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Abbreviated name: [15N]TEMPONE
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labeled 2,2,6,6-tetramethyl-4-oxo-piperidine-N-oxy free 
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Agent catagory: Small molecule

Target: Other

Target category: Other –reactive oxygen species (ROS)

Method of detection: Electron paramagnetic resonance imaging (EPRI), magnetic 
resonance imaging (MRI), proton electron double resonance 
imaging (PEDRI), Overhauser-enhanced MRI (OMRI)

Source of signal/
contrast:

Nitroxide

Activation: No

Studies:
• In vitro

• Rodents

• Non-primate non-rodent mammals

No structure is 
currently 
available in 
PubChem.
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Reactive oxygen species (ROS) are various free radicals generated in a biological milieu (1, 
2). They are propagated through a cascade of reactions in the pathogenesis in many 
diseases, including cancer, stroke, atherosclerosis, ischemia-reperfusion injury, 
Alzheimer’s disease, diabetic vascular diseases, and inflammatory diseases (2). In 
particular, ROS interact with glutathione (GSH), NADPH, and ascorbates to maintain 
cellular redox status (3). Therefore, the distribution of ROS in tissue can be used as a 
surrogate marker to characterize the redox status/environment in disease-related 
physiological and pathological conditions (1). Because all free radicals contain unpaired 
electrons, the electron paramagnetic resonance (EPR) technique, also called electron spin 
resonance (ESR), is specific for detecting and quantifying ROS (2). EPR spectra can 
provide a wealth of information for unequivocal identification of free radicals, such as 
fine, hyperfine, and superhyperfine structures, g-factor, and lineshape (2). EPR imaging 
(EPRI) technique allows for non-invasive mapping of free radicals in animals/organs (4).

EPR is fundamentally similar to nuclear magnetic resonance (NMR) (5). However, the 
differences in the physical and chemical properties of the resonance species (unpaired 
electrons versus nuclear spin) lead to three major differences in acquiring the spectra/
images: gyromagnetic ratio, relaxation time, and concentration (5). The gyromagnetic 
ratio of an electron spin is 658 times larger than that of a proton nuclear spin, resulting in 
a 658-fold increase in its magnetic moment and resonant frequency. For instance, with a 
magnet of 0.34 T, the EPR frequency of X-band is 9.5 GHz, and the NMR frequency of 
proton nuclei is 14.4 MHz. As a result of the presence of strong non-resonant water 
absorption, a high radiofrequency such as 9.5 GHz is not suitable for examining tissue 
samples. Thus, much lower EPR frequencies in the range of 1.2 GHz (L-band) to 300 MHz 
are used instead, corresponding to a penetration depth of a few cm. The increase in the 
magnetic moment of electron spin provides ~700 times greater intrinsic sensitivity with 
EPR on a molar basis than with NMR. Because the excited electron spins relax on a 
nanosecond time scale, which is several orders of magnitude shorter than the nuclear spin 
(measured in ms), pulsed EPR (Fourier transformation EPR (FT EPR) or time-domain 
EPR) is only applicable to those free radicals with an extremely narrow line, whereas most 
ERP spectrometers use the continuous wave technique (CW EPR). The lack of high 
concentrations of naturally occurring paramagnetic species such as free radicals often 
requires the addition of paramagnetic species. This in turn allows for the quantification of 
exogenous paramagnetic species but also requires the acquisition of the anatomic 
information with different imaging modalities such as magnetic resonance imaging 
(MRI). Proton electron double resonance imaging (PEDRI), also called Overhauser-
enhanced magnetic resonance imaging (OMRI), is a double resonance technique that 
encodes characteristic EPR spectral information on a high-resolution MRI (6). This 
method uses EPR irradiation to saturate paramagnetic species and leads to polarization of 
water protons through the dynamic nuclear polarization (DNP) effect. The polarized 
protons produce enhanced signal intensity in MRI. PEDRI offers good sensitivity, high 
spatial resolution, and signal enhancement of approximately two orders of magnitude (7).

Nitroxides are stable organic free radicals that have a single unpaired electron delocalized 
between the nitrogen and the oxygen (8). The steric hindrance around the nitroxide group 
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makes these compounds very stable. They can be obtained in pure form, and they can be 
stored and handled in the laboratory with no more precautions than most organic 
substances (9). Nitroxides used as the contrast agent in EPRI can detect the redox status 
on the basis of their reduction to EPR-silent hydroxylamine (10), and nitroxides have 
been extensively used in cells, tissues, and living animals (11). Inside cells, nitroxides are 
reduced to hydroxylamine by cellular antioxidants such as ascorbate, thioredoxin, 
reductase, ubiquinol, NADPH and GSH . Nitroxides also can function as superoxide 
dismutase mimics and repair DNA damage caused by ultraviolet irradiation. In addition 
to the use as an EPRI contrast agent, nitroxides are T1 relaxation agents in MRI for having 
an unpaired electron (12). Because their reduced form, hydroxylamine, is diamagnetic, 
the reduction process is accompanied by a decrease in T1 relaxivity. This decrease reflects 
the alterations in the redox status and can be used to map the redox status. Although the 
T1 relaxivity of nitroxides is much lower than that of gadolinium chelates (one unpaired 
electron versus seven unpaired electrons), their high cellular permeability leads to a 
significantly greater volume distribution in tissues and compensates for their lower 
relaxivity (12). Various nitroxides are designed to target different cellular compartments 
(8). For example, a neutral nitroxide can be distributed throughout the intracellular and 
extracellular environments, whereas a charged nitroxide is unable to cross the plasma 
membrane and can be used to measure oxygen levels in extracellular compartments.
15N-Labeled 4-oxo-2,2,6,6-tetramethyl-piperidine-1-oxyl ([15N]TEMPONE) is a 15N-
labeled (spin = 1/2) neutral nitroxide (13). Commercially available TEMPONE exhibits 
low toxicity with a maximum tolerated dose (MTD) of ~1 mmol/kg (14). Compared to 
the commercial TEMPONE, which has a natural isotope of nitrogen (14N, spin = 1) with 
a triplet EPR hyperfine structure, [15N]TEMPONE has a doublet EPR hyperfine structure 
(13). The decrease in the number of hyperfine structures from three to two leads to a 1.5-
fold increase in EPR signal intensity and DNP enhancement, assuming that the motional 
correlation time of hydroxides is faster than the inverse spin precession (Larmor) 
frequency of the electron spin (15). The characteristic doublet of 15N-labeled nitroxides is 
easily distinguished from the triplet structure in the natural isotope of 14N in other 
nitroxides. Thus, multiple nitroxides labeled with different isotopes (14N and 15N) can be 
used to separate different reduction or oxidation processes in vivo (13).

Synthesis
[PubMed]

[15N]TEMPONE was synthesized by reaction of commercial phorone 
((CH3)2CCHCOCHC((CH3)2) with 15N-labeled ammonium chloride (16).

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

No publication is currently available.
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Animal Studies

Rodents
[PubMed]

Utsumi et al. examined the distribution of [15N]TEMPONE in mice (5 weeks old) in the 
presence of commercial 14N-nitroxides by OMRI (13). After intragastric administration 
of 200 μl of 10 mM [15N]TEMPONE followed by intravenous injection of 200 μl of 300 
mM 3-carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl (3CP) solution, OMRI was 
conducted on a custom-built MRI spectrometer. The EPR excitation frequency values 
(B0EPR ) for 14N-nitroxide and 15N-nitroxide were 6.103 mT and 6.563 mT, respectively, 
and the NMR frequency for proton nuclei was 617 kHz. Interleaved ESR excitation was 
used in the OMRI sequence to alternately excite the 15N-radicals ([15N]TEMPONE) and 
the 14N-enriched radicals (3CP). The images were collected at 1.5, 4.5, 7.5, and 11.5 min 
after the injection of 3CP. The signal of 15N-radicals appeared to be confined to the 
deposited site (i.e., the stomach), whereas the signal of 14N-radicals exhibited a global 
distribution over the whole mouse and their signal intensities were dependent on organ/
region. This study demonstrated the possibility of tracking 14N- and 15N-labeled 
nitroxides simultaneously as well as the co-registration of their distribution in the same 
anatomic image.

Other Non-Primate Mammals
[PubMed]

No publication is currently available.

Non-Human Primates
[PubMed]

No publication is currently available.

Human Studies
[PubMed]

No publication is currently available.
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