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Abstract

Nodal is aTGF-β familymember ligand that is critical for early embryonic patterning

in vertebrates. Nodal signaling functions through core TGF-β receptors to activate a
Smad transcription factor signaling cascade. However, unlike other TGF-β ligands,

Nodal signaling requires an additional co-receptor of theEGF-CFC family to activate

intracellular signaling. Nodal signaling is also subject to extensive negative regula-

tion by Lefty and other factors. Work in numerous model organisms, including

mouse, chicken, and zebrafish, established that Nodal signaling plays an essential

role during germ layer formation, anterior-posterior axis patterning, and left-right

axis determination. Incomplete or delayed loss ofNodal signaling results in defective

organogenesis and birth defects, including congenital heart defects, and clinical

studies have linked aberrant Nodal signaling in humans withmany common congen-

ital malformations, including congenital heart defects. Congenital heart defects

associated with disrupted Nodal signaling in mammals include those that arise due

to global defects in left-right patterning of the embryo, such as heterotaxy. Other

Nodal-associated heart defects appear to occur asmore subtle isolatedmalformations

of the great arteries and atrioventricular septum, which may not be related to overall

perturbations in laterality. A more detailed understanding of the Nodal signaling

pathway and its targets in the heart is required to more fully understand the etiology

of Nodal signaling pathway-associated congenital heart defects.
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24.1 Introduction

The Nodal signaling pathway is critical for early embryonic patterning in all

vertebrates. Nodal is a secreted signaling molecule that belongs to the transforming

growth factor-β (TGF-β) family and functions primarily to activate downstream

signaling through a receptor-mediated response [1–3]. The Nodal pathway plays a

critical role in mesoderm specification and anterior-posterior patterning during

gastrulation and is also essential for establishing the left-right axis in the developing

embryo [4–7]. Changes in Nodal expression or dosage can disrupt left-right pat-

terning and result in a range of congenital defects that affect development of the

forebrain, the craniofacial skeleton, and several other organs, including the heart.

24.2 The Nodal Signaling Pathway

The Nodal signaling pathway shares many similarities with other TGF-β signaling

pathways in that it utilizes core Smad-dependent signaling components (Fig. 24.1).

Nodal is secreted extracellularly as a proprotein homodimer like other TGF-β
ligands [8]. Once cleaved into the mature ligand, the Nodal homodimer binds

tightly to a TGF-β receptor heterodimer consisting of both Type I and Type II

receptors [9]. Nodal ligand binding causes the constitutively active Type II receptor

serine/threonine kinases to associate with the inactive Type I receptor kinases and

leads to phosphorylation and the subsequent dissociation of R-Smad from the

TGF-β receptor [10]. Following formation of a trimeric complex composed of

two R-Smads and the common partner Smad, Smad4, the Smad oligomer

translocates to the nucleus where it regulates gene expression through direct and

indirect DNA binding (Fig. 24.1) [1, 11, 12].

The Nodal signaling pathway has important distinctions from other

TGF-β-mediated signaling pathways. Nodal can only activate TGF-β receptor

signaling in the presence of an EGF-CFC protein (Fig. 24.1). There are two

EGF-CFC proteins, Cripto and Cryptic, which function as co-receptors for Nodal

[13]. Cripto and Cryptic are extracellular proteins that contain an epidermal growth

factor-like motif and a novel cystine-rich domain named the CFC [13]. EGF-CFC

proteins function primarily by binding to the Type II TGF-β receptor through the

CFC domain and by binding to Nodal through the EGF domain [14].

In response to Nodal signaling, the Smad complex cooperates specifically with

FoxH1, a winged helix transcription factor, or Mixer, a member of the Mix subclass

of homeodomain proteins [15, 16]. These cofactors are critical for Nodal-dependent

downstream gene activation and act to stabilize Smad-DNA interactions, since

Smads have relatively weak DNA-binding affinity [17, 18]. FoxH1 and Mixer

recruit the Smad complex to promoter and enhancer elements and help to establish

temporal and spatial regulation of Nodal-dependent target genes.

In addition, the Nodal signaling pathway is subject to specific negative regula-

tion not found for other TGF-β family members. Proteins of the Lefty family,

specifically Lefty1 and Lefty2, inhibit Nodal-dependent activation of TGF-β
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Fig. 24.1 The Nodal signaling pathway. The Nodal ligand binds to a dimer of the TGF-β Type I
and Type II receptors. In association with an EGF-CFC co-receptor (Cripto or Cryptic), Nodal

activates the receptor complex causing the phosphorylation of either Smad2 or Smad3 followed by

oligomerization with the common partner Smad4. The Smad2/Smad3-Smad4 complex then

translocates to the nucleus where it binds to DNA with the transcriptional cofactor FoxH1 or

Mixer, leading to transcription of downstream target genes. The Nodal signaling pathway is

negatively regulated by proteins such as Lefty, which can bind to either EGF-CFC or the Nodal

dimer to prevent activation of the receptor complex, or TGIF1, which recruits histone deacetylases

to Smad2/Smad3 and represses transcriptional activation
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receptors by interacting directly with the Nodal ligand and preventing binding to

the TGF-β receptor heterodimer and by binding to the EGF-CFC Nodal

co-receptors Cripto and Cryptic and preventing their association with the TGF-β
receptor complex (Fig. 24.1) [19–21].

24.3 Requirement for Nodal in Development

Nodal signaling is critical for the patterning of the developing embryo [4, 22]. Loss-

of-function studies in vertebrate model organisms indicate that Nodal signaling is

first required during gastrulation. Germline loss of Nodal in mice results in severe

patterning and differentiation defects and embryonic lethality due to a failure to

induce the primitive streak from the ectoderm and to disrupted specification of

mesoderm and endoderm from the epiblast [5]. Additionally, loss of Nodal in mice

results in impaired anterior-posterior axis formation due to the lack of anterior

visceral endoderm formation [22]. The requirement of Nodal signaling for early

embryonic pattern formation was further highlighted by loss-of-function studies of

the EGF-CFC Nodal co-receptor Cripto. Inactivation of Tdgf1, the gene encoding

Cripto, in mice results in a phenocopy of early Nodal defects, including lethality

shortly after gastrulation. Tdgf1 mutants lack a primitive streak, fail to form

embryonic mesoderm, and exhibit anterior-posterior axis defects [6]. The one-
eyed pinhead (oep) mutation in zebrafish results in a complete loss of function of

the fish ortholog of the Nodal co-receptor Cripto [23]. These mutants exhibit a

phenocopy of the early Nodal defects seen in mice, including an absence of

mesoderm and anterior-posterior axis abnormalities [23]. Together, both animal

models establish that EGF-CFC proteins are required for Nodal signaling and

support an early requirement for the Nodal pathway in embryo morphogenesis.

Following gastrulation, Nodal signaling is indispensable for the establishment of

left-right asymmetry. Conditional deletion of Nodal in the lateral plate mesoderm in

mice circumvents the early requirement for Nodal signaling during gastrulation and

results in heterotaxy, a condition characterized by left-right ambiguity of thoracic

and abdominal visceral organs [24]. These mice exhibit transposition of the great

arteries of the heart, right-sided isomerism of the lungs, and right-sided stomach

[25]. Similarly, germline deletion of Cfc1, the gene encoding Cryptic, results in

left-right laterality defects with mutants exhibiting heterotaxy [26].

In addition to playing a role in the establishment of laterality following gastru-

lation, Nodal signaling is also required for midline patterning of the ventral

forebrain [27]. Zebrafish mutants for the Nodal ligands and for the ortholog of

Cripto result in holoprosencephaly, a condition where bifurcation of the ventral

forebrain fails to occur and results in fusion of the two brain hemispheres [28]. Sim-

ilarly, mice heterozygous for germline knockout alleles of both Nodal and Smad2
have cyclopia, a rare and severe form of holoprosencephaly [29], further supporting

the relationship between Nodal signaling and forebrain development. Mechanisti-

cally, this phenotype is thought to occur due to the patterning of Sonic Hedgehog
(Shh) expression in the forebrain by Nodal [30, 31].
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24.4 Congenital Heart Defects Associated with Perturbations
in Nodal Signaling

It is perhaps not surprising to find that the Nodal signaling pathway is associated

with pathogenesis in humans, given its critical role in patterning during embryonic

development. Nodal signaling was first linked to human congenital defects through

the identification of mutations associated with left-right laterality defects. These

include mutations in genes encoding Lefty family members, the EGF-CFC

co-receptor Cryptic, and the Type II TGF-β receptors [32–34]. In addition,

mutations in genes encoding transcriptional inhibitors of Smad2, such as TGIF1,

are associated with holoprosencephaly, a defect strongly associated with disrupted

Nodal signaling [30, 35]. Interestingly, these human pathologies are similar to the

defects observed in animal models with defective (but not incomplete) Nodal

signaling.

Congenital heart defects have also been linked to aberrant Nodal signaling

(Table 24.1) [36]. Loss-of-function mutations in genes encoding numerous Nodal

signaling components, including Nodal, Cripto, Cryptic, and FoxH1, have been

identified in patients with heart defects [37, 38]. The spectrum of heart defects in

these patients can be roughly grouped into two broadly defined classes: (1) those

that occur as a result of overall isomerism or heterotaxy and (2) those that occur as

isolated congenital heart defects. The isomerisms of the heart can be classified as

situs inversus totalis, a complete mirror image of the visceral organs of the body

including the heart, or situs inversus ambiguous, where the abdominal and visceral

organs are distributed abnormally and randomly in a condition more commonly

called heterotaxy [39]. Both of these conditions can be linked to aberrant Nodal

signaling [40]. Heterotaxy often results in complex congenital heart defects

[41, 42]. These defects include levo-transposition of the great arteries (l-TGA)

and atrial isomerism [36, 39]. The feature characteristics of l-TGA are improper

positioning of the aorta and the pulmonary artery such that the arteries are switched

in conjunction with the ventricles such that they still have the normal relationship

between the ventricles and the arteries [43].

Isolated congenital heart defects associated with Nodal mutations can result in

structural and functional abnormalities that appear to be independent of overall left-

right ambiguity. These isolated defects include dextro-transposition of the great

arteries (d-TGA), double outlet right ventricle (DORV), tetralogy of Fallot, and

isolated ventricular septal defects [37, 38]. Unlike l-TGA, which results in a proper

alignment of the arteries with respect to the ventricles, d-TGA results in a switching

of aorta and the pulmonary artery such that the pulmonary artery connects to the left

ventricle and the aorta emanates from the right ventricle [43]. DORV, as the name

implies, occurs when the aorta and the pulmonary artery connect to the right

ventricle. Tetralogy of Fallot is essentially a milder form of DORV in which the

aorta overrides the ventricular septum and empties blood from both ventricles

[44]. There is also pulmonary artery stenosis and a hypertrophic right ventricle

secondary to pulmonary artery blockage associated with tetralogy of Fallot

[44]. These defects appear to be independent of overall laterality, although the
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mechanistic basis for why these defects occur when Nodal signaling is disrupted is

unclear. Interestingly, Nodal expression occurs well prior to the patterning and final
alignment of the aorta and pulmonary artery [40]. Furthermore, the temporal

expression pattern of Nodal observed during development is tightly regulated

within a narrow developmental window due, at least in part, to the extensive

negative feedback by Lefty proteins and other factors. The diverse nature of

heterotaxy in humans suggests that some isolated congenital heart defects

associated with perturbed Nodal signaling may still be secondary to overall

laterality defects.

A role for Nodal signaling in isolated congenital heart defects is also supported

by studies in mice in which subtle perturbations of Nodal signaling result in less

severe defects (Table 24.1), suggesting that the Nodal ligand functions in a dosage-

dependent manner. For example, deletion of an intronic enhancer of Nodal resulted
in decreased expression of Nodal in the lateral plate mesoderm. These mouse

Table 24.1 Some of the congenital defects associated with altered Nodal signaling in mammals

Component Species CV defects Other defects References

Nodal Human Dextrocardia, d-TGA,

DORV, VSD, ASD,

l-TGA, DILV, PA,

TOF

Asplenia, bilateral trilobed

lungs, hydronephrosis,

HPE, intestinal malrotation

[36, 38]

Mouse l-TGA, VSD Heterotaxy, asplenia,

isomerisms, HPE, cyclopia,

disrupted endoderm and

mesoderm specification,

defective A-P axis

[5, 22, 25,

27]

Cryptic Human Dextrocardia, TGA,

d-TGA, PA, VSD,

ASD, TOF, DORV

Heterotaxy, isomerisms,

polysplenia, asplenia

[32, 37,

49]

Mouse l-TGA, ASD Heterotaxy, r-isomerism of

the lung, hyposplenia

[26]

Cripto Human TOF, VSD, ASD HPE [37, 50,

51]

Mouse HPE, disrupted mesoderm

specification, defective A-P

axis

[6, 52]

Smad2 Human Dextrocardia, d-TGA,

DORV, ASD

Heterotaxy, asplenia, HPE [37, 53]

TGF-βR2 Mouse TGA, DORV,

dextrocardia,

levocardia, VSD,

ASD, arch artery

defects

R-isomerism of the lung,

axial skeleton abnormalities

[54]

FoxH1 Human VSD, TGA, TOF HPE [37, 55]

Mouse Defective elongation of the

primitive streak, defective

A-P axis

[16]
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embryos developed laterality defects that were less severe than the heterotaxy

observed in Nodal conditional knockouts where Nodal expression in lateral plate

mesoderm was completely abolished [25, 45].

Consistent with Nodal function in left-right patterning, Nodal-dependent target

genes are also critical for left-right patterning and heart development [21]. Pitx2 is

perhaps the best-described target gene of Nodal signaling and is expressed asym-

metrically on the left side after gastrulation [46]. Misexpression of Pitx2 on the

embryonic right side in mice results in heterotaxia with conditions such as aberrant

heart looping, cardiac isomerism, and visceral organ laterality defects [46]. In the

mouse, germline loss of function of Pitx2 results in left-right asymmetry defects in

specific organs, such as the lung [47]. Interestingly, Pitx2-null and isoform-specific

Pitx2c-null embryos undergo normal heart looping but have a subset of congenital

cardiovascular anomalies such as DORV and ventricular and atrial septal defects

[47, 48]. These observations suggest that Pitx2 functions in heart development after

left-right determination and that other Nodal-dependent target genes may be

required for cardiac laterality. Together, these observations suggest that other

unappreciated Nodal-dependent target genes are involved in the establishment of

left-right identity and cardiac development. A more detailed elucidation of this

fundamental pathway, including target genes in the cardiac mesoderm, is required

to more fully understand the role of Nodal signaling in heart development and in

congenital heart defects.
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