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Background
[PubMed]

Magnetic resonance imaging (MRI) maps information about tissues spatially and 
functionally. Protons (hydrogen nuclei) are widely used in imaging because of their 
abundance in water molecules. Water comprises ~80% of most soft tissue. The contrast of 
proton MRI depends primarily on the density of the nucleus (proton spins), the relaxation 
times of the nuclear magnetization (T1, longitudinal, and T2, transverse), the magnetic 
environment of the tissues, and the blood flow to the tissues. However, insufficient 
contrast between normal and diseased tissues requires the development of contrast agents. 
Most contrast agents affect the T1 and T2 relaxation times of the surrounding nuclei, 
mainly the protons of water. T2* is the spin–spin relaxation time composed of variations 
from molecular interactions and intrinsic magnetic heterogeneities of tissues in the 
magnetic field (1).

Gadolinium (Gd), a lanthanide metal ion with seven unpaired electrons, has been shown 
to be very effective in enhancing proton relaxation because of its high magnetic moment 
and water coordination (2, 3). Gd-labeled diethylenetriaminepentaacetic acid (Gd-DTPA) 
was the first intravenous MRI contrast agent used clinically, and a number of similar Gd 
chelates have been developed in an effort to further improve clinical use. However, these 
low molecular weight Gd chelates have short blood and tissue retention times, which limit 
their use as imaging agents in the vasculature and cancer. Various macromolecular Gd 
complexes have demonstrated superior contrast enhancement for MRI of the vasculature 
and carcinomas (4-6); however, these Gd complexes cannot proceed into further clinical 
development because of high tissue accumulation and slow excretion of toxic Gd ions. 
Furthermore, they are largely nonspecific.

Apolipoprotein E (apoE) is essential for the normal catabolism of triglyceride-rich 
lipoprotein chylomicrons (lipoprotein particles) (7). Under atherogenic conditions, 
deposits of lipids and extracellular matrix proteins on the endothelial cell surfaces of 
aortic and inflammatory cells lead to the development of atherosclerotic plaques (8), 
which may erode and rupture. The apoE-derived peptide A2 ((LRKLRKRLLR)2) is a 
tandem dimer derived from the low-density lipoprotein receptor (LDLR)–binding 
domain of apoE (9). A2 has been modified by the addition of two palmitoyl chains to 
form palmitoyl-WK(palmitoyl)G(LRKLRKRLLR)2-NH2 (P2A2), which can be 
incorporated into lipid-based nanoparticles (10). Gd-Reconstituted high-density 
lipoprotein nanoparticles (rHDL) have been developed for the detection of atherosclerotic 
plaques (11). Chen et al. (12) has incorporated a carboxyfluorescence-modified P2A2 
(P2fA2) into rHDL nanoparticles (rHDL-P2A2) for imaging atherosclerotic plaques in 
apoE knockout mice.

Synthesis
[PubMed]
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P2fA2, prepared with solid-phase synthesis, was incorporated into rHDL nanoparticles 
(12). 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), Gd-DPTA-BSA, and 
rhodamine-PE were dissolved in chloroform-ethanol and then dried to a lipid film 
overnight. The film was dissolved in sodium cholate buffer (pH 7.5) with the addition of 
apoA1 and P2fA2, and the mixture was incubated for 2 h at 0–5ºC. The molar ratio of 
apoAI:DPPC:P2fA2:Gd-DPTA-BSA:rhodamine-PE:sodium cholate was1:113:10:25:2:200. 
rHDL-P2A2 nanoparticles were purified with dialysis. There were 22 and 19 Gd3+ ions 
per nanoparticle for rHDL and rHDL-P2A2, respectively. The longitudinal relaxivity (r1) 
values, measured at 60 MHz, were 11.3 and 10.5 mM-1s-1 per Gd3+ ion for rHDL and 
rHDL-P2A2, respectively. The zeta potentials of rHDL and rHDL-P2A2 were -20.3 and 
+15.6mV, respectively. The nanoparticles had a mean diameter of 11.6 ± 3.7 nm in 
aqueous solution as determined with dynamic light scattering.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

The accumulation of rHDL and rHDL-P2A2 in macrophage J774A.1 cells was measured 
with fluorescent intensities and the longitudinal relaxation rates (R1) of the cell lysates 
after 24 h of incubation (12). Cell lysates from rHDL-P2A2 incubation exhibited two-fold 
higher fluorescent intensities than did rHDL at 0.05 nM Gd3+. The lysates of cells 
incubated with rHDL nanoparticles had an R1 value of 0.281 ± 0.008 s-1, while the cells 
incubated with rHDL-P2A2 nanoparticles had an R1 value of 0.412 ± 0.008 s-1. 
Endocytosis of both rHDL and rHDL–P2A2 into J774A.1 macrophages was confirmed 
with confocal images. However, rHDL–P2A2 binds to its receptor on the surface of 
macrophages, followed by endocytosis.

Animal Studies

Rodents
[PubMed]

Chen et al. (12) performed in vivo MRI imaging (9.4 T) on 6-month-old apoE-/- mice that 
were fed a high-fat, high-cholesterol diet for 4.5 months. Animals were injected with 
either 50 mmol Gd/kg rHDL (n = 6 mice) or rHDL-P2A2 (n = 5 mice). Elimination of the 
nanoparticles was bi-exponential. The two time constants for rHDL were 125 min and 3.9 
× 106 min, respectively. The two time constants for rHDL-P2A2 were 39 min and 723 
min. Sequential T1-weighted MRI images showed that both the rHDL and rHDL-P2A2 
caused increased atherosclerotic arterial vessel wall enhancement at 24 h after injection. 
The mean normalized enhancement ratio of rHDL-P2A2 at 24 h after injection was 90%, 
whereas that of rHDL was 53% at the same time point. The signal with the rHDL was 
substantially reduced to 24% by 48 h. On the other hand, the enhancement ratio of rHDL-
P2A2 remained high at 66% at 48 h after injection. The contrast/noise ratio of rHDL-
P2A2 was 14 ± 5, significantly higher than that of rHDL (6 ± 5) at 24 h after injection. In 
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contrast, no significant enhancement of the arterial vessel wall of wild-type mice was 
observed after injection of either rHDL or rHDL-P2A2. Confocal laser scanning 
microscopy revealed that rHDL-P2A2 co-localized primarily with intraplaque 
macrophages with CD68 staining. No blocking experiment was performed.

Other Non-Primate Mammals
[PubMed]

No publication is currently available.

Non-Human Primates
[PubMed]

No publication is currently available.

Human Studies
[PubMed]

No publication is currently available.
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