1 | /*************************************** 2 | $Revision: 1.28 $ 3 | 4 | IP handling (ip). ip.c - conversions between ascii and binary forms 5 | of IP addresses, prefixes and ranges. 6 | 7 | various operations on binary forms. 8 | 9 | Status: NOT REVUED, TESTED, COMPLETE 10 | 11 | Design and implementation by: Marek Bukowy 12 | 13 | ******************/ /****************** 14 | Copyright (c) 1999 RIPE NCC 15 | 16 | All Rights Reserved 17 | 18 | Permission to use, copy, modify, and distribute this software and its 19 | documentation for any purpose and without fee is hereby granted, 20 | provided that the above copyright notice appear in all copies and that 21 | both that copyright notice and this permission notice appear in 22 | supporting documentation, and that the name of the author not be 23 | used in advertising or publicity pertaining to distribution of the 24 | software without specific, written prior permission. 25 | 26 | THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING 27 | ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS; IN NO EVENT SHALL 28 | AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY 29 | DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN 30 | AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 31 | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 32 | ***************************************/ 33 | 34 | #define IP_IMPL 35 | #include <iproutines.h> 36 | #include <string.h> 37 | #include <stdio.h> 38 | #include <erroutines.h> 39 | 40 | #include <ctype.h> 41 | #include <memwrap.h> 42 | 43 | #include <numconv.h> 44 | #include <stubs.h> 45 | 46 | #include <sys/socket.h> 47 | #include <netinet/in.h> 48 | 49 | #include <inet6def.h> 50 | #include <sys/param.h> 51 | 52 | /**************************************************************************/ 53 | /*+ return the max. length of bits per space 54 | 55 | Yes, it *could* be a macro - but as a function it can detect 56 | more programmer's errors. And will get inlined anyway. 57 | 58 | +*/ 59 | 60 | unsigned IP_sizebits(ip_space_t spc_id) { 61 | switch (spc_id) { 62 | case IP_V4: 63 | return 32; 64 | case IP_V6: 65 | return 128; 66 | default: 67 | die; /* error: bad IP version specified */ 68 | return 999999; /* just for the compiler */ 69 | } 70 | } 71 | 72 | static 73 | er_ret_t 74 | ip_rang_validate(ip_range_t *rangptr) 75 | { 76 | if( rangptr->begin.space != rangptr->end.space ) { 77 | /* die; */ /* incompatible IP spaces */ 78 | return IP_INVRAN; 79 | } 80 | 81 | /* XXX IPv6 range check missing */ 82 | if( rangptr->begin.space == IP_V4 ) { 83 | if( rangptr->begin.words[0] > rangptr->end.words[0] ) { 84 | return IP_INVRAN; 85 | } 86 | } 87 | 88 | return IP_OK; 89 | } 90 | /**************************************************************************/ 91 | /*+ 92 | ascii IP address to binary. 93 | 94 | In IP_EXPN mode IP will be "expanded" 95 | (missing octets will be set to 0, MSB's will be set). 96 | In IP_PLAIN mode the routine will complain if it sees less octets. 97 | 98 | why not use the standard inet_blabla routine ? 99 | it's because if some octets are missing, we make the address zero-padded 100 | (unlike the inet_blabla, which puts zeros in the middle). We also want 101 | to control the expansion with a flag. 102 | 103 | +*/ 104 | 105 | er_ret_t 106 | IP_addr_t2b(ip_addr_t *ipptr, char *addr, ip_exp_t expf) 107 | { 108 | if( index(addr, ':') == NULL ) { 109 | /* IPv4 */ 110 | char *dot=addr; 111 | unsigned len, byte, result=0; 112 | char cpy[4]; 113 | int last = 0, dotsfound=0; 114 | int bytes=0; 115 | 116 | if( expf != IP_PLAIN && expf != IP_EXPN ) { 117 | return IP_INVARG; 118 | } 119 | 120 | do { 121 | char *olddot = dot+1; 122 | /* dot should point to the "end of this number", not necessarily a dot */ 123 | 124 | if ( (dot = index (addr, '.')) == NULL) { 125 | /* after the ip it can contain lots of junk spaces */ 126 | while( *olddot != 0 && ! isspace(* (unsigned char *) olddot) ) { 127 | olddot++; 128 | } 129 | dot = olddot; 130 | last = 1; 131 | } 132 | else { 133 | if( ++dotsfound > 3 ) { 134 | /* handle syntax ERROR - too many dots found */ 135 | return IP_INVIP4; 136 | } 137 | } 138 | 139 | if ((len = dot - addr) > 3) { 140 | /* syntax ERROR - too many digits in an octet */ 141 | return IP_INVIP4; 142 | } 143 | strncpy( cpy, addr, len ); 144 | cpy[len]=0; 145 | 146 | /* sscanf is waay too slow */ 147 | 148 | if( ut_dec_2_uns(cpy, &byte) < 0 ) { 149 | /* handle syntax ERROR - invalid characters found */ 150 | return IP_INVIP4; 151 | } 152 | 153 | 154 | if( byte > 255 ) { 155 | /* handle syntax ERROR - number between dots too high */ 156 | return IP_INVIP4; 157 | } 158 | 159 | result <<= 8; 160 | result += byte; 161 | bytes++; 162 | 163 | addr = dot + 1; 164 | } while (!last); 165 | 166 | if( expf == IP_PLAIN ) { 167 | if( bytes!=4 ) { 168 | return IP_INVIP4; 169 | } 170 | } 171 | else { 172 | while( bytes<4 ) { 173 | result <<= 8; 174 | bytes++; 175 | } 176 | } 177 | 178 | memset(ipptr, 0, sizeof(ip_addr_t)); 179 | ipptr->space = IP_V4; 180 | ipptr->words[0] = result; 181 | } 182 | else { 183 | /* IPv6 */ 184 | #define _IPV6_LENGTH 128 185 | char addrcpy[_IPV6_LENGTH]; 186 | char *ch, *start; 187 | int i; 188 | 189 | strncpy(addrcpy, addr, _IPV6_LENGTH-1); 190 | addrcpy[_IPV6_LENGTH-1] = 0; 191 | 192 | /* get rid of superfluous whitespaces */ 193 | /* leading... */ 194 | for( ch = start = addrcpy ; *ch != 0; ch++ ) { 195 | if( isspace( (int) *ch) ) { 196 | start++; 197 | } 198 | else { 199 | break; 200 | } 201 | } 202 | 203 | /* and trailing */ 204 | while( *ch != 0 ) { 205 | if( isspace( (int) *ch) ) { 206 | *ch = 0; 207 | break; 208 | } 209 | ch++; 210 | } 211 | 212 | if( inet_pton(AF_INET6, start, (ipptr->words)) == 0 ) { 213 | return IP_NO6YET; 214 | } 215 | /* now change the byte order from network to host native */ 216 | for( i=0; i<4; i++ ) { 217 | ipptr->words[i] = ntohl(ipptr->words[i]); 218 | } 219 | 220 | ipptr->space = IP_V6; 221 | 222 | #undef _IPV6_LENGTH 223 | } 224 | return IP_OK; 225 | } 226 | 227 | /**************************************************************************/ 228 | 229 | /*+ converts a "IP/length" string into a binary prefix 230 | 231 | 232 | 233 | +*/ 234 | 235 | er_ret_t 236 | IP_pref_t2b(ip_prefix_t *prefptr, char *prefstr, ip_exp_t expf) 237 | { 238 | char ip[256]; 239 | char *trash; 240 | char *slash; 241 | unsigned len; 242 | er_ret_t err; 243 | 244 | if( expf != IP_PLAIN && expf != IP_EXPN ) { 245 | return IP_INVARG; 246 | } 247 | 248 | if( (slash=index(prefstr, '/')) == NULL ) { 249 | /* die; */ /* error: missing slash in prefix */ 250 | return IP_NOSLAS; 251 | } 252 | else { 253 | /* copy the IP part to another string, ERROR if 256 chars not enough */ 254 | 255 | len = slash - prefstr; 256 | if( len > 255 ) { 257 | /* die; */ /* ERROR - ip address part of the string too long. */ 258 | return IP_ADTOLO; 259 | } 260 | strncpy(ip, prefstr, len); 261 | ip[len]=0; 262 | 263 | if( (err=IP_addr_t2b( &(prefptr->ip), ip, expf)) != IP_OK) { 264 | /* die; */ /* set error flag: incorrect address format */ 265 | return err; 266 | } 267 | 268 | /* stop at first non-digit */ 269 | for(trash = slash+1; 270 | isdigit(* (unsigned char*) trash); /* cast for stupid gcc */ 271 | trash++) 272 | ; 273 | len = trash - (slash+1) ; 274 | if( len > 4 ) { 275 | /* die; */ /* ERROR - prefix length part of the string too long. */ 276 | return IP_PRTOLO; 277 | } 278 | strncpy(ip, slash+1, len); 279 | ip[len]=0; 280 | 281 | if( ut_dec_2_uns(ip, &prefptr->bits) < 0 282 | || prefptr->bits > IP_sizebits(prefptr->ip.space)) 283 | { 284 | /* if( sscanf (slash+1, "%d", &(prefptr->bits)) < 1 ) { 285 | die; */ /* handle syntax ERROR invalid characters found */ 286 | return IP_INVPRF; 287 | } 288 | } 289 | /* sanitify the prefix - maybe some irrelevant bits are set */ 290 | /* never create broken binary prefixes. */ 291 | 292 | IP_pref_bit_fix(prefptr); 293 | 294 | return IP_OK; 295 | } 296 | 297 | /**************************************************************************/ 298 | 299 | /*+ converts an inaddr/ip6int string into a binary prefix. 300 | 301 | RFC2317 support for IPv4: 302 | 303 | For expf==IP_EXPN (e2b macro) the unparsable part will be silently accepted 304 | (with the result being the prefix of the succesfully parsed bits). 305 | 306 | For expf==IP_PLAIN the unparsable part will make the function return an error. 307 | 308 | For IPv6 the expf doesn't matter, the address must be parsable in whole. 309 | 310 | +*/ 311 | er_ret_t 312 | IP_revd_t2b(ip_prefix_t *prefptr, char *domstr, ip_exp_t expf) 313 | { 314 | #define CPYLEN 264 315 | char ip[256], temp[256]; 316 | char prefstr[CPYLEN+1]; 317 | char *arpa; 318 | char *ch; 319 | unsigned len; 320 | int octets=0, goon=1, quads = 0; 321 | char *dot; 322 | er_ret_t err = IP_OK; 323 | 324 | dieif( expf != IP_PLAIN && expf != IP_EXPN ); 325 | 326 | /* The input may not be in lowercase, but must be processed as well. 327 | The simplest solution: make a copy and change it to lowercase. */ 328 | 329 | strncpy( prefstr, domstr, CPYLEN ); 330 | prefstr[CPYLEN] = '\0'; 331 | 332 | for(ch = prefstr; *ch != '\0'; ch++) { 333 | *ch = tolower(*ch); 334 | } 335 | 336 | if( (arpa=strstr(prefstr, ".in-addr.arpa")) != NULL ) { 337 | prefptr->ip.space = IP_V4; 338 | } 339 | else if( (arpa=strstr(prefstr, ".ip6.int")) != NULL ) { 340 | prefptr->ip.space = IP_V6; 341 | } 342 | else { 343 | return IP_NOREVD; 344 | } 345 | 346 | /* copy the IP part to another string, ERROR if 256 chars not enough */ 347 | len = arpa - prefstr; 348 | if( len > 255 ) { 349 | /* die; */ /* ERROR - ip address part of the string too long. */ 350 | return IP_ADTOLO; 351 | } 352 | strncpy(temp, prefstr, len); 353 | temp[len]=0; 354 | 355 | /* now: get the octets/quads reversed one by one. Then conversion. */ 356 | ip[0]=0; /* init */ 357 | switch( prefptr->ip.space ) { 358 | case IP_V6: 359 | /* ipv6 is like that: 0.8.0.6.0.1.0.0.2.ip6.int */ 360 | do { 361 | if( (dot = strrchr( temp, '.' )) == NULL ) { 362 | goon = 0; 363 | dot = temp; 364 | } 365 | strcat(ip, dot + ( goon ) ); 366 | quads++; 367 | 368 | /* after every 4 quads add a colon, unless that was the last quad */ 369 | 370 | if( goon && quads%4==0) { 371 | strcat(ip, ":"); 372 | } 373 | /* after the last quad add two colons - unless 374 | all 32 quads are defined */ 375 | if( !goon && quads<32 ) { 376 | strcat(ip, "::"); 377 | } 378 | 379 | *dot = 0; 380 | } while( goon ); 381 | /* convert */ 382 | err=IP_addr_t2b( &(prefptr->ip), ip, IP_EXPN); 383 | prefptr->bits = quads * 4; 384 | break; 385 | 386 | case IP_V4: 387 | do { 388 | if( (dot = strrchr( temp, '.' )) == NULL ) { 389 | goon = 0; 390 | dot = temp; 391 | } 392 | 393 | strcat(ip, dot + ( goon ) ); 394 | octets++; 395 | 396 | /* add a dot, unless that was the last octet */ 397 | if( goon ) { 398 | strcat(ip, "."); 399 | } 400 | 401 | *dot = 0; 402 | 403 | } while( goon ); 404 | 405 | /* now try to convert the ip. 406 | 407 | Support for RFC2317: 408 | If expf==IP_EXPN, then on failure leave out the last octet 409 | (nibble/piece) and try again. On success, quit the loop. 410 | 411 | In any case use the EXPN mode for the conversion. 412 | */ 413 | do { 414 | char *lastdot; 415 | 416 | if( (err=IP_addr_t2b( &(prefptr->ip), ip, IP_EXPN)) == IP_OK) { 417 | break; 418 | } 419 | 420 | /* cut the last octet */ 421 | if( (lastdot=strrchr(ip, '.')) == NULL ) { 422 | break; 423 | } 424 | *lastdot = '\0'; 425 | octets--; 426 | 427 | } while( expf == IP_EXPN && octets>0 ); 428 | 429 | prefptr->bits = octets * 8; 430 | break; 431 | } /* switch */ 432 | 433 | return err; 434 | } 435 | 436 | /**************************************************************************/ 437 | 438 | /*+ convert a range string into a binary range struct. 439 | +*/ 440 | er_ret_t 441 | IP_rang_t2b(ip_range_t *rangptr, char *rangstr, ip_exp_t expf) 442 | { 443 | char *ips, *dash; 444 | er_ret_t err; 445 | 446 | if( expf != IP_PLAIN && expf != IP_EXPN ) { 447 | return IP_INVARG; 448 | } 449 | 450 | if( (dash=index(rangstr, '-')) == NULL ) { 451 | /* die; */ /* error: missing dash in range */ 452 | return IP_INVRAN; 453 | } 454 | else { 455 | unsigned partlen = dash - rangstr; 456 | 457 | /* copy the first IP */ 458 | if( (err = wr_calloc( (void*) &ips,1, partlen+1)) != UT_OK ) { 459 | return err; 460 | } 461 | 462 | strncpy(ips, rangstr, partlen); 463 | 464 | /* convert the first IP into a binary struct */ 465 | err=IP_addr_t2b( &(rangptr->begin), ips, expf); 466 | 467 | /* check later */ /* set error flag: incorrect address format */ 468 | 469 | wr_free(ips); 470 | 471 | if( err != IP_OK ) { 472 | return err; 473 | } 474 | 475 | /* now find the other ip, skip the space */ 476 | ips=dash+1; 477 | while( *ips == ' ' ) { 478 | ips++; 479 | } 480 | 481 | /* convert the second IP into a binary struct */ 482 | if( (err=IP_addr_t2b( &(rangptr->end), ips, expf)) != IP_OK ) { 483 | /* die; */ /* incorrect address format */ 484 | return err; 485 | } 486 | 487 | 488 | 489 | return ip_rang_validate(rangptr); 490 | } 491 | } 492 | 493 | 494 | /**************************************************************************/ 495 | /* accessor functions */ 496 | 497 | /******** address **********/ 498 | 499 | unsigned IP_addr_b2_space(ip_addr_t *addrptr) 500 | { 501 | return addrptr->space; 502 | } 503 | 504 | unsigned IP_addr_b2v4_addr(ip_addr_t *addrptr) 505 | { 506 | dieif( addrptr->space != IP_V4 ); 507 | return addrptr->words[0]; 508 | } 509 | /* ipv4 */ 510 | 511 | ip_v6word_t IP_addr_b2v6_hi(ip_addr_t *addrptr) 512 | { 513 | dieif( addrptr->space != IP_V6 ); 514 | return ( (((ip_v6word_t) addrptr->words[0]) << 32) 515 | + (((ip_v6word_t) addrptr->words[1]) )); 516 | } 517 | 518 | ip_v6word_t IP_addr_b2v6_lo(ip_addr_t *addrptr) 519 | { 520 | dieif( addrptr->space != IP_V6 ); 521 | return ( (((ip_v6word_t) addrptr->words[2]) << 32) 522 | + (((ip_v6word_t) addrptr->words[3]) )); 523 | } 524 | 525 | /******** prefix **********/ 526 | 527 | unsigned IP_pref_b2_space(ip_prefix_t *prefix) { 528 | return IP_addr_b2_space( &(prefix->ip) ); 529 | } 530 | 531 | unsigned IP_pref_b2_len(ip_prefix_t *prefix) { 532 | return prefix->bits; 533 | } 534 | 535 | unsigned IP_pref_b2v4_addr(ip_prefix_t *prefix) { 536 | return IP_addr_b2v4_addr( &(prefix->ip) ); 537 | } 538 | 539 | /* range */ 540 | 541 | unsigned IP_rang_b2_space(ip_range_t *myrang) { 542 | /* hardwire to IPV4 for now */ 543 | return IP_V4; 544 | } 545 | 546 | /* 547 | * complex conversions (return void, set values through pointers * 548 | */ 549 | void IP_addr_b2v4(ip_addr_t *addrptr, unsigned *address) { 550 | *address = IP_addr_b2v4_addr(addrptr); 551 | } 552 | 553 | void IP_pref_b2v4(ip_prefix_t *prefptr, 554 | unsigned int *prefix, 555 | unsigned int *prefix_length) 556 | { 557 | *prefix = IP_addr_b2v4_addr( &(prefptr->ip)); 558 | *prefix_length = IP_pref_b2v4_len(prefptr); 559 | } 560 | 561 | 562 | 563 | void IP_pref_b2v6(ip_prefix_t *prefptr, 564 | ip_v6word_t *high, 565 | ip_v6word_t *low, 566 | unsigned int *prefix_length) 567 | { 568 | *high = IP_addr_b2v6_hi( &(prefptr->ip)); 569 | *low = IP_addr_b2v6_lo( &(prefptr->ip)); 570 | *prefix_length = IP_pref_b2v6_len(prefptr); 571 | } 572 | 573 | 574 | void IP_rang_b2v4(ip_range_t *myrang, 575 | unsigned *begin, 576 | unsigned *end) 577 | { 578 | *begin = IP_addr_b2v4_addr( &(myrang->begin)); 579 | *end = IP_addr_b2v4_addr( &(myrang->end)); 580 | } 581 | 582 | 583 | 584 | /******** construct from raw values **********/ 585 | 586 | /******** address **********/ 587 | er_ret_t IP_addr_v4_mk(ip_addr_t *addrptr, 588 | unsigned addrval) { 589 | addrptr->space = IP_V4; 590 | addrptr->words[0] = addrval; 591 | addrptr->words[1] = addrptr->words[2] = addrptr->words[3] = 0; 592 | 593 | /* no real possibility of checking the syntax */ 594 | return IP_OK; 595 | } 596 | 597 | er_ret_t IP_addr_v6_mk(ip_addr_t *addrptr, 598 | ip_v6word_t high, 599 | ip_v6word_t low) { 600 | 601 | ip_v6word_t ff = 0xffffffff; 602 | 603 | addrptr->space = IP_V6; 604 | (addrptr->words[0]) = (high >> 32) & ff; 605 | (addrptr->words[1]) = high & ff ; 606 | (addrptr->words[2]) = (low >> 32) & ff; 607 | (addrptr->words[3]) = low & ff; 608 | 609 | /* no real possibility of checking the syntax */ 610 | return IP_OK; 611 | } 612 | 613 | /******** prefix **********/ 614 | er_ret_t IP_pref_v4_mk(ip_prefix_t *prefix, 615 | unsigned prefval, 616 | unsigned preflen) 617 | { 618 | if( preflen > 32 ) { 619 | die; 620 | } 621 | IP_addr_v4_mk(&(prefix->ip), prefval); 622 | prefix->bits = preflen; 623 | 624 | IP_pref_bit_fix( prefix ); /* never produce inconsistent prefixes */ 625 | 626 | return IP_OK; 627 | } 628 | 629 | /******** range **********/ 630 | er_ret_t IP_rang_v4_mk(ip_range_t *rangptr, 631 | unsigned addrbegin, 632 | unsigned addrend) 633 | { 634 | er_ret_t err; 635 | 636 | if( (err=IP_addr_v4_mk( &(rangptr->begin), addrbegin)) == IP_OK ) { 637 | err=IP_addr_v4_mk( &(rangptr->end), addrend); 638 | } 639 | return err; 640 | } 641 | 642 | /**************************************************************************/ 643 | 644 | 645 | /**************************************************************************/ 646 | /*+ a2v4 == functions to convert the ascii representation into binary, 647 | * and then set the unsigned values at the pointers provided. 648 | * 649 | +*/ 650 | 651 | /* Convert route string into numbers */ 652 | /* ipv4 */ 653 | er_ret_t 654 | IP_pref_a2v4(char *avalue, ip_prefix_t *pref, 655 | unsigned *prefix, unsigned *prefix_length) 656 | { 657 | 658 | er_ret_t ret; 659 | 660 | if((ret = IP_pref_e2b(pref, avalue)) == IP_OK) { 661 | IP_pref_b2v4(pref, prefix, prefix_length); 662 | } 663 | return(ret); 664 | } 665 | 666 | /* ipv6 */ 667 | er_ret_t 668 | IP_pref_a2v6(char *avalue, ip_prefix_t *pref, 669 | ip_v6word_t *high, ip_v6word_t *low, 670 | unsigned *prefix_length) 671 | { 672 | er_ret_t ret; 673 | 674 | if((ret = IP_pref_e2b(pref, avalue)) == IP_OK) { 675 | IP_pref_b2v6(pref, high, low, prefix_length); 676 | } 677 | return(ret); 678 | } 679 | 680 | /* Convert reverse domain string into numbers */ 681 | er_ret_t 682 | IP_revd_a2v4(char *avalue, ip_prefix_t *pref, 683 | unsigned int *prefix, unsigned int *prefix_length) 684 | { 685 | er_ret_t ret; 686 | 687 | if((ret = IP_revd_e2b(pref, avalue)) == IP_OK) { 688 | IP_pref_b2v4(pref, prefix, prefix_length); 689 | } 690 | return(ret); 691 | } 692 | 693 | /* Convert ip addr string into numbers */ 694 | er_ret_t 695 | IP_addr_a2v4(char *avalue,ip_addr_t *ipaddr, unsigned int *address) 696 | { 697 | er_ret_t ret; 698 | 699 | if((ret = IP_addr_e2b(ipaddr, avalue)) == IP_OK) { 700 | IP_addr_b2v4(ipaddr, address); 701 | } 702 | return(ret); 703 | } 704 | 705 | /* Convert inetnum attribute into numbers */ 706 | er_ret_t 707 | IP_rang_a2v4(char *rangstr, ip_range_t *myrang, 708 | unsigned int *begin_in, unsigned int *end_in) 709 | { 710 | er_ret_t ret; 711 | 712 | if( (ret=IP_rang_e2b(myrang, rangstr)) == IP_OK ) { 713 | #if 0 /* no IPv4 classful ranges anymore */ 714 | if( IP_addr_e2b( &(myrang->begin), rangstr ) == IP_OK ) 715 | if ((ret=IP_rang_classful( myrang , &(myrang->begin))) == IP_OK ) 716 | ; 717 | #endif 718 | IP_rang_b2v4(myrang, begin_in, end_in); 719 | } 720 | 721 | return (ret); 722 | } 723 | 724 | 725 | /* ********************************************************************* 726 | f2b - free numbers represented in ascii into a binary struct 727 | ********************************************************************* */ 728 | 729 | er_ret_t 730 | IP_addr_f2b_v4(ip_addr_t *addrptr, char *adrstr) 731 | { 732 | unsigned address; 733 | 734 | if( ut_dec_2_uns(adrstr, &address) < 0 ) { 735 | return IP_INVARG; 736 | } 737 | 738 | return IP_addr_v4_mk(addrptr, address); 739 | } 740 | 741 | er_ret_t 742 | IP_rang_f2b_v4(ip_range_t *rangptr, char *beginstr, char *endstr) 743 | { 744 | if( IP_addr_f2b_v4( &(rangptr->begin), beginstr) != IP_OK 745 | || IP_addr_f2b_v4( &(rangptr->end), endstr) != IP_OK) { 746 | return IP_INVARG; 747 | } 748 | else { 749 | return IP_OK; 750 | } 751 | } 752 | 753 | er_ret_t 754 | IP_pref_f2b_v4(ip_prefix_t *prefptr, char *prefixstr, char *lengthstr) 755 | { 756 | if( IP_addr_f2b_v4( &(prefptr->ip), prefixstr) != IP_OK 757 | || ut_dec_2_uns(lengthstr, &(prefptr->bits) ) < 0 758 | || prefptr->bits > IP_sizebits(prefptr->ip.space)) { 759 | return IP_INVARG; 760 | } 761 | IP_pref_bit_fix(prefptr); /* never create broken binary prefixes. */ 762 | return IP_OK; 763 | } 764 | 765 | 766 | er_ret_t 767 | IP_addr_f2b_v6(ip_addr_t *addrptr, char *msbstr, char *lsbstr ) 768 | { 769 | ip_v6word_t high, low; 770 | 771 | if( sscanf(msbstr, "%llu", &high) < 1 || 772 | sscanf(lsbstr, "%llu", &low) < 1 ) { 773 | return IP_INVARG; 774 | } 775 | 776 | return IP_addr_v6_mk(addrptr, high, low); 777 | } 778 | 779 | 780 | er_ret_t 781 | IP_pref_f2b_v6(ip_prefix_t *prefptr, char *msbstr, char *lsbstr, char *lengthstr) 782 | { 783 | if( IP_addr_f2b_v6( &(prefptr->ip), msbstr, lsbstr ) != IP_OK 784 | || ut_dec_2_uns(lengthstr, &(prefptr->bits) ) < 0 785 | || prefptr->bits > IP_sizebits(prefptr->ip.space)) { 786 | return IP_INVARG; 787 | } 788 | IP_pref_bit_fix(prefptr); /* never create broken binary prefixes. */ 789 | return IP_OK; 790 | } 791 | 792 | 793 | /**************************************************************************/ 794 | /*+ convert the socket's idea of address into a binary range struct. 795 | 796 | space select the address type (and consequently struct type) 797 | */ 798 | 799 | er_ret_t 800 | IP_addr_s2b(ip_addr_t *addrptr, 801 | void *addr_in, 802 | int addr_len) 803 | { 804 | if( addr_len == sizeof(struct sockaddr_in) 805 | && ((struct sockaddr_in *)addr_in)->sin_family == AF_INET ) { 806 | addrptr->space = IP_V4; 807 | addrptr->words[0] = 808 | ntohl( ((struct sockaddr_in*)addr_in)->sin_addr.s_addr); 809 | 810 | /* set remaining limbs to zero */ 811 | addrptr->words[1] = addrptr->words[2] = addrptr->words[3] = 0; 812 | 813 | } 814 | else { /* unsupported family or invalid struct */ 815 | die; 816 | } 817 | return IP_OK; 818 | } 819 | 820 | /**************************************************************************/ 821 | /*+converts the IP binary address (binaddr) to a string (ascaddr) 822 | of at most strmax characters. Independent of the result 823 | (success or failure) it messes up the string. 824 | +*/ 825 | er_ret_t 826 | IP_addr_b2a( ip_addr_t *binaddr, char *ascaddr, unsigned strmax ) 827 | { 828 | 829 | if(binaddr->space == IP_V4) { 830 | if (snprintf(ascaddr, strmax, "%d.%d.%d.%d", 831 | ((binaddr->words[0]) & ((unsigned)0xff<<24))>>24, 832 | ((binaddr->words[0]) & (0xff<<16))>>16, 833 | ((binaddr->words[0]) & (0xff<<8))>>8, 834 | ((binaddr->words[0]) & (0xff<<0))>>0 835 | ) >= strmax) { 836 | /*die; */ /* string too short */ 837 | return IP_TOSHRT; 838 | } 839 | } 840 | else { 841 | /* IPv6 */ 842 | unsigned tmpv6[4]; 843 | int i; 844 | 845 | /* inet_* operates on network byte format numbers, so we need 846 | to prepare a tmp. data with it */ 847 | 848 | for(i=0; i<4; i++) { 849 | tmpv6[i] = htonl(binaddr->words[i]); 850 | } 851 | 852 | if( inet_ntop(AF_INET6, tmpv6, ascaddr, strmax) 853 | == NULL ) { 854 | return IP_TOSHRT; 855 | } 856 | } 857 | return IP_OK; 858 | } 859 | 860 | /**************************************************************************/ 861 | 862 | /*+ convert a binary prefix back into ascii string at most strmax chars long 863 | +*/ 864 | er_ret_t 865 | IP_pref_b2a(ip_prefix_t *prefptr, char *ascaddr, unsigned strmax) 866 | { 867 | int strl; 868 | er_ret_t err; 869 | 870 | if( (err=IP_addr_b2a (&(prefptr->ip), ascaddr, strmax)) != IP_OK) { 871 | /*die; */ /* what the hell */ 872 | return err; 873 | } 874 | strl = strlen(ascaddr); 875 | strmax -= strl; 876 | 877 | /* now strmax holds the space that is left */ 878 | 879 | if( snprintf(ascaddr+strl, strmax, "/%d", prefptr->bits) >= strmax) { 880 | /* die; */ /* error: string too short */ 881 | return IP_TOSHRT; 882 | } 883 | return IP_OK; 884 | } 885 | 886 | 887 | 888 | /**************************************************************************/ 889 | /*+ convert a binary range back into ascii string at most strmax chars long 890 | +*/ 891 | er_ret_t 892 | IP_rang_b2a(ip_range_t *rangptr, char *ascaddr, unsigned strmax) 893 | { 894 | int strl=0; 895 | unsigned strleft; 896 | er_ret_t err; 897 | 898 | strleft = strmax - strl; 899 | if( (err=IP_addr_b2a (&(rangptr->begin), ascaddr, strleft)) != IP_OK) { 900 | return err; 901 | } 902 | strl = strlen(ascaddr); 903 | 904 | strleft = strmax - strl; 905 | if( strleft < 5 ) { 906 | return IP_TOSHRT; 907 | } 908 | strcat( ascaddr, " - " ); 909 | strl += 3; 910 | 911 | strleft = strmax - strl; 912 | if( (err=IP_addr_b2a (&(rangptr->end), ascaddr+strl, strleft)) != IP_OK) { 913 | return err; 914 | } 915 | 916 | return IP_OK; 917 | } 918 | 919 | /**************************************************************************/ 920 | /*+ return the bitnum bit of the address, 921 | COUNTING FROM THE TOP !!!!! , 922 | starting with 0 for the *most significant bit*. 923 | +*/ 924 | int 925 | IP_addr_bit_get(ip_addr_t *binaddr, unsigned bitnum) { 926 | int bitval; 927 | int w,c; 928 | 929 | /* avoid unnecessary division */ 930 | if( binaddr->space == IP_V4 ) { 931 | w = 0; 932 | c = bitnum; 933 | } 934 | else { 935 | w = bitnum / 32; 936 | c = bitnum % 32; 937 | } 938 | 939 | bitval = (binaddr->words[w] & (0x80000000 >> (c))); 940 | 941 | return (bitval != 0); 942 | 943 | } 944 | 945 | /**************************************************************************/ 946 | /*+ set the bitnum bit of the address to bitval, 947 | COUNTING FROM THE TOP !!!!! , 948 | starting with 0 for the *most significant bit*. 949 | +*/ 950 | void 951 | IP_addr_bit_set(ip_addr_t *binaddr, unsigned bitnum, unsigned bitval) { 952 | int w,c; 953 | 954 | /* avoid unnecessary division */ 955 | if( binaddr->space == IP_V4 ) { 956 | w = 0; 957 | c = bitnum; 958 | } 959 | else { 960 | w = bitnum / 32; 961 | c = bitnum % 32; 962 | } 963 | 964 | if ( bitval == 1 ) 965 | 966 | binaddr->words[w] |= (0x80000000 >> (c)); 967 | else 968 | binaddr->words[w] &= ~(0x80000000 >> (c)); 969 | } 970 | /**************************************************************************/ 971 | 972 | /*+ this fixes a prefix by setting insignificant bits to 0 +*/ 973 | void 974 | IP_pref_bit_fix( ip_prefix_t *prefix ) 975 | { 976 | 977 | if( prefix->ip.space == IP_V4 ) { 978 | ip_limb_t mask = 0xffffffff; 979 | 980 | /* shorthand for ipv4 */ 981 | 982 | /* Shifting out by 32 bits does NOT turn all bits into 0... */ 983 | if( prefix->bits < 32 ) { 984 | prefix->ip.words[0] &= ~(mask >> prefix->bits); 985 | } 986 | } 987 | else { 988 | unsigned i; 989 | for(i=prefix->bits; i < IP_sizebits(prefix->ip.space) ; i++) { 990 | IP_addr_bit_set( & prefix->ip, i, 0); 991 | } 992 | } 993 | } 994 | 995 | 996 | /**************************************************************************/ 997 | 998 | /*+ compares two IP addresses up to the bit # len, 999 | returns 0 if equal, 1 if ptra greater, -1 if ptrb greater. 1000 | 1001 | It is the responsility of the caller to ensure that both addresses 1002 | are from the same IP space. 1003 | 1004 | This is pretty slow; it is used in the searches of the radix tree, 1005 | so it might be good to optimise this. 1006 | +*/ 1007 | 1008 | int 1009 | IP_addr_cmp(ip_addr_t *ptra, ip_addr_t *ptrb, unsigned len) 1010 | { 1011 | unsigned a,b,i; 1012 | 1013 | for(i=0; i<len; i++) { 1014 | a=IP_addr_bit_get(ptra, i); 1015 | b=IP_addr_bit_get(ptrb, i); 1016 | if( a != b ) { 1017 | if( a > b ) return 1; 1018 | else return -1; 1019 | } 1020 | } 1021 | return 0; 1022 | } 1023 | 1024 | 1025 | /*+ checks if an IP address is contained within the prefix 1026 | returns 1 if it is, 0 otherwise 1027 | 1028 | It is the responsility of the caller to ensure that both address 1029 | and prefix are from the same IP space. 1030 | +*/ 1031 | int 1032 | IP_addr_in_pref(ip_addr_t *ptra, ip_prefix_t *prefix) 1033 | { 1034 | return (IP_addr_cmp( ptra, & prefix->ip, prefix->bits) == 0); 1035 | } 1036 | 1037 | /*+ checks if an IP address is contained within the range 1038 | returns 1 if it is, 0 otherwise 1039 | 1040 | It is the responsility of the caller to ensure that both address 1041 | and range are from the same IP space. 1042 | 1043 | works only for IPv4 1044 | +*/ 1045 | 1046 | int IP_addr_in_rang(ip_addr_t *ptra, ip_range_t *rangptr) 1047 | { 1048 | /* if( rangptr->end.space == IP_V4 ) { 1049 | return ( rangptr->begin.words[0] <= ptra->words[0] 1050 | && rangptr->end.words[0] >= ptra->words[0] ); 1051 | } 1052 | else { 1053 | */ 1054 | return( IP_addr_cmp(ptra, &rangptr->begin, 1055 | IP_sizebits(rangptr->end.space)) >= 0 /* adr >= begin */ 1056 | && IP_addr_cmp(ptra, &rangptr->end, 1057 | IP_sizebits(rangptr->end.space)) <= 0 /* adr <= end */ 1058 | ); 1059 | /* }*/ 1060 | } 1061 | 1062 | /**************************************************************************/ 1063 | 1064 | /*+ calculate the span of a range == size - 1 +*/ 1065 | 1066 | ip_rangesize_t 1067 | IP_rang_span( ip_range_t *rangptr ) 1068 | { 1069 | /* IPv4: */ 1070 | dieif( rangptr->end.space != IP_V4 ); 1071 | 1072 | return rangptr->end.words[0] - rangptr->begin.words[0]; 1073 | } 1074 | 1075 | 1076 | /**************************************************************************/ 1077 | 1078 | /*+ 1079 | this is a shorthand notation to pull out the first word of the address. 1080 | it is defined for the scope od the following functions 1081 | +*/ 1082 | #define ad(which) (rangptr->which) 1083 | 1084 | /**************************************************************************/ 1085 | /*+ Decomposes a binary range into prefixes and appends them to the list. 1086 | Allocates prefix structures and list elements, they must be freed 1087 | after use. 1088 | 1089 | returns a bitmask of prefix lengths used. 1090 | +*/ 1091 | unsigned 1092 | IP_rang_decomp(ip_range_t *rangptr, GList **preflist) 1093 | { 1094 | unsigned prefmask=0; 1095 | register int slash=0; 1096 | register unsigned c_dif, blk, ff; 1097 | ip_range_t workrange; 1098 | ip_addr_t workbegin; 1099 | ip_addr_t workend; 1100 | ip_prefix_t *prefptr; 1101 | 1102 | dieif( rangptr->begin.space != IP_V4 ); 1103 | 1104 | if( ad(begin).words[0] > ad(end).words[0] ) { /* has gone too far */ 1105 | return 0; 1106 | } 1107 | 1108 | if( ad(begin).words[0] == ad(end).words[0] ) { /* an IP == a /32 (IPv4) */ 1109 | prefmask |= 1; 1110 | if( wr_calloc( (void **)& prefptr, sizeof(ip_prefix_t), 1) != UT_OK) { 1111 | die; 1112 | } 1113 | prefptr->ip = ad(begin); 1114 | prefptr->bits = 32; 1115 | 1116 | *preflist = g_list_append( *preflist, prefptr ); 1117 | 1118 | return prefmask; 1119 | } 1120 | 1121 | c_dif = ad(end).words[0] - ad(begin).words[0]; 1122 | 1123 | /* initialize work vars */ 1124 | 1125 | workbegin = ad(begin); 1126 | workend = ad(end); 1127 | 1128 | /* now find the biggest block fitting in this range */ 1129 | /* i.e. the first 2^n number smaller than c_dif */ 1130 | 1131 | /* the loop would not work for /0 (some stupid queries may have that) */ 1132 | /* so this must be checked for separately */ 1133 | 1134 | if( c_dif == 0xffffffff ) { 1135 | /* they are already set to 0.0.0.0 - 255.255.255.255 */ 1136 | /* leave them alone. */ 1137 | blk = 0; 1138 | slash = 0; 1139 | } 1140 | else { 1141 | 1142 | c_dif += 1; /* was not done earlier to protect from overflow */ 1143 | 1144 | for(slash=1; 1145 | slash<32 && ((blk=((unsigned)0x80000000>>(slash-1))) & c_dif) == 0; 1146 | slash++) {} 1147 | 1148 | /* clear all digits in a and b under the blk one. */ 1149 | ff=blk-1; 1150 | 1151 | workbegin.words[0] = (workbegin.words[0] + ff) & ~ff; 1152 | 1153 | workend.words[0] = (workend.words[0] + 1) & ~ff; 1154 | } 1155 | 1156 | if( workbegin.words[0] != workend.words[0] ) { 1157 | prefmask |= blk; 1158 | if( wr_malloc( (void **)& prefptr, sizeof(ip_prefix_t)) != UT_OK) { 1159 | die; 1160 | } 1161 | prefptr->ip = workbegin; 1162 | prefptr->bits = slash; 1163 | 1164 | *preflist = g_list_append( *preflist, prefptr ); 1165 | } 1166 | 1167 | if( ad(begin).words[0] != workbegin.words[0] ) { 1168 | workrange.begin = ad(begin); 1169 | 1170 | workbegin.words[0] -= 1; 1171 | workrange.end = workbegin; 1172 | 1173 | prefmask |= IP_rang_decomp( &workrange, preflist ); 1174 | } 1175 | 1176 | /* here we must protect from decomposition of 1177 | * 255.255.255.255 - 255.255.255.255 in case the range 1178 | * 0.0.0.0 - 255.255.255.255 is considered. Hence the slash>0 condition. 1179 | */ 1180 | 1181 | if( workend.words[0] <= ad(end).words[0] && slash > 0) { 1182 | workrange.begin = workend; 1183 | workrange.end = ad(end); 1184 | 1185 | prefmask |= IP_rang_decomp( &workrange, preflist ); 1186 | } 1187 | 1188 | return prefmask; 1189 | 1190 | } 1191 | 1192 | 1193 | /***************************************************************************/ 1194 | 1195 | /*+ Similar name, slightly different code, totally different functionality. 1196 | 1197 | finds the smallest canonical block encompassing the whole given range, 1198 | then MODIFIES the range pointed to by the argument 1199 | so that it's equal to this block. 1200 | 1201 | +*/ 1202 | 1203 | void IP_rang_encomp(ip_range_t *rangptr) 1204 | { 1205 | int slash=0; 1206 | unsigned c_dif, blk, ff, t_dif; 1207 | ip_addr_t workbegin; 1208 | ip_addr_t workend; 1209 | 1210 | dieif( rangptr->begin.space != IP_V4 ); 1211 | 1212 | c_dif = ad(end).words[0] - ad(begin).words[0]; 1213 | 1214 | /* now find the biggest block fitting in this range */ 1215 | /* i.e. the first 2^n number smaller than c_dif */ 1216 | 1217 | /* the loop would not work for /0 (some stupid queries may have that) */ 1218 | /* so this must be checked for separately */ 1219 | 1220 | if( c_dif > 0x80000000 ) { 1221 | slash = 0; 1222 | ff = 0xffffffff; 1223 | blk = 0; 1224 | 1225 | workbegin = workend = ad(begin); 1226 | workbegin.words[0] = 0; 1227 | workend.words[0] = ff; 1228 | } 1229 | else { 1230 | 1231 | do { 1232 | c_dif += 1; 1233 | 1234 | /* find the smallest block ENCOMPASSING c_dif. */ 1235 | /* this implies a loop from the bottom up */ 1236 | 1237 | for(slash=32; 1238 | slash>1 && (blk=((unsigned)0x80000000>>(slash-1))) < c_dif; 1239 | slash--) {} 1240 | 1241 | ff=blk-1; 1242 | 1243 | /* clear all digits in workbegin under the blk one. */ 1244 | 1245 | workbegin = ad(begin); 1246 | workbegin.words[0] = workbegin.words[0] & ~ff; 1247 | 1248 | /* see if it has not made the difference larger than blk, */ 1249 | /* retry if so */ 1250 | 1251 | t_dif = c_dif; 1252 | c_dif = ad(end).words[0] - workbegin.words[0]; 1253 | 1254 | } while( c_dif >= t_dif ); 1255 | 1256 | /* set the endpoint to workbegin + blocksize - 1 */ 1257 | /* which amounts to + ff */ 1258 | 1259 | workend = ad(begin); 1260 | workend.words[0] = workbegin.words[0] + ff; 1261 | } 1262 | 1263 | 1264 | /* set the range to new values */ 1265 | 1266 | rangptr->begin = workbegin; 1267 | rangptr->end = workend; 1268 | } 1269 | 1270 | /***************************************************************************/ 1271 | /*+ sets a range equal to a prefix +*/ 1272 | 1273 | er_ret_t 1274 | IP_pref_2_rang( ip_range_t *rangptr, ip_prefix_t *prefptr ) 1275 | { 1276 | int shift; 1277 | int i; 1278 | 1279 | ad(begin) = ad(end) = prefptr->ip; 1280 | 1281 | /* IPv6 is a bit more complicated, as four words are involved */ 1282 | 1283 | /* additional problem: shifting right by >=32 is equal to shifting by 0, 1284 | so it does not change any bits */ 1285 | /* solution: don't touch those words */ 1286 | 1287 | for(i=0; i<4; i++) { 1288 | 1289 | if( prefptr->bits < 32*(1+i) ) { 1290 | shift = prefptr->bits < 32 + (i-1) * 32 1291 | ? 0 : (prefptr->bits % 32) ; 1292 | ad(end).words[i] |= (0xffffffffU >> shift); 1293 | } 1294 | 1295 | if( prefptr->ip.space == IP_V4) { 1296 | break; /* do only first word for IPv4 */ 1297 | } 1298 | } 1299 | return IP_OK; 1300 | } 1301 | 1302 | #undef ad 1303 | 1304 | /***************************************************************************/ 1305 | 1306 | /*+ 1307 | This is to parse a classfull address into a range. 1308 | 1309 | Takes the address by pointer from addrptr and puts the result 1310 | at rangptr. 1311 | 1312 | Throws error if the address does not fall into any of the 1313 | classfull categories 1314 | 1315 | +*/ 1316 | 1317 | er_ret_t 1318 | IP_rang_classful( ip_range_t *rangptr, ip_addr_t *addrptr) 1319 | { 1320 | int i; 1321 | unsigned b[4]; 1322 | 1323 | if( addrptr->space != IP_V4 ) { 1324 | /* it's IPv6. There are no classful ranges or anything like that. */ 1325 | die; 1326 | } 1327 | 1328 | rangptr->begin = *addrptr; 1329 | rangptr->end.space = IP_V4; 1330 | 1331 | /* initisalise end to zero */ 1332 | for(i=0; i<IPLIMBNUM; i++) { 1333 | rangptr->end.words[i] = 0; 1334 | } 1335 | 1336 | /* assume it's at least a valid IP. let's try different classes now */ 1337 | 1338 | /* we could have used a union here, but it would not work on */ 1339 | /* low endians. So byte by byte copying to and from an array. */ 1340 | 1341 | for(i=0; i<4; i++) { 1342 | b[i] = ( rangptr->begin.words[0] & (0xFF << i*8) ) >> i*8; 1343 | } 1344 | 1345 | if( b[3] >= 1 && b[3] < 128 1346 | && b[2] == 0 && b[1] == 0 && b[0] == 0 ) { 1347 | b[2]=b[1]=b[0]=255; 1348 | } 1349 | else if( b[3] >= 128 && b[3] < 192 1350 | && b[1] == 0 && b[0] == 0 ) { 1351 | b[1]=b[0]=255; 1352 | } 1353 | else if( b[3] >= 192 && b[3] < 224 1354 | && b[0] == 0 ) { 1355 | b[0]=255; 1356 | } 1357 | else if( b[3] >= 224 && b[3] < 255 ) { 1358 | /* just leave it, make it a /32, i.e. begin == end */ 1359 | /* EMPTY */; 1360 | } 1361 | else { 1362 | /* Leave it and make it a /32 */ 1363 | /* This is AGAINST the rule! but we have some junk */ 1364 | /* so we have to compensate for it. */ 1365 | /* EMPTY */; 1366 | } 1367 | 1368 | /* copy the (now - modified) bytes into the end of range */ 1369 | for(i=0; i<4; i++) { 1370 | rangptr->end.words[0] |= (b[i] << i*8); 1371 | } 1372 | 1373 | return IP_OK; 1374 | } 1375 | 1376 | 1377 | /***************************************************************************/ 1378 | /*+ 1379 | Trying to be smart :-) and convert a query search term into prefix(es), 1380 | regardless of whether specified as IP address, prefix or range. 1381 | 1382 | justcheck - if just checking the syntax (justcheck == 1), 1383 | then the prefixes are freed before the function returns, 1384 | otherwise it is the responsibility of the caller to free the list. 1385 | 1386 | +*/ 1387 | 1388 | er_ret_t 1389 | IP_smart_conv(char *key, 1390 | int justcheck, 1391 | int encomp, 1392 | GList **preflist, 1393 | ip_exp_t expf, 1394 | ip_keytype_t *keytype 1395 | ) 1396 | { 1397 | int free_it; 1398 | er_ret_t call_err, err=IP_OK; /* let's be optimistic :-) */ 1399 | ip_prefix_t *querypref; 1400 | 1401 | /* if just checking the syntax (justcheck == 1), 1402 | then free_it = 1, 1403 | else 0, but may be modified later (in range conversion) 1404 | */ 1405 | 1406 | free_it = justcheck; 1407 | 1408 | if( (call_err = wr_malloc( (void **) &querypref, sizeof(ip_prefix_t))) 1409 | != UT_OK) { 1410 | return call_err; 1411 | } 1412 | 1413 | if( IP_pref_t2b(querypref, key, expf) == IP_OK ) { 1414 | *keytype = IPK_PREFIX; 1415 | 1416 | if( justcheck == 0) { 1417 | *preflist = g_list_append(*preflist, querypref); 1418 | } 1419 | } 1420 | else { 1421 | /* not a prefix. */ 1422 | /* Maybe an IP ? */ 1423 | if( IP_addr_t2b( &(querypref->ip), key, expf) == IP_OK ) { 1424 | 1425 | *keytype = IPK_IP; 1426 | 1427 | /*convert to a /32 or /128*/ 1428 | querypref->bits = IP_sizebits(querypref->ip.space); 1429 | 1430 | if( justcheck == 0) { 1431 | *preflist = g_list_append(*preflist, querypref); 1432 | } 1433 | } 1434 | else { 1435 | /* hm, maybe a range then ? */ 1436 | ip_range_t myrang; 1437 | 1438 | /* won't use the querypref anymore, mark it for freeing later */ 1439 | free_it = 1; 1440 | 1441 | if( IP_rang_t2b(&myrang, key, expf) == IP_OK ) { 1442 | /* Wow. Great. */ 1443 | 1444 | *keytype = IPK_RANGE; 1445 | 1446 | /* sometimes (exless match) we look for the first bigger(shorter) */ 1447 | /* prefix containing this range. */ 1448 | 1449 | if( encomp ) { 1450 | IP_rang_encomp(&myrang); 1451 | } 1452 | /* OK, now we can let the engine happily find that there's just one */ 1453 | /* prefix in range */ 1454 | 1455 | if( justcheck == 0) { 1456 | IP_rang_decomp(&myrang, preflist); 1457 | } 1458 | } 1459 | else { 1460 | *keytype = IPK_UNDEF; 1461 | err = IP_INVARG; /* "conversion error" */ 1462 | } 1463 | } 1464 | } 1465 | 1466 | if( free_it ) { 1467 | wr_free(querypref); 1468 | } 1469 | 1470 | return err; 1471 | } 1472 | 1473 | 1474 | /* convert whatever comes into a range */ 1475 | er_ret_t 1476 | IP_smart_range(char *key, 1477 | ip_range_t *rangptr, 1478 | ip_exp_t expf, 1479 | ip_keytype_t *keytype 1480 | ) 1481 | { 1482 | er_ret_t err=IP_OK; 1483 | GList *preflist = NULL; 1484 | 1485 | /* first : is it a range ? */ 1486 | 1487 | if( (err = IP_rang_t2b(rangptr, key, expf)) == IP_OK ) { 1488 | *keytype = IPK_RANGE; 1489 | } 1490 | else { 1491 | /* OK, this must be possible to convert it to prefix and from there 1492 | to a range. */ 1493 | if( (err = IP_smart_conv(key, 0, 0, &preflist, expf, keytype)) 1494 | == IP_OK ) { 1495 | 1496 | dieif( g_list_length(preflist) != 1 ); 1497 | 1498 | dieif(IP_pref_2_rang( rangptr, g_list_first(preflist)->data ) != IP_OK ); 1499 | } 1500 | } 1501 | 1502 | wr_clear_list( &preflist ); 1503 | 1504 | return err; 1505 | } 1506 |