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Background
[PubMed]

The myocardial perfusion imaging technique is often used to diagnose acute myocardial 
infarction (AMI) with either positron emission tomography (PET) or single-photon 
emission computed tomography (SPECT) with the use of radiopharmaceuticals, but all 
these agents have limitations as described in detail by Cuocolo et al. (1). It is well known 
that a rapid diagnosis of AMI is important to develop a suitable treatment and increase 
the chances of a favorable outcome. The use of scintigraphic agents such as pyrophosphate 
labeled with radioactive technetium (99mTc), which targets the calcium phosphate deposit 
in the myocardial tissue or the F(ab) fragment of an anti-myosin antibody (labeled with 
radioactive indium), and 99mTc-labeled glucarate has been attempted in the diagnosis of 
AMI, but the diagnostic performance of these agents is not entirely satisfactory (2). The 
pyrophosphate shows a low affinity and specificity for the necrotic myocardium in AMI 
patients, and the anti-myosin antibody is no longer available commercially (2). Although 
[99mTc]glucarate appears to be a promising agent for the detection and quantification of 
AMI, this agent is rapidly washed out from the infarcted myocardium, which means that a 
meaningful scan can be obtained only for a short time (<9 h) after the infarct has 
occurred because [99mTc]glucarate targets positively charged histones that disintegrate 
rapidly in the necrotic tissue (2). Another promising radiochemical used for the detection 
and diagnosis of AMI is [123I]-β-methyl iodophenyl-pentadecanoic acid (alos known as 
mono iodohypericin carboxylic acid or MIHA), a fatty acid derivative labeled with 
radioactive iodine (123I); this agent has been widely used in Japan and Europe for SPECT 
imaging of the heart and is undergoing clinical evaluation in the United States (3-5).

It has been shown that photosensitizer porphyrin derivatives specifically target the 
necrotic tissue found in neoplastic tumors and can be used in photodynamic therapy of 
cancer (6). Because porphyrins bind primarily to necrotic tissue, these compounds could 
be used as magnetic resonance imaging contrast agents to visualize AMI under preclinical 
conditions (7, 8). Bearing this in mind, investigators have evaluated the use of hypericin, a 
polycyclic polyaromatic quinone found in the St. John's wort plant (Hypericum 
perforatum) that has a chemical structure similar to some porphyrin derivatives, for the 
detection and imaging of necrotic tissue, including AMI-caused necrotic tissue (9-12). To 
achieve this, hypericin was derivatized with radioactive iodine (123I) to mono-
[123I]iodohypericin ([123I]MIH) and used in the imaging studies with SPECT (9-12). In 
these studies, the investigators observed that [123I]MIH had a slow plasma clearance 
under in vivo conditions, probably because it has a lipophilic character, and AMI was not 
visualized for at least 2 h after treatment with the radiochemical (13). The investigators 
hypothesized that a hypericine derivative with low lipophilicity would be cleared faster 
from circulation and allow early visualization of necrotic tissue. The investigators 
derivatized [123I]MIH to a monocarboxylic acid ([123I]MIHA), which has a lower 
lipophilicity than MIH, and evaluated this new agent for the detection of necrotic tissue in 
rats with ethanol-induced liver necrosis (13).
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Synthesis
[PubMed]

The synthesis of [123I]MIHA was described in detail by Fonge et al. (13). Briefly, emodin, 
a precursor of hypericin, was acetylated to produce triacetyl-emodin, which was oxidized 
to obtain triacetyl-emodic acid. The triacetyl-emodic acid was mixed with emodin in 
presence of hydroquinone (serving as a free radical scavenger) to yield protohypericin 
monocarboxylic acid. The protohypericin derivative was photocyclized by irradiation with 
a 400-W halogen lamp for 30 min to obtain hypericin monocarboxylic acid, which was 
used as a precursor to synthesize MIHA by an electrophilic substitution reaction using 
sodium iodide (NaI) with peracetic acid as the oxidizing agent.

To produce [123I]MIHA, protohypericin monocarboxylic acid was radioiodinated by the 
successive addition of ethanol, phosphoric acid, peracetic acid, and Na[123I]. The mixture 
was incubated at room temperature for 30 min and photocyclized for 30 min with a 400-
W halogen lamp. [123I]MIHA was purified with reverse-phase high-performance liquid 
chromatography coupled with a radiometric detector on an XTerra C18 column. The 
radiochemical yield was >75% relative to the initial 123I activity. The specific activity of 
the radiochemical was 950 GBq/μmol (25.67 Ci/μmol). The radiochemical purity and 
stability of [123I]MIHA was not provided (13).

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

An isolated, isovolumically beating rabbit heart under ischemic conditions was used to 
study the myocardial kinetics of [123I]MIHA (14). The investigators reported that the 
early retention fraction of MIHA under these conditions was dependent on the coronary 
flow, and the early retention fraction was higher under ischemic conditions than that of 
the normal controls (0.24 ± 0.10 and 0.14 ± 0.04, respectively, P = 0.004).

Animal Studies

Rodents
[PubMed]

Normal NMRI mice were used in a preliminary investigation of [123I]MIHA 
biodistribution after a tail vein injection of the radiochemical (13). For comparison, 
[123I]MIH was injected into another group of mice through the same route. The animals 
from both groups were euthanized at various time points between 30 min and 24 h after 
injection (n = 4 mice per time point). Organs were removed from the animals and 
weighed, and the incorporated radioactivity was counted. Although both radiochemicals 
had a high incorporation in the liver, the uptake of [123I]MIH in this organ was higher 
than that of [123I]MIHA at all time points, indicating that the tracers were cleared 

[123I]MIHA 3



primarily through the hepatobiliary route. The blood clearance of [123I]MIHA at 4 h 
(0.6% of injected dose/gram tissue (% ID/g)) was higher than that of [123I]MIH at 4 h 
(28.2% ID/g). Compared to [123I]MIH (<6% ID/g) the clearance of [123I]MIHA (21.1% 
ID/g) was primarily through the kidneys at 24 h (13).

The affinity of [123I]MIHA was studied in seven Wistar rats with hepatic necrosis induced 
by slow infusion of ethanol into the left lobe of the liver (13). The viable right lobe served 
as the control. The rats were injected with [123I]MIHA and euthanized at 4 h (n = 4 
animals) and 24 h (n = 3 animals) after injection. Both liver lobes were harvested from all 
animals and washed with saline, and absorbed radioactivity was counted. The tissues were 
subsequently frozen, and serial microtome sections were mounted on slides for 
autoradiography and confirmation with hematoxylin and eosin (H & E) staining. The 
incorporated radioactivity ratio of necrotic tissue versus viable tissue in terms of 
[123I]MIHA uptake was 1.2 and 1.9 at 4 and 24 h, respectively. There was a good match 
between the uptake of [123I]MIHA, as viewed by autoradiography, and the H & E staining 
of the necrotic liver sections (13). From these observations the investigators concluded 
that [123I]MIHA was suitable for use in the detection of tissue necrosis.

Other Non-Primate Mammals
[PubMed]

No references are currently available.

Non-Human Primates
[PubMed]

No references are currently available.

Human Studies
[PubMed]

Marie et al. investigated the exercise SPECT defect (SPECT with thallium (201Tl)) 
observed in patients with either necrotic (n = 13 individuals) or chronically ischemic and 
viable (n = 15 individuals) myocardium after two consecutive injections of [123I]MIHA 
(14). Imaging was performed 15–35 min after the first injection of [123I]MIHA, and the 
uptake was significantly higher in the ischemic areas (74 ± 9% of the maximal left 
ventricle value) than in the necrotic areas (59 ± 7%; P = 0.0001) and lower than in the 
normal areas (88 ± 6%; P = 0.0001). Similar results were obtained after the second round 
of SPECT imaging (14). However, the investigators observed no change in the 
[123I]MIHA clearance in consecutive SPECT studies with these patients.
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