⁶⁴Cu-Polyethylenimine

Kam Leuna, PhD^{II} Created: April 16, 2010; Updated: July 1, 2010.

Chemical name:	⁶⁴ Cu-Polyethylenimine	
Abbreviated name:	⁶⁴ Cu-PEI	
Synonym:		
Agent category:	Compound	
Target:	Heparin sulfate proteoglycans	
Target category:	Other	
Method of detection:	Positron emission tomography (PET)	
Source of signal\contrast:	⁶⁴ Cu	
Activation:	No	
Studies:	 In vitro Rodents	Structure not available in PubChem.

Background

[PubMed]

Polyethylenimine (PEI) is an organic polymer with a high density of amino groups that can be protonated. At physiological pH, the positively charged PEI binds to DNA as a gene carrier (1). PEI binds to negatively charged heparin sulfate proteoglycans on the cell surface, thus facilitating the transfection of eukaryotic cells (2). Currently, [¹⁸F]fluoro-2deoxy-D-glucose ($[^{18}F]FDG$) (3) and ^{64}Cu -pyruvaldehyde-bis(N^4 methylthiosemicarbazone) (⁶⁴Cu-PTSM) (4) have been studied as positron emission tomography (PET) cell-trafficking agents. However, studies of FDG-labeled cells were limited to ~6 h because of the short physical half-life of ¹⁸F (110 min). Li et al. (5) labeled PEI with ⁶⁴Cu without using a metal chelator. ⁶⁴Cu-PEI was evaluated as a tumor-

¹ National Center for Biotechnology Information, NLM, NIH, Bethesda, MD; Email: MICAD@ncbi.nlm.nih.gov.

Corresponding author.

NLM Citation: Leung K. ⁶⁴Cu-Polyethylenimine. 2010 Apr 16 [Updated 2010 Jul 1]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.

imaging probe and as a cell-labeling agent for cell trafficking in comparison to $^{64}\mathrm{Cu-PTSM}.$

Related Resource Links:

- Chapters in MICAD (FDG, PTSM)
- Clinical trials (Polyethylenimine)
- FDA Drug information (Polyethylenimine)

Synthesis

[PubMed]

PEI (0.8 nmol) and 64 CuCl₂ (74 MBq (2 mCi)) were mixed in sodium acetate buffer (pH, 6.5) for 1 h at 40°C (5). 64 Cu-PEI was purified on a PD-10 column. The labeling yield was >90%, and the specific activity was >80 GBq/µmol (2.2 Ci/µmol). In comparison, the specific activity for 64 Cu-PTSM was 1.8 GBq/µmol (48.6 mCi/µmol).

In Vitro Studies: Testing in Cells and Tissues

[PubMed]

Li et al. (5) performed *in vitro* uptake and efflux studies of ⁶⁴Cu-PEI and ⁶⁴Cu-PTSM in cultured U87MG human glioblastoma cells. ⁶⁴Cu-PEI and ⁶⁴Cu-PTSM exhibited 20% and 60% uptake of incubation dose within 90 min of incubation at 37°C, respectively. ⁶⁴Cu-PTSM exhibited a lower efflux (36% at 27 h) than ⁶⁴Cu-PEI (61% at 27 h). Therefore, ⁶⁴Cu-PTSM would be a better cell-labeling agent for cell trafficking than ⁶⁴Cu-PEI.

Animal Studies

Rodents

[PubMed]

Li et al. (5) performed *ex vivo* biodistribution studies in mice (n = 3/group) bearing U87MG tumors at 48 h after injection of ⁶⁴Cu-PEI. The liver, tumor, and kidney accumulations were 15%, 13%, and 10% injected dose per gram (ID/g), respectively. The intestine, lung, heart, spleen, muscle, pancreas, blood, and brain had lower accumulation than the kidneys. PET imaging was performed in mice (n = 3/group) bearing U87MG tumors at 48 h after injection of 7.2 MBq (0.2 mCi) ⁶⁴Cu-PEI or ⁶⁴Cu-PTSM. For ⁶⁴Cu-PEI, the tumor accumulation was 11.0 ± 3.8, 17.4 ± 3.3, and 18.7 ± 2.2% ID/g at 1, 4, and 24 h after injection, respectively. For ⁶⁴Cu-PTSM, the tumor accumulation was 12.5 ± 1.7, 13.6 ± 0.8, and 12.4 ± 1.7% ID/g at 1, 4, and 24 h after injection, respectively. Both tracers exhibited similar high liver radioactivity, whereas ⁶⁴Cu-PTSM exhibited a higher kidney accumulation than ⁶⁴Cu-PEI. The accumulation of ⁶⁴Cu-PTSM in the brain was as high as that in the tumors, whereas little radioactivity was observed with ⁶⁴Cu-PEI in the

brain. In another PET experiment, U87MG tumor cells labeled with ⁶⁴Cu-PEI or ⁶⁴Cu-PTSM were injected intravenously in mice. Both ⁶⁴Cu-PEI- and ⁶⁴Cu-PTSM-labeled cells were found in the lungs at 5 min after injection and were redistributed in similar proportions to the kidneys and liver at later time points (up to 4 h).

Other Non-Primate Mammals

[PubMed]

No publication is currently available.

Non-Human Primates

[PubMed]

No publication is currently available.

Human Studies

[PubMed]

No publication is currently available.

NIH Support

R01 CA119053, R21 CA121842, R21 CA102123, P50 CA114747, U54 CA119367, R24 CA93862

References

- 1. Jere D., Jiang H.L., Arote R., Kim Y.K., Choi Y.J., Cho M.H., Akaike T., Cho C.S. *Degradable polyethylenimines as DNA and small interfering RNA carriers.* Expert Opin Drug Deliv. 2009;6(8):827–34. PubMed PMID: 19558333.
- Suk J.S., Suh J., Choy K., Lai S.K., Fu J., Hanes J. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 2006;27(29):5143–50. PubMed PMID: 16769110.
- Doyle B., Kemp B.J., Chareonthaitawee P., Reed C., Schmeckpeper J., Sorajja P., Russell S., Araoz P., Riederer S.J., Caplice N.M. *Dynamic tracking during intracoronary injection of 18F-FDG-labeled progenitor cell therapy for acute myocardial infarction*. J Nucl Med. 2007;48(10):1708–14. PubMed PMID: 17909258.
- 4. Adonai N., Nguyen K.N., Walsh J., Iyer M., Toyokuni T., Phelps M.E., McCarthy T., McCarthy D.W., Gambhir S.S. *Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography.* Proc Natl Acad Sci U S A. 2002;99(5):3030–5. PubMed PMID: 11867752.
- Li Z.B., Chen K., Wu Z., Wang H., Niu G., Chen X. 64*Cu-labeled PEGylated* polyethylenimine for cell trafficking and tumor imaging. Mol Imaging Biol. 2009;11(6): 415–23. PubMed PMID: 19430846.