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Background
[PubMed]

6-[18F]Fluoro-L-m-tyrosine (6-[18F]FMT) is a noncatecholic radioligand developed for 
positron emission tomography (PET) imaging of dopaminergic metabolism and function 
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in the central nervous system (CNS). It is an analog of dihydroxyphenylalanine (L-DOPA) 
labeled with 18F, a positron emitter with a physical t½ of 109.7 min.

Dopamine is an important neurotransmitter that regulates and controls human 
movement, motivation, and cognition (1). It is also associated with human behaviors such 
as reward, reinforcement, and addiction. There are four main dopaminergic pathways in 
the CNS (2). Two pathways originating in the ventral tegmental area project toward the 
cortex and the limbic area, a third pathway projects from the hypothalamus projects 
toward the pituitary gland, and a fourth pathway projects from the substantia nigra to the 
striatum. Neurons located in these pathways release dopamine as a neurotransmitter at 
their terminals. There are five known dopamine receptor subtypes, D1-like or D2-like (3). 
The D1-like receptor subtypes (D1 and D5) coupled with the Gs protein activate adenylyl 
cyclase, and the D2-like subtypes (D2, D3, and D4) coupled with G proteins inhibit 
adenylate cyclase. Abnormal changes in the dopaminergic system can lead to pathological 
conditions such as Parkinson’s disease (PD), schizophrenia, Huntington’s disease, 
depression, Gilles de la Tourette syndrome, narcolepsy and other neuropsychiatric 
disorders (4).

Radiotracer imaging with specific radiolabeled molecular probes can measure pre-, post-, 
and intra-synaptic aspects of the dopaminergic system (4). [18F]Fluoro-L-dopa 
([18F]FDOPA) was the first presynaptic probe developed by Firnau et al. (5) and the first 
molecular probe used by Garnett et al (6). to visualize human brain dopamine in vivo. 
Like endogenous L-DOPA, [18F]FDOPA is converted by aromatic L-amino acid 
decarboxylase (AAAD), an enzyme to the dopamine analog fluorodopamine. Thus, PET 
imaging of [18F]FDOPA allows in vivo visualization and assessment of dopamine 
function in the brain. However, the use of [18F]FDOPA is complicated by the peripheral 
metabolism of this agent. DeJesus et al. (7) proposed the synthesis and use of [18F]FMT 
and other tyrosine analogs as possible alternative dopamine probes because they lack the 
enediol moiety required of catecholamine-O-methyltransferase (COMT) substrates. Three 
isomers of [18F]FMT, 2-, 4-, and 6-[18F]FMT, were initially produced and studied (8). 6-
[18F]FMT appeared most promising as early studies showed that it gave better image 
contrast and followed the dopaminergic pathway in a manner similar to that of 
[18F]FDOPA (9, 10). However, there is evidence that 6-[18F]FMT is distributed in 
monkey brain regions rich with AAAD-containing monoaminergic neurons which 
include dopaminergic, serotonergic, and noradrenergic neurons (11).

Synthesis
[PubMed]

DeJesus et al. (7, 8) reported the synthesis of 6-[18F]FMT via direct electrophilic 
fluorination of D,L-m-tyrosine with acetyl[18F]hypofluorite ([18F]AcOF). [18F]F2 was 
produced from [18O]O2 by a two-bombardment method. The final labeled product was 
purified by high performance liquid chromatography (HPLC). HPLC analysis showed 
that approximately 80% of the D,L-m-tyrosine had reacted, and 19F-NMR analysis 
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indicated that the final product was a mixture of 2-, 4-, and 6-[18F]FMT isomers in the 
proportion of approximately 36:11:52, respectively. The radiochemical yield was 71 ± 5% 
(n = 3; decay correction based on [18F]AcOF activity) after purification. The specific 
activity was 3.7-7.4 GBq/mmol (100-200 mCi)/mmol).

Namavari et al. (12) described the synthesis of 6-[18F]FMT based on a regioselective 
radiofluorodestannylation procedure. In this method, N-(trifluoroacetyl)-3-acetoxy-6-
(trimethylstannyl)-L-phenylalanine ethyl ester was first synthesized as a precursor. The 
radiosynthesis was carried out by electrophilic fluorodestannylation of the precursor and 
followed by exhaustive deprotection of the acid, amine, and phenol. More than 99% of the 
6-[18F]FMT was chemically and radiochemically pure. Chiral HPLC determined the 
enantiomeric purity to be >99% and the total tin determined by inductively coupled 
plasma spectrometry was <15 parts per billion (ppb). The total synthesis time was 60 min, 
and the radiochemical yield was 17% of the decay-corrected 18F activity recovered from 
the target.

VanBrocklin et al. (13) prepared a new di-Boc protected precursor, N-(tert-
butoxycarbonyl)-3-(tert-butoxycarbonyloxy)-6-trimethylstannyl-L-phenylalanine ethyl 
ester for electrophilic fluorination. This precursor was synthesized from D,L-m-tyrosine in 
four steps with an overall yield of 26-27%. The enatiomeric purity was >95%. Decay-
corrected radiochemical yields (n >6) for a two-pot method and one-pot method were 26 
± 3% and 25 ± 6%, respectively. For both methods, the chemical and radiochemical 
purities were >96%, and the range of specific activities of 6-[18F]FMT was 28-74 MBq/
μmol (0.75-2 Ci/mmol). The amount of total tin was <5-40 ppb.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

DeJesus et al. (14) used rat striatial synaptosomes to determine that the Km and Vmax of 
6-[18F]FMT were 53 μM and 390 pmol/min/g, respectively. In contrast, L-DOPA had a 
Km of 125 μM and Vmax of 98 pmol/min per g. Nahmias et al. (15) found that in vitro 
incubation of 6-[18F]FMT in human whole blood showed that it took approximately 1 h 
for 6-[18F]FMT to equilibrate between plasma and erythrocytes. In comparison, 
[18F]fluorodeoxygluclose equilibrated instantaneously.

Animal Studies

Rodents
[PubMed]

Barrio et al. (9) conducted regional brain distribution and peripheral metabolism of 6-
[18F]FMT in rats. Each rat received 51.8 MBq/kg (1.4 mCi/kg) radioactivity by i.v. 
administration and 5 mg/kg carbidopa (AAAD inhibitor) subcutaneously 60 min before 
the radioligand injection. HPLC analysis of rat striatal tissue 30 min after injection 
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revealed that the main metabolite (54 ± 4% of radioactivity) was 6-[18F]fluoro-m-
tyramine (6-[18F]FMA), a product of AAAD-mediated decarboxylation. Without 
carbidopa pretreatment, both the cerebellum activity and total striatum activity of 6-
[18F]FMA appeared to increase. Rahman et al. (16) reported that the AAAD activity in 
rat serum was 60 pmol/min per ml.

In an in vivo microdialysis study of striatal 6-[18F]FMT metabolism in conscious freely 
moving rats, Jordan et al. (17) injected benserazide (decarboxylation inhibitor, 50 mg/kg 
i.p.) 30-150 min before i.v. administration of 6-[18F]FMT (25 mg/kg). The study found 
that [18F]fluoro-3-hydroxyphenylacetic acid ([18F]FPAC ) was the major metabolite in 
the striatum at 20-120 min after injection. The concentrations of 6-[18F]FMT and 
[18F]FPAC were 0.2-0.3 nM (peak concentration within 20 min) and 3.2-3.3 nM (peak 
concentration within 40 min), respectively. [18F]FMA was below the limit of HPLC/
electrochemical quantitation in all microdialysate samples. The authors suggested that 6-
[18F]FMA existed briefly prior to its rapid oxidation into [18F]FPAC. The 6-[18F]FMT 
and [18F]FPAC concentration profiles were similar in control and reserpinized rats. 
Treatment with 2.5 mg/kg amphetamine i.p. at 120 min after 6-[18F]FMT injection 
caused a transient rise in the microdialysate [18F]FPAC concentration in control rats but 
not in reserpinized rats. The authors believed this was related to the ability of 
amphetamine to release presynaptic dopamine store. In addition, [18F]FMT and its 
metabolites peaked at 40 min and remained in the extracelluar space at a relatively 
constant level for the next 40-160 min after injection suggesting trapping of [18F]FPAC. 
In contrast, [18F]FDOPA and its metabolites, which also peaked at 40 min, cleared the 
brain with a t½ of about 2 h (18).

Other Non-Primate Mammals
[PubMed]

No publication is currently available.

Non-Human Primates
[PubMed]

DeJesus et al. (10) conducted a comparison study between fluorinated m-tyrosine analogs 
and [18F]FDOPA in monkeys. Three monkeys were pretreated with carbidopa (2 mg/kg) 
1 h before receiving 159.1-214.6 MBq (4.3-5.8 mCi) of 6-[18F]FMT. PET imaging up to 90 
min showed that [18F]FDOPA had higher extracerebral radioactivity localization than 6-
[18F]FMT. The striatum/cerebellum ratios at 85 min were 5.8 and 2.8 for 6-[18F]FMT and 
[18F]FDOPA, respectively. The mean Ki (min−1) values were 0.0187 ± 0.0005 (n =3) and 
0.0089 ± 0.0005 (n = 5) for 6-[18F]FMT and [18F]FDOPA, respectively. HPLC analysis of 
blood metabolites showed that 6-[18F]FMT had two metabolites, and one was identified 
as 6-[18F]FPAC.

Jordan et al. (19) studied the kinetics and metabolism of 6-[18F]FMT in monkeys 
rendered hemi-Parkinsonian by unilateral intracarotid artery infusion of the neurotoxin 
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1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Four monkeys received 99.9 
MBq/kg (2.7 mCi/kg) of 6-[18F]FMT (specific activity = 18.5 GBq/mM(0.5 Ci/mM) by i.v. 
administration. HPLC analysis of postmortem brain sections indicated that [18F]FPAC 
was the predominant metabolite with highest concentrations in dopaminergic regions at 
60 and 120 min after injection. The 6-[18F]FMT metabolism profile was similar in treated 
and untreated animals. Other PET imaging studies used this MPTP monkey model to 
show that striatal 6-[18F]FMT uptake was altered in MPTP-treated animals (20-23). Both 
6-[18F]FMT and [18F]FDOPA Ki values clearly differentiated MPTP-lesioned animals 
from normal animals (20). However, it was not possible to use 6-[18F]FMT kloss (loss of 
radioactivity out of the striatum) or kloss/Ki (a measure of dopamine turnover) values to 
differentiate MPTP-lesioned animals from normal animals whereas it was possible with 
the [18F]FDOPA kloss or kloss/Ki values. Another study comparing 6-[18F]FMT and 
[18F]FDOPA in aging monkeys suggested that 6-[18F]FMT might be more suitable for 
assessing CNS AAAD activity and that [18F]FDOPA might be better in tracing dopamine 
turnover (24). Eberling et al (25). proposed that 6-[18F]FMT PET imaging could be used 
to monitor AAAD gene expression by a simple ratio method.

In a study of 3 monkeys, Brown et al. (11) found that 6-[18F]FMT radioactivity 
localization did not correlate with dopamine concentration in other brain regions. On the 
other hand, localization of 6-[18F]FMT radioactivity appeared to significantly correlate 
with regional AAAD activity (r = 0.97). DeJesus et al. (24) used 6-[18F]FMT (118-222 
MBq/dose (3.2-6 mCi/dose) PET imaging to study aging monkey brains. Insignificant 
correlation was found between 6-[18F]FMT radioactivity in young (3-11 years, n = 8) and 
older (25-37 years, n = 6) animals. The authors suggested that AAAD activity was 
maintained or increased in the aging monkey striatum. This result was confirmed by 
Eberling et al. (26). DeJesus et al (27). also reported that the in vivo turnover t½ of the 
enzyme AAAD in the striatum of normal monkeys after irreversible inhibition to be 86 h.

Human Studies
[PubMed]

Firnau et al. (28) studied the brain accumulation of 6-[18F]FMT and its synthesized 
metabolite, [18F]FPAC, up to 2 h in a healthy volunteer. The i.v. doses of both radiolabeled 
compounds were 111 MBq (3 mCi). The study reported that exogenously administered 
[18F]FPAC radioactivity in the brain was only about 5% of that of 6-[18F]FMT. In 
comparison, exogenous O-methylated (OMe[18F]DOPA) radioactivity accumulated to 
about ½ that of [18F]FDOPA radioactivity in all regions of the brain.

Nahmias et al. (29) performed 6-[18F]FMT PET imaging in 6 normal volunteers and 1 
patient with PD. Each subject received 185-370 MBq (5-10 mCi; specific activity = 74 
GBq/mM(2 Ci/mM) radioactivity and was not pretreated with carbidopa. In the normal 
volunteers, radioactivity accumulated in the dopamine-rich areas, the caudate nucleus 
and the putamen. In the PD patient, little radioactivity accumulation was observed in the 
putamen contralateral to the side exhibiting clinical symptoms. The mean striatum/
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cerebellum ratio was 4.95 ± 1.16 (n = 6), and the mean influx rate Kc for the striatum was 
0.0171 ± 0.0018 ml/min per g. In comparison, [18F]FDOPA had a striatum/cerebellum 
ratio of 2.18 ± 0.22 (n = 19). Blood samples analyzed by chromatography indicated that 
the percentages of intact 6-[18F]FMT were 69% at 10 min and 49% at 90 min. In one 
volunteer who did a repeated study and was pretreated with 5 mg/kg carbidopa, the 
percentages of intact 6-[18F]FMT were 91% at 10 min and 70% at 90 min. The study also 
indicated that data from the striatal, cortical, and cerebellar time-activity curves were best 
fitted by a two-compartment, three-parameter model. Asselin et al. (30) in a study of 
blood data collected on 30 human subjects injected with 6-[18F]FMT proposed that a 
three-compartment four-parameter model gave significantly better fits to the blood data.

Asselin et al. (31) described striatal patterns of 6-[18F]FMT distribution in 21 patients for 
differential diagnoses of PD and other movement disorders. It was reported that the 
striatal 6-[18F]FMT distribution pattern can be used to classify patients by the following 
diagnoses: (a) normal, essential tremor and DOPA-responsive dystonia, (b) progressive 
supranuclear palsy and multiple system atrophy (MSA), (c) unilateral PD, (d) bilateral PD, 
MSA, and late-onset dystonia, and (e) corticobasal degeneration.
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