3/2 and y = x2/3

Exercise 8.2.12. y = x2 − 2x and y = x− 2
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CHAPTER 8. APPLICATIONS OF INTEGRATION

8.3 Volume

We have seen how to compute certain areas by using integration; some volumes may also be
computed by evaluating an integral. Generally, the volumes that we can compute this way
have cross-sections that are easy to describe.
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Figure 8.3: Volume of a pyramid approximated by rectangular prisms.

Example 8.7: Volume of a Pyramid

Find the volume of a pyramid with a square base that is 20 meters tall and 20 meters
on a side at the base.

Solution. As with most of our applications of integration, we begin by asking how we might
approximate the volume. Since we can easily compute the volume of a rectangular prism
(that is, a “box”), we will use some boxes to approximate the volume of the pyramid, as
shown in figure 8.3: on the left is a cross-sectional view, on the right is a 3D view of part of
the pyramid with some of the boxes used to approximate the volume.

Each box has volume of the form (2xi)(2xi)∆y. Unfortunately, there are two variables
here; fortunately, we can write x in terms of y: x = 10 − y/2 or xi = 10 − yi/2. Then the
total volume is approximately

n−1
∑

i=0

4(10− yi/2)
2∆y

and in the limit we get the volume as the value of an integral:

∫ 20

0

4(10− y/2)2 dy =

∫ 20

0

(20− y)2 dy = −(20 − y)3

3

∣

∣

∣

∣

20

0

= −0
3

3
−−20

3

3
=

8000

3
.

As you may know, the volume of a pyramid is (1/3)(height)(area of base) = (1/3)(20)(400),
which agrees with our answer. ♣
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Example 8.8: Volume of an Object

The base of a solid is the region between f(x) = x2 − 1 and g(x) = −x2 + 1, and
its cross-sections perpendicular to the x-axis are equilateral triangles, as indicated
in figure 8.4. The solid has been truncated to show a triangular cross-section above
x = 1/2. Find the volume of the solid.
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Figure 8.4: Solid with equilateral triangles as cross-sections.

Solution. A cross-section at a value xi on the x-axis is a triangle with base 2(1 − x2
i ) and

height
√
3(1− x2

i ), so the area of the cross-section is

1

2
(base)(height) = (1− x2

i )
√
3(1− x2

i ),

and the volume of a thin “slab” is then

(1− x2
i )
√
3(1− x2

i )∆x.

Thus the total volume is
∫ 1

−1

√
3(1− x2)2 dx =

16

15

√
3.

♣
One easy way to get “nice” cross-sections is by rotating a plane figure around a line. For

example, in figure 8.5 we see a plane region under a curve and between two vertical lines;
then the result of rotating this around the x-axis, and a typical circular cross-section.
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Figure 8.5: A solid of rotation.

Of course a real “slice” of this figure will not have straight sides, but we can approximate
the volume of the slice by a cylinder or disk with circular top and bottom and straight sides;
the volume of this disk will have the form πr2∆x. As long as we can write r in terms of x
we can compute the volume by an integral.

Example 8.9: Volume of a Right Circular Cone

Find the volume of a right circular cone with base radius 10 and height 20. (A right
circular cone is one with a circular base and with the tip of the cone directly over the
center of the base.)

Solution. We can view this cone as produced by the rotation of the line y = x/2 rotated
about the x-axis, as indicated in figure 8.6.
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Figure 8.6: A region that generates a cone; approximating the volume by circular disks.

At a particular point on the x-axis, say xi, the radius of the resulting cone is the y-
coordinate of the corresponding point on the line, namely yi = xi/2. Thus the total volume
is approximately

n−1
∑

i=0

π(xi/2)
2 dx

and the exact volume is
∫ 20

0

π
x2

4
dx =

π

4

203

3
=

2000π

3
.
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Note that we can instead do the calculation with a generic height and radius:

∫ h

0

π
r2

h2
x2 dx =

πr2

h2

h3

3
=

πr2h

3
,

giving us the usual formula for the volume of a cone. ♣

Example 8.10: Volume of an Object with a Hole

Find the volume of the object generated when the area between y = x2 and y = x is
rotated around the x-axis.

Solution. This solid has a “hole” in the middle; we can compute the volume by subtracting
the volume of the hole from the volume enclosed by the outer surface of the solid. In figure 8.7
we show the region that is rotated, the resulting solid with the front half cut away, the cone
that forms the outer surface, the horn-shaped hole, and a cross-section perpendicular to the
x-axis.
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Figure 8.7: Solid with a hole, showing the outer cone and the shape to be removed to form
the hole.

We have already computed the volume of a cone; in this case it is π/3. At a particular
value of x, say xi, the cross-section of the horn is a circle with radius x2

i , so the volume of
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the horn is
∫ 1

0

π(x2)2 dx =

∫ 1

0

πx4 dx = π
1

5
,

so the desired volume is π/3− π/5 = 2π/15.
As with the area between curves, there is an alternate approach that computes the desired

volume “all at once” by approximating the volume of the actual solid. We can approximate
the volume of a slice of the solid with a washer-shaped volume, as indicated in figure 8.7.

The volume of such a washer is the area of the face times the thickness. The thickness,
as usual, is ∆x, while the area of the face is the area of the outer circle minus the area of
the inner circle, say πR2 − πr2. In the present example, at a particular xi, the radius R is
xi and r is x2

i . Hence, the whole volume is

∫ 1

0

πx2 − πx4 dx = π

(

x3

3
− x5

5

)
∣

∣

∣

∣

1

0

= π

(

1

3
− 1

5

)

=
2π

15
.

Of course, what we have done here is exactly the same calculation as before, except we have
in effect recomputed the volume of the outer cone. ♣

Suppose the region between f(x) = x+1 and g(x) = (x−1)2 is rotated around the y-axis;
see figure 8.8. It is possible, but inconvenient, to compute the volume of the resulting solid
by the method we have used so far. The problem is that there are two “kinds” of typical
rectangles: those that go from the line to the parabola and those that touch the parabola
on both ends. To compute the volume using this approach, we need to break the problem
into two parts and compute two integrals:

π

∫ 1

0

(1 +
√
y)2 − (1−√y)2 dy + π

∫ 4

1

(1 +
√
y)2 − (y − 1)2 dy =

8

3
π +

65

6
π =

27

2
π.

If instead we consider a typical vertical rectangle, but still rotate around the y-axis, we get
a thin “shell” instead of a thin “washer”. If we add up the volume of such thin shells we
will get an approximation to the true volume. What is the volume of such a shell? Consider
the shell at xi. Imagine that we cut the shell vertically in one place and “unroll” it into a
thin, flat sheet. This sheet will be almost a rectangular prism that is ∆x thick, f(xi)− g(xi)
tall, and 2πxi wide (namely, the circumference of the shell before it was unrolled). The
volume will then be approximately the volume of a rectangular prism with these dimensions:
2πxi(f(xi)− g(xi))∆x. If we add these up and take the limit as usual, we get the integral

∫ 3

0

2πx(f(x)− g(x)) dx =

∫ 3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

Not only does this accomplish the task with only one integral, the integral is somewhat easier
than those in the previous calculation. Things are not always so neat, but it is often the
case that one of the two methods will be simpler than the other, so it is worth considering
both before starting to do calculations.
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Figure 8.8: Computing volumes with “shells”.

Example 8.11:

Suppose the area under y = −x2 + 1 between x = 0 and x = 1 is rotated around the
x-axis. Find the volume by both methods.

Solution. Using the disk method we obtain:

∫ 1

0

π(1− x2)2 dx =
8

15
π.

Using the shell method we obtain:

∫ 1

0

2πy
√

1− y dy =
8

15
π.

♣

Exercises for 8.3

Exercise 8.3.1. Verify that π

∫ 1

0

(1 +
√
y)2 − (1 − √y)2 dy + π

∫ 4

1

(1 +
√
y)2 − (y − 1)2 =

8

3
π +

65

6
π =

27

2
π.

Exercise 8.3.2. Verify that

∫ 3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

Exercise 8.3.3. Verify that

∫ 1

0

π(1− x2)2 dx =
8

15
π.

Exercise 8.3.4. Verify that

∫ 1

0

2πy
√

1− y dy =
8

15
π.

Exercise 8.3.5. Use integration to find the volume of the solid obtained by revolving the
region bounded by x+ y = 2 and the x and y axes around the x-axis.
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Exercise 8.3.6. Find the volume of the solid obtained by revolving the region bounded by
y = x− x2 and the x-axis around the x-axis.

Exercise 8.3.7. Find the volume of the solid obtained by revolving the region bounded by
y =
√
sin x between x = 0 and x = π/2, the y-axis, and the line y = 1 around the x-axis.

Exercise 8.3.8. Let S be the region of the xy-plane bounded above by the curve x3y = 64,
below by the line y = 1, on the left by the line x = 2, and on the right by the line x = 4.
Find the volume of the solid obtained by rotating S around (a) the x-axis, (b) the line y = 1,
(c) the y-axis, (d) the line x = 2.

Exercise 8.3.9. The equation x2/9 + y2/4 = 1 describes an ellipse. Find the volume of the
solid obtained by rotating the ellipse around the x-axis and also around the y-axis. These
solids are called ellipsoids; one is vaguely rugby-ball shaped, one is sort of flying-saucer
shaped, or perhaps squished-beach-ball-shaped.

Figure 8.9: Ellipsoids.

Exercise 8.3.10. Use integration to compute the volume of a sphere of radius r. You should
of course get the well-known formula 4πr3/3.

Exercise 8.3.11. A hemispheric bowl of radius r contains water to a depth h. Find the
volume of water in the bowl.

Exercise 8.3.12. The base of a tetrahedron (a triangular pyramid) of height h is an equilat-
eral triangle of side s. Its cross-sections perpendicular to an altitude are equilateral triangles.
Express its volume V as an integral, and find a formula for V in terms of h and s. Verify
that your answer is (1/3)(area of base)(height).

Exercise 8.3.13. The base of a solid is the region between f(x) = cosx and g(x) = − cos x,
−π/2 ≤ x ≤ π/2, and its cross-sections perpendicular to the x-axis are squares. Find the
volume of the solid.

8.4 Average value of a function

The average of some finite set of values is a familiar concept. If, for example, the class scores
on a quiz are 10, 9, 10, 8, 7, 5, 7, 6, 3, 2, 7, 8, then the average score is the sum of these
numbers divided by the size of the class:

average score =
10 + 9 + 10 + 8 + 7 + 5 + 7 + 6 + 3 + 2 + 7 + 8

12
=

82

12
≈ 6.83.
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Suppose that between t = 0 and t = 1 the speed of an object is sin(πt). What is the
average speed of the object over that time? The question sounds as if it must make sense,
yet we can’t merely add up some number of speeds and divide, since the speed is changing
continuously over the time interval.

To make sense of “average” in this context, we fall back on the idea of approximation.
Consider the speed of the object at tenth of a second intervals: sin 0, sin(0.1π), sin(0.2π),
sin(0.3π),. . . , sin(0.9π). The average speed “should” be fairly close to the average of these
ten speeds:

1

10

9
∑

i=0

sin(πi/10) ≈ 1

10
6.3 = 0.63.

Of course, if we compute more speeds at more times, the average of these speeds should be
closer to the “real” average. If we take the average of n speeds at evenly spaced times, we
get:

1

n

n−1
∑

i=0

sin(πi/n).

Here the individual times are ti = i/n, so rewriting slightly we have

1

n

n−1
∑

i=0

sin(πti).

This is almost the sort of sum that we know turns into an integral; what’s apparently missing
is ∆t—but in fact, ∆t = 1/n, the length of each subinterval. So rewriting again:

n−1
∑

i=0

sin(πti)
1

n
=

n−1
∑

i=0

sin(πti)∆t.

Now this has exactly the right form, so that in the limit we get

average speed =

∫ 1

0

sin(πt) dt = −cos(πt)
π

∣

∣

∣

∣

1

0

= −cos(π)
π

+
cos(0)

π
=

2

π
≈ 0.6366 ≈ 0.64.

It’s not entirely obvious from this one simple example how to compute such an average
in general. Let’s look at a somewhat more complicated case. Suppose that the velocity of
an object is 16t2 +5 feet per second. What is the average velocity between t = 1 and t = 3?
Again we set up an approximation to the average:

1

n

n−1
∑

i=0

16t2i + 5,

where the values ti are evenly spaced times between 1 and 3. Once again we are “missing”
∆t, and this time 1/n is not the correct value. What is ∆t in general? It is the length of a
subinterval; in this case we take the interval [1, 3] and divide it into n subintervals, so each
has length (3 − 1)/n = 2/n = ∆t. Now with the usual “multiply and divide by the same
thing” trick we can rewrite the sum:

1

n

n−1
∑

i=0

16t2i + 5 =
1

3− 1

n−1
∑

i=0

(16t2i + 5)
3− 1

n
=

1

2

n−1
∑

i=0

(16t2i + 5)
2

n
=

1

2

n−1
∑

i=0

(16t2i + 5)∆t.
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In the limit this becomes

1

2

∫ 3

1

16t2 + 5 dt =
1

2

446

3
=

223

3
.

Does this seem reasonable? Let’s picture it: in figure 8.10 is the velocity function together
with the horizontal line y = 223/3 ≈ 74.3. Certainly the height of the horizontal line looks
at least plausible for the average height of the curve.
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Figure 8.10: Average velocity.

Here’s another way to interpret “average” that may make our computation appear even
more reasonable. The object of our example goes a certain distance between t = 1 and t = 3.
If instead the object were to travel at the average speed over the same time, it should go
the same distance. At an average speed of 223/3 feet per second for two seconds the object
would go 446/3 feet. How far does it actually go? We know how to compute this:

∫ 3

1

v(t) dt =

∫ 3

1

16t2 + 5 dt =
446

3
.

So now we see that another interpretation of the calculation

1

2

∫ 3

1

16t2 + 5 dt =
1

2

446

3
=

223

3

is: total distance traveled divided by the time in transit, namely, the usual interpretation of
average speed.

In the case of speed, or more properly velocity, we can always interpret “average” as
total (net) distance divided by time. But in the case of a different sort of quantity this
interpretation does not obviously apply, while the approximation approach always does. We
might interpret the same problem geometrically: what is the average height of 16x2 + 5 on
the interval [1, 3]? We approximate this in exactly the same way, by adding up many sample
heights and dividing by the number of samples. In the limit we get the same result:

lim
n→∞

1

n

n−1
∑

i=0

16x2
i + 5 =

1

2

∫ 3

1

16x2 + 5 dx =
1

2

446

3
=

223

3
.
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We can interpret this result in a slightly different way. The area under y = 16x2 + 5 above
[1, 3] is

∫ 3

1

16t2 + 5 dt =
446

3
.

The area under y = 223/3 over the same interval [1, 3] is simply the area of a rectangle
that is 2 by 223/3 with area 446/3. So the average height of a function is the height of the
horizontal line that produces the same area over the given interval.

Exercises for 8.4

Exercise 8.4.1. Find the average height of cosx over the intervals [0, π/2], [−π/2, π/2],
and [0, 2π].

Exercise 8.4.2. Find the average height of x2 over the interval [−2, 2].

Exercise 8.4.3. Find the average height of 1/x2 over the interval [1, A].

Exercise 8.4.4. Find the average height of
√
1− x2 over the interval [−1, 1].

Exercise 8.4.5. An object moves with velocity v(t) = −t2 + 1 feet per second between t = 0
and t = 2. Find the average velocity and the average speed of the object between t = 0 and
t = 2.

Exercise 8.4.6. The observation deck on the 102nd floor of the Empire State Building is
1,224 feet above the ground. If a steel ball is dropped from the observation deck its velocity
at time t is approximately v(t) = −32t feet per second. Find the average speed between the
time it is dropped and the time it hits the ground, and find its speed when it hits the ground.

8.5 Work

A fundamental concept in classical physics is work: If an object is moved in a straight line
against a force F for a distance s the work done is W = Fs.

Example 8.12: Constant Force

How much work is done in lifting a 10 pound weight vertically a distance of 5 feet?

Solution. The force due to gravity on a 10 pound weight is 10 pounds at the surface of the
earth, and it does not change appreciably over 5 feet. The work done is W = 10 · 5 = 50
foot-pounds. ♣

In reality few situations are so simple. The force might not be constant over the range
of motion, as in the next example.
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Example 8.13: Lifting a Weight

How much work is done in lifting a 10 pound weight from the surface of the earth to
an orbit 100 miles above the surface?

Solution. Over 100 miles the force due to gravity does change significantly, so we need to
take this into account. The force exerted on a 10 pound weight at a distance r from the
center of the earth is F = k/r2 and by definition it is 10 when r is the radius of the earth (we
assume the earth is a sphere). How can we approximate the work done? We divide the path
from the surface to orbit into n small subpaths. On each subpath the force due to gravity
is roughly constant, with value k/r2i at distance ri. The work to raise the object from ri to
ri+1 is thus approximately k/r2i∆r and the total work is approximately

n−1
∑

i=0

k

r2i
∆r,

or in the limit

W =

∫ r1

r0

k

r2
dr,

where r0 is the radius of the earth and r1 is r0 plus 100 miles. The work is

W =

∫ r1

r0

k

r2
dr = − k

r

∣

∣

∣

∣

r1

r0

= − k

r1
+

k

r0
.

Using r0 = 20925525 feet we have r1 = 21453525. The force on the 10 pound weight at the
surface of the earth is 10 pounds, so 10 = k/209255252, giving k = 4378775965256250. Then

− k

r1
+

k

r0
=

491052320000

95349
≈ 5150052 foot-pounds.

Note that if we assume the force due to gravity is 10 pounds over the whole distance we
would calculate the work as 10(r1 − r0) = 10 · 100 · 5280 = 5280000, somewhat higher since
we don’t account for the weakening of the gravitational force. ♣

Example 8.14: Lifting an Object

How much work is done in lifting a 10 kilogram object from the surface of the earth
to a distance D from the center of the earth?

Solution. This is the same problem as before in different units, and we are not specifying a
value for D. As before

W =

∫ D

r0

k

r2
dr = − k

r

∣

∣

∣

∣

D

r0

= − k

D
+

k

r0
.

While “weight in pounds” is a measure of force, “weight in kilograms” is a measure of mass.
To convert to force we need to use Newton’s law F = ma. At the surface of the earth the
acceleration due to gravity is approximately 9.8 meters per second squared, so the force is
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F = 10 · 9.8 = 98. The units here are “kilogram-meters per second squared” or “kg m/s2”,
also known as a Newton (N), so F = 98 N. The radius of the earth is approximately 6378.1
kilometers or 6378100 meters. Now the problem proceeds as before. From F = k/r2 we
compute k: 98 = k/63781002, k = 3.986655642 · 1015. Then the work is:

W = − k

D
+ 6.250538000 · 108 Newton-meters.

As D increases W of course gets larger, since the quantity being subtracted, −k/D, gets
smaller. But note that the work W will never exceed 6.250538000 · 108, and in fact will
approach this value as D gets larger. In short, with a finite amount of work, namely
6.250538000 · 108 N-m, we can lift the 10 kilogram object as far as we wish from earth.

♣
Next is an example in which the force is constant, but there are many objects moving

different distances.

Example 8.15: Multiple Objects Moving

Suppose that a water tank is shaped like a right circular cone with the tip at the
bottom, and has height 10 meters and radius 2 meters at the top. If the tank is full,
how much work is required to pump all the water out over the top?

Solution. Here we have a large number of atoms of water that must be lifted different
distances to get to the top of the tank. Fortunately, we don’t really have to deal with
individual atoms—we can consider all the atoms at a given depth together.

To approximate the work, we can divide the water in the tank into horizontal sections,
approximate the volume of water in a section by a thin disk, and compute the amount of
work required to lift each disk to the top of the tank. As usual, we take the limit as the
sections get thinner and thinner to get the total work.
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Figure 8.11: Cross-section of a conical water tank.

At depth h the circular cross-section through the tank has radius r = (10 − h)/5, by
similar triangles, and area π(10− h)2/25. A section of the tank at depth h thus has volume
approximately π(10−h)2/25∆h and so contains σπ(10−h)2/25∆h kilograms of water, where
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σ is the density of water in kilograms per cubic meter; σ ≈ 1000. The force due to gravity
on this much water is 9.8σπ(10− h)2/25∆h, and finally, this section of water must be lifted
a distance h, which requires h9.8σπ(10− h)2/25∆h Newton-meters of work. The total work
is therefore

W =
9.8σπ

25

∫ 10

0

h(10− h)2 dh =
980000

3
π ≈ 1026254 Newton-meters.

♣
A spring has a “natural length,” its length if nothing is stretching or compressing it. If

the spring is either stretched or compressed the spring provides an opposing force; according
to Hooke’s Law the magnitude of this force is proportional to the distance the spring has
been stretched or compressed: F = kx. The constant of proportionality, k, of course depends
on the spring. Note that x here represents the change in length from the natural length.

Example 8.16: Compressing a Spring

Suppose k = 5 for a given spring that has a natural length of 0.1 meters. Suppose a
force is applied that compresses the spring to length 0.08. What is the magnitude of
the force?

Solution. Assuming that the constant k has appropriate dimensions (namely, kg/s2), the
force is 5(0.1− 0.08) = 5(0.02) = 0.1 Newtons. ♣

Example 8.17: Compressing a Spring (continued)

How much work is done in compressing the spring in the previous example from its
natural length to 0.08 meters? From 0.08 meters to 0.05 meters? How much work is
done to stretch the spring from 0.1 meters to 0.15 meters?

Solution. We can approximate the work by dividing the distance that the spring is com-
pressed (or stretched) into small subintervals. Then the force exerted by the spring is ap-
proximately constant over the subinterval, so the work required to compress the spring from
xi to xi+1 is approximately 5(xi − 0.1)∆x. The total work is approximately

n−1
∑

i=0

5(xi − 0.1)∆x

and in the limit

W =

∫ 0.08

0.1

5(x− 0.1) dx =
5(x− 0.1)2

2

∣

∣

∣

∣

0.08

0.1

=
5(0.08− 0.1)2

2
− 5(0.1− 0.1)2

2
=

1

1000
N-m.

The other values we seek simply use different limits. To compress the spring from 0.08 meters
to 0.05 meters takes

W =

∫ 0.05

0.08

5(x− 0.1) dx =
5x2

2

∣

∣

∣

∣

0.05

0.08

=
5(0.05− 0.1)2

2
− 5(0.08− 0.1)2

2
=

21

4000
N-m
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and to stretch the spring from 0.1 meters to 0.15 meters requires

W =

∫ 0.15

0.1

5(x− 0.1) dx =
5x2

2

∣

∣

∣

∣

0.15

0.1

=
5(0.15− 0.1)2

2
− 5(0.1− 0.1)2

2
=

1

160
N-m.

♣

Exercises for 8.5

Exercise 8.5.1. How much work is done in lifting a 100 kilogram weight from the surface
of the earth to an orbit 35,786 kilometers above the surface of the earth?

Exercise 8.5.2. How much work is done in lifting a 100 kilogram weight from an orbit 1000
kilometers above the surface of the earth to an orbit 35,786 kilometers above the surface of
the earth?

Exercise 8.5.3. A water tank has the shape of an upright cylinder with radius r = 1 meter
and height 10 meters. If the depth of the water is 5 meters, how much work is required to
pump all the water out the top of the tank?

Exercise 8.5.4. Suppose the tank of the previous problem is lying on its side, so that the
circular ends are vertical, and that it has the same amount of water as before. How much
work is required to pump the water out the top of the tank (which is now 2 meters above the
bottom of the tank)?

Exercise 8.5.5. A water tank has the shape of the bottom half of a sphere with radius r = 1
meter. If the tank is full, how much work is required to pump all the water out the top of the
tank?

Exercise 8.5.6. A spring has constant k = 10 kg/s2. How much work is done in compressing
it 1/10 meter from its natural length?

Exercise 8.5.7. A force of 2 Newtons will compress a spring from 1 meter (its natural
length) to 0.8 meters. How much work is required to stretch the spring from 1.1 meters to
1.5 meters?

Exercise 8.5.8. A 20 meter long steel cable has density 2 kilograms per meter, and is hanging
straight down. How much work is required to lift the entire cable to the height of its top end?

Exercise 8.5.9. The cable in the previous problem has a 100 kilogram bucket of concrete
attached to its lower end. How much work is required to lift the entire cable and bucket to
the height of its top end?

Exercise 8.5.10. Consider again the cable and bucket of the previous problem. How much
work is required to lift the bucket 10 meters by raising the cable 10 meters? (The top half of
the cable ends up at the height of the top end of the cable, while the bottom half of the cable
is lifted 10 meters.)
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8.6 Arc Length

Here is another geometric application of the integral: find the length of a portion of a curve.
As usual, we need to think about how we might approximate the length, and turn the
approximation into an integral.

We already know how to compute one simple arc length, that of a line segment. If
the endpoints are P0(x0, y0) and P1(x1, y1) then the length of the segment is the distance

between the points,
√

(x1 − x0)2 + (y1 − y0)2, from the Pythagorean theorem, as illustrated
in figure 8.12.
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√

(x1 − x0)2 + (y1 − y0)2

Figure 8.12: The length of a line segment.

Now if the graph of f is “nice” (say, differentiable) it appears that we can approximate
the length of a portion of the curve with line segments, and that as the number of segments
increases, and their lengths decrease, the sum of the lengths of the line segments will approach
the true arc length; see figure 8.13.
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Figure 8.13: Approximating arc length with line segments.

Now we need to write a formula for the sum of the lengths of the line segments, in a form
that we know becomes an integral in the limit. So we suppose we have divided the interval
[a, b] into n subintervals as usual, each with length ∆x = (b−a)/n, and endpoints a = x0, x1,
x2, . . . , xn = b. The length of a typical line segment, joining (xi, f(xi)) to (xi+1, f(xi+1)), is
√

(∆x)2 + (f(xi+1)− f(xi))2. By the Mean Value Theorem, there is a number ti in (xi, xi+1)
such that f ′(ti)∆x = f(xi+1)− f(xi), so the length of the line segment can be written as

√

(∆x)2 + (f ′(ti))2∆x2 =
√

1 + (f ′(ti))2∆x.
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8.6. ARC LENGTH

The arc length is then

lim
n→∞

n−1
∑

i=0

√

1 + (f ′(ti))2∆x =

∫ b

a

√

1 + (f ′(x))2 dx.

Note that the sum looks a bit different than others we have encountered, because the ap-
proximation contains a ti instead of an xi. In the past we have always used left endpoints
(namely, xi) to get a representative value of f on [xi, xi+1]; now we are using a different
point, but the principle is the same.

To summarize, to compute the length of a curve on the interval [a, b], we compute the
integral

∫ b

a

√

1 + (f ′(x))2 dx.

Unfortunately, integrals of this form are typically difficult or impossible to compute exactly,
because usually none of our methods for finding antiderivatives will work. In practice this
means that the integral will usually have to be approximated.

Example 8.18: Circumference of a Circle

Let f(x) =
√
r2 − x2, the upper half circle of radius r. The length of this curve is half

the circumference, namely πr. Compute this with the arc length formula.

Solution. The derivative f ′ is −x/
√
r2 − x2 so the integral is

∫ r

−r

√

1 +
x2

r2 − x2
dx =

∫ r

−r

√

r2

r2 − x2
dx = r

∫ r

−r

√

1

r2 − x2
dx.

Using a trigonometric substitution, we find the antiderivative, namely arcsin(x/r). Notice

that the integral is improper at both endpoints, as the function
√

1/(r2 − x2) is undefined
when x = ±r. So we need to compute

lim
D→−r+

∫ 0

D

√

1

r2 − x2
dx+ lim

D→r−

∫ D

0

√

1

r2 − x2
dx.

This is not difficult, and has value π, so the original integral, with the extra r in front, has
value πr as expected. ♣

Exercises for 8.6

Exercise 8.6.1. Find the arc length of f(x) = x3/2 on [0, 2].

Exercise 8.6.2. Find the arc length of f(x) = x2/8− ln x on [1, 2].

Exercise 8.6.3. Find the arc length of f(x) = (1/3)(x2 + 2)3/2 on the interval [0, a].

Exercise 8.6.4. Find the arc length of f(x) = ln(sin x) on the interval [π/4, π/3].
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Exercise 8.6.5. Let a > 0. Show that the length of y = cosh x on [0, a] is equal to
∫ a

0

cosh x dx.

Exercise 8.6.6. Find the arc length of f(x) = cosh x on [0, ln 2].

Exercise 8.6.7. Set up the integral to find the arc length of sin x on the interval [0, π]; do
not evaluate the integral. If you have access to appropriate software, approximate the value
of the integral.

Exercise 8.6.8. Set up the integral to find the arc length of y = xe−x on the interval [2, 3];
do not evaluate the integral. If you have access to appropriate software, approximate the
value of the integral.

Exercise 8.6.9. Find the arc length of y = ex on the interval [0, 1]. (This can be done
exactly; it is a bit tricky and a bit long.)

8.7 Surface Area

Another geometric question that arises naturally is: “What is the surface area of a volume?”
For example, what is the surface area of a sphere? More advanced techniques are required to
approach this question in general, but we can compute the areas of some volumes generated
by revolution.

As usual, the question is: how might we approximate the surface area? For a surface
obtained by rotating a curve around an axis, we can take a polygonal approximation to
the curve, as in the last section, and rotate it around the same axis. This gives a surface
composed of many “truncated cones;” a truncated cone is called a frustum of a cone.
Figure 8.14 illustrates this approximation.

Figure 8.14: Approximating a surface (left) by portions of cones (right).
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8.7. SURFACE AREA

So we need to be able to compute the area of a frustum of a cone. Since the frustum
can be formed by removing a small cone from the top of a larger one, we can compute the
desired area if we know the surface area of a cone. Suppose a right circular cone has base
radius r and slant height h. If we cut the cone from the vertex to the base circle and flatten
it out, we obtain a sector of a circle with radius h and arc length 2πr, as in figure 8.15. The
angle at the center, in radians, is then 2πr/h, and the area of the cone is equal to the area
of the sector of the circle. Let A be the area of the sector; since the area of the entire circle
is πh2, we have

A

πh2
=

2πr/h

2π

A = πrh.

.

.

.

.

.

.

.

.

.

..

..

................................................................................................................................
...........
.......
......
......
.....
....
....
...
....
...
...
..
...
..
...
..
..
..
..
..
..
..
..
..
.
..
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

r

h

.

.

.

.

.

..

.

.

..
..

..
..
..
..
...
..

...
....
....
..

......
.......

..........................
.............

.............

.............

..

..

.

.

.

..

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
..
.
..
.
..
.
.
..
.
..
..
.
..
.
..
..
.
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
.
..
..
.
..
..
.
..
.
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
..
..
...
..
...
..
...
...
..
...
...
...
...
...
...
...
...
....
...
....
....
....
....
....
.....
.....
.....
......
.......

........
..........

................
.......................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

..

..
..
.
..
.
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
.....
.............................

.....................................................................................................................................................................................................................................................................................................................................................................................
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

h

2πr

2πr/h

Figure 8.15: The area of a cone.

Now suppose we have a frustum of a cone with slant height h and radii r0 and r1, as
in figure 8.16. The area of the entire cone is πr1(h0 + h), and the area of the small cone is
πr0h0; thus, the area of the frustum is πr1(h0+h)−πr0h0 = π((r1−r0)h0+ r1h). By similar
triangles,

h0

r0
=

h0 + h

r1
.

With a bit of algebra this becomes (r1 − r0)h0 = r0h; substitution into the area gives

π((r1 − r0)h0 + r1h) = π(r0h+ r1h) = πh(r0 + r1) = 2π
r0 + r1

2
h = 2πrh.

The final form is particularly easy to remember, with r equal to the average of r0 and r1, as
it is also the formula for the area of a cylinder. (Think of a cylinder of radius r and height
h as the frustum of a cone of infinite height.)
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Figure 8.16: The area of a frustum.

Now we are ready to approximate the area of a surface of revolution. On one subinterval,
the situation is as shown in figure 8.17. When the line joining two points on the curve is
rotated around the x-axis, it forms a frustum of a cone. The area is

2πrh = 2π
f(xi) + f(xi+1)

2

√

1 + (f ′(ti))2∆x.

Here
√

1 + (f ′(ti))2∆x is the length of the line segment, as we found in the previous section.
Assuming f is a continuous function, there must be some x∗

i in [xi, xi+1] such that (f(xi) +
f(xi+1))/2 = f(x∗

i ), so the approximation for the surface area is

n−1
∑

i=0

2πf(x∗
i )
√

1 + (f ′(ti))2∆x.

This is not quite the sort of sum we have seen before, as it contains two different values in
the interval [xi, xi+1], namely x∗

i and ti. Nevertheless, using more advanced techniques than
we have available here, it turns out that

lim
n→∞

n−1
∑

i=0

2πf(x∗
i )
√

1 + (f ′(ti))2∆x =

∫ b

a

2πf(x)
√

1 + (f ′(x))2 dx

is the surface area we seek. (Roughly speaking, this is because while x∗
i and ti are distinct

values in [xi, xi+1], they get closer and closer to each other as the length of the interval
shrinks.)
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Figure 8.17: One subinterval.
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8.7. SURFACE AREA

Example 8.19: Surface Area of a Sphere

Compute the surface area of a sphere of radius r.

Solution. The sphere can be obtained by rotating the graph of f(x) =
√
r2 − x2 about the

x-axis. The derivative f ′ is −x/
√
r2 − x2, so the surface area is given by

A = 2π

∫ r

−r

√
r2 − x2

√

1 +
x2

r2 − x2
dx

= 2π

∫ r

−r

√
r2 − x2

√

r2

r2 − x2
dx

= 2π

∫ r

−r

r dx = 2πr

∫ r

−r

1 dx = 4πr2

♣
If the curve is rotated around the y axis, the formula is nearly identical, because the

length of the line segment we use to approximate a portion of the curve doesn’t change.
Instead of the radius f(x∗

i ), we use the new radius x̄i = (xi + xi+1)/2, and the surface area
integral becomes

∫ b

a

2πx
√

1 + (f ′(x))2 dx.

Example 8.20: Surface Around y-axis

Compute the area of the surface formed when f(x) = x2 between 0 and 2 is rotated
around the y-axis.

Solution. We compute f ′(x) = 2x, and then

2π

∫ 2

0

x
√
1 + 4x2 dx =

π

6
(173/2 − 1),

by a simple substitution. ♣

Exercises for 8.7

Exercise 8.7.1. Compute the area of the surface formed when f(x) = 2
√
1− x between −1

and 0 is rotated around the x-axis.

Exercise 8.7.2. Compute the surface area of example 8.20 by rotating f(x) =
√
x around

the x-axis.

Exercise 8.7.3. Compute the area of the surface formed when f(x) = x3 between 1 and 3
is rotated around the x-axis.

Exercise 8.7.4. Compute the area of the surface formed when f(x) = 2 + cosh(x) between
0 and 1 is rotated around the x-axis.
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CHAPTER 8. APPLICATIONS OF INTEGRATION

Exercise 8.7.5. Consider the surface obtained by rotating the graph of f(x) = 1/x, x ≥ 1,
around the x-axis. This surface is called Gabriel’s horn or Toricelli’s trumpet. Show
that Gabriel’s horn has infinite surface area.

Exercise 8.7.6. Consider the circle (x−2)2+y2 = 1. Sketch the surface obtained by rotating
this circle about the y-axis. (The surface is called a torus.) What is the surface area?

Exercise 8.7.7. Consider the ellipse with equation x2/4 + y2 = 1. If the ellipse is rotated
around the x-axis it forms an ellipsoid. Compute the surface area.

Exercise 8.7.8. Generalize the preceding result: rotate the ellipse given by x2/a2+y2/b2 = 1
about the x-axis and find the surface area of the resulting ellipsoid. You should consider two
cases, when a > b and when a < b. Compare to the area of a sphere.

284



9. Differential Equations

Many physical phenomena can be modeled using the language of calculus. For example,
observational evidence suggests that the temperature of a cup of tea (or some other liquid)
in a room of constant temperature will cool over time at a rate proportional to the difference
between the room temperature and the temperature of the tea.

In symbols, if t is the time, M is the room temperature, and f(t) is the temperature of
the tea at time t then f ′(t) = k(M − f(t)) where k > 0 is a constant which will depend on
the kind of tea (or more generally the kind of liquid) but not on the room temperature or the
temperature of the tea. This is Newton’s law of cooling and the equation that we just
wrote down is an example of a differential equation. Ideally we would like to solve this
equation, namely, find the function f(t) that describes the temperature over time, though
this often turns out to be impossible, in which case various approximation techniques must
be used. The use and solution of differential equations is an important field of mathematics;
here we see how to solve some simple but useful types of differential equation.

Informally, a differential equation is an equation in which one or more of the derivatives
of some function appear. Typically, a scientific theory will produce a differential equation
(or a system of differential equations) that describes or governs some physical process, but
the theory will not produce the desired function or functions directly.

Note that when the variable is time the derivative of a function y(t) is sometimes written
as ẏ instead of y′; this is quite common in the study of differential equations.

9.1 First Order Differential Equations

We start by considering equations in which only the first derivative of the function appears.

Definition 9.1: First Order Differential Equation

A first order differential equation is an equation of the form F (t, y, ẏ) = 0. A solu-
tion of a first order differential equation is a function f(t) that makes F (t, f(t), f ′(t)) =
0 for every value of t.

Here, F is a function of three variables which we label t, y, and ẏ. It is understood that
ẏ will explicitly appear in the equation although t and y need not. The term “first order”
means that the first derivative of y appears, but no higher order derivatives do.

Example 9.2: Newton’s Law of Cooling

The equation from Newton’s law of cooling, ẏ = k(M − y) is a first order differential
equation; F (t, y, ẏ) = k(M − y)− ẏ.
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Example 9.3: A First Order Differential Equation

ẏ = t2 + 1 is a first order differential equation; F (t, y, ẏ) = ẏ − t2 − 1. All solutions to
this equation are of the form t3/3 + t+ C.

Definition 9.4: First Order Initial Value Problem

A first order initial value problem is a system of equations of the form F (t, y, ẏ) =
0, y(t0) = y0. Here t0 is a fixed time and y0 is a number. A solution of an initial value
problem is a solution f(t) of the differential equation that also satisfies the initial
condition f(t0) = y0.

Example 9.5: An Initial Value Problem

Verify that the initial value problem ẏ = t2 + 1, y(1) = 4 has solution f(t) = t3/3 +
t+ 8/3.

Solution. Observe that f ′(t) = t2 + 1 and f(1) = 13/2 + 1 + 8/3 = 4 as required. ♣
The general first order equation is rather too general, that is, we can’t describe methods

that will work on them all, or even a large portion of them. We can make progress with
specific kinds of first order differential equations. For example, much can be said about
equations of the form ẏ = φ(t, y) where φ is a function of the two variables t and y. Under
reasonable conditions on φ, such an equation has a solution and the corresponding initial
value problem has a unique solution. However, in general, these equations can be very
difficult or impossible to solve explicitly.

Example 9.6: IVP for Newton’s Law of Cooling

Consider this specific example of an initial value problem for Newton’s law of cooling:
ẏ = 2(25− y), y(0) = 40. Discuss the solutions for this initial value problem.

Solution. We first note that if y(t0) = 25, the right hand side of the differential equation
is zero, and so the constant function y(t) = 25 is a solution to the differential equation. It
is not a solution to the initial value problem, since y(0) 6= 40. (The physical interpretation
of this constant solution is that if a liquid is at the same temperature as its surroundings,
then the liquid will stay at that temperature.) So long as y is not 25, we can rewrite the
differential equation as

dy

dt

1

25− y
= 2

1

25− y
dy = 2 dt,

so
∫

1

25− y
dy =

∫

2 dt,
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that is, the two anti-derivatives must be the same except for a constant difference. We can
calculate these anti-derivatives and rearrange the results:

∫

1

25− y
dy =

∫

2 dt

(−1) ln |25− y| = 2t+ C0

ln |25− y| = −2t− C0 = −2t + C
|25− y| = e−2t+C = e−2teC

y − 25 = ± eCe−2t

y = 25± eCe−2t = 25 + Ae−2t.

Here A = ± eC = ± e−C0 is some non-zero constant. Since we want y(0) = 40, we substitute
and solve for A:

40 = 25 + Ae0

15 = A,

and so y = 25 + 15e−2t is a solution to the initial value problem. Note that y is never 25, so
this makes sense for all values of t. However, if we allow A = 0 we get the solution y = 25
to the differential equation, which would be the solution to the initial value problem if we
were to require y(0) = 25. Thus, y = 25 + Ae−2t describes all solutions to the differential
equation ẏ = 2(25− y), and all solutions to the associated initial value problems. ♣

Why could we solve this problem? Our solution depended on rewriting the equation so
that all instances of y were on one side of the equation and all instances of t were on the
other; of course, in this case the only t was originally hidden, since we didn’t write dy/dt in
the original equation. This is not required, however.

Example 9.7: Solving an IVP

Solve the differential equation ẏ = 2t(25− y).

Solution. This is almost identical to the previous example. As before, y(t) = 25 is a solution.
If y 6= 25,

∫

1

25− y
dy =

∫

2t dt

(−1) ln |25− y| = t2 + C0

ln |25− y| = −t2 − C0 = −t2 + C

|25− y| = e−t2+C = e−t2eC

y − 25 = ± eCe−t2

y = 25± eCe−t2 = 25 + Ae−t2 .

As before, all solutions are represented by y = 25 + Ae−t2 , allowing A to be zero. ♣

Definition 9.8: Separable Differential Equations

A first order differential equation is separable if it can be written in the form

ẏ = f(t)g(y).
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As in the examples, we can attempt to solve a separable equation by converting to the
form

∫

1

g(y)
dy =

∫

f(t) dt.

This technique is called separation of variables. The simplest (in principle) sort of sepa-
rable equation is one in which g(y) = 1, in which case we attempt to solve

∫

1 dy =

∫

f(t) dt.

We can do this if we can find an anti-derivative of f(t).
Also as we have seen so far, a differential equation typically has an infinite number of

solutions. Ideally, but certainly not always, a corresponding initial value problem will have
just one solution. A solution in which there are no unknown constants remaining is called a
particular solution.

The general approach to separable equations is this: Suppose we wish to solve ẏ =
f(t)g(y) where f and g are continuous functions. If g(a) = 0 for some a then y(t) = a
is a constant solution of the equation, since in this case ẏ = 0 = f(t)g(a). For example,
ẏ = y2 − 1 has constant solutions y(t) = 1 and y(t) = −1.

To find the nonconstant solutions, we note that the function 1/g(y) is continuous where
g 6= 0, so 1/g has an antiderivative G. Let F be an antiderivative of f . Now we write

G(y) =

∫

1

g(y)
dy =

∫

f(t) dt = F (t) + C,

so G(y) = F (t) + C. Now we solve this equation for y.
Of course, there are a few places this ideal description could go wrong: we need to be

able to find the antiderivatives G and F , and we need to solve the final equation for y. The
upshot is that the solutions to the original differential equation are the constant solutions,
if any, and all functions y that satisfy G(y) = F (t) + C.

Example 9.9: Population Growth and Radioactive Decay

Analyze the differential equation ẏ = ky.

Solution. When k > 0, this describes certain simple cases of population growth: it says that
the change in the population y is proportional to the population. The underlying assumption
is that each organism in the current population reproduces at a fixed rate, so the larger the
population the more new organisms are produced. While this is too simple to model most
real populations, it is useful in some cases over a limited time. When k < 0, the differential
equation describes a quantity that decreases in proportion to the current value; this can be
used to model radioactive decay.

The constant solution is y(t) = 0; of course this will not be the solution to any interesting
initial value problem. For the non-constant solutions, we proceed much as before:

∫

1

y
dy =

∫

k dt

ln |y| = kt+ C
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|y| = ekteC

y = ± eCekt

y = Aekt.

Again, if we allow A = 0 this includes the constant solution, and we can simply say that
y = Aekt is the general solution. With an initial value we can easily solve for A to get the
solution of the initial value problem. In particular, if the initial value is given for time t = 0,
y(0) = y0, then A = y0 and the solution is y = y0e

kt. ♣

Exercises for 9.1

Exercise 9.1.1. Which of the following equations are separable?

a. ẏ = sin(ty)

b. ẏ = etey

c. yẏ = t

d. ẏ = (t3 − t) arcsin(y)

e. ẏ = t2 ln y + 4t3 ln y

Exercise 9.1.2. Solve ẏ = 1/(1 + t2).

Exercise 9.1.3. Solve the initial value problem ẏ = tn with y(0) = 1 and n ≥ 0.

Exercise 9.1.4. Solve ẏ = ln t.

Exercise 9.1.5. Identify the constant solutions (if any) of ẏ = t sin y.

Exercise 9.1.6. Identify the constant solutions (if any) of ẏ = tey.

Exercise 9.1.7. Solve ẏ = t/y.

Exercise 9.1.8. Solve ẏ = y2 − 1.

Exercise 9.1.9. Solve ẏ = t/(y3 − 5). You may leave your solution in implicit form: that
is, you may stop once you have done the integration, without solving for y.

Exercise 9.1.10. Find a non-constant solution of the initial value problem ẏ = y1/3, y(0) =
0, using separation of variables. Note that the constant function y(t) = 0 also solves the
initial value problem. This shows that an initial value problem can have more than one
solution.

Exercise 9.1.11. Solve the equation for Newton’s law of cooling leaving M and k unknown.

Exercise 9.1.12. After 10 minutes in Jean-Luc’s room, his tea has cooled to 40◦ Celsius
from 100◦ Celsius. The room temperature is 25◦ Celsius. How much longer will it take to
cool to 35◦?
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Exercise 9.1.13. Solve the logistic equation ẏ = ky(M − y). (This is a somewhat more
reasonable population model in most cases than the simpler ẏ = ky.) Sketch the graph of the
solution to this equation when M = 1000, k = 0.002, y(0) = 1.

Exercise 9.1.14. Suppose that ẏ = ky, y(0) = 2, and ẏ(0) = 3. What is y?

Exercise 9.1.15. A radioactive substance obeys the equation ẏ = ky where k < 0 and y
is the mass of the substance at time t. Suppose that initially, the mass of the substance is
y(0) = M > 0. At what time does half of the mass remain? (This is known as the half life.
Note that the half life depends on k but not on M .)

Exercise 9.1.16. Bismuth-210 has a half life of five days. If there is initially 600 milligrams,
how much is left after 6 days? When will there be only 2 milligrams left?

Exercise 9.1.17. The half life of carbon-14 is 5730 years. If one starts with 100 milligrams
of carbon-14, how much is left after 6000 years? How long do we have to wait before there
is less than 2 milligrams?

Exercise 9.1.18. A certain species of bacteria doubles its population (or its mass) every
hour in the lab. The differential equation that models this phenomenon is ẏ = ky, where
k > 0 and y is the population of bacteria at time t. What is y?

Exercise 9.1.19. If a certain microbe doubles its population every 4 hours and after 5 hours
the total population has mass 500 grams, what was the initial mass?

9.2 First Order Homogeneous Linear Equations

A simple, but important and useful, type of separable equation is the first order homoge-
neous linear equation:

Definition 9.10: First Order Homogeneous Linear Equation

A first order homogeneous linear differential equation is one of the form ẏ+ p(t)y = 0
or equivalently ẏ = −p(t)y.

“Linear” in this definition indicates that both ẏ and y occur to the first power; “homo-
geneous” refers to the zero on the right hand side of the first form of the equation.

Example 9.11: Linear Examples

The equation ẏ = 2t(25 − y) can be written ẏ + 2ty = 50t. This is linear, but not
homogeneous. The equation ẏ = ky, or ẏ − ky = 0 is linear and homogeneous, with a
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particularly simple p(t) = −k.

Because first order homogeneous linear equations are separable, we can solve them in the
usual way:

ẏ = −p(t)y
∫

1

y
dy =

∫

−p(t) dt
ln |y| = P (t) + C

y = ± eP (t)

y = AeP (t),

where P (t) is an anti-derivative of −p(t). As in previous examples, if we allow A = 0 we get
the constant solution y = 0.

Example 9.12: Solving an IVP

Solve the initial value problem
ẏ + y cos t = 0,

subject to y(0) = 1/2 and y(2) = 1/2.

Solution. We start with

P (t) =

∫

− cos t dt = − sin t,

so the general solution to the differential equation is

y = Ae− sin t.

To compute A we substitute:
1

2
= Ae− sin 0 = A,

so the solutions is

y =
1

2
e− sin t.

For the second problem,

1

2
= Ae− sin 2

A =
1

2
esin 2

so the solution is

y =
1

2
esin 2e− sin t.

♣
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Example 9.13:

Solve the initial value problem tẏ + 3y = 0, y(1) = 2, assuming t > 0.

Solution. We write the equation in standard form: ẏ + 3y/t = 0. Then

P (t) =

∫

−3
t
dt = −3 ln t

and
y = Ae−3 ln t = At−3.

Substituting to find A: 2 = A(1)−3 = A, so the solution is y = 2t−3. ♣

Exercises for 9.2

Find the general solution of each equation in 1–4.

Exercise 9.2.1. ẏ + 5y = 0

Exercise 9.2.2. ẏ − 2y = 0

Exercise 9.2.3. ẏ +
y

1 + t2
= 0

Exercise 9.2.4. ẏ + t2y = 0

In 5–14, solve the initial value problem.

Exercise 9.2.5. ẏ + y = 0, y(0) = 4

Exercise 9.2.6. ẏ − 3y = 0, y(1) = −2
Exercise 9.2.7. ẏ + y sin t = 0, y(π) = 1

Exercise 9.2.8. ẏ + yet = 0, y(0) = e

Exercise 9.2.9. ẏ + y
√
1 + t4 = 0, y(0) = 0

Exercise 9.2.10. ẏ + y cos(et) = 0, y(0) = 0

Exercise 9.2.11. tẏ − 2y = 0, y(1) = 4

Exercise 9.2.12. t2ẏ + y = 0, y(1) = −2, t > 0

Exercise 9.2.13. t3ẏ = 2y, y(1) = 1, t > 0

Exercise 9.2.14. t3ẏ = 2y, y(1) = 0, t > 0

Exercise 9.2.15. A function y(t) is a solution of ẏ + ky = 0. Suppose that y(0) = 100 and
y(2) = 4. Find k and find y(t).

Exercise 9.2.16. A function y(t) is a solution of ẏ + tky = 0. Suppose that y(0) = 1 and
y(1) = e−13. Find k and find y(t).

Exercise 9.2.17. A bacterial culture grows at a rate proportional to its population. If the
population is one million at t = 0 and 1.5 million at t = 1 hour, find the population as a
function of time.

Exercise 9.2.18. A radioactive element decays with a half-life of 6 years. If a mass of the
element weighs ten pounds at t = 0, find the amount of the element at time t.
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9.3 First Order Linear Equations

As you might guess, a first order linear differential equation has the form ẏ + p(t)y = f(t).
Not only is this closely related in form to the first order homogeneous linear equation, we can
use what we know about solving homogeneous equations to solve the general linear equation.

Suppose that y1(t) and y2(t) are solutions to ẏ + p(t)y = f(t). Let g(t) = y1 − y2. Then

g′(t) + p(t)g(t) = y′1 − y′2 + p(t)(y1 − y2)
= (y′1 + p(t)y1)− (y′2 + p(t)y2)
= f(t)− f(t) = 0.

In other words, g(t) = y1 − y2 is a solution to the homogeneous equation ẏ + p(t)y = 0.
Turning this around, any solution to the linear equation ẏ + p(t)y = f(t), call it y1, can
be written as y2 + g(t), for some particular y2 and some solution g(t) of the homogeneous
equation ẏ+ p(t)y = 0. Since we already know how to find all solutions of the homogeneous
equation, finding just one solution to the equation ẏ + p(t)y = f(t) will give us all of them.

How might we find that one particular solution to ẏ + p(t)y = f(t)? Again, it turns out
that what we already know helps. We know that the general solution to the homogeneous
equation ẏ + p(t)y = 0 looks like AeP (t). We now make an inspired guess: consider the
function v(t)eP (t), in which we have replaced the constant parameter A with the function
v(t). This technique is called variation of parameters. For convenience write this as
s(t) = v(t)h(t) where h(t) = eP (t) is a solution to the homogeneous equation. Now let’s
compute a bit with s(t):

s′(t) + p(t)s(t) = v(t)h′(t) + v′(t)h(t) + p(t)v(t)h(t)
= v(t)(h′(t) + p(t)h(t)) + v′(t)h(t)
= v′(t)h(t).

The last equality is true because h′(t) + p(t)h(t) = 0, since h(t) is a solution to the homoge-
neous equation. We are hoping to find a function s(t) so that s′(t) + p(t)s(t) = f(t); we will
have such a function if we can arrange to have v′(t)h(t) = f(t), that is, v′(t) = f(t)/h(t). But
this is as easy (or hard) as finding an anti-derivative of f(t)/h(t). Putting this all together,
the general solution to ẏ + p(t)y = f(t) is

v(t)h(t) + AeP (t) = v(t)eP (t) + AeP (t).

Example 9.14: Solving an IVP

Find the solution of the initial value problem ẏ + 3y/t = t2, y(1) = 1/2.

Solution. First we find the general solution; since we are interested in a solution with a
given condition at t = 1, we may assume t > 0. We start by solving the homogeneous
equation as usual; call the solution g:

g = Ae−
∫
(3/t) dt = Ae−3 ln t = At−3.

Then as in the discussion, h(t) = t−3 and v′(t) = t2/t−3 = t5, so v(t) = t6/6. We know that
every solution to the equation looks like

v(t)t−3 + At−3 =
t6

6
t−3 + At−3 =

t3

6
+ At−3.
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Finally we substitute to find A:

1

2
=

(1)3

6
+ A(1)−3 =

1

6
+ A

A =
1

2
− 1

6
=

1

3
.

The solution is then

y =
t3

6
+

1

3
t−3.

♣
Here is an alternate method for finding a particular solution to the differential equation,

using an integrating factor. In the differential equation ẏ + p(t)y = f(t), we note that if
we multiply through by a function I(t) to get I(t)ẏ+ I(t)p(t)y = I(t)f(t), the left hand side
looks like it could be a derivative computed by the product rule:

d

dt
(I(t)y) = I(t)ẏ + I ′(t)y.

Now if we could choose I(t) so that I ′(t) = I(t)p(t), this would be exactly the left hand side
of the differential equation. But this is just a first order homogeneous linear equation, and

we know a solution is I(t) = eQ(t), where Q(t) =

∫

p dt; note that Q(t) = −P (t), where

P (t) appears in the variation of parameters method and P ′(t) = −p. Now the modified
differential equation is

e−P (t)ẏ + e−P (t)p(t)y = e−P (t)f(t)
d

dt
(e−P (t)y) = e−P (t)f(t).

Integrating both sides gives

e−P (t)y =

∫

e−P (t)f(t) dt

y = eP (t)

∫

e−P (t)f(t) dt.

If you look carefully, you will see that this is exactly the same solution we found by variation
of parameters, because e−P (t)f(t) = f(t)/h(t).

Some people find it easier to remember how to use the integrating factor method than
variation of parameters. Since ultimately they require the same calculation, you should
use whichever of the two you find easier to recall. Using this method, the solution of the
previous example would look just a bit different: Starting with ẏ + 3y/t = t2, we recall that
the integrating factor is e

∫
3/t = e3 ln t = t3. Then we multiply through by the integrating

factor and solve:

t3ẏ + t33y/t = t3t2

t3ẏ + t23y = t5
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d

dt
(t3y) = t5

t3y = t6/6
y = t3/6.

This is the same answer, of course, and the problem is then finished just as before.

Exercises for 9.3

In problems 1–10, find the general solution of the equation.

Exercise 9.3.1. ẏ + 4y = 8

Exercise 9.3.2. ẏ − 2y = 6

Exercise 9.3.3. ẏ + ty = 5t

Exercise 9.3.4. ẏ + ety = −2et

Exercise 9.3.5. ẏ − y = t2

Exercise 9.3.6. 2ẏ + y = t

Exercise 9.3.7. tẏ − 2y = 1/t, t > 0

Exercise 9.3.8. tẏ + y =
√
t, t > 0

Exercise 9.3.9. ẏ cos t + y sin t = 1, −π/2 < t < π/2

Exercise 9.3.10. ẏ + y sec t = tan t, −π/2 < t < π/2

9.4 Approximation

We have seen how to solve a restricted collection of differential equations, or more accurately,
how to attempt to solve them—we may not be able to find the required anti-derivatives. Not
surprisingly, non-linear equations can be even more difficult to solve. Yet much is known
about solutions to some more general equations.

Suppose φ(t, y) is a function of two variables. A more general class of first order differen-
tial equations has the form ẏ = φ(t, y). This is not necessarily a linear first order equation,
since φ may depend on y in some complicated way; note however that ẏ appears in a very
simple form. Under suitable conditions on the function φ, it can be shown that every such
differential equation has a solution, and moreover that for each initial condition the associ-
ated initial value problem has exactly one solution. In practical applications this is obviously
a very desirable property.
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Example 9.15: First Order Non-linear

The equation ẏ = t− y2 is a first order non-linear equation, because y appears to the
second power. We will not be able to solve this equation.

Example 9.16: Non-linear and Separable

The equation ẏ = y2 is also non-linear, but it is separable and can be solved by
separation of variables.

Not all differential equations that are important in practice can be solved exactly, so
techniques have been developed to approximate solutions. We describe one such technique,
Euler’s Method, which is simple though not particularly useful compared to some more
sophisticated techniques.

Suppose we wish to approximate a solution to the initial value problem ẏ = φ(t, y),
y(t0) = y0, for t ≥ t0. Under reasonable conditions on φ, we know the solution exists,
represented by a curve in the t-y plane; call this solution f(t). The point (t0, y0) is of
course on this curve. We also know the slope of the curve at this point, namely φ(t0, y0). If
we follow the tangent line for a brief distance, we arrive at a point that should be almost
on the graph of f(t), namely (t0 + ∆t, y0 + φ(t0, y0)∆t); call this point (t1, y1). Now we
pretend, in effect, that this point really is on the graph of f(t), in which case we again know
the slope of the curve through (t1, y1), namely φ(t1, y1). So we can compute a new point,
(t2, y2) = (t1+∆t, y1+φ(t1, y1)∆t) that is a little farther along, still close to the graph of f(t)
but probably not quite so close as (t1, y1). We can continue in this way, doing a sequence
of straightforward calculations, until we have an approximation (tn, yn) for whatever time tn
we need. At each step we do essentially the same calculation, namely

(ti+1, yi+1) = (ti +∆t, yi + φ(ti, yi)∆t).

We expect that smaller time steps ∆t will give better approximations, but of course it will
require more work to compute to a specified time. It is possible to compute a guaranteed
upper bound on how far off the approximation might be, that is, how far yn is from f(tn).
Suffice it to say that the bound is not particularly good and that there are other more
complicated approximation techniques that do better.

Example 9.17: Approximating a Solution

Compute an approximation to the solution for ẏ = t− y2, y(0) = 0, when t = 1.

Solution. We will use ∆t = 0.2, which is easy to do even by hand, though we should not
expect the resulting approximation to be very good. We get

(t1, y1) = (0 + 0.2, 0 + (0− 02)0.2) = (0.2, 0)
(t2, y2) = (0.2 + 0.2, 0 + (0.2− 02)0.2) = (0.4, 0.04)
(t3, y3) = (0.6, 0.04 + (0.4− 0.042)0.2) = (0.6, 0.11968)
(t4, y4) = (0.8, 0.11968 + (0.6− 0.119682)0.2) = (0.8, 0.23681533952)
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(t5, y5) = (1.0, 0.23681533952 + (0.6− 0.236815339522)0.2) = (1.0, 0.385599038513605)

So y(1) ≈ 0.3856. As it turns out, this is not accurate to even one decimal place. Figure 9.1
shows these points connected by line segments (the lower curve) compared to a solution
obtained by a much better approximation technique. Note that the shape is approximately
correct even though the end points are quite far apart.
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Figure 9.1: Approximating a solution to ẏ = t− y2, y(0) = 0.

If you need to do Euler’s method by hand, it is useful to construct a table to keep track
of the work, as shown in figure 9.2. Each row holds the computation for a single step:
the starting point (ti, yi); the stepsize ∆t; the computed slope φ(ti, yi); the change in y,
∆y = φ(ti, yi)∆t; and the new point, (ti+1, yi+1) = (ti +∆t, yi +∆y). The starting point in
each row is the newly computed point from the end of the previous row.

(t, y) ∆t φ(t, y) ∆y = φ(t, y)∆t (t+∆t, y +∆y)
(0, 0) 0.2 0 0 (0.2, 0)
(0.2, 0) 0.2 0.2 0.04 (0.4, 0.04)
(0.4, 0.04) 0.2 0.3984 0.07968 (0.6, 0.11968)
(0.6, 0.11968) 0.2 0.58 . . . 0.117 . . . (0.8, 0.236 . . .)
(0.8, 0.236 . . .) 0.2 0.743 . . . 0.148 . . . (1.0, 0.385 . . .)

Figure 9.2: Computing with Euler’s Method.

♣
Euler’s method is related to another technique that can help in understanding a differ-

ential equation in a qualitative way. Euler’s method is based on the ability to compute
the slope of a solution curve at any point in the plane, simply by computing φ(t, y). If we
compute φ(t, y) at many points, say in a grid, and plot a small line segment with that slope
at the point, we can get an idea of how solution curves must look. Such a plot is called a
slope field. A slope field for φ = t − y2 is shown in figure 9.3; compare this to figure 9.1.
With a little practice, one can sketch reasonably accurate solution curves based on the slope
field, in essence doing Euler’s method visually.
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Figure 9.3: A slope field for ẏ = t− y2.

Even when a differential equation can be solved explicitly, the slope field can help in
understanding what the solutions look like with various initial conditions. Recall the logistic
equation ẏ = ky(M−y): y is a population at time t, M is a measure of how large a population
the environment can support, and k measures the reproduction rate of the population.
Figure 9.4 shows a slope field for this equation that is quite informative. It is apparent
that if the initial population is smaller than M it rises to M over the long term, while if the
initial population is greater than M it decreases to M .

Figure 9.4: A slope field for ẏ = 0.2y(10− y).

Exercises for 9.4

In problems 1–4, compute the Euler approximations for the initial value problem for 0 ≤ t ≤ 1
and ∆t = 0.2. If you have access to Sage, generate the slope field first and attempt to sketch
the solution curve. Then use Sage to compute better approximations with smaller values of
∆t.

Exercise 9.4.1. ẏ = t/y, y(0) = 1
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Exercise 9.4.2. ẏ = t+ y3, y(0) = 1

Exercise 9.4.3. ẏ = cos(t + y), y(0) = 1

Exercise 9.4.4. ẏ = t ln y, y(0) = 2

9.5 Second Order Homogeneous Equations

A second order differential equation is one containing the second derivative ÿ. These are
in general quite complicated, but one fairly simple type is useful: the second order linear
equation with constant coefficients.

Example 9.18: Second Order Homogeneous Equation

Analyze the intial value problem ÿ − ẏ − 2y = 0, y(0) = 5, ẏ(0) = 0.

Solution. We make an inspired guess: might there be a solution of the form ert? This seems
at least plausible, since in this case ÿ, ẏ, and y all involve ert.

If such a function is a solution then

r2ert − rert − 2ert = 0
ert(r2 − r − 2) = 0

(r2 − r − 2) = 0
(r − 2)(r + 1) = 0,

so r is 2 or −1. Not only are f = e2t and g = e−t solutions, but notice that y = Af +Bg is
also, for any constants A and B:

(Af +Bg)′′ − (Af + Bg)′ − 2(Af +Bg) = Af ′′ +Bg′′ − Af ′ − Bg′ − 2Af − 2Bg
= A(f ′′ − f ′ − 2f) +B(g′′ − g′ − 2g)
= A(0) +B(0) = 0.

Can we find A and B so that this is a solution to the initial value problem? Let’s substitute:

5 = y(0) = Af(0) +Bg(0) = Ae0 +Be0 = A+B

and
0 = ẏ(0) = Af ′(0) +Bg′(0) = A2e0 +B(−1)e0 = 2A−B.

So we need to find A and B that make both 5 = A + B and 0 = 2A − B true. This is a
simple set of simultaneous equations: solve B = 2A, substitute to get 5 = A + 2A = 3A.
Then A = 5/3 and B = 10/3, and the desired solution is (5/3)e2t + (10/3)e−t. You now see
why the initial condition in this case included both y(0) and ẏ(0): we needed two equations
in the two unknowns A and B ♣

You should of course wonder whether there might be other solutions; the answer is no.
We will not prove this, but here is the theorem that tells us what we need to know:
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Theorem 9.19: Solutions to Second Order Homogeneous

Given the differential equation aÿ + bẏ + cy = 0, a 6= 0, consider the quadratic
polynomial ax2 + bx+ c, called the characteristic polynomial. Using the quadratic
formula, this polynomial always has one or two roots, call them r and s. The general
solution of the differential equation is:

� (a) y = Aert +Best, if the roots r and s are real numbers and r 6= s.

� (b) y = Aert +Btert, if r = s is real.

� (c) y = A cos(βt)eαt + B sin(βt)eαt, if the roots r and s are complex numbers
α + βi and α− βi.

Example 9.20: Damped Spring Oscillation

Use a differential equation to describe the position of a mass hung on a spring.

Solution. Suppose a mass m is hung on a spring with spring constant k. If the spring is
compressed or stretched and then released, the mass will oscillate up and down. Because
of friction, the oscillation will be damped: eventually the motion will cease. The damping
will depend on the amount of friction; for example, if the system is suspended in oil the
motion will cease sooner than if the system is in air. Using some simple physics, it is
not hard to see that the position of the mass is described by this differential equation:
mÿ + bẏ + ky = 0. Using m = 1, b = 4, and k = 5 we find the motion of the mass. The
characteristic polynomial is x2 + 4x + 5 with roots (−4 ±

√
16− 20)/2 = −2 ± i. Thus

the general solution is y = A cos(t)e−2t + B sin(t)e−2t. Suppose we know that y(0) = 1
and ẏ(0) = 2. Then as before we form two simultaneous equations: from y(0) = 1 we get
1 = A cos(0)e0 +B sin(0)e0 = A. For the second we compute

ÿ = −2Ae−2t cos(t) + Ae−2t(− sin(t))− 2Be−2t sin(t) +Be−2t cos(t),

and then

2 = −2Ae0 cos(0)−Ae0 sin(0)− 2Be0 sin(0) +Be0 cos(0) = −2A+B.

So we get A = 1, B = 4, and y = cos(t)e−2t + 4 sin(t)e−2t.
Here is a useful trick that makes this easier to understand: We have y = (cos t+4 sin t)e−2t.

The expression cos t + 4 sin t is a bit reminiscent of the trigonometric formula cos(α− β) =
cos(α) cos(β) + sin(α) sin(β) with α = t. Let’s rewrite it a bit as

√
17

(

1√
17

cos t+
4√
17

sin t

)

.

Note that (1/
√
17)2+(4/

√
17)2 = 1, which means that there is an angle β with cos β = 1/

√
17

and sin β = 4/
√
17 (of course, β may not be a “nice” angle). Then

cos t + 4 sin t =
√
17 (cos t cos β + sin β sin t) =

√
17 cos(t− β).
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Thus, the solution may also be written y =
√
17e−2t cos(t− β). This is a cosine curve that

has been shifted β to the right; the
√
17e−2t has the effect of diminishing the amplitude of

the cosine as t increases. ♣
Other physical systems that oscillate can also be described by such differential equations.

Some electric circuits, for example, generate oscillating current.

Example 9.21:

Find the solution to the intial value problem ÿ − 4ẏ + 4y = 0, y(0) = −3, ẏ(0) = 1.

Solution. The characteristic polynomial is x2−4x+4 = (x−2)2, so there is one root, r = 2,
and the general solution is Ae2t + Bte2t. Substituting t = 0 we get −3 = A + 0 = A. The
first derivative is 2Ae2t+2Bte2t+Be2t; substituting t = 0 gives 1 = 2A+0+B = 2A+B =
2(−3) +B = −6 +B, so B = 7. The solution is −3e2t + 7te2t. ♣

Exercises for 9.5

Exercise 9.5.1. Solve the initial value problem ÿ − ω2y = 0, y(0) = 1, ẏ(0) = 1, assuming
ω 6= 0.

Exercise 9.5.2. Solve the initial value problem 2ÿ + 18y = 0, y(0) = 2, ẏ(0) = 15.

Exercise 9.5.3. Solve the initial value problem ÿ + 6ẏ + 5y = 0, y(0) = 1, ẏ(0) = 0.

Exercise 9.5.4. Solve the initial value problem ÿ − ẏ − 12y = 0, y(0) = 0, ẏ(0) = 14.

Exercise 9.5.5. Solve the initial value problem ÿ + 12ẏ + 36y = 0, y(0) = 5, ẏ(0) = −10.

Exercise 9.5.6. Solve the initial value problem ÿ − 8ẏ + 16y = 0, y(0) = −3, ẏ(0) = 4.

Exercise 9.5.7. Solve the initial value problem ÿ + 5y = 0, y(0) = −2, ẏ(0) = 5.

Exercise 9.5.8. Solve the initial value problem ÿ + y = 0, y(π/4) = 0, ẏ(π/4) = 2.

Exercise 9.5.9. Solve the initial value problem ÿ + 12ẏ + 37y = 0, y(0) = 4, ẏ(0) = 0.

Exercise 9.5.10. Solve the initial value problem ÿ + 6ẏ + 18y = 0, y(0) = 0, ẏ(0) = 6.

Exercise 9.5.11. Solve the initial value problem ÿ + 4y = 0, y(0) =
√
3, ẏ(0) = 2.

Exercise 9.5.12. Solve the initial value problem ÿ + 100y = 0, y(0) = 5, ẏ(0) = 50.

Exercise 9.5.13. Solve the initial value problem ÿ + 4ẏ + 13y = 0, y(0) = 1, ẏ(0) = 1.

Exercise 9.5.14. Solve the initial value problem ÿ − 8ẏ + 25y = 0, y(0) = 3, ẏ(0) = 0.

Exercise 9.5.15. A mass-spring system mÿ + bẏ + kx has k = 29, b = 4, and m = 1. At
time t = 0 the position is y(0) = 2 and the velocity is ẏ(0) = 1. Find y(t).
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Exercise 9.5.16. A mass-spring system mÿ + bẏ + kx has k = 24, b = 12, and m = 3. At
time t = 0 the position is y(0) = 0 and the velocity is ẏ(0) = −1. Find y(t).

Exercise 9.5.17. Consider the differential equation aÿ+bẏ = 0, with a and b both non-zero.
Find the general solution by the method of this section. Now let g = ẏ; the equation may be
written as aġ + bg = 0, a first order linear homogeneous equation. Solve this for g, then use
the relationship g = ẏ to find y.

Exercise 9.5.18. Suppose that y(t) is a solution to aÿ + bẏ + cy = 0, y(t0) = 0, ẏ(t0) = 0.
Show that y(t) = 0.

9.6 Second Order Linear Equations - Method
of Undetermined Coefficients

Now we consider second order equations of the form aÿ + bẏ + cy = f(t), with a, b, and c
constant. Of course, if a = 0 this is really a first order equation, so we assume a 6= 0. Also,
if c = 0 we can solve the related first order equation aḣ + bh = f(t), and then solve h = ẏ
for y. So we will only examine examples in which c 6= 0.

Suppose that y1(t) and y2(t) are solutions to aÿ+bẏ+cy = f(t), and consider the function
h = y1 − y2. We substitute this function into the left hand side of the differential equation
and simplify:

a(y1− y2)
′′ + b(y1− y2)

′ + c(y1− y2) = ay′′1 + by′1 + cy1− (ay′′2 + by′2 + cy2) = f(t)− f(t) = 0.

So h is a solution to the homogeneous equation aÿ+ bẏ+ cy = 0. Since we know how to find
all such h, then with just one particular solution y2 we can express all possible solutions y1,
namely, y1 = h + y2, where now h is the general solution to the homogeneous equation. Of
course, this is exactly how we approached the first order linear equation.

To make use of this observation we need a method to find a single solution y2. This turns
out to be somewhat more difficult than the first order case, but if f(t) is of a certain simple
form, we can find a solution using the method of undetermined coefficients, sometimes
more whimsically called the method of judicious guessing.

Example 9.22: Second Order Linear Equation

Solve the differential equation ÿ − ẏ − 6y = 18t2 + 5.

Solution. The general solution of the homogeneous equation is Ae3t+Be−2t. We guess that
a solution to the non-homogeneous equation might look like f(t) itself, namely, a quadratic
y = at2 + bt + c. Substituting this guess into the differential equation we get

ÿ − ẏ − 6y = 2a− (2at+ b)− 6(at2 + bt + c) = −6at2 + (−2a− 6b)t+ (2a− b− 6c).

We want this to equal 18t2 + 5, so we need

−6a = 18
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−2a− 6b = 0
2a− b− 6c = 5

This is a system of three equations in three unknowns and is not hard to solve: a = −3, b = 1,
c = −2. Thus the general solution to the differential equation is Ae3t +Be−2t − 3t2 + t− 2.

♣
So the “judicious guess” is a function with the same form as f(t) but with undetermined

(or better, yet to be determined) coefficients. This works whenever f(t) is a polynomial.

Example 9.23: Mass-Spring System with No Damping

Analyze the initial value problem mÿ + ky = −mg, y(0) = 2, ẏ(0) = 50.

Solution. The left hand side represents a mass-spring system with no damping, i.e., b = 0.
Unlike the homogeneous case, we now consider the force due to gravity, −mg, assuming the
spring is vertical at the surface of the earth, so that g = 980. To be specific, let us take m = 1
and k = 100. The general solution to the homogeneous equation is A cos(10t) + B sin(10t).
For the solution to the non-homogeneous equation we guess simply a constant y = a, since
−mg = −980 is a constant. Then ÿ + 100y = 100a so a = −980/100 = −9.8. The desired
general solution is then A cos(10t) +B sin(10t)− 9.8. Substituting the initial conditions we
get

2 = A− 9.8
50 = 10B

so A = 11.8 and B = 5 and the solution is 11.8 cos(10t) + 5 sin(10t)− 9.8. ♣
More generally, this method can be used when a function similar to f(t) has derivatives

that are also similar to f(t); in the examples so far, since f(t) was a polynomial, so were
its derivatives. The method will work if f(t) has the form p(t)eαt cos(βt) + q(t)eαt sin(βt),
where p(t) and q(t) are polynomials; when α = β = 0 this is simply p(t), a polynomial. In
the most general form it is not simple to describe the appropriate judicious guess; we content
ourselves with some examples to illustrate the process.

Example 9.24: Solving a Second Order Linear Equation

Find the general solution to ÿ + 7ẏ + 10y = e3t.

Solution. The characteristic equation is r2 + 7r + 10 = (r + 5)(r + 2), so the solution to
the homogeneous equation is Ae−5t+Be−2t. For a particular solution to the inhomogeneous
equation we guess Ce3t. Substituting we get

9Ce3t + 21Ce3t + 10Ce3t = e3t40C.

When C = 1/40 this is equal to f(t) = e3t, so the solution is Ae−5t+Be−2t+(1/40)e3t. ♣
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Example 9.25: Solving a Second Order Linear Equation

Find the general solution to ÿ + 7ẏ + 10y = e−2t.

Solution. Following the last example we might guess Ce−2t, but since this is a solution to
the homogeneous equation it cannot work. Instead we guess Cte−2t. Then

(−2Ce−2t − 2Ce−2t + 4Cte−2t) + 7(Ce−2t − 2Cte−2t) + 10Cte−2t = e−2t(−3C).

Then C = −1/3 and the solution is Ae−5t +Be−2t − (1/3)te−2t. ♣
In general, if f(t) = ekt and k is one of the roots of the characteristic equation, then we

guess Ctekt instead of Cekt. If k is the only root of the characteristic equation, then Ctekt

will not work, and we must guess Ct2ekt.

Example 9.26: Solving a Second Order Linear Equation

Find the general solution to ÿ − 6ẏ + 9y = e3t.

Solution. The characteristic equation is r2 − 6r + 9 = (r − 3)2, so the general solution to
the homogeneous equation is Ae3t + Bte3t. Guessing Ct2e3t for the particular solution, we
get

(9Ct2e3t + 6Cte3t + 6Cte3t + 2Ce3t)− 6(3Ct2e3t + 2Cte3t) + 9Ct2e3t = e3t2C.

The solution is thus Ae3t +Bte3t + (1/2)t2e3t. ♣
It is common in various physical systems to encounter an f(t) of the form a cos(ωt) +

b sin(ωt).

Example 9.27: Solving a Second Order Linear Equation

Find the general solution to ÿ + 6ẏ + 25y = cos(4t).

Solution. The roots of the characteristic equation are −3 ± 4i, so the solution to the
homogeneous equation is e−3t(A cos(4t) + B sin(4t)). For a particular solution, we guess
C cos(4t) +D sin(4t). Substituting as usual:

(−16C cos(4t) +−16D sin(4t)) + 6(−4C sin(4t) + 4D cos(4t)) + 25(C cos(4t) +D sin(4t))

= (24D + 9C) cos(4t) + (−24C + 9D) sin(4t).

To make this equal to cos(4t) we need

24D + 9C = 1
9D − 24C = 0

which gives C = 1/73 and D = 8/219. The full solution is then e−3t(A cos(4t)+B sin(4t))+
(1/73) cos(4t) + (8/219) sin(4t).
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The function e−3t(A cos(4t)+B sin(4t)) is a damped oscillation as in example 9.23, while
(1/73) cos(4t) + (8/219) sin(4t) is a simple undamped oscillation. As t increases, the sum
e−3t(A cos(4t) +B sin(4t)) approaches zero, so the solution

e−3t(A cos(4t) +B sin(4t)) + (1/73) cos(4t) + (8/219) sin(4t)

becomes more and more like the simple oscillation (1/73) cos(4t) + (8/219) sin(4t)—notice
that the initial conditions don’t matter to this long term behavior. The damped portion
is called the transient part of the solution, and the simple oscillation is called the steady
state part of the solution. A physical example is a mass-spring system. If the only force
on the mass is due to the spring, then the behavior of the system is a damped oscillation.
If in addition an external force is applied to the mass, and if the force varies according to
a function of the form a cos(ωt) + b sin(ωt), then the long term behavior will be a simple
oscillation determined by the steady state part of the general solution; the initial position of
the mass will not matter. ♣

As with the exponential form, such a simple guess may not work.

Example 9.28: Solving a Second Order Linear Equation

Find the general solution to ÿ + 16y = − sin(4t).

Solution. The roots of the characteristic equation are ±4i, so the solution to the homo-
geneous equation is A cos(4t) + B sin(4t). Since both cos(4t) and sin(4t) are solutions to
the homogeneous equation, C cos(4t) + D sin(4t) is also, so it cannot be a solution to the
non-homogeneous equation. Instead, we guess Ct cos(4t) +Dt sin(4t). Then substituting:

(−16Ct cos(4t)− 16D sin(4t) + 8D cos(4t)− 8C sin(4t))) + 16(Ct cos(4t) +Dt sin(4t))

= 8D cos(4t)− 8C sin(4t).

Thus C = 1/8, D = 0, and the solution is C cos(4t) +D sin(4t) + (1/8)t cos(4t). ♣
In general, if f(t) = a cos(ωt) + b sin(ωt), and ±ωi are the roots of the characteristic

equation, then instead of C cos(ωt) +D sin(ωt) we guess Ct cos(ωt) +Dt sin(ωt).

Exercises for 9.6

Find the general solution to the differential equation.

Exercise 9.6.1. ÿ − 10ẏ + 25y = cos t

Exercise 9.6.2. ÿ + 2
√
2ẏ + 2y = 10

Exercise 9.6.3. ÿ + 16y = 8t2 + 3t− 4

Exercise 9.6.4. ÿ + 2y = cos(5t) + sin(5t)

Exercise 9.6.5. ÿ − 2ẏ + 2y = e2t

305



CHAPTER 9. DIFFERENTIAL EQUATIONS

Exercise 9.6.6. ÿ − 6y + 13 = 1 + 2t+ e−t

Exercise 9.6.7. ÿ + ẏ − 6y = e−3t

Exercise 9.6.8. ÿ − 4ẏ + 3y = e3t

Exercise 9.6.9. ÿ + 16y = cos(4t)

Exercise 9.6.10. ÿ + 9y = 3 sin(3t)

Exercise 9.6.11. ÿ + 12ẏ + 36y = 6e−6t

Exercise 9.6.12. ÿ − 8ẏ + 16y = −2e4t

Exercise 9.6.13. ÿ + 6ẏ + 5y = 4

Exercise 9.6.14. ÿ − ẏ − 12y = t

Exercise 9.6.15. ÿ + 5y = 8 sin(2t)

Exercise 9.6.16. ÿ − 4y = 4e2t

Solve the initial value problem.

Exercise 9.6.17. ÿ − y = 3t+ 5, y(0) = 0, ẏ(0) = 0

Exercise 9.6.18. ÿ + 9y = 4t, y(0) = 0, ẏ(0) = 0

Exercise 9.6.19. ÿ + 12ẏ + 37y = 10e−4t, y(0) = 4, ẏ(0) = 0

Exercise 9.6.20. ÿ + 6ẏ + 18y = cos t− sin t, y(0) = 0, ẏ(0) = 2

Exercise 9.6.21. Find the solution for the mass-spring equation ÿ+4ẏ+29y = 689 cos(2t).

Exercise 9.6.22. Find the solution for the mass-spring equation 3ÿ + 12ẏ + 24y = 2 sin t.

Exercise 9.6.23. Consider the differential equation mÿ+ bẏ+ky = cos(ωt), with m, b, and
k all positive and b2 < 2mk; this equation is a model for a damped mass-spring system with
external driving force cos(ωt). Show that the steady state part of the solution has amplitude

1
√

(k −mω2)2 + ω2b2
.

Show that this amplitude is largest when ω =

√
4mk − 2b2

2m
. This is the resonant frequency

of the system.
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9.7 Second Order Linear Equations - Variation
of Parameters

The method of the last section works only when the function f(t) in aÿ+ bẏ+ cy = f(t) has
a particularly nice form, namely, when the derivatives of f look much like f itself. In other
cases we can try variation of parameters as we did in the first order case.

Since as before a 6= 0, we can always divide by a to make the coefficient of ÿ equal to 1.
Thus, to simplify the discussion, we assume a = 1. We know that the differential equation
ÿ+bẏ+cy = 0 has a general solution Ay1+By2. As before, we guess a particular solution to
ÿ+ bẏ + cy = f(t); this time we use the guess y = u(t)y1 + v(t)y2. Compute the derivatives:

ẏ = u̇y1 + uẏ1 + v̇y2 + vẏ2
ÿ = üy1 + u̇ẏ1 + u̇ẏ1 + uÿ1 + v̈y2 + v̇ẏ2 + v̇ẏ2 + vÿ2.

Now substituting:

ÿ + bẏ + cy = üy1 + u̇ẏ1 + u̇ẏ1 + uÿ1 + v̈y2 + v̇ẏ2 + v̇ẏ2 + vÿ2
+bu̇y1 + buẏ1 + bv̇y2 + bvẏ2 + cuy1 + cvy2

= (uÿ1 + buẏ1 + cuy1) + (vÿ2 + bvẏ2 + cvy2)
+b(u̇y1 + v̇y2) + (üy1 + u̇ẏ1 + v̈y2 + v̇ẏ2) + (u̇ẏ1 + v̇ẏ2)

= 0 + 0 + b(u̇y1 + v̇y2) + (üy1 + u̇ẏ1 + v̈y2 + v̇ẏ2) + (u̇ẏ1 + v̇ẏ2).

The first two terms in parentheses are zero because y1 and y2 are solutions to the associated
homogeneous equation. Now we engage in some wishful thinking. If u̇y1 + v̇y2 = 0 then
also üy1 + u̇ẏ1 + v̈y2 + v̇ẏ2 = 0, by taking derivatives of both sides. This reduces the entire
expression to u̇ẏ1 + v̇ẏ2. We want this to be f(t), that is, we need u̇ẏ1 + v̇ẏ2 = f(t). So we
would very much like these equations to be true:

u̇y1 + v̇y2 = 0
u̇ẏ1 + v̇ẏ2 = f(t).

This is a system of two equations in the two unknowns u̇ and v̇, so we can solve as usual to
get u̇ = g(t) and v̇ = h(t). Then we can find u and v by computing antiderivatives. This is
of course the sticking point in the whole plan, since the antiderivatives may be impossible
to find. Nevertheless, this sometimes works out and is worth a try.

Example 9.29: Variation of Parameters

Consider the equation ÿ− 5ẏ+6y = sin t. Solve this by using variation of parameters.

Solution. The solution to the homogeneous equation is Ae2t + Be3t, so the simultaneous
equations to be solved are

u̇e2t + v̇e3t = 0
2u̇e2t + 3v̇e3t = sin t.

If we multiply the first equation by 2 and subtract it from the second equation we get

v̇e3t = sin t
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v̇ = e−3t sin t

v = − 1

10
(3 sin t+ cos t)e−3t,

using integration by parts. Then from the first equation:

u̇ = −e−2tv̇e3t = −e−2te−3t sin(t)e3t = −e−2t sin t

u =
1

5
(2 sin t + cos t)e−2t.

Now the particular solution we seek is

ue2t + ve3t =
1

5
(2 sin t+ cos t)e−2te2t − 1

10
(3 sin t+ cos t)e−3te3t

=
1

5
(2 sin t+ cos t)− 1

10
(3 sin t+ cos t)

=
1

10
(sin t+ cos t),

and the solution to the differential equation is Ae2t+Be3t+(sin t+cos t)/10. For comparison
(and practice) you might want to solve this using the method of undetermined coefficients.

♣
Example 9.30: Variation of Parameters

The differential equation ÿ − 5ẏ + 6y = et sin t can be solved using the method of
undetermined coefficients, though we have not seen any examples of such a solution.
Again, we will solve it by variation of parameters.

Solution. The equations to be solved are

u̇e2t + v̇e3t = 0
2u̇e2t + 3v̇e3t = et sin t.

If we multiply the first equation by 2 and subtract it from the second equation we get

v̇e3t = et sin t
v̇ = e−3tet sin t = e−2t sin t

v = −1
5
(2 sin t + cos t)e−2t.

Then substituting we get

u̇ = −e−2tv̇e3t = −e−2te−2t sin(t)e3t = −e−t sin t

u =
1

2
(sin t+ cos t)e−t.

The particular solution is

ue2t + ve3t =
1

2
(sin t + cos t)e−te2t − 1

5
(2 sin t + cos t)e−2te3t

=
1

2
(sin t + cos t)et − 1

5
(2 sin t + cos t)et

=
1

10
(sin t + 3 cos t)et,

and the solution to the differential equation is Ae2t +Be3t + et(sin t+ 3 cos t)/10. ♣
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Example 9.31: Solving a DE

The differential equation ÿ−2ẏ+y = et/t2 is not of the form amenable to the method
of undetermined coefficients. Solve it.

Solution. The solution to the homogeneous equation is Aet +Btet and so the simultaneous
equations are

u̇et + v̇tet = 0

u̇et + v̇tet + v̇et =
et

t2
.

Subtracting the equations gives

v̇et =
et

t2

v̇ =
1

t2

v = −1
t
.

Then substituting we get

u̇et = −v̇tet = − 1

t2
tet

u̇ = −1
t

u = − ln t.

The solution is Aet +Btet − et ln t− et. ♣

Exercises for 9.7

Find the general solution to the differential equation using variation of parameters.

Exercise 9.7.1. ÿ + y = tanx

Exercise 9.7.2. ÿ + y = e2t

Exercise 9.7.3. ÿ + 4y = sec x

Exercise 9.7.4. ÿ + 4y = tanx

Exercise 9.7.5. ÿ + ẏ − 6y = t2e2t

Exercise 9.7.6. ÿ − 2ẏ + 2y = et tan(t)

Exercise 9.7.7. ÿ− 2ẏ+2y = sin(t) cos(t) (This is rather messy when done by variation of
parameters; compare to undetermined coefficients.)
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10. Polar Coordinates, Parametric Equations

10.1 Polar Coordinates

Coordinate systems are tools that let us use algebraic methods to understand geometry.
While the rectangular (also called Cartesian) coordinates that we have been using are
the most common, some problems are easier to analyze in alternate coordinate systems.

A coordinate system is a scheme that allows us to identify any point in the plane or
in three-dimensional space by a set of numbers. In rectangular coordinates these numbers
are interpreted, roughly speaking, as the lengths of the sides of a rectangle. In polar
coordinates a point in the plane is identified by a pair of numbers (r, θ). The number
θ measures the angle between the positive x-axis and a ray that goes through the point,
as shown in figure 10.1; the number r measures the distance from the origin to the point.
Figure 10.1 shows the point with rectangular coordinates (1,

√
3) and polar coordinates

(2, π/3), 2 units from the origin and π/3 radians from the positive x-axis.
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Figure 10.1: Polar coordinates of the point (1,
√
3).

Just as we describe curves in the plane using equations involving x and y, so can we
describe curves using equations involving r and θ. Most common are equations of the form
r = f(θ).

Example 10.1: Circle in Polar Coordinates

Graph the curve given by r = 2.

Solution. All points with r = 2 are at distance 2 from the origin, so r = 2 describes the
circle of radius 2 with center at the origin. ♣
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Example 10.2: Cardioid

Graph the curve given by r = 1 + cos θ.

Solution. We first consider y = 1+ cosx, as in figure 10.2. As θ goes through the values in
[0, 2π], the value of r tracks the value of y, forming the “cardioid” shape of figure 10.2. For
example, when θ = π/2, r = 1+ cos(π/2) = 1, so we graph the point at distance 1 from the
origin along the positive y-axis, which is at an angle of π/2 from the positive x-axis. When
θ = 7π/4, r = 1 + cos(7π/4) = 1 +

√
2/2 ≈ 1.71, and the corresponding point appears in

the fourth quadrant. This illustrates one of the potential benefits of using polar coordinates:
the equation for this curve in rectangular coordinates would be quite complicated. ♣
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Figure 10.2: A cardioid: y = 1 + cosx on the left, r = 1 + cos θ on the right.

Each point in the plane is associated with exactly one pair of numbers in the rectangular
coordinate system; each point is associated with an infinite number of pairs in polar coor-
dinates. In the cardioid example, we considered only the range 0 ≤ θ ≤ 2π, and already
there was a duplicate: (2, 0) and (2, 2π) are the same point. Indeed, every value of θ outside
the interval [0, 2π) duplicates a point on the curve r = 1 + cos θ when 0 ≤ θ < 2π. We
can even make sense of polar coordinates like (−2, π/4): go to the direction π/4 and then
move a distance 2 in the opposite direction; see figure 10.3. As usual, a negative angle θ
means an angle measured clockwise from the positive x-axis. The point in figure 10.3 also
has coordinates (2, 5π/4) and (2,−3π/4).
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Figure 10.3: The point (−2, π/4) = (2, 5π/4) = (2,−3π/4) in polar coordinates.

The relationship between rectangular and polar coordinates is quite easy to under-
stand. The point with polar coordinates (r, θ) has rectangular coordinates x = r cos θ
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10.1. POLAR COORDINATES

and y = r sin θ; this follows immediately from the definition of the sine and cosine func-
tions. Using figure 10.3 as an example, the point shown has rectangular coordinates x =
(−2) cos(π/4) = −

√
2 ≈ 1.4142 and y = (−2) sin(π/4) = −

√
2. This makes it very easy to

convert equations from rectangular to polar coordinates.

Example 10.3: Straight Line in Polar Coordinates

Find the equation of the line y = 3x+ 2 in polar coordinates.

Solution. We merely substitute: r sin θ = 3r cos θ + 2, or r =
2

sin θ − 3 cos θ
. ♣

Example 10.4: Equation of a Circle

Find the equation of the circle (x− 1/2)2 + y2 = 1/4 in polar coordinates.

Solution. Again substituting: (r cos θ − 1/2)2 + r2 sin2 θ = 1/4. A bit of algebra turns this
into r = cos(t). You should try plotting a few (r, θ) values to convince yourself that this
makes sense. ♣

Example 10.5: Spiral of Archimedes

Graph the polar equation r = θ.

Solution. Here the distance from the origin exactly matches the angle, so a bit of thought
makes it clear that when θ ≥ 0 we get the spiral of Archimedes in figure 10.4. When θ < 0,
r is also negative, and so the full graph is the right hand picture in the figure. ♣
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Figure 10.4: The spiral of Archimedes and the full graph of r = θ.

Converting polar equations to rectangular equations can be somewhat trickier, and graph-
ing polar equations directly is also not always easy.
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CHAPTER 10. POLAR COORDINATES, PARAMETRIC EQUATIONS

Example 10.6: Graphing Polar Equations

Graph r = 2 sin θ.

Solution. Because the sine is periodic, we know that we will get the entire curve for values
of θ in [0, 2π). As θ runs from 0 to π/2, r increases from 0 to 2. Then as θ continues to
π, r decreases again to 0. When θ runs from π to 2π, r is negative, and it is not hard to
see that the first part of the curve is simply traced out again, so in fact we get the whole
curve for values of θ in [0, π). Thus, the curve looks something like figure 10.5. Now, this
suggests that the curve could possibly be a circle, and if it is, it would have to be the circle
x2 + (y − 1)2 = 1. Having made this guess, we can easily check it. First we substitute for x
and y to get (r cos θ)2 + (r sin θ − 1)2 = 1; expanding and simplifying does indeed turn this
into r = 2 sin θ. ♣
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Figure 10.5: Graph of r = 2 sin θ.

Exercises for 10.1

Exercise 10.1.1. Plot these polar coordinate points on one graph: (2, π/3), (−3, π/2),
(−2,−π/4), (1/2, π), (1, 4π/3), (0, 3π/2).
Exercise 10.1.2. Find an equation in polar coordinates that has the same graph as the given
equation in rectangular coordinates.
a) y = 3x d) x2 + y2 = 5 g) y = 5x+ 2
b) y = −4 e) y = x3 h) x = 2
c) xy2 = 1 f) y = sin x i) y = x2 + 1

Exercise 10.1.3. Sketch the following curves:
a) r = cos θ e) r = θ/2, θ ≥ 0
b) r = 1 + θ1/π2 f) r = cot θ csc θ

c) r = sin(θ + π/4) g) r =
1

sin θ + cos θ
d) r = − sec θ h) r2 = −2 sec θ csc θ
Exercise 10.1.4. Find an equation in rectangular coordinates that has the same graph as
the given equation in polar coordinates.
a) r = sin(3θ) c) r = sec θ csc θ
b) r = sin2 θ d) r = tan θ
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10.2 Slopes in polar coordinates

When we describe a curve using polar coordinates, it is still a curve in the x-y plane. We
would like to be able to compute slopes and areas for these curves using polar coordinates.

We have seen that x = r cos θ and y = r sin θ describe the relationship between polar
and rectangular coordinates. If in turn we are interested in a curve given by r = f(θ), then
we can write x = f(θ) cos θ and y = f(θ) sin θ, describing x and y in terms of θ alone. The
first of these equations describes θ implicitly in terms of x, so using the chain rule we may
compute

dy

dx
=

dy

dθ

dθ

dx
.

Since dθ/dx = 1/(dx/dθ), we can instead compute

dy

dx
=

dy/dθ

dx/dθ
=

f(θ) cos θ + f ′(θ) sin θ

−f(θ) sin θ + f ′(θ) cos θ
.

Example 10.7: Horizontal Tangent Line

Find the points at which the curve given by r = 1 + cos θ has a vertical or horizontal
tangent line.

Solution. Since this function has period 2π, we may restrict our attention to the interval
[0, 2π) or (−π, π], as convenience dictates. First, we compute the slope:

dy

dx
=

(1 + cos θ) cos θ − sin θ sin θ

−(1 + cos θ) sin θ − sin θ cos θ
=

cos θ + cos2 θ − sin2 θ

− sin θ − 2 sin θ cos θ
.

This fraction is zero when the numerator is zero (and the denominator is not zero). The
numerator is 2 cos2 θ + cos θ − 1 so by the quadratic formula

cos θ =
−1±

√
1 + 4 · 2
4

= −1 or
1

2
.

This means θ is π or ±π/3. However, when θ = π, the denominator is also 0, so we cannot
conclude that the tangent line is horizontal.

Setting the denominator to zero we get

−θ − 2 sin θ cos θ = 0
sin θ(1 + 2 cos θ) = 0,

so either sin θ = 0 or cos θ = −1/2. The first is true when θ is 0 or π, the second when
θ is 2π/3 or 4π/3. However, as above, when θ = π, the numerator is also 0, so we cannot
conclude that the tangent line is vertical. Figure 10.6 shows points corresponding to θ equal
to 0, ±1.318, 2π/3 and 4π/3 on the graph of the function. Note that when θ = π the curve
hits the origin and does not have a tangent line. ♣
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Figure 10.6: Points of vertical and horizontal tangency for r = 1 + cos θ.

We know that the second derivative f ′′(x) is useful in describing functions, namely, in
describing concavity. We can compute f ′′(x) in terms of polar coordinates as well. We
already know how to write dy/dx = y′ in terms of θ, then

d

dx

dy

dx
=

dy′

dx
=

dy′

dθ

dθ

dx
=

dy′/dθ

dx/dθ
.

Example 10.8: Second Derivative of Cardioid

Find the second derivative for the cardioid r = 1 + cos θ.

Solution.

d

dθ

cos θ + cos2 θ − sin2 θ

− sin θ − 2 sin θ cos θ
· 1

dx/dθ
= · · · = 3(1 + cos θ)

(sin θ + 2 sin θ cos θ)2
· 1

−(sin θ + 2 sin θ cos θ)

=
−3(1 + cos θ)

(sin θ + 2 sin θ cos θ)3
.

The ellipsis here represents rather a substantial amount of algebra. We know from above
that the cardioid has horizontal tangents at ±π/3; substituting these values into the second
derivative we get y′′(π/3) = −

√
3/2 and y′′(−π/3) =

√
3/2, indicating concave down and

concave up respectively. This agrees with the graph of the function. ♣

Exercises for 10.2

Exercise 10.2.1. Compute y′ = dy/dx and y′′ = d2y/dx2.
a) r = θ d) r = sin θ
b) r = 1 + sin θ e) r = sec θ
c) r = cos θ f) r = sin(2θ)

Exercise 10.2.2. Sketch the curves over the interval [0, 2π] unless otherwise stated.
a) r = sin θ + cos θ g) r = sin(θ/3), 0 ≤ θ ≤ 6π m) r = 1 + sec θ

b) r = 2 + 2 sin θ h) r = sin2 θ n) r =
1

1− cos θ

c) r =
3

2
+ sin θ i) r = 1 + cos2(2θ) o) r =

1

1 + sin θ
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10.3. AREAS IN POLAR COORDINATES

d) r = 2 + cos θ j) r = sin2(3θ) p) r = cot(2θ)

e) r =
1

2
+ cos θ k) r = tan θ q) r = π/θ, 0 ≤ θ ≤ ∞

f) r = cos(θ/2), 0 ≤ θ ≤ 4π l) r = sec(θ/2), 0 ≤ θ ≤ 4π r) r = 1 + π/θ, 0 ≤ θ ≤ ∞

10.3 Areas in polar coordinates

We can use the equation of a curve in polar coordinates to compute some areas bounded
by such curves. The basic approach is the same as with any application of integration: find
an approximation that approaches the true value. For areas in rectangular coordinates, we
approximated the region using rectangles; in polar coordinates, we use sectors of circles, as
depicted in figure 10.7. Recall that the area of a sector of a circle is αr2/2, where α is the
angle subtended by the sector. If the curve is given by r = f(θ), and the angle subtended
by a small sector is ∆θ, the area is (∆θ)(f(θ))2/2. Thus we approximate the total area as

n−1
∑

i=0

1

2
f(θi)

2 ∆θ.

In the limit this becomes
∫ b

a

1

2
f(θ)2 dθ.

Example 10.9: Area inside a Cardioid

Find the area inside the cardioid r = 1 + cos θ.

Solution.

∫ 2π

0

1

2
(1 + cos θ)2 dθ =

1

2

∫ 2π

0

1 + 2 cos θ + cos2 θ dθ =
1

2
(θ + 2 sin θ +

θ

2
+

sin 2θ

4
)

∣

∣

∣

∣

2π

0

=
3π

2
.

♣
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Figure 10.7: Approximating area by sectors of circles.
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Example 10.10: Area Between Circles

Find the area between the circles r = 2 and r = 4 sin θ, as shown in figure 10.8.

Solution. The two curves intersect where 2 = 4 sin θ, or sin θ = 1/2, so θ = π/6 or 5π/6.
The area we want is then

1

2

∫ 5π/6

π/6

16 sin2 θ − 4 dθ =
4

3
π + 2

√
3.

♣

Figure 10.8: An area between curves.

This begin example makes the process appear more straightforward than it is. Because
points have many different representations in polar coordinates, it is not always so easy to
identify points of intersection.

Example 10.11: Shaded Area

Find the shaded area in the first graph of figure 10.9 as the difference of the other two
shaded areas. The cardioid is r = 1 + sin θ and the circle is r = 3 sin θ.

Solution. We attempt to find points of intersection:

1 + sin θ = 3 sin θ
1 = 2 sin θ

1/2 = sin θ.

This has solutions θ = π/6 and 5π/6; π/6 corresponds to the intersection in the first quadrant
that we need. Note that no solution of this equation corresponds to the intersection point at
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10.3. AREAS IN POLAR COORDINATES

the origin, but fortunately that one is obvious. The cardioid goes through the origin when
θ = −π/2; the circle goes through the origin at multiples of π, starting with 0.

Now the larger region has area

1

2

∫ π/6

−π/2

(1 + sin θ)2 dθ =
π

2
− 9

16

√
3

and the smaller has area

1

2

∫ π/6

0

(3 sin θ)2 dθ =
3π

8
− 9

16

√
3

so the area we seek is π/8. ♣

Figure 10.9: An area between curves.

Exercises for 10.3

Exercise 10.3.1. Find the area enclosed by the curve.
a) r =

√
sin θ d) r = cos θ, 0 ≤ θ ≤ π/3

b) r = 2 + cos θ e) r = 2a cos θ, a > 0
c) r = sec θ, π/6 ≤ θ ≤ π/3 f) r = 4 + 3 sin θ

Exercise 10.3.2. Find the area inside the loop formed by r = tan(θ/2).

Exercise 10.3.3. Find the area inside one loop of r = cos(3θ).

Exercise 10.3.4. Find the area inside one loop of r = sin2 θ.

Exercise 10.3.5. Find the area inside the small loop of r = (1/2) + cos θ.

Exercise 10.3.6. Find the area inside r = (1/2)+ cos θ, including the area inside the small
loop.

Exercise 10.3.7. Find the area inside one loop of r2 = cos(2θ).
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Exercise 10.3.8. Find the area enclosed by r = tan θ and r =
csc θ√

2
.

Exercise 10.3.9. Find the area inside r = 2 cos θ and outside r = 1.

Exercise 10.3.10. Find the area inside r = 2 sin θ and above the line r = (3/2) csc θ.

Exercise 10.3.11. Find the area inside r = θ, 0 ≤ θ ≤ 2π.

Exercise 10.3.12. Find the area inside r =
√
θ, 0 ≤ θ ≤ 2π.

Exercise 10.3.13. Find the area inside both r =
√
3 cos θ and r = sin θ.

Exercise 10.3.14. Find the area inside both r = 1− cos θ and r = cos θ.

Exercise 10.3.15. The center of a circle of radius 1 is on the circumference of a circle of
radius 2. Find the area of the region inside both circles.

Exercise 10.3.16. Find the shaded area in figure 10.10. The curve is r = θ, 0 ≤ θ ≤ 3π.

Figure 10.10: An area bounded by the spiral of Archimedes.

10.4 Parametric Equations

When we computed the derivative dy/dx using polar coordinates, we used the expressions
x = f(θ) cos θ and y = f(θ) sin θ. These two equations completely specify the curve, though
the form r = f(θ) is simpler. The expanded form has the virtue that it can easily be
generalized to describe a wider range of curves than can be specified in rectangular or polar
coordinates.

Suppose f(t) and g(t) are functions. Then the equations x = f(t) and y = g(t) describe
a curve in the plane. In the case of the polar coordinates equations, the variable t is replaced
by θ which has a natural geometric interpretation. But t in general is simply an arbitrary
variable, often called in this case a parameter, and this method of specifying a curve is
known as parametric equations. One important interpretation of t is time. In this inter-
pretation, the equations x = f(t) and y = g(t) give the position of an object at time t.
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10.4. PARAMETRIC EQUATIONS

Example 10.12: Position of a Path

Describe the path of an object that moves so that its position at time t is given by
x = cos t, y = cos2 t.

Solution. We see immediately that y = x2, so the path lies on this parabola. The path is
not the entire parabola, however, since x = cos t is always between −1 and 1. It is now easy
to see that the object oscillates back and forth on the parabola between the endpoints (1, 1)
and (−1, 1), and is at point (1, 1) at time t = 0. ♣

It is sometimes quite easy to describe a complicated path in parametric equations when
rectangular and polar coordinate expressions are difficult or impossible to devise.

Example 10.13: Wheel

A wheel of radius 1 rolls along a straight line, say the x-axis. A point on the rim of the
wheel will trace out a curve, called a cycloid. Assume the point starts at the origin;
find parametric equations for the curve.

Solution. Figure 10.11 illustrates the generation of the curve (click on the AP link to see an
animation). The wheel is shown at its starting point, and again after it has rolled through
about 490 degrees. We take as our parameter t the angle through which the wheel has
turned, measured as shown clockwise from the line connecting the center of the wheel to
the ground. Because the radius is 1, the center of the wheel has coordinates (t, 1). We seek
to write the coordinates of the point on the rim as (t + ∆x, 1 + ∆y), where ∆x and ∆y
are as shown in figure 10.12. These values are nearly the sine and cosine of the angle t,
from the unit circle definition of sine and cosine. However, some care is required because we
are measuring t from a nonstandard starting line and in a clockwise direction, as opposed
to the usual counterclockwise direction. A bit of thought reveals that ∆x = − sin t and
∆y = − cos t. Thus the parametric equations for the cycloid are x = t− sin t, y = 1− cos t.

♣

Figure 10.11: A cycloid.
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Figure 10.12: The wheel.

Exercises for 10.4

Exercise 10.4.1. What curve is described by x = t2, y = t4? If t is interpreted as time,
describe how the object moves on the curve.

Exercise 10.4.2. What curve is described by x = 3 cos t, y = 3 sin t? If t is interpreted as
time, describe how the object moves on the curve.

Exercise 10.4.3. What curve is described by x = 3 cos t, y = 2 sin t? If t is interpreted as
time, describe how the object moves on the curve.

Exercise 10.4.4. What curve is described by x = 3 sin t, y = 3 cos t? If t is interpreted as
time, describe how the object moves on the curve.

Exercise 10.4.5. Sketch the curve described by x = t3 − t, y = t2. If t is interpreted as
time, describe how the object moves on the curve.

Exercise 10.4.6. A wheel of radius 1 rolls along a straight line, say the x-axis. A point P
is located halfway between the center of the wheel and the rim; assume P starts at the point
(0, 1/2). As the wheel rolls, P traces a curve; find parametric equations for the curve.

10.5 Calculus with Parametric Equations

We have already seen how to compute slopes of curves given by parametric equations—it is
how we computed slopes in polar coordinates.

Example 10.14: Slope of Cycloid

Find the slope of the cycloid x = t− sin t, y = 1− cos t.

Solution. We compute x′ = 1− cos t, y′ = sin t, so

dy

dx
=

sin t

1− cos t
.
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10.5. CALCULUS WITH PARAMETRIC EQUATIONS

Note that when t is an odd multiple of π, like π or 3π, this is (0/2) = 0, so there is a
horizontal tangent line, in agreement with figure 10.11. At even multiples of π, the fraction
is 0/0, which is undefined. The figure shows that there is no tangent line at such points.

♣
Areas can be a bit trickier with parametric equations, depending on the curve and the

area desired. We can potentially compute areas between the curve and the x-axis quite easily.

Example 10.15: Area Under Cycloid Arch

Find the area under one arch of the cycloid x = t− sin t, y = 1− cos t.

Solution. We would like to compute
∫ 2π

0

y dx,

but we do not know y in terms of x. However, the parametric equations allow us to make
a substitution: use y = 1 − cos t to replace y, and compute dx = (1 − cos t) dt. Then the
integral becomes

∫ 2π

0

(1− cos t)(1− cos t) dt = 3π.

Note that we need to convert the original x limits to t limits using x = t−sin t. When x = 0,
t = sin t, which happens only when t = 0. Likewise, when x = 2π, t− 2π = sin t and t = 2π.
Alternately, because we understand how the cycloid is produced, we can see directly that
one arch is generated by 0 ≤ t ≤ 2π. In general, of course, the t limits will be different than
the x limits. ♣

This technique will allow us to compute some quite interesting areas, as illustrated by
the exercises.

As a final example, we see how to compute the length of a curve given by parametric
equations. The arc length for functions given as y in terms of x is the formula:

∫ b

a

√

1 +

(

dy

dx

)2

dx.

Using some properties of derivatives, including the chain rule, we can convert this to use
parametric equations x = f(t), y = g(t):

∫ b

a

√

1 +

(

dy

dx

)2

dx =

∫ b

a

√

(

dx

dt

)2

+

(

dx

dt

)2(
dy

dx

)2
dt

dx
dx

=

∫ v

u

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

=

∫ v

u

√

(f ′(t))2 + (g′(t))2 dt.

Here u and v are the t limits corresponding to the x limits a and b.
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Example 10.16: Length of Cycloid Arch

Find the length of one arch of the cycloid.

Solution. From x = t−sin t, y = 1−cos t, we get the derivatives f ′ = 1−cos t and g′ = sin t,
so the length is

∫ 2π

0

√

(1− cos t)2 + sin2 t dt =

∫ 2π

0

√
2− 2 cos t dt.

Now we use the formula sin2(t/2) = (1− cos(t))/2 or 4 sin2(t/2) = 2− 2 cos t to get

∫ 2π

0

√

4 sin2(t/2) dt.

Since 0 ≤ t ≤ 2π, sin(t/2) ≥ 0, so we can rewrite this as

∫ 2π

0

2 sin(t/2) dt = 8.

♣

Exercises for 10.5

Exercise 10.5.1. Consider the curve of 10.4.6 in section 10.4. Find all values of t for
which the curve has a horizontal tangent line.

Exercise 10.5.2. Consider the curve of 10.4.6 in section 10.4. Find the area under one
arch of the curve.

Exercise 10.5.3. Consider the curve of 10.4.6 in section 10.4. Set up an integral for the
length of one arch of the curve.

10.6 Conics in Polar Coordinates

A conic section is a curve obtained as the intersection of a cone and a plane. One useful
geometric definition that only involves the plane is that a conic consists of those points whose
distances to some point, called a focus, and some line, called a directrix, are in a fixed
ratio, called the eccentricity.

The three types of conic sections are the ellipse, parabola and hyperbola (with the circle
being a special case of an ellipse).
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Circle

Ellipse

Parabola

Hyperbola

Let F be a fixed point (the focus), L be a line (the directrix) not containing F and e be
a nonnegative real number (the eccentricity). The conics sections are obtained by the set of
all points P whose distance to F equals e times their distance to L, that is:

|PF |
|PL| = e.

In the case that:

� e < 1 we obtain an ellipse (and when e = 0 we obtain a circle),

� e = 1 we obtain a parabola,

� e > 1 we obtain a hyperbola.

To obtain a simple polar equation we place the focal point at the origin. The formulation
for a conic section is then given in the polar form by

r =
pe

1± e cos θ
and r =

pe

1± e sin θ

where e is the eccentricity and p is the focal parameter representing the distance from the
focus (or one of the two foci) to the directrix.

The three different types of conic sections are shown below. Focal-points corresponding
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to all conic sections are placed at the origin. First is the parabola.

Next is the ellipse.
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Finally, we have the hyperbola.

Some things to keep in mind are about the denominator of a polar equation of a conic
are:

� If the denominator is 1 + e sin θ, it has a horizontal directrix above the focal point.

� If the denominator is 1− e sin θ, it has a horizontal directrix below the focal point.

� If the denominator is 1 + e cos θ, it has a vertical directrix to the right of the focal
point.

� If the denominator is 1− e cos θ, it has a vertical directrix to the left of the focal point.

Example 10.17: Polar Equations for a Parabola

Find the equation of a parabola with focus at the origin and whose directrix is the
line x = −1.

Solution. Since we have a parabola, e = 1. Furthermore, p = 1. Since the graph has a
vertical directrix, the equation will use 1 − e cos θ in the denominator. Thus, the equation
is:

r =
2

1− sin θ

♣
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Exercises for 10.6

Exercise 10.6.1. Identify the following conics and find the eccentricity.

a) r =
2

1 + sin θ
d) r =

3

1− sin θ

a) r =
4

2 + cos θ
d) r =

5

2 + 2 sin θ

Exercise 10.6.2. Write the polar equation of a parabola with focus at the origin and directrix
x = 3.

Exercise 10.6.3. Write the polar equation of a hyperbola with focus at the origin, directrix
x = 4 and eccentricity 2.

Exercise 10.6.4. Write the polar equation of an ellipse with focus at the origin, directrix
x = 4 sec θ and eccentricity 1/2.
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11. Selected Exercise Answers

1.1.1 a = 2, b = −5
3
, c = 3

2
.

1.1.2 x = −4 and x = 6.

1.1.4 (a) (5/3,∞) (b) [1/7, 2/7] (c) (−∞,−3) ∪ (−2, 1]

1.1.5 x = −1
2
and x = −1

6
.

1.2.1 a) (2/3)x+ (1/3) b) y = −2x c) y = (−2/3)x+ (1/3)

1.2.2 a) y = 2x+ 2, 2, −1
b) y = −x+ 6, 6, 6
c)y = x/2 + 1/2, 1/2, −1
d) y = 3/2, y-intercept: 3/2, no x-intercept
e) y = (−2/3)x− 2, −2, −3

1.2.3 Yes, the lines are parallel as they have the same slope of −1/2

1.2.4 y = 0, y = −2x+ 2, y = 2x+ 2

1.2.5 y = (9/5)x+ 32, (−40,−40)

1.2.6 y = 0.15x+ 10

1.2.7 0.03x+ 1.2

1.2.8 (a) P = −0.0001x+ 2
(b) x = −10000P + 20000

1.2.9 (2/25)x− (16/5)

1.2.10 a) 2 b)
√
2 c)
√
2

1.2.12 (a) x2 + y2 = 9 (b) (x− 5)2 + (y − 6)2 = 9 (c) (x+ 5)2 + (y + 6)2 = 9

1.2.14 (a) circle (b) ellipse (c) horizontal parabola

1.2.15 (x+ 2/7)2 + (y − 41/7)2 = 1300/49

1.3.1 2nπ − π/2, any integer n

1.3.2 nπ ± π/6, any integer n

1.3.4 (
√
2 +
√
6)/4

1.3.5 −(1 +
√
3)/(1−

√
3) = 2 +

√
3
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1.3.8 t = π/2

2.1.1 a) {x | x ∈ R}, i.e., all x b) {x | x ≥ 3/2} c) {x | x 6= −1} d) {x | x 6= 1 and x 6= −1}
e) {x | x < 0} f) {x | x ∈ R}, i.e., all x g) {x | h − r ≤ x ≤ h + r} h) {x | x ≥ 0} i)
{x | −1 ≤ x ≤ 1} j) {x | x ≥ 1} k) {x | −1/3 < x < 1/3} l) {x | x ≥ 0 and x 6= 1} m)
{x | x ≥ 0 and x 6= 1}

2.1.2 A = x(500− 2x), {x | 0 ≤ x ≤ 250}

2.1.3 V = r(50− πr2), {r | 0 < r ≤
√

50/π}

2.1.4 A = 2πr2 + 2000/r, {r | 0 < r <∞}

2.2.3 {x | x ≥ 3}, {x | x ≥ 0}

2.3.1 y = 2x

2.3.2 x 6= 0

3.3.1 (a) 8, (b) 6, (c) dne, (d) −2, (e) −1, (f) 8, (g) 7, (h) 6, (i) 3, (j) −3/2, (k) 6, (l) 2

3.4.1 a) 7 b) 5 c) 0 d) undefined e) 1/6 f) 0 g) 3 h) 172 i) 0 j) 2 k) does not exist l)
√
2 m)

3a2 n) 512

3.5.1 a) 1 b) 1 c) −∞ d) 1/3 e) 0 f) ∞ g) ∞ h) 2/7 i) 2 j) −∞ k) ∞ l) 0 m) 1/2 n) 5 o)
2
√
2 p) 3/2 q) ∞ r) does not exist

3.5.2 y = 1 and y = −1

3.6.1 a) 5 b) 7/2 c) 3/4 d) 1 e) −
√
2/2

3.6.2 7

3.6.3 2

4.1.1 −5, −2.47106145, −2.4067927, −2.400676, −2.4

4.1.2 −4/3, −24/7, 7/24, 3/4

4.1.3 −0.107526881, −0.11074197, −0.1110741, −1
3(3 + ∆x)

→ −1
9

4.1.4
3 + 3∆x+∆x2

1 + ∆x
→ 3

4.1.5 3.31, 3.003001, 3.0000,
3 + 3∆x+∆x2 → 3

4.1.6 m
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4.1.9 10, 25/2, 20, 15, 25, 35.

4.1.10 5, 4.1, 4.01, 4.001, 4 + ∆t→ 4

4.1.11 −10.29, −9.849, −9.8049,
−9.8− 4.9∆t→ −9.8

4.2.1 (a) −x/
√
169− x2 (b) −9.8t (c) 2x+ 1/x2 (d) 2ax+ b (e) 3x2 (f) −2/(2x+ 1)3/2 (g)

5/(t+ 2)2

4.2.4 y = −13x+ 17

4.2.5 −8

4.3.1 (a) 100x99 (b) −100x−101 (c) −5x−6 (d) πxπ−1 (e) (3/4)x−1/4 (f) −(9/7)x−16/7 (g)
15x2 +24x (h) −20x4 +6x+10/x3 (i) −30x+25 (j) 3x2 +6x− 1 (k) 9x2− x/

√
625− x2 (l)

3x2(x3−5x+10)+x3(3x2−5) (m) Omitted. (n)

√
625− x2

2
√
x

− x
√
x√

625− x2
(o)

−1
x19
√
625− x2

−

20
√
625− x2

x21

4.3.2 y = 13x/4 + 5

4.3.3 y = 24x− 48− π3

4.3.4 −49t/5 + 5, −49/5

4.3.6
n
∑

k=1

kakx
k−1

4.3.7 x3/16− 3x/4 + 4

4.3.10 f ′ = 4(2x− 3), y = 4x− 7

4.3.12
3x2

x3 − 5x+ 10
− x3(3x2 − 5)

(x3 − 5x+ 10)2

4.3.13
2x+ 5

x5 − 6x3 + 3x2 − 7x+ 1
− (x2 + 5x− 3)(5x4 − 18x2 + 6x− 7)

(x5 − 6x3 + 3x2 − 7x+ 1)2

4.3.14
1

2
√
x
√
625− x2

+
x3/2

(625− x2)3/2

4.3.15
−1

x19
√
625− x2

− 20
√
625− x2

x21

4.3.16 y = 17x/4− 41/4

4.3.17 y = 11x/16− 15/16
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4.3.18 13/18

4.4.2 π/6 + 2nπ, 5π/6 + 2nπ, any integer n

4.5.1 4x3 − 9x2 + x+ 7

4.5.2 3x2 − 4x+ 2/
√
x

4.5.3 6(x2 + 1)2x

4.5.4
√
169− x2 − x2/

√
169− x2

4.5.5 (2x− 4)
√
25− x2−

(x2 − 4x+ 5)x/
√
25− x2

4.5.6 −x/
√
r2 − x2

4.5.7 2x3/
√
1 + x4

4.5.8
1

4
√
x(5−√x)3/2

4.5.9 6 + 18x

4.5.10
2x+ 1

1− x
+

x2 + x+ 1

(1− x)2

4.5.11 −1/
√
25− x2 −

√
25− x2/x2

4.5.12
1

2

(−169
x2
− 1

)

/

√

169

x
− x

4.5.13
3x2 − 2x+ 1/x2

2
√

x3 − x2 − (1/x)

4.5.14
300x

(100− x2)5/2

4.5.15
1 + 3x2

3(x+ x3)2/3

4.5.16

(

4x(x2 + 1) +
4x3 + 4x

2
√

1 + (x2 + 1)2

)

/

2
√

(x2 + 1)2 +
√

1 + (x2 + 1)2

4.5.17 5(x+ 8)4

4.5.18 −3(4− x)2

332



4.5.19 6x(x2 + 5)2

4.5.20 −12x(6− 2x2)2

4.5.21 24x2(1− 4x3)−3

4.5.22 5 + 5/x2

4.5.23 −8(4x− 1)(2x2 − x+ 3)−3

4.5.24 1/(x+ 1)2

4.5.25 3(8x− 2)/(4x2 − 2x+ 1)2

4.5.26 −3x2 + 5x− 1

4.5.27 6x(2x− 4)3 + 6(3x2 + 1)(2x− 4)2

4.5.28 −2/(x− 1)2

4.5.29 4x/(x2 + 1)2

4.5.30 (x2 − 6x+ 7)/(x− 3)2

4.5.31 −5/(3x− 4)2

4.5.32 60x4 + 72x3 + 18x2 + 18x− 6

4.5.33 (5− 4x)/((2x+ 1)2(x− 3)2)

4.5.34 1/(2(2 + 3x)2)

4.5.35 56x6 + 72x5 + 110x4 + 100x3 + 60x2 + 28x+ 6

4.5.36 y = 23x/96− 29/96

4.5.37 y = 3− 2x/3

4.5.38 y = 13x/2− 23/2

4.5.39 y = 2x− 11

4.5.40 y =
20 + 2

√
5

5
√

4 +
√
5
x+

3
√
5

5
√

4 +
√
5

4.6.1 2 ln(3)x3x
2

4.6.2
cosx− sin x

ex

4.6.3 2e2x
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4.6.4 ex cos(ex)

4.6.5 cos(x)esinx

4.6.6 xsinx

(

cosx ln x+
sin x

x

)

4.6.7 3x2ex + x3ex

4.6.8 1 + 2x ln(2)

4.6.9 −2x ln(3)(1/3)x2

4.6.10 e4x(4x− 1)/x2

4.6.11 (3x2 + 3)/(x3 + 3x)

4.6.12 − tan(x)

4.6.13 (1− ln(x2))/(x2
√

ln(x2))

4.6.14 sec(x)

4.6.15 xcos(x)(cos(x)/x− cos(x) ln(x))

4.6.20 e

4.7.1 (a) x/y (b)−(2x+y)/(x+2y) (c) (2xy−3x2−y2)/(2xy−3y2−x2) (d) sin(x) sin(y)/(cos(x) cos(y))
(e) −√y/

√
x (f) (y sec2(x/y)− y2)/(x sec2(x/y) + y2) (g) (y − cos(x+ y))/(cos(x+ y)− x)

(h) −y2/x2

4.7.2 1

4.7.3 y = 2x± 6

4.7.4 y = x/2± 3

4.7.5 (
√
3, 2
√
3), (−

√
3,−2

√
3), (2

√
3,
√
3), (−2

√
3,−
√
3)

4.7.6 y = 7x/
√
3− 8/

√
3

4.7.7 y = (−y1/31 x+ y
1/3
1 x1 + x

1/3
1 y1)/x

1/3
1

4.7.8 (y − y1)/(x− x1) = (2x3
1 + 2x1y

2
1 − x1)/(2y

3
1 + 2y1x

2
1 + y1)

4.8.1 1

5.1.1 L(x) = x, f(0.1) ≈ L(0.1) = 0.1
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5.1.2 Choose f(x) = x3 and a = 2, the closest integer to 1.9. The linearization of f at a is
L(x) = 12(x− 2) + 8, and (1.9)3 = f(1.9) ≈ L(1.9) = 12(1.9− 2) + 8 = 6.8.

5.1.4 Choose a = 7 since f(7) = 3
√
7 + 1 = 3

√
8 = 2 is an integer close to 3

√
9. The

linearization of f at a = 7 is L(x) = 1/12(x − 7) + 2. Then f(8) = 3
√
8 + 1 = 3

√
9 ≈ L(8) =

1/12(8−7)+2 = 2.083̄. We are over-estimating 3
√
9 since L(x) > f(x) for all x around a = 7.

5.1.5 ∆y = 65/16, dy = 2

5.1.6 ∆y =
√

11/10− 1, dy = 0.05

5.1.7 ∆y = sin(π/50), dy = π/50

5.1.8 dV = 8π/25

5.1.9 T5(x) = x − x3

3!
+ x5

5!
a) sin(0.1) ≈ T5(0.1) ≈ 0.10016675 b) sin(0.1) = 0.0998334 . . .

using a calculator. Our approximation is accurate to 0.10016675− 0.0998334 . . . = 0.0003̄.

5.1.10 T3(x) = x+ x2 + x3. The point x = 5 is not close to x = 0, and f is not continuous
at x = 1.

5.1.11 a) f (n)(x) = (−1)(n−1)(n−1)!
xn

b) Tn(x) = ln(1)+
n
∑

i=1

( (−1)(i−1)(i−1)!
1n

)

i!
(x−1)i =

n
∑

i=1

(

(−1)(i−1)(i− 1)!

i!

)

(x−1)i since ln(1) = 0

and 1n = 1.

5.1.12 Notice f(−2) = 18, f(0) = −12, and f(5) = 18 and f is a continuous function. By
the Intermediate Value Theorem there exists a root in [−2, 0] and [0, 5]. Choose x0 = 0, then
x4 ≈ 1. Choose x0 = 5, then x3 ≈ 4.

5.1.13 a) x4 ≈ 1.00022 . . . b) x = 1 is the root of f . Our approximation in part a) was
correct to 3 decimal places. c) x1 = 1. The root is found in one iteration of Newton’s
Method.

5.1.14 cos(π/2) = 0, so x1 is undefined.

5.2.1 0

5.2.2 ∞

5.2.3 0

5.2.4 0

5.2.5 1/6

5.2.6 1/16

5.2.7 3/2
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5.2.8 −1/4

5.2.9 −3

5.2.10 1/2

5.2.11 0

5.2.12 −1

5.2.13 −1/2

5.2.14 5

5.2.15 1

5.2.16 1

5.2.17 2

5.2.18 1

5.2.19 0

5.2.20 1/2

5.2.21 2

5.2.22 0

5.2.23 1/2

5.2.24 −1/2

5.2.25 2

5.2.26 0

5.2.27 ∞

5.2.28 0

5.2.29 5

5.2.30 −1/2

5.3.1 min at x = 1/2

5.3.2 min at x = −1, max at x = 1

5.3.3 max at x = 2, min at x = 4
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5.3.4 min at x = ±1, max at x = 0.

5.3.5 min at x = 1

5.3.6 none

5.3.7 none

5.3.8 min at x = 7π/12 + kπ, max at x = −π/12 + kπ, for integer k.

5.3.9 local min at x = 49

5.3.12 one

5.3.16 min at x = 1/2

5.3.17 min at x = −1, max at x = 1

5.3.18 max at x = 2, min at x = 4

5.3.19 min at x = ±1, max at x = 0.

5.3.20 min at x = 1

5.3.21 none

5.3.22 none

5.3.23 min at x = 7π/12 + kπ, max at x = −π/12 + kπ, for integer k.

5.3.24 none

5.3.25 max at x = 0, min at x = ±11

5.3.26 min at x = −3/2, neither at x = 0

5.3.27 min at nπ, max at π/2 + nπ

5.3.28 min at 2nπ, max at (2n+ 1)π

5.3.29 min at π/2 + 2nπ, max at 3π/2 + 2nπ

5.3.32 min at x = 1/2

5.3.33 min at x = −1, max at x = 1

5.3.34 max at x = 2, min at x = 4

5.3.35 min at x = ±1, max at x = 0.

5.3.36 min at x = 1
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5.3.37 none

5.3.38 none

5.3.39 min at x = 7π/12 + nπ, max at x = −π/12 + nπ, for integer n.

5.3.40 max at x = 63/64

5.3.41 max at x = 7

5.3.42 max at −5−1/4, min at 5−1/4

5.3.43 none

5.3.44 max at −1, min at 1

5.3.45 min at 2−1/3

5.3.46 none

5.3.47 min at nπ

5.3.48 max at nπ, min at π/2 + nπ

5.3.49 max at π/2 + 2nπ, min at 3π/2 + 2nπ

5.3.50 concave up everywhere

5.3.51 concave up when x < 0, concave down when x > 0

5.3.52 concave down when x < 3, concave up when x > 3

5.3.53 concave up when x < −1/
√
3 or x > 1/

√
3, concave down when −1/

√
3 < x < 1/

√
3

5.3.54 concave up when x < 0 or x > 2/3, concave down when 0 < x < 2/3

5.3.55 concave up when x < 0, concave down when x > 0

5.3.56 concave up when x < −1 or x > 1, concave down when −1 < x < 0 or 0 < x < 1

5.3.57 concave down on ((8n−1)π/4, (8n+3)π/4), concave up on ((8n+3)π/4, (8n+7)π/4),
for integer n

5.3.58 concave down everywhere

5.3.59 concave up on (−∞, (21−
√
497)/4) and (21 +

√
497)/4,∞)

5.3.60 concave up on (0,∞)

5.3.61 concave down on (2nπ/3, (2n+ 1)π/3)
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5.3.62 concave up on (0,∞)

5.3.63 concave up on (−∞,−1) and (0,∞)

5.3.64 concave down everywhere

5.3.65 concave up everywhere

5.3.66 concave up on (π/4 + nπ, 3π/4 + nπ)

5.3.67 inflection points at nπ, ± arcsin(
√

2/3) + nπ

5.3.68 up/incr: (3,∞), up/decr: (−∞, 0), (2, 3), down/decr: (0, 2)

5.4.1 c = 1/2

5.4.2 c =
√
18− 2

5.4.6 x3/3 + 47x2/2− 5x+ k

5.4.7 arctanx+ k

5.4.8 x4/4− ln x+ k

5.4.9 − cos(2x)/2 + k

5.5.1 25× 25

5.5.2 P/4× P/4

5.5.3 w = l = 2 · 52/3, h = 52/3, h/w = 1/2

5.5.4
3
√
100× 3

√
100× 2

3
√
100, h/s = 2

5.5.5 w = l = 21/3V 1/3, h = V 1/3/22/3, h/w = 1/2

5.5.6 1250 square feet

5.5.7 l2/8 square feet

5.5.8 $5000

5.5.9 100

5.5.10 r2

5.5.11 h/r = 2

5.5.12 h/r = 2

5.5.13 r = 5, h = 40/π, h/r = 8/π
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5.5.14 8/π

5.5.15 4/27

5.5.16 (a) 2, (b) 7/2

5.5.17

√
3

6
×
√
3

6
+

1

2
× 1

4
−
√
3

12

5.5.18 (a) a/6, (b) (a+ b−
√
a2 − ab+ b2)/6

5.5.19 1.5 meters wide by 1.25 meters tall

5.5.20 If k ≤ 2/π the ratio is (2 − kπ)/4; if k ≥ 2/π, the ratio is zero: the window should
be semicircular with no rectangular part.

5.5.21 a/b

5.5.22 1/
√
3 ≈ 58%

5.5.23 18× 18× 36

5.5.24 r = 5/(2π)1/3 ≈ 2.7 cm,
h = 5 · 25/3/π1/3 = 4r ≈ 10.8 cm

5.5.25 h =
750

π

(

2π2

7502

)1/3

, r =

(

7502

2π2

)1/6

5.5.26 h/r =
√
2

5.5.27 1/2

5.5.28 $7000

5.6.1 1/(16π) cm/s

5.6.2 3/(1000π) meters/second

5.6.3 1/4 m/s

5.6.4 −6/25 m/s

5.6.5 80π mi/min

5.6.6 3
√
5 ft/s

5.6.7 20/(3π) cm/s

5.6.8 13/20 ft/s
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5.6.9 5
√
10/2 m/s

5.6.10 75/64 m/min

5.6.11 tip: 6 ft/s, length: 5/2 ft/s

5.6.12 tip: 20/11 m/s, length: 9/11 m/s

5.6.13 380/
√
3− 150 ≈ 69.4 mph

5.6.14 500/
√
3− 200 ≈ 88.7 km/hr

5.6.15 4000/49 m/s

6.1.1 10

6.1.2 35/3

6.1.3 x2

6.1.4 2x2

6.1.5 2x2 − 8

6.1.6 2b2 − 2a2

6.1.7 4 rectangles: 41/4 = 10.25, 8 rectangles: 183/16 = 11.4375

6.1.8 23/4

6.2.1 87/2

6.2.2 2

6.2.3 ln(10)

6.2.4 e5 − 1

6.2.5 34/4

6.2.6 26/6− 1/6

6.2.7 x2 − 3x

6.2.8 2x(x4 − 3x2)

6.2.9 ex
2

6.2.10 2xex
4

6.2.11 tan(x2)
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6.2.12 2x tan(x4)

6.3.1 (16/3)x3/2 + C

6.3.2 t3 + t+ C

6.3.3 8
√
x+ C

6.3.4 −2/z + C

6.3.5 7 ln s+ C

6.3.6 (5x+ 1)3/15 + C

6.3.7 (x− 6)3/3 + C

6.3.8 2x5/2/5 + C

6.3.9 −4/
√
x+ C

6.3.10 4t− t2 + C, t < 2; t2 − 4t+ 8 + C, t ≥ 2

7.1.1 −(1− t)10/10 + C

7.1.2 x5/5 + 2x3/3 + x+ C

7.1.3 (x2 + 1)101/202 + C

7.1.4 −3(1− 5t)2/3/10 + C

7.1.5 (sin4 x)/4 + C

7.1.6 −(100− x2)3/2/3 + C

7.1.7 −2
√
1− x3/3 + C

7.1.8 sin(sin πt)/π + C

7.1.9 1/(2 cos2 x) = (1/2) sec2 x+ C

7.1.10 − ln | cosx| + C

7.1.11 0

7.1.12 tan2(x)/2 + C

7.1.13 1/4

7.1.14 − cos(tanx) + C

7.1.15 1/10
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7.1.16
√
3/4

7.1.17 (27/8)(x2 − 7)8/9

7.1.18 −(37 + 1)/14

7.1.19 0

7.1.20 f(x)2/2

7.2.1 x/2− sin(2x)/4 + C

7.2.2 − cosx+ (cos3 x)/3 + C

7.2.3 3x/8− (sin 2x)/4 + (sin 4x)/32 + C

7.2.4 (cos5 x)/5 − (cos3 x)/3 + C

7.2.5 sin x− (sin3 x)/3 + C

7.2.6 (sin3 x)/3− (sin5 x)/5 + C

7.2.7 −2(cosx)5/2/5 + C

7.2.8 tanx− cotx+ C

7.2.9 (sec3 x)/3− sec x+ C

7.2.10 − cosx+ sin x+ C

7.2.11
3

2
ln | sec x+ tanx| + tanx+

1

2
sec x tanx+ C

7.2.12
tan5(x2)

10
+ C

7.3.1 x
√
x2 − 1/2− ln |x+

√
x2 − 1|/2 + C

7.3.2 x
√
9 + 4x2/2 + (9/4) ln |2x+

√
9 + 4x2|+ C

7.3.3 −(1− x2)3/2/3 + C

7.3.4 arcsin(x)/8− sin(4 arcsin x)/32 + C

7.3.5 ln |x+
√
1 + x2|+ C

7.3.6 (x+ 1)
√
x2 + 2x/2− ln |x+ 1 +

√
x2 + 2x|/2 + C

7.3.7 − arctan x− 1/x+ C

7.3.8 2 arcsin(x/2)− x
√
4− x2/2 + C
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7.3.9 arcsin(
√
x)−

√
x
√
1− x+ C

7.3.10 (2x2 + 1)
√
4x2 − 1/24 + C

7.4.1 cosx+ x sin x+ C

7.4.2 x2 sin x− 2 sin x+ 2x cosx+ C

7.4.3 (x− 1)ex + C

7.4.4 (1/2)ex
2

+ C

7.4.5 (x/2)− sin(2x)/4 + C =
(x/2)− (sin x cosx)/2 + C

7.4.6 x ln x− x+ C

7.4.7 (x2 arctan x+ arctan x− x)/2 + C

7.4.8 −x3 cosx+ 3x2 sin x+ 6x cosx− 6 sin x+ C

7.4.9 x3 sin x+ 3x2 cosx− 6x sin x− 6 cosx+ C

7.4.10 x2/4− (cos2 x)/4− (x sin x cosx)/2 + C

7.4.11 x/4− (x cos2 x)/2 + (cos x sin x)/4 + C

7.4.12 x arctan(
√
x) + arctan(

√
x)−√x+ C

7.4.13 2 sin(
√
x)− 2

√
x cos(

√
x) + C

7.4.14 sec x csc x− 2 cotx+ C

7.5.1 − ln |x− 2|/4 + ln |x+ 2|/4 + C

7.5.2 −x3/3− 4x− 4 ln |x− 2|+
4 ln |x+ 2|+ C

7.5.3 −1/(x+ 5) + C

7.5.4 −x− ln |x− 2|+ ln |x+ 2|+ C

7.5.5 −4x+ x3/3 + 8 arctan(x/2) + C

7.5.6 (1/2) arctan(x/2 + 5/2) + C

7.5.7 x2/2− 2 ln(4 + x2) + C

7.5.8 (1/4) ln |x+ 3| − (1/4) ln |x+ 7|+ C

7.5.9 (1/5) ln |2x− 3| − (1/5) ln |1 + x|+ C
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7.5.10 (1/3) ln |x| − (1/3) ln |x+ 3|+ C

7.6.1 T,S: 4± 0

7.6.2 T: 9.28125± 0.281125; S: 9± 0

7.6.3 T: 60.75± 1; S: 60± 0

7.6.4 T: 1.1167± 0.0833; S: 1.1000± 0.0167

7.6.5 T: 0.3235± 0.0026; S: 0.3217± 0.000065

7.6.6 T: 0.6478± 0.0052; S: 0.6438± 0.000033

7.6.7 T: 2.8833± 0.0834; S: 2.9000± 0.0167

7.6.8 T: 1.1170± 0.0077; S: 1.1114± 0.0002

7.6.9 T: 1.097± 0.0147; S: 1.089± 0.0003

7.6.10 T: 3.63± 0.087; S: 3.62± 0.032

7.8.1
(t+ 4)4

4
+ C

7.8.2
(t2 − 9)5/2

5
+ C

7.8.3
(et

2
+ 16)2

4
+ C

7.8.4 cos t− 2

3
cos3 t+ C

7.8.5
tan2 t

2
+ C

7.8.6 ln |t2 + t + 3|+ C

7.8.7
1

8
ln |1− 4/t2|+ C

7.8.8
1

25
tan(arcsin(t/5)) + C =

t

25
√
25− t2

+ C

7.8.9
2

3

√
sin 3t+ C

7.8.10 t tan t + ln | cos t|+ C

7.8.11 2
√
et + 1 + C
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7.8.12
3t

8
+

sin 2t

4
+

sin 4t

32
+ C

7.8.13
ln |t|
3
− ln |t+ 3|

3
+ C

7.8.14
−1

sin arctan t
+ C = −

√
1 + t2/t + C

7.8.15
−1

2(1 + tan t)2
+ C

7.8.16
(t2 + 1)5/2

5
− (t2 + 1)3/2

3
+ C

7.8.17
et sin t− et cos t

2
+ C

7.8.18
(t3/2 + 47)4

6
+ C

7.8.19
2

3(2− t2)3/2
− 1

(2− t2)1/2
+ C

7.8.20
ln | sin(arctan(2t/3))|

9
+ C = (ln(4t2)− ln(9 + 4t2))/18 + C

7.8.21
(arctan(2t))2

4
+ C

7.8.22
3 ln |t+ 3|

4
+

ln |t− 1|
4

+ C

7.8.23
cos7 t

7
− cos5 t

5
+ C

7.8.24
−1
t− 3

+ C

7.8.25
−1
ln t

+ C

7.8.26
t2(ln t)2

2
− t2 ln t

2
+

t2

4
+ C

7.8.27 (t3 − 3t2 + 6t− 6)et + C

7.8.28
5 +
√
5

10
ln(2t + 1−

√
5) +

5−
√
5

10
ln(2t+ 1 +

√
5) + C

8.1.1 It rises until t = 100/49, then falls. The position of the object at time t is s(t) =
−4.9t2 + 20t+ k. The net distance traveled is −45/2, that is, it ends up 45/2 meters below
where it started. The total distance traveled is 6205/98 meters.
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8.1.2

∫ 2π

0

sin t dt = 0

8.1.3 net: 2π, total: 2π/3 + 4
√
3

8.1.4 8

8.1.5 17/3

8.1.6 A = 18, B = 44/3, C = 10/3

8.2.1 8
√
2/15

8.2.2 1/12

8.2.3 9/2

8.2.4 4/3

8.2.5 2/3− 2/π

8.2.6 3/π − 3
√
3/(2π)− 1/8

8.2.7 1/3

8.2.8 10
√
5/3− 6

8.2.9 500/3

8.2.10 2

8.2.11 1/5

8.2.12 1/6

8.3.5 8π/3

8.3.6 π/30

8.3.7 π(π/2− 1)

8.3.8 (a) 114π/5 (b) 74π/5 (c) 20π
(d) 4π

8.3.9 16π, 24π

8.3.11 πh2(3r − h)/3

8.3.13 2π

8.4.1 2/π; 2/π; 0
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8.4.2 4/3

8.4.3 1/A

8.4.4 π/4

8.4.5 −1/3, 1

8.4.6 −4
√
1224 ft/s; −8

√
1224 ft/s

8.5.1 ≈ 5, 305, 028, 516 N-m

8.5.2 ≈ 4, 457, 854, 041 N-m

8.5.3 367, 500π N-m

8.5.4 49000π + 196000/3 N-m

8.5.5 2450π N-m

8.5.6 0.05 N-m

8.5.7 6/5 N-m

8.5.8 3920 N-m

8.5.9 23520 N-m

8.5.10 12740 N-m

8.6.1 (22
√
22− 8)/27

8.6.2 ln(2) + 3/8

8.6.3 a+ a3/3

8.6.4 ln((
√
2 + 1)/

√
3)

8.6.6 3/4

8.6.7 ≈ 3.82

8.6.8 ≈ 1.01

8.6.9
√
1 + e2 −

√
2 +

1

2
ln

(√
1 + e2 − 1√
1 + e2 + 1

)

+
1

2
ln(3 + 2

√
2)

8.7.1 8π
√
3− 16π

√
2

3
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8.7.3
730π

√
730

27
− 10π

√
10

27

8.7.4 π + 2πe+
1

4
πe2 − π

4e2
− 2π

e

8.7.6 8π2

8.7.7 2π +
8π2

3
√
3

8.7.8 a > b: 2πb2+
2πa2b√
a2 − b2

arcsin(
√
a2 − b2/a),

a < b: 2πb2+
2πa2b√
b2 − a2

ln

(

b

a
+

√
b2 − a2

a

)

9.1.2 y = arctan t+ C

9.1.3 y =
tn+1

n + 1
+ 1

9.1.4 y = t ln t− t+ C

9.1.5 y = nπ, for any integer n.

9.1.6 none

9.1.7 y = ±
√
t2 + C

9.1.8 y = ±1, y = (1 + Ae2t)/(1− Ae2t)

9.1.9 y4/4− 5y = t2/2 + C

9.1.10 y = (2t/3)3/2

9.1.11 y = M + Ae−kt

9.1.12
10 ln(15/2)

ln 5
≈ 2.52 minutes

9.1.13 y =
M

1 + Ae−Mkt

9.1.14 y = 2e3t/2

9.1.15 t = − ln 2
k

9.1.16 600e−6 ln 2/5 ≈ 261 mg;
5 ln 300

ln 2
≈ 41 days
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9.1.17 100e−200 ln 2/191 ≈ 48 mg;
5730 ln 50

ln 2
≈ 32339 years

9.1.18 y = y0e
t ln 2

9.1.19 500e−5 ln 2/4 ≈ 210 g

9.2.1 y = Ae−5t

9.2.2 y = Ae2t

9.2.3 y = Ae− arctan t

9.2.4 y = Ae−t3/3

9.2.5 y = 4e−t

9.2.6 y = −2e3t−3

9.2.7 y = e1+cos t

9.2.8 y = e2e−et

9.2.9 y = 0

9.2.10 y = 0

9.2.11 y = 4t2

9.2.12 y = −2e(1/t)−1

9.2.13 y = e1−t−2

9.2.14 y = 0

9.2.15 k = ln 5, y = 100e−t ln 5

9.2.16 k = −12/13, y = exp(−13t1/13)

9.2.17 y = 106et ln(3/2)

9.2.18 y = 10e−t ln(2)/6

9.3.1 y = Ae−4t + 2

9.3.2 y = Ae2t − 3

9.3.3 y = Ae−(1/2)t2 + 5

9.3.4 y = Ae−et − 2
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9.3.5 y = Aet − t2 − 2t− 2

9.3.6 y = Ae−t/2 + t− 2

9.3.7 y = At2 − 1

3t

9.3.8 y =
c

t
+

2

3

√
t

9.3.9 y = A cos t + sin t

9.3.10 y =
A

sec t+ tan t
+ 1− t

sec t+ tan t

9.4.1 y(1) ≈ 1.355

9.4.2 y(1) ≈ 40.31

9.4.3 y(1) ≈ 1.05

9.4.4 y(1) ≈ 2.30

9.5.1
ω + 1

2ω
eωt +

ω − 1

2ω
e−ωt

9.5.2 2 cos(3t) + 5 sin(3t)

9.5.3 −(1/4)e−5t + (5/4)e−t

9.5.4 −2e−3t + 2e4t

9.5.5 5e−6t + 20te−6t

9.5.6 (16t− 3)e4t

9.5.7 −2 cos(
√
5t) +

√
5 sin(

√
5t)

9.5.8 −
√
2 cos t+

√
2 sin t

9.5.9 e−6t (4 cos t+ 24 sin t)

9.5.10 2e−3t sin(3t)

9.5.11 2 cos(2t− π/6)

9.5.12 5
√
2 cos(10t− π/4)

9.5.13
√
2e−2t cos(3t− π/4)

9.5.14 5e4t cos(3t+ arcsin(4/5))
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9.5.15 (2 cos(5t) + sin(5t))e−2t

9.5.16 −(1/2)e−2t sin(2t)

9.6.1 Ae5t +Bte5t + (6/169) cos t− (5/338) sin t

9.6.2 Ae−
√
2t +Bte−

√
2t + 5

9.6.3 A cos(4t) +B sin(4t) + (1/2)t2 + (3/16)t− 5/16

9.6.4 A cos(
√
2t) +B sin(

√
2t)− (cos(5t) + sin(5t))/23

9.6.5 et(A cos t+B sin t) + e2t/2

9.6.6 Ae
√
6t +Be−

√
6t + 2− t/3− e−t/5

9.6.7 Ae−3t +Be2t − (1/5)te−3t

9.6.8 Aet +Be3t + (1/2)te3t

9.6.9 A cos(4t) +B sin(4t) + (1/8)t sin(4t)

9.6.10 A cos(3t) +B sin(3t)− (1/2)t cos(3t)

9.6.11 Ae−6t +Bte−6t + 3t2e−6t

9.6.12 Ae4t +Bte4t − t2e4t

9.6.13 Ae−t +Be−5t + (4/5)

9.6.14 Ae4t +Be−3t + (1/144)− (t/12)

9.6.15 A cos(
√
5t) +B sin(

√
5t) + 8 sin(2t)

9.6.16 Ae2t +Be−2t + te2t

9.6.17 4et + e−t − 3t− 5

9.6.18 −(4/27) sin(3t) + (4/9)t

9.6.19 e−6t(2 cos t + 20 sin t) + 2e−4t

9.6.20

(

− 23

325
cos(3t) +

592

975
sin(3t)

)

+
23

325
cos t− 11

325
sin t

9.6.21 e−2t(A sin(5t) +B cos(5t)) + 8 sin(2t) + 25 cos(2t)

9.6.22 e−2t(A sin(2t) +B cos(2t)) + (14/195) sin t− (8/195) cos t

9.7.1 A sin(t) +B cos(t)−
cos t ln | sec t+ tan t|
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9.7.2 A sin(t) +B cos(t) +
1

5
e2t

9.7.3 A sin(2t) +B cos(2t) + cos t− sin t cos t ln | sec t + tan t|

9.7.4 A sin(2t)+B cos(2t)+
1

2
sin(2t) sin2(t)+

1

2
sin(2t) ln | cos t|− t

2
cos(2t)+

1

4
sin(2t) cos(2t)

9.7.5 Ae2t +Be−3t +
t3

15
e2t −

(

t2

5
− 2t

25
+

2

125

)

e2t

5

9.7.6 Aet sin t+Bet cos t− et cos t ln | sec t + tan t|

9.7.7 Aet sin t+Bet cos t− 1

10
cos t(cos3 t+3 sin3 t−2 cos t−sin t)+

1

10
sin t(sin3 t−3 cos3 t−

2 sin t+ cos t) =
1

10
cos(2t)− 1

20
sin(2t)

10.1.2 a) θ = arctan(3) b) r = −4 csc θ c) r = sec θ csc2 θ d) r =
√
5 e) r2 = sin θ sec3 θ f)

r sin θ = sin(r cos θ) g) r = 2/(sin θ − 5 cos θ) h) r = 2 sec θ i) 0 = r2 cos2 θ − r sin θ + 1

10.1.4 a) (x2+y2)2 = 4x2y−(x2+y2)y b) (x2+y2)3/2 = y2 c) x2+y2 = x2y2 d) x4+x2y2 = y2

10.2.1 a) (θ cos θ+sin θ)/(−θ sin θ+cos θ), (θ2+2)/(−θ sin θ+cos θ)3 b)
cos θ + 2 sin θ cos θ

cos2 θ − sin2 θ − sin θ
,

3(1 + sin θ)

(cos2 θ − sin2 θ − sin θ)3
c) (sin2 θ−cos2 θ)/(2 sin θ cos θ), −1/(4 sin3 θ cos3 θ) d)

2 sin θ cos θ

cos2 θ − sin2 θ
,

2

(cos2 θ − sin2 θ)3
e) undefined f)

2 sin θ − 3 sin3 θ

3 cos3 θ − 2 cos θ
,
3 cos4 θ − 3 cos2 θ + 2

2 cos3 θ(3 cos2 θ − 2)3

10.3.1 a) 1 b) 9π/2 c)
√
3/3 d) π/12 +

√
3/16 e) πa2/4 f) 41π/2

10.3.2 2− π/2

10.3.3 π/12

10.3.4 3π/16

10.3.5 π/4− 3
√
3/8

10.3.6 π/2 + 3
√
3/8

10.3.7 1

10.3.8 3/2− π/4

10.3.9 π/3 +
√
3/2

10.3.10 π/3−
√
3/4

10.3.11 4π3/3
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10.3.12 π2

10.3.13 5π/24−
√
3/4

10.3.14 7π/12−
√
3

10.3.15 4π −
√
15/2− 7 arccos(1/4)

10.3.16 3π3

10.4.6 x = t− sin(t)

2
, t = 1− cos(t)

2

10.5.1 There is a horizontal tangent at all multiples of π.

10.5.2 9π/4

10.5.3

∫ 2π

0

1

2

√
5− 4 cos t dt
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