
111In-Streptavidin-biotinylated α-melanocyte-
stimulating hormone 2.0 bacteriophage
111In-SA-α-MSH2.0 phage

Kenneth T. Cheng, PhD1

Created: March 28, 2007; Updated: May 5, 2008.
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Abbreviated name: 111In-SA-α-MSH2.0 phage

Synonym: Pretargeted 111In-MSH bacteriophage

Agent Category: Bacteriophage

Target: Melanocortin-1 (MC-1) receptor

Target Category: Receptor binding

Method of detection: Single-photon emission computed tomography 
(SPECT) or gamma planar imaging

Source of signal/contrast: 111In

Activation: No

Studies:
• In vitro

• Rodents

Click on protein, nucleotide 
(RefSeq), and gene for more 
information about the 
melanocortin-1 receptor.

Background
[PubMed]
111In-Streptavidin-biotinylated α-melanocyte-stimulating hormone (MSH) 2.,0 
bacteriophage (111In-SA-α-MSH2.0 phage) is a two-step melanoma pretargeting and 
imaging system developed as a single-photon emission computed tomography (SPECT) 
imaging probe for primary and metastatic melanoma (1). This system uses a biotinylated 
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α-MSH2.0 (bio-MSH2.0) targeting phage combined with in vivo labeling by 111In-
streptavidin (111In-SA).

Malignant melanoma is the sixth most common cancer in the United States (2). Early 
diagnosis and prompt surgical removal comprise the best approach for treatment (3). The 
melanocortin (MC) system is the best characterized neuropeptide network of the skin, 
and it is involved in pigmentation regulation, cortisol production, and many other 
physiological processes (4). Most cutaneous cell types express MC receptors, 
proopiomelanocortin (POMC), and prohormone convertases, and they also release MCs. 
Five MC receptors (MC-1 to MC-5) have been cloned and characterized as receptors that 
belong to the G-protein−coupled receptor superfamily. MSHs (α-, β-, and γ-MSH) are 
derived from POMC by the proteolytic action of prohormone convertases. α-MSH (Ac-
Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2), 
composed of 13 amino acids, is the most potent naturally occurring melanotropic peptide 
(5). The biological effects of α-MSH are mediated via MC receptors.

Although positron emission tomography imaging with [18F]fluoro-2-deoxy-2-D-glucose 
([18F]FDG) is effective in the detection of melanoma, it is not melanoma-specific and 
some melanoma cells do not take up [18F]FDG (6, 7). Radiolabeled α-MSH peptide 
analogs have been shown to specifically bind to MC-1 receptors that are overexpressed on 
human and mouse melanoma cells (6, 8-11). To improve the in vivo pharmacokinetics of 
these radiolabeled peptides, different α-MSH analogs have been designed and studied (12, 
13). Bacteriophage display (phage display) is a combinatorial chemistry technique that 
uses a population of filamentous bacteriophage particles genetically modified to display a 
library of proteins and peptides on their surface (14, 15). This technique has been used for 
the discovery of new and unique molecular imaging peptides (16). These phage display–
derived peptides can have binding properties different from chemically synthesized 
peptides because the conformational structures of phage peptides are affected by the 
microenvironment created by the surface of the phage particle (1). Instead of using the 
isolated peptides, Newton et al. (1) suggested that imaging tags can be directly added to 
phage particles without significant effects on their peptide binding properties. However, 
these very high molecular weight phage particles are generally cleared by the 
reticuloendothelial system in vivo. To circumvent this problem, Newton et al. (1) prepared 
an α-MSH2.0 peptide analog from the phage display library and proposed the use of a 
two-step biotin-SA pretargeting system to allow for clearance of unlabeled phage particles 
before injection of the 111In imaging label.

Synthesis
[PubMed]

The α-MSH2.0 phage was generated by use of the fUSE5 vector, which contained phage 
with modified coat protein III and displayed up to 5 copies of a fused peptide on the tip of 
the phage particle (1). Affinity selection of phage constructs was performed through 
multiple rounds of washing and multiplication. Briefly, the fUSE5 vector was digested 

2 Molecular Imaging and Contrast Agent Database (MICAD)

https://www.ncbi.nlm.nih.gov/books/n/micad/FDG/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=PureSearch&db=pubmed&details_term=pretargeted%20bivalent%20bacteriophage


with the SFiI restriction endonuclease. Equal molar amounts of sense and antisense 
phosphorylated DNA oligonucleotides were hybridized. A room-temperature DNA 
ligation reaction was performed for insertion of the hybridized DNA into the fUSE5 
vector. Escherichia coli K91 Blue Kan cells were electroporated in the presence of the 
ligated vector. The proper DNA sequence was verified by DNA sequencing, and the 
amplified phage was precipitated. The phage particle concentrations in virions were 
determined spectrophotometrically.

Biotinylation of the phage particle was conducted by adding commercially available NHS-
PEO4-biotin to the phage suspension at a 1,000-fold molar excess relative to the phage 
particles (1). The mixture was rotated at room temperature for 2 h. The reaction was 
stopped with ethanolamine (pH 9.0) and was rotated at room temperature for 1 h. The 
free biotin was removed from bio-MSH2.0 by dialysis. 111In-SA was prepared by first 
attaching diethylenetriaminepentaacetic acid (DTPA) to SA molecules. This was 
performed by mixing 2-(4-isothiocyanatobenzyl)-DTPA in carbonate buffer (pH 9.5) with 
SA suspension at a 50-fold molar excess of DTPA. The mixture was rotated overnight at 
4ºC. After removal of excess DTPA, DTPA-SA was radiolabeled with 111In by incubation 
with 111In chloride in 10 mM N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid 
(HEPES, pH 7.0) at 37ºC for 1.5 h. Free 111In was removed by Zeba Desalt Spin Columns. 
The specific activity and radiochemical purity of 111In-SA were not reported.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

Newton et al. (1) conducted phage sequencing to confirm that the MSH2.0 phage clone 
contained a modified α-MSH sequence. MSH2.0 lacked 3 nonessential amino acids at the 
amino terminus of the α-MSH sequence and contained a linker peptide between it and 
the phage coat protein III (NH2-AMEHFRWGRPVGSGSGSGSVWYAG-coat protein III). 
The phase clones were then probed with an anti–α-MSH antibody to determine whether 
the peptide sequences were accessible and reactive with the MC-1 receptor. The phage 
particle dot blot assay showed that the α-MSH sequence on the MSH2.0 phage clone was 
immunoreactive. A micropanning assay with B16/F1 mouse melanoma cells was 
performed to test the specific binding of MSH2.0 phage. The results indicated specific 
binding of MSH2.0 peptide to B16/F1 cells. There was no significant alteration of phage 
binding in vitro with the addition of PEO4-biotin to the surface of the phage particle.

The DTPA-SA complex was prepared with >90% labeling efficiency (1). An in vitro 
stability test showed that 111In-SA retained 100% labeling activity in phosphate-buffered 
saline and HEPES for at least 24 h at 25ºC and 37ºC. 111In-SA retained ~80% activity 
when incubated in mouse serum for 24 h.
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Animal Studies

Rodents
[PubMed]

Newton et al. (1) conducted biodistribution studies of the pretargeted bio-MSH2.0 
followed by 111In-SA in mice bearing B16/F1 mouse melanoma (0.05–0.1 g s.c. tumors). 
Each mouse received an i.v. injection of 5 × 1012 virions of bio-MSH2.0. After 4 h, an i.v. 
injection of 1.85 MBq (0.05 mCi) 111In-SA was administered. 111In-SA radioactivity was 
primarily cleared by the urinary and hepatobiliary systems. The initial tumor radioactivity 
of ~2.5% injected dose per g (% ID/g; n = 3) appeared to be attributable to the tumor 
blood volume. After 24 h, there was actual radioactivity retention of 1.0 ± 0.1% ID/g and 
the tumor/muscle and tumor/blood ratios were 17.5 ± 3.7 and 2.0 ± 0.2, respectively. In 
comparison, the tumor radioactivity of 111In-SA alone without bio-MSH2.0 was 0.4 
± 0.1% ID/g at 24 h. The biotinylated nonspecific wild-type phage tumor radioactivity 
level was 1.8-fold less than that of bio-MSH2.0 at 24 h. This suggested that the in vivo 
targeting of 111In-SA-α-MSH2.0 phage to the tumor was mediated by α-MSH peptide. 
Coinjection of bio-MSH2.0 with 100 μg of [NIe4,D-Phe7]α-MSH (NDP), a potent 
protease-resistant peptide analog of α-MSH, decreased the tumor radioactivity retention 
of bio-MSH2.0 by 2.4 ± 0.4-fold. The authors suggested that this demonstrated the 
specificity of binding for the bio-MSH2.0 phage in vivo.

SPECT imaging of 111In-SA–α-MSH2.0 phage was performed in mice bearing B16/F1 
mouse melanoma (1). Each mouse received 5 × 1012 virions of bio-MSH2.0 and then 7.4 
MBq (0.2 mCi) of 111In-SA. The study clearly demonstrated the accumulation of 111In-
SA radioactivity within the tumor. The mice were euthanized 4 h after injection. The 
tumor radioactivity level at 4 h was 5.2 ± 0.8% ID/g, which was higher than the 
biodistribution study value of 0.9 ± 0.3% ID/g. The authors suggested that the higher 
value in the imaging study was attributable to the higher dose of 111In-SA administered in 
the study.

Other Non-Primate Mammals
[PubMed]

No publication is currently available.

Non-Human Primates
[PubMed]

No publication is currently available.

Human Studies
[PubMed]
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No publication is currently available.

NIH Support
NIH P50 CA103130-01.
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