Radioiodinated anti-CEA monoclonal antibody NP-4 F(ab')₂ fragment

1231/1311/1251-NP-4 F(ab´)2

Kenneth T. Cheng, PhD¹

Created: March 23, 2006; Updated: April 10, 2008.

Chemical name:	Radioiodinated anti-CEA monoclonal antibody NP-4 F(ab $^\prime)_2$ fragment	
Abbreviated name:	¹²³ I/ ¹³¹ I/ ¹²⁵ I-NP-4 F(ab´) ₂	
Synonym:	131 I-NP-4 F(ab') ₂ anti-CEA monoclonal antibody, 125 I-NP-4 F(ab') ₂ anti-CEA monoclonal antibody, 123 I-NP-4 F(ab') ₂ anti-CEA monoclonal antibody, 131 I-NP-4 F(ab') ₂ MAb, 125 I-NP-4 F(ab') ₂ MAb, 125 I-NP-4 F(ab') ₂ MAb	
Agent Category:	Antibody F(ab') ₂ fragment	
Target:	Carcinoembryonic antigen (CEA)	
Target Category:	Antibody to antigen binding	
Method of detection:	Single-photon emission computed tomography (SPECT), gamma planar imaging	
Source of signal/ contrast:	$131_{I}, 123_{I}, 125_{I}$	
Activation:	No	
Studies:	 In vitro Rodents Non-primate non-rodent mammals Humans 	Click on protein, nucleotide (RefSeq), and gene for more information about CEA.

Background

[PubMed]

¹ National Center for Biotechnology Information, NLM, NIH, Bethesda, MD; Email: micad@ncbi.nlm.nih.gov.

NLM Citation: Cheng KT. Radioiodinated anti-CEA monoclonal antibody NP-4 F(ab')₂ fragment. 2006 Mar 23 [Updated 2008 Apr 10]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.

Radioiodinated anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) NP-4 $F(ab')_2$ fragment (¹²³I/¹³¹I/¹²⁵I-NP-4 $F(ab')_2$), which is formed by the conjugation of radioiodine with a murine anti-CEA MAb $F(ab')_2$ fragment, can be used for imaging and therapy of CEA-expressing cancers (1, 2). ¹²⁵I has a relatively long physical half-life ($t_{1/2}$) of 60 days and a gamma energy that makes it suitable for imaging only in small animals. ¹³¹I has a physical half-life ($t_{1/2}$) of 8.02 days with a gamma energy that is high but acceptable for *in vivo* imaging. ¹²³I, another radioiodine, has better physical properties for single-photon emission computed tomography (SPECT) and planar gamma imaging in humans.

CEA was first identified from extracts of human adenocarcinoma of the colon (3). It is a β -glycoprotein, and its predominant expression on the cell surface is increased in a variety of carcinomas, particularly of the gastrointestinal tract, as well as in fetal gastrointestinal tissues and in certain inflammatory states, such as inflammatory bowel disease (4, 5). CEA, which exhibits extensive heterogeneity in its physicochemical and immunologic properties (2, 3), has a molecular mass of 200 kDa and can be shed and detected in the serum (2). It has been used as a serum marker for monitoring disease status in patients who have various CEA-secreting tumors (gastrointestinal, lung, medullary, thyroid, uterine, ovarian, and bladder carcinomas). Other cross-reactive, but genetically distinct, CEA variants have been identified, including nonspecific cross-reactive antigen (NCA) and meconium antigen (MA) (6).

Radiolabeled MAbs have been developed for both the diagnosis and treatment of tumors (4). Primus et al. (2) studied the immunologic heterogeneity of CEA by use of four MAbs to differentiate the antigenic sites on colonic cancer CEA. They classified the MAbs into three general classes based on their reactivity with CEA, NCA, and MA. The class I antibody, NP-1, had high affinity for CEA and MA but low affinity for NCA. The class II antibodies, NP-2 and NP-3, had moderate affinities for CEA and MA. The class III antibody, NP-4, appeared to recognize determinants unique to CEA and had no affinity for NCA or MA. Because of this specificity, NP-4 MAb has been labeled with radionuclides for CEA tumor imaging and therapy (7). Intact NP-4 MAb can be covalently linked to ¹³¹I, ¹²³I, or ¹²⁵I by direct radioiodination with Na¹³¹I, Na¹²³I, or Na¹²⁵I, using an appropriate oxidizing agent. Because of differences in their radiation physical properties, ¹³¹I can be used for both therapy and imaging, ¹²³I is used only for imaging, and ¹²⁵I is used mainly for *in vitro* studies. The *in vivo* pharmacokinetics of intact radiolabeled immunoglobulin G (IgG) in humans are characterized by high liver uptake and slow blood elimination. Therefore, the intact radiolabeled NP-4 MAb is generally not ideal for imaging. Smaller radiolabeled MAb fragments such as Fob or F(ab $^{\prime}$)₂ may have better imaging pharmacokinetics because they are rapidly excreted by the kidneys. Covell et al. (8) reported that the percentages of total body catabolism of an i.v.administered ¹³¹I-labeled MAb and its fragments by the kidney were 1.7% (intact IgG), 50.3% (F(ab')₂), and 73.4% (Fab').

2

Synthesis

[PubMed]

NP-4 MAb is an IgG₁ subtype and has a CEA affinity in the range of 10^8 M⁻¹ (2, 5). NP-4 MAb was initially produced by Primus et al. (2) in 1983; they used the hybridoma technique and CEA isolated from liver metastases of a colonic adenocarcinoma. The NP-4 MAb was produced in mice and purified from ascites fluid by protein A and ion-exchange column chromatography at 4 °C (9). Sharkey et al. (10-13) and Blumenthal et al. (2) first reported the preparation of NP-4 $F(ab')_2$ by pepsin digestion in 0.1 M sodium citrate buffer, pH 3.5, at 37 °C for 45-90 min. The reaction was stopped by increasing the pH to 7.0. The preparation was desalted on a fractogel column. Isolation was done by either protein A or ion-exchange chromatography. The final purity and identity were confirmed by immunoelectrophoresis, sodium dodecyl sulfate gel electrophoresis, and size-exclusion high-performance liquid chromatography. Direct radioiodination of the NP-4 $F(ab')_2$ with 131 I was performed by the chloramine-T method using a ratio of 0.06 mg of F(ab')₂ per mCi of 131 I. Unbound radioactive iodine was separated from 131 I-NP-4 F(ab')₂ by gel filtration. The specific activity obtained was 444-555 MBq/mg (12-15 mCi/mg), or 20.4-55.5 GBq/µmol (1.2-1.5 Ci/µmol) based on a molecular weight of 100,000 for the $F(ab')_2$ fragment. The radiochemical purity was 95-98%, and there was <1% aggregated antibody. Goldenberg et al. (14) achieved similar labeling efficiency with ¹²³I. Juweid et al. (15) used the IodoGen method for ¹³¹I radioiodination and obtained a similar specific activity of 444-592 MBq/mg (12-16 mCi/mg), or 20.4-59.2 GBq/µmol (1.2-1.6 Ci/µmol). Radiochemical purity was >98%, and there was <7% aggregated antibody.

In Vitro Studies: Testing in Cells and Tissues

Primus et al. (2) first reported the production of NP-4 anti-CEA MAb. Using a competitive radioimmunoassay method, they obtained an affinity constant (*K*) for CEA of $8.9 \times 10^8 \text{ M}^{-1}$. NP-4 MAb did not appear to bind to NCA or MA. Sharkey et al. (10-13) and Blumenthal et al. (2) determined the immunoreactivity of ¹³¹I-NP-4 F(ab')₂ by affinity chromatography on a CEA immunoabsorbent. The ¹³¹I-NP-4 F(ab')₂ prepared by the chloramine-T method had 75-85% binding. Juweid et al. (15) found that the ¹³¹I-NP-4 F(ab')₂ prepared by the IodoGen method had >70% binding.

Animal Studies

Rodents

Sharkey et al. (11) studied the biodistribution of ¹³¹I-NP-4 $F(ab')_2$ and the intact ¹³¹I-NP-4 MAb in athymic nude mice bearing the CEA-producing human colorectal cancer, GW-39. ¹³¹I-NP-4 $F(ab')_2$ tumor uptake was highest (10-20% of injected dose (ID)/g) on days 1 and 2. Tumor accretion of ¹³¹I-NP-4 $F(ab')_2$ was highest (4-5% ID/g) at 6 h after injection and remained constant from day 1 to day 3. In comparison, maximum tumor localization of ¹³¹I-NP-4 MAb occurred on day 3 and reached about 30% ID/g. On day 1,

the ¹³¹I-NP-4 F(ab')₂ tumor/nontumor ratios (n = 4-6) were 2.0 ± 0.7 (tumor/blood), 3.2 ± 0.8 (tumor/lung), 7.1 ± 1.6 (tumor/liver), and 3.7 ± 1.2 (tumor/kidney). For the intact ¹³¹I-NP-4 MAb, these ratios were 0.9 ± 0.3 (tumor/blood), 2.1 ± 0.8 (tumor/lung), 3.8 ± 1.3 (tumor/liver), and 2.5 ± 0.9 (tumor/kidney). On day 3, the ¹³¹I-NP-4 F(ab')₂ tumor/nontumor ratios were increased to 9.1 ± 3.0 (tumor/blood), 14.5 ± 4.8 (tumor/lung), 26.6 ± 6.6 (tumor/liver), and 14.2 ± 3.6 (tumor/kidney). For the ¹³¹I-NP-4 MAb, these ratios were 2.2 ± 0.8 (tumor/blood), 5.3 ± 1.8 (tumor/lung), 8.6 ± 2.8 (tumor liver), and 7.1 ± 2.7 (tumor/kidney).

In another study, Sharkey et al. (12) reported radiation dose estimates of 131 I-NP-4 F(ab ')₂ in GW-39 tumor-bearing nude mice. The estimates were based on a dose of 50.69 MBq (1.37 mCi), which would give a 50-Gy (5,000 rads) radiation absorbed dose to the tumor. The doses for the blood, kidney, liver, lung, and spleen were 8.54, 7.01, 3.74, 8.09, and 3.86 Gy (854, 701, 374, 809, and 386 rads), respectively.

Blumenthal et al. (16) evaluated the targeting of ¹³¹I-NP-4 F(ab')₂ to micrometastases in a micrometastatic lung model. Intravenous injection of GW-39 tumor cells into nude mice resulted in 40-80 tumor nodules (50-200 µm in diameter within 7 days) throughout the lungs. Each mouse received 370 kBq (10 µCi)/6 µg of MAb. The radioactivities (% ID/g; n = 5) at 24 h for the lung tumor nodules, s.c. tumor, and blood were 2.3 ± 0.5, 6.3 ± 0.7, and 3.8 ± 0.7, respectively. On the basis of a highest possible dose resulting in no animal death (maximum tolerated dose) of 44.4 MBq (1.2 mCi), the radiation absorbed doses were 5.5 (lung tumor nodules), 22.57 (s.c. tumor), and 8.95 Gy (blood) (550, 2,257, and 895 rads, respectively). Fand et al. (17) also studied tumor metastases in the lung and liver, using whole-body macroautoradiography. Each mouse received 555 kBq (15 µCi) of ¹²⁵I-NP-4 F(ab')₂. The densitometrically derived tumor/nontumor ratios on day 1 for the metastatic lung tumor were 1.9 (tumor/blood), 4.3 (tumor/liver), 2.8 (tumor/kidney), and 2.8 (tumor/lung). On day 3, all of these ratios were 11. For the metastatic liver tumor on day 1, the ratios were 6.3 (tumor/blood), 14.3 (tumor/liver), 9.5 (tumor/kidney), and 9.5 (tumor/lung), and all of these ratios increased to 57 on day 3.

Other Non-Primate Mammals

[PubMed]

Sharkey et al. (10) studied the biodistribution of ¹³¹I-NP-4 $F(ab')_2$ and intact ¹³¹I-NP-4 in hamsters bearing the human colorectal carcinoma GW-39 in the hind leg muscle. Each tumor-bearing hamster received intracardiac injections containing 5,550-7,400 kBq (150-200 μ Ci)/10-15 μ g of ¹³¹I-NP-4 $F(ab')_2$ or ¹³¹I-NP-4. Both ¹³¹I-NP-4 $F(ab')_2$ and ¹³¹I-NP-4 showed a preferential localization for GW-39. ¹³¹I-NP-4 $F(ab')_2$ was cleared from the blood and normal tissues more rapidly than the intact ¹³¹I-NP-4. By day 3, there was 2.5 times less radioactivity in the tumor with ¹³¹I-NP-4 $F(ab')_2$ compared with the intact ¹³¹I-NP-4. In the blood, there was 4 times less radioactivity with ¹³¹I-NP-4 $F(ab')_2$ compared with ¹³¹I-NP-4.

Blumenthal et al. (13) evaluated the in vivo uptake, therapeutic potential, and host toxicity of ¹³¹I-NP-4 F(ab')₂ in GW-39 tumors grown in hamster check pouches. The animals received i.p. injections containing 3.7 MBq (0.1 mCi)/6 µg (MAb) of either ¹³¹I-NP-4 $F(ab')_2$ or ¹³¹I-NP-4. The tumor radioactivity concentrations (% ID/g; n = 10-18) for 131 I-NP-4 F(ab')₂ on days 1 and 2 were 0.92 ± 0.44 and 1.24 ± 0.46, respectively. The tumor radioactivity concentrations (% ID/g; n = 10-21) for ¹³¹I-NP-4 on days 1 and 3 were 1.20 ± 2.1 and 5.57 ± 0.56 , respectively. The radioactivity concentrations (% ID/g; n = 5-9) on day 1 for ¹³¹I-NP-4 $F(ab')_2$ were 0.99 ± 0.23 (blood), 0.51 ± 0.22 (lungs), 0.53 \pm 0.18 (kidney), 0.28 \pm 0.13 (spleen), and 0.27 \pm 0.09 (liver). On day 3, these values decreased to 0.11 ± 0.04 (blood), 0.05 ± 0.02 (lungs), 0.07 ± 0.02 (kidney), 0.03 ± 0.01 (spleen), and 0.03 ± 0.01 (liver). For ¹³¹I-NP-4, the % ID/g values in the same organs on day 1 were 2.48 \pm 0.09 (blood), 1.05 \pm 0.06 (lungs), 0.82 \pm 0.1 (kidney), 0.66 \pm 0.03 (spleen), and 0.83 ± 0.02 (liver), On day 3, these values decreased to 1.34 ± 0.12 (blood), 0.79 ± 0.09 (lungs), 0.58 ± 0.06 (kidney), 0.36 ± 0.03 (spleen), and 0.47 ± 0.03 (kidney), The ¹³¹I-NP-4 F(ab')₂ cumulative absorbed doses were 0.11 (tumor), 0.014 (liver), 0.01 (spleen), 0.02 (kidney), and 0.018 (lung) Gy/MBq (420, 52, 36, 77, and 68 rads/mCi, respectively).

Non-Human Primates

PubMed]

No publication is currently available.

Human Studies

[PubMed]

Murray et al. (18) conducted a tumor localization study of ¹³¹I-NP-4 F(ab')₂ in 5 patients with either liver metastases from colorectal cancer or intact primary tumors. Patients received both ¹³¹I-NP-4 F(ab')₂ (1 mg of F(ab')₂ labeled with 10 mCi of ¹³¹I) and intact ¹²⁵I-NP-4 MAb (1 mg of NP-4 labeled with 2 mCi of ¹²⁵I) in a mixture. Gamma imaging and autoradiography of tissues from biopsies were used to determine radioactivity localization. For ¹³¹I-NP-4 F(ab')₂, the pharmacokinetic parameters plasma half-life ($t_{1/2}$), volume of distribution, plasma clearance, and 48-h urinary excretion were 29.0 ± 3.2 h, 3.8 ± 0.4 liters, 1.5 ± 0.2 ml/kg/min, and 50.2 ± 5.0%, respectively. For ¹²⁵I-NP-4 MAb, these parameters were 43.2 ± 7.3 h, 3.3 ± 0.2 liters, 0.9 ± 0.2 ml/kg/min, and 56.7 ± 4.7%, respectively. The tumor radioactivity uptakes (% ID/kg) of ¹³¹I-NP-4 F(ab')₂ and ¹²⁵I-NP-4 MAb were 2.0 ± 0.57 and 2.6 ± 0.94, respectively. The ¹³¹I-NP-4 F(ab')₂ tumor/ normal tissue ratios were 6.0 ± 2.1 (tumor/liver), 0.83 ± 0.21 (tumor/blood), and 7.6 ± 2.3 (tumor/other tissue). For ¹²⁵I-NP-4 MAb, these ratios were 3.1 ± 0.61 (tumor/liver), 0.88 ± 0.21 (tumor/blood), and 7.3 ± 3.5 (tumor/other tissue).

Juweid et al. (15) studied the feasibility of ¹³¹I-NP-4 F(ab')₂ for use in therapy in 13 cancer patients (8 colorectal, 3 lung, 1 pancreatic, and 1 medullary thyroid cancer). The mean plasma CEA level was 120 ng/ml with 11 patients having \leq 100 ng/ml. The

radioactivity dose was based on a prescribed red marrow dose, which was determined by a tracer study dose, of 370-555 MBq (10-15 mCi). The average blood and total-body $t_{\frac{1}{2}}$ values in the 12 patients with a human anti-mouse antibody (HAMA) level <100 ng/ml were 15.3 ± 4.7 and 49.5 ± 13.1 h, respectively. Dosimetry studies showed that the absorbed doses (cGy/mCi) were 0.5 ± 0.1 (whole body), 1.8 ± 0.4 (red marrow), 3.3 ± 1.9 (kidneys), 1.6 ± 0.7 (liver), 2.1 ± 0.6 (lung), and 4.4 ± 2.7 (spleen).

Goldenberg et al. (14) evaluated colorectal cancer imaging with ¹²³I-NP-4 F(ab')₂ in a prospective, randomized multicenter study of 58 patients. Patients received doses of 296-370 MBq (8-10 mCi) in1 or 10 mg of either ¹²³I-NP-4 F(ab')₂ or ¹²³I-NP-4 Fab'. Imaging was performed at 2-4, 24, and 48 h after antibody administration. Of the 58 patients, 17 received 1 mg and 14 received 10 mg of ¹²³I-NP-4 F(ab')₂. For ¹²³I-NP-4 Fab ', 12 patients received 1 mg and 15 patients received 10 mg. The median biological blood $t_{1/2\alpha}$ and $t_{1/2\beta}$ values for ¹²³I-NP-4 F(ab')₂ were 1.6 and 26 h, respectively. For ¹²³I-NP-4 Fab', these values were 2.4 and 19 h, respectively. No difference was observed between the imaging results of the 4 groups. No dose dependence for the antibody targeting was found. There appeared to be no correlation between sensitivity and size of lesions or serum CEA level. Single-photon emission computed tomography (SPECT) evaluation was judged to be more beneficial than planar imaging in 47% of the cases. Sensitivity, specificity, and accuracy for all regions and all four arms of the studies were 86, 89, and 89%, respectively. The positive predictive value by tumor lesions was 91%. Only one patient developed a low level of HAMA.

NIH Support

NCI CA39841,

References

- Behr T.M., Sharkey R.M., Juweid M.E., Dunn R.M., Vagg R.C., Ying Z., Zhang C.H., Swayne L.C., Vardi Y., Siegel J.A., Goldenberg D.M. Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J Nucl Med. 1997;38(6):858–70. PubMed PMID: 9189130.
- 2. Primus F.J., Freeman J.W., Goldenberg D.M. Immunological heterogeneity of carcinoembryonic antigen: purification from meconium of an antigen related to carcinoembryonic antigen. Cancer Res. 1983;**43**(2):679–85. PubMed PMID: 6401222.
- 3. Gold P., Freedman S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. The Journal of Experimental Medicine. 1964;**121**:439–462.
- Kowalsky R.J., Falen S.W. and Radiopharmaceuticals in nuclear pharmacy and nuclear medicine, American Pharmacists Association: Washington, D.C. p. 733-752. 2004.

- Wahl R.L., Philpott G., Parker C.W. Monoclonal antibody radioimmunodetection of human-derived colon cancer. Invest Radiol. 1983;18(1):58–62. PubMed PMID: 6832932.
- 6. *Package Insert* . CEA-Scan (Arcitumomab) for the preparation of Tc 99m Arcitumomab, Immunomedics, Inc. p. 1-15. 1999.
- Sharkey R.M., Goldenberg D.M., Goldenberg H., Lee R.E., Ballance C., Pawlyk D., Varga D., Hansen H.J. Murine monoclonal antibodies against carcinoembryonic antigen: immunological, pharmacokinetic, and targeting properties in humans. Cancer Res. 1990;50(9):2823–31. PubMed PMID: 2328505.
- Covell D.G., Barbet J., Holton O.D., Black C.D., Parker R.J., Weinstein J.N. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab')2, and Fab' in mice. Cancer Res. 1986;46(8):3969–78. PubMed PMID: 3731067.
- Behr T.M., Goldenberg D.M., Scheele J.R., Wolf F.G., Becker W. Clinical relevance of immunoscintigraphy with 99mTc-labelled anti-CEA antigen-binding fragments in the follow-up of patients with colorectal carcinoma. Assessment of surgical resectability with a combination of conventional imaging methods. Dtsch Med Wochenschr. 1997;122(15):463–70. PubMed PMID: 9147937.
- Sharkey R.M., Primus F.J., Shochat D., Goldenberg D. M. Comparison of tumor targeting of mouse monoclonal and goat polyclonal antibodies to carcinoembryonic antigen in the GW-39 human tumor-hamster host model. Cancer Research. 1988;48:1823–1828. PubMed PMID: 3349460.
- 11. Sharkey R.M., Gold D.V., Aninipot R., Vagg R., Ballance C., Newman E.S., Ostella F., Hansen H.J., Goldenberg D.M. Comparison of tumor targeting in nude mice by murine monoclonal antibodies directed against different human colorectal cancer antigens. Cancer Res. 1990;**50**Suppl(3):828s–834s. PubMed PMID: 2297729.
- 12. Sharkey R.M., Motta-Hennessy C., Pawlyk D., Siegel J.A., Goldenberg D.M. Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res. 1990;**50**(8):2330–6. PubMed PMID: 2180566.
- Blumenthal R.D., Sharkey R.M., Kashi R., Goldenberg D.M. Comparison of therapeutic efficacy and host toxicity of two different 131I-labelled antibodies and their fragments in the GW-39 colonic cancer xenograft model. Int J Cancer. 1989;44(2):292–300. PubMed PMID: 2759735.
- Goldenberg D.M., Wlodkowski T.J., Sharkey R.M., Silberstein E.B., Serafini A.N., Garty II, Van Heertum R.L., Higginbotham-Ford E.A., Kotler J.A., Balasubramanian N. Colorectal cancer imaging with iodine-123-labeled CEA monoclonal antibody fragments. J Nucl Med. 1993;34(1):61–70. PubMed PMID: 8418273.
- Juweid M.E., Sharkey R.M., Behr T., Swayne L.C., Dunn R., Siegel J., Goldenberg D.M. Radioimmunotherapy of patients with small-volume tumors using iodine-131labeled anti-CEA monoclonal antibody NP-4 F(ab')2. J Nucl Med. 1996;37(9):1504– 10. PubMed PMID: 8790202.
- Blumenthal R.D., Sharkey R.M., Haywood L., Natale A.M., Wong G.Y., Siegel J.A., Kennel S.J., Goldenberg D.M. Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res. 1992;52(21):6036–44. PubMed PMID: 1394228.

- 17. Fand I., Sharkey R.M., Grundy J.P., Goldenberg D.M. Localization by whole-body autoradiography of intact and fragmented radiolabeled antibodies in a metastatic human colonic cancer model. Int J Rad Appl Instrum B. 1992;**19**(1):87–99. PubMed PMID: 1577618.
- Murray J.L., Rosenblum M.G., Zhang H.Z., Podoloff D.A., Kasi L.P., Curley S.A., Chan J.C., Roh M., Hohn D.C., Brewer H., Cunningham J.E., Thompson L.B., Bhadkamkar M.S., Pinsky C.M., Fogler W.E. Comparative tumor localization of whole immunoglobulin G anticarcinoembryonic antigen monoclonal antibodies IMMU-4 and IMMU-4 F(ab')2 in colorectal cancer patients. Cancer. 1994;73Suppl(3):850–7. PubMed PMID: 8306270.