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Background
[PubMed]

Dopamine, a neurotransmitter, plays an important role in the mediation of movement, 
cognition, and emotion (1, 2). Dopamine shortage plays a role in various neuropsychiatric 
disorders, such as Parkinson’s disease (PD), schizophrenia, autism, attention deficit 
hyperactivity disorder, and drug abuse. Two subtypes of dopamine receptors, D1 and 
D2/3, were well characterized pharmacologically and biochemically (3). D2/3 dopamine 
receptors have been implicated in the pathophysiology of PD, Alzheimer's disease, 
Huntington’s disease (HD), and schizophrenia (4).

Serotonin (5-hydroxytryptamine, 5-HT) has diverse physiological roles as a 
neurotransmitter in the central nervous system (5). It also is a regulator of smooth muscle 
function and platelet aggregation. The brain cortical 5-HT system has been implicated in 
several neuropsychiatric disorders, including major depression, anxiety, obsessive-
compulsive disorder, and schizophrenia (6, 7).

Spiperone and its analog, 3-N-methylspiperone (NMSP), are high-affinity D2/3 dopamine 
and 5-HT2A serotonin receptor antagonists, showing a low affinity for α1-adrenergic 
receptors (8, 9). 3-N-[11C]Methylspiperone ([11C]NMSP) has been studied as a positron 
emission tomography (PET) tracer for imaging D2/3 and 5HT2A receptor densities.

Related Resource Links:
• Chapters in MICAD (5-HT2A, Dopamine receptors)
• Gene information in NCBI (5-HT2A, D2 receptor,D3 receptor)
• Articles in Online Mendelian Inheritance in Man (OMIM) (5-HT2A, D2 receptor, 

D3 receptor)
• Clinical trials (5-HT2A, Dopamine receptors)
• Drug information in Food and Drug Administration (5-HT2A, Dopamine 

receptors)

Synthesis
[PubMed]

A continuous flow procedure was used for the synthesis of [11C]methyl iodide from 
[11C]CO2. Alkylation of the amide nitrogen in spiperone in tetrabutylammonium 
hydroxide solution by [11C]methyl iodide provided [11C]NMSP in 20-40% radiochemical 
yield against [11C]CO2 in 40 min (10). [11C]NMSP was purified by high-performance 
liquid chromatography (HPLC). The specific activity was 10 GBq/μmol (270 mCi/μmol) 
at the end of synthesis (EOS). Omokawa et al. (11) and Dannals et al. (12) reported the 
time required for the synthesis and purification of [11C]NMSP from [11C] CO2 and 
spiperone to be 20-21 min with radiochemical yields of 21-35%. [11C]NMSP has been 
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prepared automatically with a high specific activity (37 ± 18 GBq/μmol or 1 Ci/μmol at 
EOS) at 98.3 ± 1.0% radiochemical purity in 29 min of total synthesis time (13).

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

NMSP was reported to have selective binding affinity to D2 (striatum) and 5-HT2A 
(frontal cortex) receptor sites in homogenates of rat brain membranes (14). The Kd value 
of [3H]NMSP was 0.28 nM when the 5-HT2A binding sites in the striatum were blocked 
by 40 nM ketanserin and 0.32 nM without blocking. The Kd value of [3H]raclopride was 
2.08 nM. The D2 receptor binding density (Bmax) was almost identical for both 
radioligands (20 fmol/mg tissue). The Bmax of [3H]NMSP for 5-HT2A in the frontal 
cortex was 6.8 fmol/mg (35% of the total binding).

Using human putamen homogenates, the Kd values of [3H]NMSP and [3H]raclopride 
were 0.16 nM (0.22 nM in the presence of ketanserin) and 3.89 nM, respectively (14). The D2 
receptor binding density (Bmax) was almost identical for both radioligands (10 fmol/mg 
tissue). The Bmax of [3H]NMSP for 5-HT2A was 3.3 fmol/mg tissue (30% of the total 
binding). The dissociation half-life values as measured by the addition of (+)-butaclamol 
were 14.8 and 1.19 min with [3H]NMSP and [3H]raclopride, respectively. NMSP was 
found to block the binding of [3H]raclopride competitively, whereas raclopride blocked 
the binding of [3H]NMSP both competitively and noncompetitively. Dopamine was 
found to be more potent in inhibiting [3H]raclopride than inhibiting [3H]NMSP binding 
to D2 receptors, partly because of the lower affinity of raclopride.

Animal Studies

Rodents
[PubMed]

Biodistribution studies in mice showed a high accumulation of radioactivity in the liver 
(9.98% injected dose (ID)/g) and kidneys (3.94% ID/g) at 30 min after injection of 
[11C]NMSP (15). The brain had a moderate uptake of 1.13% ID/g. The striatum had an 
uptake of 4.89% ID/g at 60 min with a striatum-to-cerebellum ratio of 20:1.

In the biodistribution studies in rats, there was a high accumulation of radioactivity in the 
liver, lung, and kidneys, whereas the brain radioactivity was not as high (16). The 
radioactivity in the striatum increased from 0.98% ID/g at 10 min to 1.9% at 60 min. On 
the other hand, the radioactivity in the cerebellum, which contains few or no D2 
receptors, decreased from 0.29% at 10 min to 0.19% at 60 min. In the striatum, in vivo 
saturation and displacement studies estimated a Bmax of 10-14 fmol/mg of tissue for 
[11C]NMSP and a Kd of 10-20 nmol/kg of body weight. Pretreatment of 5 mg/kg of 
spiperone 15 min before [11C]NMSP injection caused more inhibition than 15 min after 
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[11C]NMSP injection. This indicated that [11C]NMSP bound tightly to its receptor sites 
in the striatum.

Other Non-Primate Mammals
[PubMed]

Using PET, Rosa-Neto et al. (17) reported the binding potentials (PBs, ratios of Bmax to 
Kd) of [11C]raclopride and [11C]NMSP in brain of living pigs, first in a baseline condition 
and then at 45 and 165 min after intravenous infusion of 
methylenedioxymethamphetamine (MDMA, "Ecstasy") (1 mg/kg). Concomitant studies 
of cerebral blood flow did not reveal significant perfusion changes in the cerebellum 
reference region or in striatum. Relative to the baseline PB of [11C]raclopride for 
dopamine D2 receptors in striatum (PB = 1.5-2.2), MDMA treatment reduced PB by 35% 
in the first post-treatment scan and by 22% in the second post-treatment scan. However, 
the baseline PB of [11C]NMSP for dopamine D2 and 5-HT2A receptors in striatum (PB = 
4-5) was decreased by 30% in the first scan and by 50% in the second scan. Therefore, a 
simultaneous release of dopamine and serotonin induced by MDMA in brain may 
account for the progressive decline in the availability of [11C]NMSP binding sites in 
striatum.

Non-Human Primates
[PubMed]

[11C]NMSP PET studies in non-human primates have provided useful assessments of the 
D2 and 5-HT2A receptors in the brain [PubMed]. Eckernas et al. (18) showed a selective 
uptake in putamen (7.16% ID/cm3) over the frontal cortex (1.68% ID/cm3) and in the 
cerebellum (0.94% ID/cm3) in baboon brains at 60 min after injection. The striatum 
[11C]NMSP retention was blocked by pretreatment with excess unlabeled NMSP (0.075 
mg/kg).

Clozapine, a neuroleptic drug in the treatment of schizophrenia by dopamine receptor 
blockade, blocked [11C]NMSP accumulation in the striatum of a monkey pretreated with 
0.3 and 3 mg/kg of clozapine (19). D-Amphetamine is known to induce a marked release 
of dopamine to the synaptic cleft (20). D-Amphetamine administration to monkeys 
decreased [11C]raclopride binding by 31.2 ± 8.1% but only by 6.0 ± 17.5% in [11C]NMSP 
binding in the striatum (21). [11C]NMSP was not sensitive enough to detect the change in 
dopamine levels induced by D-amphetamine in this study.

Using a system to study conscious monkeys, a significant increase in accumulation of 
[11C]NMSP was observed in the striatum of monkeys administered with ketamine (5 
mg/kg) compared with the level in the conscious state, whereas no significant change was 
observed in the frontal cortex and cerebellum (22). This dose of ketamine caused sedation 
accompanied by psychotic symptoms, such as nystagmus and stereotyped movements of 
extremities. Kinetic analysis revealed that the value of the association constant for 
[11C]NMSP binding in the striatum was increased to approximately 130% by ketamine 
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compared with the control values. Furthermore, the release of dopamine from the 
striatum measured by microdialysis was not affected by ketamine anesthesia. It was 
concluded that ketamine facilitates striatal dopaminergic neurotransmission through 
increasing the binding activity of dopamine D2 receptors in the striatum, suggesting that 
these changes may be related to the psychotomimetic behavioral symptoms of this drug. 
In a later study in monkeys, it was found that [11C]NMSP binding was increased, whereas 
[11C]raclopride binding was decreased with ketamine (23).

Human Studies
[PubMed]

[11C]NMSP studies of D2 receptor distribution in human brain were reported, showing a 
localization of radioactivity in the striatum. Gjedde and Wong (24) reported on 
[11C]NMSP PET studies in 14 patients with schizophrenia, 5 patients with manic 
depression, and 15 normal subjects (3 old men and 12 young men). In the young normal 
volunteers, a Bmax of 17 pmol/g tissue was estimated in the caudate, with a Ki of 3 nM for 
haloperidol. The Bmax values for the older normal men, manic-depressive men, drug-
naïve schizophrenic patients, and drug-treated schizophrenic patients were 6, 21, 39, and 
41 pmol/g, respectively. Other [11C]NMSP PET studies also confirmed the age-related 
decrease of D2 receptor density in the caudate nucleus and putamen (25, 26) and the 
elevated level of striatal D2 receptor density in patients with chronic schizophrenia as 
compared with controls (27). However, Farde et al. (28) found that there was little 
difference in D2 receptor density in schizophrenic patients and normal subjects using 
[11C]raclopride, indicating that there may be some important differences in the binding 
properties and selectivity of the two tracers. In 21 patients with HD, there was a 
significant reduction in relative binding of [11C]NMSP to D2 receptor sites in the caudate 
nucleus and putamen of HD patients as compared with 8 normal subjects at risk for HD 
(29). There was a correlation of [11C]NMSP binding in the caudate with motor functions. 
The [11C]NMSP binding in the putamen correlated with the duration of the illness.

Effect of risperidone (a high-affinity 5-HT2A and D2 antagonist) on 5-HT2A receptor 
occupancy was studied in 3 normal healthy volunteers by [11C]NMSP PET (30). There 
was 60% 5-HT2A receptor occupancy ([11C]NMSP) in the neocortical regions and 50% 
D2 receptor occupancy ([11C]raclopride) in the putamen after oral administration of 1 
mg of risperidone. In a later study with 6 schizophrenic patients, D2 receptor occupancy 
was 82% and 5-HT2A receptor occupancy was 95% at 6-mg/day doses for 4 weeks (31). 
All six patients had extrapyramidal side effects. Subsequently, when the dose was reduced 
to 3 mg/day for 2 weeks, D2 receptor occupancy was 72% and 5-HT2A receptor 
occupancy was 83%. Three patients had extrapyramidal side effects.

[11C]NMSP PET is useful for objective monitoring of D2 and 5-HT2A receptor 
occupancy and density in patients being treated with antipsychotic drugs. Internal 
dosimetry data for [11C]NMSP in humans are not available in the literature.
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