1    | /***************************************
2    |   $Revision: 1.28 $
3    | 
4    |   IP handling (ip). ip.c  - conversions between ascii and binary forms 
5    |                             of IP addresses, prefixes and ranges.
6    |  
7    | 			    various operations on binary forms.
8    | 
9    |   Status: NOT REVUED, TESTED, COMPLETE
10   | 
11   |   Design and implementation by: Marek Bukowy
12   | 
13   |   ******************/ /******************
14   |   Copyright (c) 1999                              RIPE NCC
15   |  
16   |   All Rights Reserved
17   |   
18   |   Permission to use, copy, modify, and distribute this software and its
19   |   documentation for any purpose and without fee is hereby granted,
20   |   provided that the above copyright notice appear in all copies and that
21   |   both that copyright notice and this permission notice appear in
22   |   supporting documentation, and that the name of the author not be
23   |   used in advertising or publicity pertaining to distribution of the
24   |   software without specific, written prior permission.
25   |   
26   |   THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
27   |   ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS; IN NO EVENT SHALL
28   |   AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
29   |   DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
30   |   AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
31   |   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
32   |   ***************************************/
33   | 
34   | #define IP_IMPL
35   | #include <iproutines.h>
36   | #include <string.h>
37   | #include <stdio.h>
38   | #include <erroutines.h>
39   | 
40   | #include <ctype.h>
41   | #include <memwrap.h>
42   | 
43   | #include <numconv.h>
44   | #include <stubs.h>
45   | 
46   | #include <sys/socket.h>
47   | #include <netinet/in.h> 
48   | 
49   | #include <inet6def.h>
50   | #include <sys/param.h>
51   | 
52   | /**************************************************************************/
53   | /*+ return the max. length of bits per space
54   | 
55   |    Yes, it *could* be a macro - but as a function it can detect 
56   |    more programmer's errors. And will get inlined anyway.
57   | 
58   | +*/
59   | 
60   | unsigned IP_sizebits(ip_space_t spc_id) {
61   |   switch (spc_id) {
62   |   case IP_V4:
63   |     return 32;
64   |   case IP_V6:
65   |     return 128;
66   |   default:
67   |     die; /* error: bad IP version specified */
68   |     return 999999; /* just for the compiler */
69   |   }
70   | }
71   | 
72   | static
73   | er_ret_t
74   | ip_rang_validate(ip_range_t *rangptr) 
75   | {
76   |   if( rangptr->begin.space != rangptr->end.space ) {
77   |     /* die;  */ /* incompatible IP spaces */
78   |     return IP_INVRAN;
79   |   }
80   | 
81   |   /* XXX IPv6 range check missing */
82   |   if( rangptr->begin.space == IP_V4 ) {
83   |     if( rangptr->begin.words[0] > rangptr->end.words[0] ) {
84   |       return IP_INVRAN;
85   |     }
86   |   }
87   | 
88   |   return IP_OK;
89   | }
90   | /**************************************************************************/
91   | /*+
92   |    ascii IP address to binary.  
93   | 
94   |    In IP_EXPN mode IP will be "expanded"
95   |    (missing octets will be set to 0, MSB's will be set).
96   |    In IP_PLAIN mode the routine will complain if it sees less octets. 
97   |    
98   |    why not use the standard inet_blabla routine ?
99   |    it's because if some octets are missing, we make the address zero-padded
100  |    (unlike the inet_blabla, which puts zeros in the middle). We also want 
101  |    to control the expansion with a flag.
102  | 
103  |    +*/
104  | 
105  | er_ret_t 
106  | IP_addr_t2b(ip_addr_t *ipptr, char *addr, ip_exp_t expf)
107  | {
108  |   if( index(addr, ':') == NULL ) {
109  |     /* IPv4 */
110  |     char *dot=addr;
111  |     unsigned len, byte, result=0;
112  |     char cpy[4];
113  |     int last = 0, dotsfound=0;
114  |     int bytes=0;
115  | 
116  |     if( expf != IP_PLAIN && expf != IP_EXPN ) {
117  |       return IP_INVARG;
118  |     }
119  | 
120  |     do {
121  |       char *olddot = dot+1;
122  |       /* dot should point to the "end of this number", not necessarily a dot */
123  | 
124  |       if ( (dot = index (addr, '.')) == NULL) {
125  | 	/* after the ip it can contain lots of junk spaces */
126  | 	while( *olddot != 0 && ! isspace(* (unsigned char *) olddot)  ) {
127  | 	  olddot++;
128  | 	}
129  | 	dot = olddot;
130  | 	last = 1;
131  |       }
132  |       else {
133  | 	if( ++dotsfound > 3 ) {
134  | 	  /* handle syntax ERROR - too many dots found */
135  | 	  return IP_INVIP4;
136  | 	}
137  |       }
138  | 	
139  |       if ((len = dot - addr) > 3) {
140  | 	/* syntax ERROR - too many digits in an octet */
141  | 	return IP_INVIP4;
142  |       }
143  |       strncpy( cpy, addr, len );
144  |       cpy[len]=0;
145  | 
146  |       /* sscanf is waay too slow */
147  |        
148  |       if( ut_dec_2_uns(cpy, &byte) < 0 ) {
149  | 	/* handle syntax ERROR - invalid characters found */
150  | 	return IP_INVIP4;
151  |       }
152  |       
153  | 	
154  |       if( byte > 255 ) {
155  | 	/* handle syntax ERROR - number between dots too high */
156  | 	return IP_INVIP4;
157  |       }
158  |       
159  |       result <<= 8;
160  |       result += byte;
161  |       bytes++;
162  |       
163  |       addr = dot + 1;
164  |     } while (!last);
165  | 
166  |     if( expf == IP_PLAIN ) {
167  |       if( bytes!=4 ) {
168  | 	return IP_INVIP4;
169  |       }
170  |     } 
171  |     else {
172  |       while( bytes<4 ) {
173  | 	result <<= 8;
174  | 	bytes++;
175  |       }
176  |     }
177  | 
178  |     memset(ipptr, 0, sizeof(ip_addr_t));
179  |     ipptr->space = IP_V4;
180  |     ipptr->words[0] = result; 
181  |   }
182  |   else {
183  |     /* IPv6 */
184  | #define  _IPV6_LENGTH 128
185  |     char addrcpy[_IPV6_LENGTH];
186  |     char *ch, *start;
187  |     int i;
188  |     
189  |     strncpy(addrcpy, addr, _IPV6_LENGTH-1);
190  |     addrcpy[_IPV6_LENGTH-1] = 0;
191  |     
192  |     /* get rid of superfluous whitespaces */
193  |     /* leading... */
194  |     for( ch = start = addrcpy ; *ch != 0; ch++ ) {
195  |       if( isspace( (int) *ch) ) { 
196  | 	start++;
197  |       }
198  |       else {
199  | 	break;
200  |       }
201  |     }
202  | 
203  |     /* and trailing */
204  |     while( *ch != 0 ) {
205  |       if( isspace( (int) *ch) ) {
206  | 	*ch = 0;
207  | 	break;
208  |       }
209  |       ch++;
210  |     }
211  |     
212  |     if( inet_pton(AF_INET6, start, (ipptr->words)) == 0 ) {
213  |       return  IP_NO6YET;
214  |     }
215  |     /* now change the byte order from network to host native */
216  |     for( i=0; i<4; i++ ) {
217  |       ipptr->words[i] = ntohl(ipptr->words[i]);
218  |     }
219  | 
220  |     ipptr->space = IP_V6;
221  | 
222  | #undef _IPV6_LENGTH
223  |   }
224  |   return IP_OK;	
225  | }
226  | 
227  | /**************************************************************************/
228  | 
229  | /*+ converts a "IP/length" string into a binary prefix 
230  |   
231  |  
232  | 
233  | +*/
234  | 
235  | er_ret_t
236  | IP_pref_t2b(ip_prefix_t *prefptr, char *prefstr, ip_exp_t expf)
237  | {
238  |   char ip[256];
239  |   char *trash;
240  |   char *slash;
241  |   unsigned len;
242  |   er_ret_t err;
243  | 
244  |   if( expf != IP_PLAIN && expf != IP_EXPN ) {
245  |     return IP_INVARG;
246  |   }
247  |   
248  |   if( (slash=index(prefstr, '/')) == NULL ) {
249  |     /* die;  */ /* error: missing slash in prefix */
250  |     return    IP_NOSLAS;
251  |   }
252  |   else {
253  |     /* copy the IP part to another string, ERROR if 256 chars not enough */
254  |     
255  |     len = slash - prefstr;
256  |     if( len > 255 ) { 
257  |       /* die;  */ /* ERROR - ip address part of the string too long. */
258  |       return  IP_ADTOLO;
259  |     }
260  |     strncpy(ip, prefstr, len);
261  |     ip[len]=0;
262  | 
263  |     if( (err=IP_addr_t2b( &(prefptr->ip), ip, expf)) != IP_OK) {
264  |       /* die;   */ /* set error flag: incorrect address format */
265  |       return err;
266  |     }
267  | 
268  |     /* stop at first non-digit */
269  |     for(trash = slash+1; 
270  | 	isdigit(* (unsigned char*) trash);         /* cast for stupid gcc */
271  | 	trash++)
272  |       ;
273  |     len = trash - (slash+1) ;
274  |     if( len > 4 ) { 
275  |       /* die; */ /* ERROR - prefix length part of the string too long. */
276  |       return IP_PRTOLO;
277  |     }
278  |     strncpy(ip, slash+1, len);
279  |     ip[len]=0;
280  | 
281  |     if( ut_dec_2_uns(ip, &prefptr->bits) < 0 
282  | 	|| prefptr->bits > IP_sizebits(prefptr->ip.space))
283  |       {
284  |       /*    if( sscanf (slash+1, "%d", &(prefptr->bits)) < 1 ) {
285  |             die; */ /* handle syntax ERROR invalid characters found */
286  |       return IP_INVPRF;
287  |     }
288  |   }
289  |   /* sanitify the prefix - maybe some irrelevant bits are set */
290  |   /* never create broken binary prefixes. */
291  | 
292  |   IP_pref_bit_fix(prefptr);
293  | 
294  |   return IP_OK;
295  | }
296  | 
297  | /**************************************************************************/
298  | 
299  | /*+ converts an inaddr/ip6int string into a binary prefix.
300  | 
301  |   RFC2317 support for IPv4:
302  | 
303  |   For expf==IP_EXPN (e2b macro) the unparsable part will be silently accepted 
304  |   (with the result being the prefix of the succesfully parsed bits). 
305  | 
306  |   For expf==IP_PLAIN  the unparsable part will make the function return an error.
307  | 
308  |   For IPv6 the expf doesn't matter, the address must be parsable in whole.
309  | 
310  | +*/
311  | er_ret_t
312  | IP_revd_t2b(ip_prefix_t *prefptr, char *domstr, ip_exp_t expf)
313  | {
314  | #define CPYLEN 264
315  |   char ip[256], temp[256];
316  |   char prefstr[CPYLEN+1];
317  |   char *arpa;
318  |   char *ch;
319  |   unsigned len;
320  |   int octets=0, goon=1, quads = 0;
321  |   char  *dot;
322  |   er_ret_t err = IP_OK;
323  | 
324  |   dieif( expf != IP_PLAIN && expf != IP_EXPN );
325  | 
326  |   /* The input may not be in lowercase, but must be processed as well.
327  |      The simplest solution: make a copy and change it to lowercase. */
328  |   
329  |   strncpy( prefstr, domstr, CPYLEN );
330  |   prefstr[CPYLEN] = '\0';
331  | 
332  |   for(ch = prefstr; *ch != '\0'; ch++) {
333  |     *ch = tolower(*ch);
334  |   }
335  | 
336  |   if( (arpa=strstr(prefstr, ".in-addr.arpa")) != NULL ) {
337  |     prefptr->ip.space = IP_V4;
338  |   }
339  |   else if( (arpa=strstr(prefstr, ".ip6.int")) != NULL ) {
340  |     prefptr->ip.space = IP_V6;
341  |   }
342  |   else {
343  |     return    IP_NOREVD; 
344  |   }
345  |   
346  |   /* copy the IP part to another string, ERROR if 256 chars not enough */
347  |   len = arpa - prefstr;
348  |   if( len > 255 ) { 
349  |     /* die;  */ /* ERROR - ip address part of the string too long. */
350  |     return  IP_ADTOLO;
351  |   }
352  |   strncpy(temp, prefstr, len);
353  |   temp[len]=0;
354  |   
355  |   /* now: get the octets/quads reversed one by one. Then conversion. */
356  |   ip[0]=0; /* init */
357  |   switch( prefptr->ip.space ) {
358  |   case IP_V6: 
359  |     /* ipv6 is like that: 0.8.0.6.0.1.0.0.2.ip6.int */
360  |     do {
361  |       if( (dot = strrchr( temp, '.' )) == NULL ) {
362  | 	goon = 0;
363  | 	dot = temp;
364  |       }
365  |       strcat(ip, dot + ( goon ) );
366  |       quads++;
367  |       
368  |       /* after every 4 quads add a colon, unless that was the last quad */
369  |       
370  |       if( goon && quads%4==0) {
371  | 	strcat(ip, ":");
372  |       }
373  |       /* after the last quad add two colons - unless 
374  | 	 all 32 quads are defined */
375  |       if( !goon && quads<32 ) {
376  | 	strcat(ip, "::");
377  |       }
378  |       
379  |       *dot = 0;
380  |     } while( goon );
381  |     /* convert */
382  |     err=IP_addr_t2b( &(prefptr->ip), ip, IP_EXPN);
383  |     prefptr->bits = quads * 4;
384  |     break;
385  |     
386  |   case  IP_V4:
387  |     do {
388  |       if( (dot = strrchr( temp, '.' )) == NULL ) {
389  | 	goon = 0;
390  | 	dot = temp;
391  |       }
392  |       
393  |       strcat(ip, dot + ( goon ) ); 
394  |       octets++;
395  |       
396  |       /* add a dot, unless that was the last octet */
397  |       if( goon ) {
398  | 	strcat(ip, ".");
399  |       }
400  |       
401  |       *dot = 0;
402  |       
403  |     } while( goon );
404  | 
405  |     /* now try to convert the ip. 
406  |        
407  |        Support for RFC2317:
408  |        If expf==IP_EXPN, then on failure leave out the last octet 
409  |        (nibble/piece) and try again. On success, quit the loop.
410  | 
411  |        In any case use the EXPN mode for the conversion.
412  |     */
413  |     do {
414  |       char *lastdot;
415  |       
416  |       if( (err=IP_addr_t2b( &(prefptr->ip), ip, IP_EXPN)) == IP_OK) {
417  | 	break;
418  |       }
419  |       
420  |       /* cut the last octet */
421  |       if( (lastdot=strrchr(ip, '.')) == NULL ) {
422  | 	break;
423  |       }
424  |       *lastdot = '\0';
425  |       octets--;
426  |       
427  |     } while( expf == IP_EXPN && octets>0 );
428  | 
429  |     prefptr->bits = octets * 8;
430  |     break;
431  |   } /* switch */
432  | 
433  |   return err;
434  | }
435  | 
436  | /**************************************************************************/
437  | 
438  | /*+ convert a range string into a binary range struct. 
439  | +*/
440  | er_ret_t
441  | IP_rang_t2b(ip_range_t *rangptr, char *rangstr, ip_exp_t expf)
442  | {
443  |   char *ips, *dash;
444  |   er_ret_t err;
445  | 
446  |   if( expf != IP_PLAIN && expf != IP_EXPN ) {
447  |     return IP_INVARG;
448  |   }
449  | 
450  |   if( (dash=index(rangstr, '-')) == NULL ) {
451  |     /*    die;  */ /* error: missing dash in range */
452  |     return IP_INVRAN;
453  |   }
454  |   else {
455  |     unsigned partlen = dash - rangstr;
456  | 
457  |     /* copy the first IP */
458  |     if( (err = wr_calloc( (void*) &ips,1, partlen+1)) != UT_OK ) {
459  |       return err;
460  |     }
461  | 
462  |     strncpy(ips, rangstr, partlen);
463  |     
464  |     /* convert the first IP into a binary struct */
465  |     err=IP_addr_t2b( &(rangptr->begin), ips, expf);
466  | 
467  |     /* check later */ /* set error flag: incorrect address format */
468  | 
469  |     wr_free(ips);
470  | 
471  |     if( err != IP_OK ) {
472  |       return err;
473  |     }
474  | 
475  |     /* now find the other ip, skip the space */
476  |     ips=dash+1;
477  |     while( *ips == ' ' ) {
478  |       ips++;
479  |     }
480  |     
481  |     /* convert the second IP into a binary struct */
482  |     if( (err=IP_addr_t2b( &(rangptr->end), ips, expf)) != IP_OK ) {
483  |       /* die;  */ /* incorrect address format */
484  |       return err;
485  |     }
486  |     
487  |     
488  |     
489  |     return ip_rang_validate(rangptr);
490  |   }
491  | }
492  | 
493  | 
494  | /**************************************************************************/
495  | /* accessor functions */
496  | 
497  | /******** address **********/
498  | 
499  | unsigned IP_addr_b2_space(ip_addr_t *addrptr) 
500  | {
501  |   return addrptr->space;
502  | }
503  | 
504  | unsigned IP_addr_b2v4_addr(ip_addr_t *addrptr) 
505  | {
506  |   dieif( addrptr->space != IP_V4 );
507  |   return addrptr->words[0];
508  | }
509  | /* ipv4 */
510  | 
511  | ip_v6word_t IP_addr_b2v6_hi(ip_addr_t *addrptr) 
512  | {
513  |   dieif( addrptr->space != IP_V6 );
514  |   return (  (((ip_v6word_t) addrptr->words[0]) << 32)
515  | 	  + (((ip_v6word_t) addrptr->words[1]) ));
516  | }
517  | 
518  | ip_v6word_t IP_addr_b2v6_lo(ip_addr_t *addrptr) 
519  | {
520  |   dieif( addrptr->space != IP_V6 );
521  |   return (   (((ip_v6word_t) addrptr->words[2]) << 32)
522  | 	   + (((ip_v6word_t) addrptr->words[3]) ));
523  | }
524  | 
525  | /******** prefix **********/
526  | 
527  | unsigned IP_pref_b2_space(ip_prefix_t *prefix) {
528  |   return IP_addr_b2_space( &(prefix->ip) );
529  | }
530  | 
531  | unsigned IP_pref_b2_len(ip_prefix_t *prefix) {
532  |   return prefix->bits;
533  | }
534  | 
535  | unsigned IP_pref_b2v4_addr(ip_prefix_t *prefix) {
536  |   return IP_addr_b2v4_addr( &(prefix->ip) );
537  | }
538  | 
539  | /* range */
540  | 
541  | unsigned IP_rang_b2_space(ip_range_t *myrang) {
542  |   /* hardwire to IPV4 for now */
543  |   return IP_V4;
544  | }
545  | 
546  | /* 
547  |  * complex conversions (return void, set values through pointers *
548  |  */
549  | void IP_addr_b2v4(ip_addr_t *addrptr, unsigned *address) {
550  |   *address = IP_addr_b2v4_addr(addrptr);
551  | }
552  | 
553  | void IP_pref_b2v4(ip_prefix_t *prefptr, 
554  | 		   unsigned int *prefix, 
555  | 		   unsigned int *prefix_length) 
556  | {
557  |   *prefix        = IP_addr_b2v4_addr( &(prefptr->ip));
558  |   *prefix_length = IP_pref_b2v4_len(prefptr);
559  | }
560  | 
561  | 
562  | 
563  | void IP_pref_b2v6(ip_prefix_t *prefptr, 
564  | 		  ip_v6word_t *high, 
565  | 		  ip_v6word_t *low, 
566  | 		  unsigned int *prefix_length) 
567  | {
568  |   *high          = IP_addr_b2v6_hi( &(prefptr->ip));
569  |   *low           = IP_addr_b2v6_lo( &(prefptr->ip));
570  |   *prefix_length = IP_pref_b2v6_len(prefptr);
571  | }
572  | 
573  | 
574  | void IP_rang_b2v4(ip_range_t *myrang,
575  | 		  unsigned *begin, 
576  | 		  unsigned *end)
577  | {
578  |   *begin = IP_addr_b2v4_addr( &(myrang->begin));
579  |   *end   = IP_addr_b2v4_addr( &(myrang->end));
580  | }
581  | 
582  | 
583  | 
584  | /******** construct from raw values **********/
585  | 
586  | /******** address **********/
587  | er_ret_t IP_addr_v4_mk(ip_addr_t *addrptr,
588  | 		       unsigned addrval) {
589  |   addrptr->space = IP_V4;
590  |   addrptr->words[0] = addrval;
591  |   addrptr->words[1] = addrptr->words[2] = addrptr->words[3] = 0;
592  |   
593  |   /* no real possibility of checking the syntax */
594  |   return IP_OK;
595  | }
596  | 
597  | er_ret_t IP_addr_v6_mk(ip_addr_t *addrptr,
598  | 		       ip_v6word_t high,
599  | 		       ip_v6word_t low) {
600  |   
601  |   ip_v6word_t ff = 0xffffffff;
602  | 
603  |   addrptr->space = IP_V6;
604  |   (addrptr->words[0]) =  (high >> 32) & ff;
605  |   (addrptr->words[1]) =   high & ff ;
606  |   (addrptr->words[2]) =  (low >> 32) & ff;
607  |   (addrptr->words[3]) =   low  & ff;
608  | 
609  |   /* no real possibility of checking the syntax */
610  |   return IP_OK;
611  | }
612  | 
613  | /******** prefix **********/
614  | er_ret_t IP_pref_v4_mk(ip_prefix_t *prefix,
615  | 		       unsigned prefval, 
616  | 		       unsigned preflen) 
617  | {
618  |   if( preflen > 32 ) {
619  |     die;
620  |   }
621  |   IP_addr_v4_mk(&(prefix->ip), prefval);
622  |   prefix->bits = preflen;
623  |   
624  |   IP_pref_bit_fix( prefix ); /* never produce inconsistent prefixes */
625  | 
626  |   return IP_OK;
627  | }
628  | 
629  | /******** range **********/
630  | er_ret_t IP_rang_v4_mk(ip_range_t *rangptr, 
631  | 		       unsigned addrbegin,
632  | 		       unsigned addrend)
633  | {
634  |   er_ret_t err;
635  | 
636  |   if( (err=IP_addr_v4_mk( &(rangptr->begin), addrbegin)) == IP_OK ) {
637  |     err=IP_addr_v4_mk( &(rangptr->end), addrend);
638  |   }
639  |   return err;
640  | }
641  | 
642  | /**************************************************************************/
643  | 
644  | 
645  | /**************************************************************************/
646  | /*+ a2v4 == functions to convert the ascii representation into binary, 
647  |  *          and then set the unsigned values at the pointers provided.
648  |  *          
649  |  +*/
650  | 
651  | /* Convert route string into numbers */
652  | /* ipv4 */
653  | er_ret_t 
654  | IP_pref_a2v4(char *avalue, ip_prefix_t *pref,
655  | 	     unsigned *prefix, unsigned *prefix_length)
656  | {
657  |   
658  |   er_ret_t ret;
659  |   
660  |   if((ret = IP_pref_e2b(pref, avalue)) == IP_OK) {
661  |     IP_pref_b2v4(pref, prefix, prefix_length);
662  |   }
663  |   return(ret);
664  | }
665  | 
666  | /* ipv6 */
667  | er_ret_t 
668  | IP_pref_a2v6(char *avalue, ip_prefix_t *pref,
669  | 	     ip_v6word_t *high, ip_v6word_t  *low,
670  | 	     unsigned *prefix_length)
671  | {
672  |   er_ret_t ret;
673  |   
674  |   if((ret = IP_pref_e2b(pref, avalue)) == IP_OK) {
675  |     IP_pref_b2v6(pref, high, low, prefix_length);
676  |   }
677  |   return(ret);
678  | }
679  | 
680  | /* Convert reverse domain string into numbers */
681  | er_ret_t 
682  | IP_revd_a2v4(char *avalue, ip_prefix_t *pref,
683  | 	     unsigned int *prefix, unsigned int *prefix_length)
684  | {
685  |   er_ret_t ret;
686  |   
687  |   if((ret = IP_revd_e2b(pref, avalue)) == IP_OK) {
688  |     IP_pref_b2v4(pref, prefix, prefix_length);
689  |   }
690  |   return(ret);
691  | }
692  | 
693  | /* Convert ip addr string into numbers */
694  | er_ret_t 
695  | IP_addr_a2v4(char *avalue,ip_addr_t *ipaddr, unsigned int *address)
696  | {
697  | er_ret_t ret;
698  | 
699  |  if((ret = IP_addr_e2b(ipaddr, avalue)) == IP_OK) {
700  |    IP_addr_b2v4(ipaddr, address);
701  |  }
702  |  return(ret);
703  | }
704  | 
705  | /* Convert inetnum attribute into numbers */
706  | er_ret_t 
707  | IP_rang_a2v4(char *rangstr, ip_range_t *myrang,
708  | 	     unsigned int *begin_in, unsigned int *end_in)
709  | {
710  |   er_ret_t ret;
711  |   
712  |   if( (ret=IP_rang_e2b(myrang, rangstr)) == IP_OK ) {
713  | #if 0    /* no IPv4 classful ranges anymore */
714  |     if( IP_addr_e2b( &(myrang->begin), rangstr ) == IP_OK )
715  |       if ((ret=IP_rang_classful( myrang , &(myrang->begin))) == IP_OK )
716  | 	;
717  | #endif
718  |     IP_rang_b2v4(myrang, begin_in, end_in);
719  |   }
720  |   
721  |   return (ret);
722  | }
723  | 
724  | 
725  | /* *********************************************************************
726  |    f2b - free numbers represented in ascii into a binary struct
727  | ********************************************************************* */
728  | 
729  | er_ret_t
730  | IP_addr_f2b_v4(ip_addr_t *addrptr, char *adrstr) 
731  | {
732  |   unsigned address;
733  | 
734  |   if( ut_dec_2_uns(adrstr, &address) < 0 ) {
735  |     return IP_INVARG;
736  |   }
737  |   
738  |   return IP_addr_v4_mk(addrptr, address);
739  | }
740  | 
741  | er_ret_t
742  | IP_rang_f2b_v4(ip_range_t *rangptr, char *beginstr,  char *endstr) 
743  | {
744  |   if(    IP_addr_f2b_v4( &(rangptr->begin), beginstr) != IP_OK
745  |       || IP_addr_f2b_v4( &(rangptr->end),   endstr)   != IP_OK) {
746  |     return IP_INVARG;
747  |   }
748  |   else {
749  |     return IP_OK;
750  |   }
751  | }
752  | 
753  | er_ret_t
754  | IP_pref_f2b_v4(ip_prefix_t *prefptr, char *prefixstr, char *lengthstr) 
755  | {
756  |   if( IP_addr_f2b_v4( &(prefptr->ip), prefixstr) != IP_OK 
757  |       || ut_dec_2_uns(lengthstr, &(prefptr->bits) ) < 0
758  |       || prefptr->bits > IP_sizebits(prefptr->ip.space)) {
759  |     return IP_INVARG;
760  |   }
761  |   IP_pref_bit_fix(prefptr); /* never create broken binary prefixes. */
762  |   return IP_OK;
763  | }
764  | 
765  | 
766  | er_ret_t
767  | IP_addr_f2b_v6(ip_addr_t *addrptr, char *msbstr, char *lsbstr )
768  | {
769  |   ip_v6word_t high, low;
770  |   
771  |   if( sscanf(msbstr, "%llu", &high) < 1 ||
772  |       sscanf(lsbstr, "%llu", &low)  < 1 ) {
773  |     return IP_INVARG;
774  |   }
775  |  
776  |   return IP_addr_v6_mk(addrptr, high, low);
777  | }
778  | 
779  | 
780  | er_ret_t
781  | IP_pref_f2b_v6(ip_prefix_t *prefptr, char *msbstr, char *lsbstr, char *lengthstr) 
782  | {
783  |   if( IP_addr_f2b_v6( &(prefptr->ip), msbstr, lsbstr ) != IP_OK 
784  |       || ut_dec_2_uns(lengthstr, &(prefptr->bits) ) < 0 
785  |       || prefptr->bits > IP_sizebits(prefptr->ip.space)) {
786  |     return IP_INVARG;
787  |   }
788  |   IP_pref_bit_fix(prefptr); /* never create broken binary prefixes. */
789  |   return IP_OK;
790  | }
791  | 
792  | 
793  | /**************************************************************************/
794  | /*+ convert the socket's idea of address into a binary range struct. 
795  | 
796  |   space    select the address type (and consequently struct type)
797  | */
798  | 
799  | er_ret_t
800  | IP_addr_s2b(ip_addr_t *addrptr, 
801  | 	    void      *addr_in, 
802  |             int       addr_len)
803  | {
804  |   if( addr_len == sizeof(struct sockaddr_in) 
805  |       && ((struct sockaddr_in *)addr_in)->sin_family == AF_INET ) {
806  |     addrptr->space = IP_V4;
807  |     addrptr->words[0] = 
808  |       ntohl( ((struct sockaddr_in*)addr_in)->sin_addr.s_addr);
809  |     
810  |     /* set remaining limbs to zero */
811  |     addrptr->words[1] = addrptr->words[2] = addrptr->words[3] = 0; 
812  |     
813  |   }
814  |   else { /* unsupported family or invalid struct */
815  |     die;
816  |   }
817  |   return IP_OK;
818  | }
819  | 
820  | /**************************************************************************/
821  | /*+converts the IP binary address (binaddr) to a string (ascaddr) 
822  |    of at most strmax characters. Independent of the result
823  |    (success or failure) it messes up the string.
824  | +*/
825  | er_ret_t
826  | IP_addr_b2a( ip_addr_t *binaddr, char *ascaddr, unsigned strmax ) 
827  | {
828  |   
829  |   if(binaddr->space == IP_V4) {
830  |     if (snprintf(ascaddr, strmax, "%d.%d.%d.%d",
831  | 		 ((binaddr->words[0]) & ((unsigned)0xff<<24))>>24,
832  | 		 ((binaddr->words[0]) & (0xff<<16))>>16,
833  | 		 ((binaddr->words[0]) & (0xff<<8))>>8,
834  | 		 ((binaddr->words[0]) & (0xff<<0))>>0
835  | 		 ) >= strmax) {
836  |       /*die;  */ /* string too short */
837  |       return IP_TOSHRT;
838  |     }
839  |   }
840  |   else {
841  |     /* IPv6 */
842  |     unsigned tmpv6[4];
843  |     int i;
844  | 
845  |     /* inet_* operates on network byte format numbers, so we need
846  |    	to prepare a tmp. data with it */
847  | 
848  |     for(i=0; i<4; i++) {
849  | 	tmpv6[i] = htonl(binaddr->words[i]);
850  |     }
851  | 
852  |     if( inet_ntop(AF_INET6, tmpv6, ascaddr, strmax) 
853  | 	== NULL ) {
854  |       return IP_TOSHRT;
855  |     }
856  |   }
857  |   return IP_OK;
858  | }
859  | 
860  | /**************************************************************************/
861  | 
862  | /*+ convert a binary prefix back into ascii string at most strmax chars long 
863  | +*/
864  | er_ret_t
865  | IP_pref_b2a(ip_prefix_t *prefptr, char *ascaddr, unsigned strmax) 
866  | {
867  |   int strl;
868  |   er_ret_t err;
869  | 
870  |   if( (err=IP_addr_b2a (&(prefptr->ip), ascaddr, strmax)) != IP_OK) {
871  |     /*die;  */ /* what the hell */
872  |     return err;
873  |   }
874  |   strl = strlen(ascaddr);
875  |   strmax -= strl;
876  | 
877  |   /* now strmax holds the space that is left */
878  | 
879  |   if( snprintf(ascaddr+strl, strmax, "/%d", prefptr->bits) >= strmax) {
880  |     /* die;  */ /* error: string too short */
881  |     return IP_TOSHRT;
882  |   }
883  |   return IP_OK;
884  | }
885  | 
886  | 
887  | 
888  | /**************************************************************************/
889  | /*+ convert a binary range back into ascii string at most strmax chars long 
890  | +*/
891  | er_ret_t
892  | IP_rang_b2a(ip_range_t *rangptr, char *ascaddr, unsigned strmax) 
893  | {
894  |   int strl=0;
895  |   unsigned strleft;
896  |   er_ret_t err;
897  | 
898  |   strleft = strmax - strl;
899  |   if( (err=IP_addr_b2a (&(rangptr->begin), ascaddr, strleft)) != IP_OK) {
900  |     return err;
901  |   }
902  |   strl = strlen(ascaddr);
903  |   
904  |   strleft = strmax - strl;
905  |   if( strleft < 5 ) {
906  |     return IP_TOSHRT; 
907  |   }
908  |   strcat( ascaddr, " - " );
909  |   strl += 3;
910  | 
911  |   strleft = strmax - strl;
912  |   if( (err=IP_addr_b2a (&(rangptr->end), ascaddr+strl, strleft)) != IP_OK) {
913  |     return err;
914  |   }
915  | 
916  |   return IP_OK;
917  | }
918  | 
919  | /**************************************************************************/
920  | /*+ return the bitnum bit of the address, 
921  |    COUNTING FROM THE TOP !!!!! , 
922  |    starting with 0 for the *most significant bit*.
923  | +*/
924  | int
925  | IP_addr_bit_get(ip_addr_t *binaddr, unsigned bitnum) {
926  |   int bitval;
927  |   int w,c;
928  |   
929  |   /* avoid unnecessary division */
930  |   if( binaddr->space == IP_V4 ) {
931  |     w = 0;
932  |     c = bitnum;
933  |   }
934  |   else {
935  |     w = bitnum / 32;
936  |     c = bitnum % 32;
937  |   }
938  | 
939  |   bitval = (binaddr->words[w] & (0x80000000 >> (c)));
940  | 
941  |   return (bitval != 0);
942  | 
943  | }
944  | 
945  | /**************************************************************************/
946  | /*+ set the bitnum bit of the address to bitval, 
947  |    COUNTING FROM THE TOP !!!!! , 
948  |    starting with 0 for the *most significant bit*.
949  | +*/
950  | void
951  | IP_addr_bit_set(ip_addr_t *binaddr, unsigned bitnum, unsigned bitval) {
952  |   int w,c;
953  |   
954  |   /* avoid unnecessary division */
955  |   if( binaddr->space == IP_V4 ) {
956  |     w = 0;
957  |     c = bitnum;
958  |   }
959  |   else {
960  |     w = bitnum / 32;
961  |     c = bitnum % 32;
962  |   }
963  | 
964  |   if ( bitval == 1 )
965  |     
966  |     binaddr->words[w] |= (0x80000000 >> (c));
967  |   else
968  |     binaddr->words[w] &=  ~(0x80000000 >> (c));
969  | }
970  | /**************************************************************************/
971  | 
972  | /*+ this fixes a prefix by setting insignificant bits to 0 +*/
973  | void
974  | IP_pref_bit_fix( ip_prefix_t *prefix ) 
975  | {
976  | 
977  |   if( prefix->ip.space == IP_V4 ) {
978  |     ip_limb_t mask = 0xffffffff;
979  |     
980  |     /* shorthand for ipv4 */
981  |     
982  |     /* Shifting out by 32 bits does NOT turn all bits into 0... */
983  |     if( prefix->bits < 32 ) {
984  |       prefix->ip.words[0] &= ~(mask >> prefix->bits);
985  |     }
986  |   }
987  |   else {
988  |     unsigned i;
989  |     for(i=prefix->bits; i < IP_sizebits(prefix->ip.space) ; i++) {
990  |       IP_addr_bit_set( & prefix->ip, i, 0);
991  |     }
992  |   }
993  | }
994  | 
995  | 
996  | /**************************************************************************/
997  | 
998  | /*+ compares two IP addresses up to the bit # len, 
999  |    returns 0 if equal, 1 if ptra greater, -1 if ptrb greater.
1000 |    
1001 |    It is the responsility of the caller to ensure that both addresses
1002 |    are from the same IP space.
1003 | 
1004 |    This is pretty slow; it is used in the searches of the radix tree,
1005 |    so it might be good to optimise this.
1006 | +*/
1007 | 
1008 | int 
1009 | IP_addr_cmp(ip_addr_t *ptra, ip_addr_t *ptrb, unsigned len)
1010 | {
1011 |   unsigned a,b,i;
1012 | 
1013 |   for(i=0; i<len; i++) {
1014 |     a=IP_addr_bit_get(ptra, i);
1015 |     b=IP_addr_bit_get(ptrb, i);
1016 |     if( a != b ) {
1017 |       if( a > b ) return 1;
1018 |       else return -1;
1019 |     }
1020 |   }
1021 |   return 0;
1022 | }
1023 | 
1024 | 
1025 | /*+ checks if an IP address is contained within the prefix 
1026 |   returns 1 if it is, 0 otherwise
1027 | 
1028 |   It is the responsility of the caller to ensure that both address
1029 |   and prefix are from the same IP space.
1030 | +*/
1031 | int 
1032 | IP_addr_in_pref(ip_addr_t *ptra, ip_prefix_t *prefix)
1033 | {
1034 |   return (IP_addr_cmp( ptra, & prefix->ip, prefix->bits) == 0);
1035 | }
1036 | 
1037 | /*+ checks if an IP address is contained within the range
1038 |   returns 1 if it is, 0 otherwise
1039 | 
1040 |   It is the responsility of the caller to ensure that both address
1041 |   and range are from the same IP space.
1042 |   
1043 |   works only for IPv4
1044 | +*/
1045 | 
1046 | int IP_addr_in_rang(ip_addr_t *ptra, ip_range_t *rangptr)
1047 | {
1048 | /*  if( rangptr->end.space == IP_V4 ) {
1049 |     return (  rangptr->begin.words[0]  <=  ptra->words[0]
1050 | 	      && rangptr->end.words[0]  >=  ptra->words[0] );
1051 |   }
1052 |   else {
1053 | */
1054 |     return( IP_addr_cmp(ptra, &rangptr->begin, 
1055 | 			IP_sizebits(rangptr->end.space)) >= 0 /* adr >= begin */
1056 | 	    && IP_addr_cmp(ptra, &rangptr->end, 
1057 | 			   IP_sizebits(rangptr->end.space)) <= 0  /* adr <= end */
1058 | 	    );
1059 | /*  }*/
1060 | }
1061 | 
1062 | /**************************************************************************/
1063 | 
1064 | /*+ calculate the span of a range == size - 1 +*/
1065 | 
1066 | ip_rangesize_t 
1067 | IP_rang_span( ip_range_t *rangptr )
1068 | {
1069 |   /* IPv4: */
1070 |   dieif( rangptr->end.space != IP_V4 );
1071 |   
1072 |   return rangptr->end.words[0] - rangptr->begin.words[0];
1073 | }
1074 | 
1075 | 
1076 | /**************************************************************************/
1077 | 
1078 | /*+ 
1079 | this is a shorthand notation to pull out the first word of the address.
1080 | it is defined for the scope od the following functions
1081 | +*/
1082 | #define ad(which) (rangptr->which)
1083 | 
1084 | /**************************************************************************/
1085 | /*+ Decomposes a binary range into prefixes and appends them to the list.
1086 |    Allocates prefix structures and list elements, they must be freed 
1087 |    after use.
1088 | 
1089 |    returns a bitmask of prefix lengths used.
1090 | +*/
1091 | unsigned
1092 | IP_rang_decomp(ip_range_t *rangptr, GList **preflist)
1093 | {
1094 | unsigned            prefmask=0;
1095 | register int        slash=0;
1096 | register unsigned   c_dif, blk, ff;
1097 | ip_range_t  workrange;
1098 | ip_addr_t   workbegin;
1099 | ip_addr_t   workend;
1100 | ip_prefix_t *prefptr;
1101 | 
1102 |  dieif( rangptr->begin.space != IP_V4 );
1103 |  
1104 |  if( ad(begin).words[0] > ad(end).words[0] ) {   /* has gone too far */
1105 |    return 0; 
1106 |  }
1107 |  
1108 |  if( ad(begin).words[0] == ad(end).words[0] ) { /* an IP == a /32 (IPv4) */
1109 |    prefmask |= 1;
1110 |    if(  wr_calloc( (void **)& prefptr, sizeof(ip_prefix_t), 1) != UT_OK) {
1111 |      die;
1112 |    }
1113 |    prefptr->ip = ad(begin);
1114 |    prefptr->bits = 32;
1115 |    
1116 |    *preflist = g_list_append( *preflist, prefptr );
1117 |    
1118 |    return prefmask;
1119 |  }
1120 |  
1121 |   c_dif = ad(end).words[0] - ad(begin).words[0];
1122 |   
1123 |   /* initialize work vars */
1124 |   
1125 |   workbegin = ad(begin);
1126 |   workend = ad(end);
1127 |   
1128 |   /* now find the biggest block fitting in this range */
1129 |   /* i.e. the first 2^n number smaller than c_dif */
1130 |   
1131 |   /* the loop would not work for /0 (some stupid queries may have that) */
1132 |   /* so this must be checked for separately */
1133 |   
1134 |   if( c_dif == 0xffffffff ) {
1135 |     /* they are already set to 0.0.0.0 - 255.255.255.255 */
1136 |     /* leave them alone.  */
1137 |     blk = 0;
1138 |     slash = 0;
1139 |   }
1140 |   else {
1141 |     
1142 |     c_dif += 1;     /* was not done earlier to protect from overflow */
1143 | 
1144 |     for(slash=1; 
1145 | 	slash<32 && ((blk=((unsigned)0x80000000>>(slash-1))) & c_dif) == 0; 
1146 | 	slash++) {}
1147 | 
1148 |     /* clear all digits in a and b under the blk one. */
1149 |     ff=blk-1;
1150 | 
1151 |     workbegin.words[0] = (workbegin.words[0] + ff) & ~ff;
1152 |     
1153 |     workend.words[0] = (workend.words[0] + 1) & ~ff;
1154 |   }
1155 |   
1156 |   if( workbegin.words[0] != workend.words[0] ) {
1157 |     prefmask |= blk;
1158 |     if(  wr_malloc( (void **)& prefptr, sizeof(ip_prefix_t)) != UT_OK) {
1159 |       die;
1160 |     }
1161 |     prefptr->ip = workbegin;
1162 |     prefptr->bits = slash;
1163 |     
1164 |     *preflist = g_list_append( *preflist, prefptr );
1165 |   }
1166 | 
1167 |   if( ad(begin).words[0] != workbegin.words[0] ) {
1168 |     workrange.begin = ad(begin);
1169 | 
1170 |     workbegin.words[0] -= 1;
1171 |     workrange.end   = workbegin;
1172 | 
1173 |     prefmask |= IP_rang_decomp( &workrange, preflist );
1174 |   }
1175 |   
1176 |   /* here we must protect from decomposition of  
1177 |    * 255.255.255.255 - 255.255.255.255 in case the range 
1178 |    * 0.0.0.0 - 255.255.255.255 is considered. Hence the slash>0 condition. 
1179 |    */
1180 |   
1181 |   if( workend.words[0] <= ad(end).words[0] && slash > 0) {
1182 |     workrange.begin = workend;
1183 |     workrange.end   = ad(end);
1184 | 
1185 |     prefmask |= IP_rang_decomp( &workrange, preflist );
1186 |   }
1187 |   
1188 |   return prefmask;
1189 |  
1190 | }
1191 | 
1192 | 
1193 | /***************************************************************************/
1194 | 
1195 | /*+ Similar name, slightly different code, totally different functionality.
1196 | 
1197 |    finds the smallest canonical block encompassing the whole given range, 
1198 |    then MODIFIES the range pointed to by the argument 
1199 |    so that it's equal to this block.
1200 | 
1201 | +*/
1202 | 
1203 | void IP_rang_encomp(ip_range_t *rangptr)
1204 | {
1205 |   int         slash=0;
1206 |   unsigned    c_dif, blk, ff, t_dif;
1207 |   ip_addr_t   workbegin;
1208 |   ip_addr_t   workend;
1209 | 
1210 |   dieif( rangptr->begin.space != IP_V4 );
1211 | 
1212 |     c_dif = ad(end).words[0] - ad(begin).words[0];
1213 |     
1214 |     /* now find the biggest block fitting in this range */
1215 |     /* i.e. the first 2^n number smaller than c_dif */
1216 |     
1217 |     /* the loop would not work for /0 (some stupid queries may have that) */
1218 |     /* so this must be checked for separately */
1219 |     
1220 |     if( c_dif > 0x80000000 ) {
1221 |       slash = 0;
1222 |       ff = 0xffffffff;
1223 |       blk = 0;
1224 |       
1225 |       workbegin = workend = ad(begin);
1226 |       workbegin.words[0] = 0;
1227 |       workend.words[0] = ff;
1228 |     }
1229 |     else {
1230 |       
1231 |       do {
1232 | 	c_dif += 1;
1233 | 	
1234 | 	/* find the smallest block ENCOMPASSING c_dif. */
1235 | 	/* this implies a loop from the bottom up */
1236 | 	
1237 | 	for(slash=32; 
1238 | 	    slash>1 && (blk=((unsigned)0x80000000>>(slash-1))) < c_dif; 
1239 | 	    slash--) {}
1240 | 	
1241 | 	ff=blk-1;
1242 | 	
1243 | 	/* clear all digits in workbegin under the blk one. */
1244 | 	
1245 | 	workbegin = ad(begin);
1246 | 	workbegin.words[0] = workbegin.words[0] & ~ff;
1247 | 	
1248 | 	/* see if it has not made the difference larger than blk,  */
1249 | 	/* retry if so */
1250 | 	
1251 | 	t_dif = c_dif;
1252 | 	c_dif = ad(end).words[0] - workbegin.words[0];
1253 | 	
1254 |       } while( c_dif >= t_dif );
1255 |       
1256 |       /* set the endpoint to workbegin + blocksize - 1 */
1257 |       /* which amounts to + ff */
1258 |       
1259 |       workend = ad(begin);
1260 |       workend.words[0] = workbegin.words[0] + ff;
1261 |     }
1262 |     
1263 |     
1264 |     /* set the range to new values */
1265 |     
1266 |     rangptr->begin = workbegin;
1267 |     rangptr->end   = workend;
1268 | }
1269 | 
1270 | /***************************************************************************/
1271 | /*+ sets a range equal to a prefix +*/
1272 | 
1273 | er_ret_t
1274 | IP_pref_2_rang( ip_range_t *rangptr, ip_prefix_t *prefptr )
1275 | {
1276 |   int shift;
1277 |   int i;
1278 |     
1279 |   ad(begin) = ad(end) = prefptr->ip;
1280 |   
1281 |   /* IPv6 is a bit more complicated, as four words are involved */
1282 |   
1283 |   /* additional problem: shifting right by >=32 is equal to shifting by 0,
1284 |      so it does not change any bits */
1285 |   /* solution: don't touch those words */
1286 |   
1287 |   for(i=0; i<4; i++) {
1288 |     
1289 |     if( prefptr->bits < 32*(1+i) ) {
1290 |       shift = prefptr->bits < 32 + (i-1) * 32 
1291 | 	? 0 : (prefptr->bits % 32) ;
1292 |       ad(end).words[i] |= (0xffffffffU >> shift);
1293 |     }
1294 |     
1295 |     if( prefptr->ip.space == IP_V4) {
1296 |       break; /* do only first word for IPv4 */
1297 |     }	
1298 |   }
1299 |   return IP_OK;
1300 | }
1301 | 
1302 | #undef ad
1303 | 
1304 | /***************************************************************************/
1305 | 
1306 | /*+ 
1307 |    This is to parse a classfull address into a range.
1308 | 
1309 |    Takes the address by pointer from addrptr and puts the result
1310 |    at rangptr. 
1311 | 
1312 |    Throws error if the address does not fall into any of the 
1313 |    classfull categories 
1314 | 
1315 | +*/
1316 | 
1317 | er_ret_t
1318 | IP_rang_classful( ip_range_t *rangptr, ip_addr_t *addrptr)
1319 | {
1320 | int i;
1321 | unsigned b[4];
1322 | 
1323 |   if( addrptr->space != IP_V4 ) {
1324 |     /* it's IPv6. There are no classful ranges or anything like that. */
1325 |     die;
1326 |   }
1327 |   
1328 |   rangptr->begin = *addrptr;
1329 |   rangptr->end.space = IP_V4;
1330 | 
1331 |   /* initisalise end to zero */
1332 |   for(i=0; i<IPLIMBNUM; i++) {
1333 |     rangptr->end.words[i] = 0;
1334 |   }
1335 |   
1336 |   /* assume it's at least a valid IP. let's try different classes now */
1337 | 	      
1338 |   /* we could have used a union here, but it would not work on */
1339 |   /* low endians. So byte by byte copying to and from an array. */
1340 |   
1341 |   for(i=0; i<4; i++) {
1342 |     b[i] = ( rangptr->begin.words[0] & (0xFF << i*8) ) >> i*8;
1343 |   }
1344 |   
1345 |   if( b[3] >= 1 && b[3] < 128 
1346 |       && b[2] == 0 && b[1] == 0 && b[0] == 0 ) {
1347 |     b[2]=b[1]=b[0]=255;
1348 |   }
1349 |   else if( b[3] >= 128 && b[3] < 192 
1350 | 	   && b[1] == 0 && b[0] == 0 ) {
1351 |     b[1]=b[0]=255;
1352 |   }
1353 |   else if( b[3] >= 192 && b[3] < 224 
1354 | 	   &&  b[0] == 0 ) {
1355 |     b[0]=255;
1356 |   }
1357 |   else if( b[3] >= 224 && b[3] < 255 ) {
1358 |     /* just leave it, make it a /32, i.e. begin == end */
1359 |     /* EMPTY */;
1360 |   }
1361 |   else {
1362 |     /* Leave it and make it a /32 */
1363 |     /* This is AGAINST the rule! but we have some junk  */
1364 |     /* so we have to compensate for it. */
1365 |     /* EMPTY */;
1366 |   }
1367 |   
1368 |   /* copy the (now - modified) bytes into the end of range */
1369 |   for(i=0; i<4; i++) {
1370 |     rangptr->end.words[0] |= (b[i] << i*8);
1371 |   }
1372 |   
1373 |   return IP_OK;
1374 | }
1375 | 
1376 | 
1377 | /***************************************************************************/
1378 | /*+ 
1379 |   Trying to be smart :-) and convert a query search term into prefix(es),
1380 |   regardless of whether specified as IP address, prefix or range.
1381 |  
1382 |   justcheck - if just checking the syntax (justcheck == 1), 
1383 |      then the prefixes are freed before the function returns,
1384 |      otherwise it is the responsibility of the caller to free the list.
1385 |      
1386 | +*/
1387 | 
1388 | er_ret_t
1389 | IP_smart_conv(char *key, 
1390 | 	      int justcheck, 
1391 | 	      int encomp, 
1392 | 	      GList **preflist, 
1393 | 	      ip_exp_t expf,
1394 | 	      ip_keytype_t *keytype
1395 | 	      )
1396 | {
1397 |   int free_it;
1398 |   er_ret_t call_err, err=IP_OK;      /* let's be optimistic :-) */
1399 |   ip_prefix_t *querypref;
1400 | 
1401 |   /* if just checking the syntax (justcheck == 1), 
1402 |      then free_it = 1, 
1403 |      else 0, but may be modified later (in range conversion)
1404 |   */
1405 | 
1406 |   free_it = justcheck;
1407 |   
1408 |   if( (call_err = wr_malloc( (void **) &querypref, sizeof(ip_prefix_t))) 
1409 |       != UT_OK) {
1410 |     return call_err;
1411 |   }
1412 |   
1413 |   if( IP_pref_t2b(querypref, key, expf) == IP_OK ) {
1414 |     *keytype = IPK_PREFIX;
1415 | 
1416 |     if( justcheck == 0) {
1417 |       *preflist = g_list_append(*preflist, querypref);
1418 |     }
1419 |   } 
1420 |   else {
1421 |     /* not a prefix.  */
1422 |     /* Maybe an IP ? */
1423 |     if( IP_addr_t2b( &(querypref->ip), key, expf) == IP_OK ) {
1424 |       
1425 |       *keytype = IPK_IP;
1426 | 
1427 |       /*convert to a /32 or /128*/
1428 |       querypref->bits =  IP_sizebits(querypref->ip.space);
1429 | 
1430 |       if( justcheck == 0) {
1431 | 	*preflist = g_list_append(*preflist, querypref);
1432 |       }
1433 |     }
1434 |     else {    
1435 |       /* hm, maybe a range then ? */
1436 |       ip_range_t myrang;
1437 |       
1438 |       /* won't use the querypref anymore, mark it for freeing later */
1439 |       free_it = 1;
1440 |       
1441 |       if( IP_rang_t2b(&myrang, key, expf) == IP_OK ) {
1442 | 	/* Wow. Great.  */
1443 | 	
1444 | 	*keytype = IPK_RANGE;
1445 | 
1446 | 	/* sometimes (exless match) we look for the first bigger(shorter)  */
1447 | 	/* prefix containing this range. */
1448 | 	
1449 | 	if( encomp ) {
1450 | 	  IP_rang_encomp(&myrang);
1451 | 	}
1452 | 	/* OK, now we can let the engine happily find that there's just one */
1453 | 	/* prefix in range */
1454 | 	
1455 | 	if( justcheck == 0) {
1456 | 	  IP_rang_decomp(&myrang, preflist);
1457 | 	}
1458 |       }
1459 |       else {
1460 | 	*keytype = IPK_UNDEF;
1461 | 	err = IP_INVARG; /* "conversion error" */
1462 |       }
1463 |     }
1464 |   }
1465 |   
1466 |   if( free_it ) {
1467 |     wr_free(querypref);
1468 |   }
1469 |   
1470 |   return err;
1471 | }
1472 | 
1473 | 
1474 | /* convert whatever comes into a range */
1475 | er_ret_t
1476 | IP_smart_range(char *key,
1477 | 	       ip_range_t *rangptr, 
1478 | 	       ip_exp_t expf,
1479 | 	       ip_keytype_t *keytype
1480 | 	       )
1481 | {
1482 |   er_ret_t  err=IP_OK;  
1483 |   GList    *preflist = NULL;
1484 | 
1485 |   /* first : is it a range ? */
1486 | 
1487 |   if( (err = IP_rang_t2b(rangptr, key, expf)) == IP_OK ) {
1488 |       *keytype = IPK_RANGE;
1489 |   }
1490 |   else {
1491 |       /* OK, this must be possible to convert it to prefix and from there
1492 | 	 to a range. */
1493 |       if( (err = IP_smart_conv(key, 0, 0, &preflist, expf, keytype)) 
1494 | 	  == IP_OK ) {
1495 | 	  
1496 | 	  dieif( g_list_length(preflist) != 1 );
1497 | 	  
1498 | 	  dieif(IP_pref_2_rang( rangptr, g_list_first(preflist)->data ) != IP_OK );
1499 |       }
1500 |   }
1501 |   
1502 |   wr_clear_list( &preflist );
1503 | 
1504 |   return err;
1505 | }
1506 |