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Background
[PubMed]

Parkinson’s disease (PD) is associated with a loss of dopamine-containing neurons in 
striatum of the brain (1, 2). PD is caused by a shortage of dopamine. Dopamine, a 
neurotransmitter, plays an important role in the mediation of movement, cognition and 
emotion. Dopamine also plays a role in various neuropsychiatric disorders, such as 
schizophrenia, autism, attention deficit hyperactivity disorder, and drug abuse.

Dopamine is synthesized within nerve cells (3). L-tyrosine is converted to 
dihydroxyphenylalanine (L-DOPA) and then to dopamine in a two-step process. The first, 
rate limiting step is catalyzed by tyrosine 3-monoxygenase (tyrosine hydroxylase or TH). 
The second step is catalyzed by aromatic L-amino acid decarboxylase (L-DOPA 
decarboxylase, AAAD). In parts of the nervous system that release dopamine as a 
neurotransmitter (dopaminergic neurons), no further metabolism occurs and dopamine 
is stored in vesicles in the presynaptic nerve terminals by virtue of the dopamine reuptake 
transporter, DAT.

6-[18F]Fluoro-L-DOPA (FDOPA) is a radiolabeled analog of L-DOPA used to evaluate 
the central dopaminergic function of pre-synaptic neurons using positron emission 
tomography (PET) (4, 5). FDOPA PET reflects DOPA transport into the neurons, DOPA 
decarboxylation and dopamine storage capacity. The tracer is converted to 6-
[18F]fluorodopamine (FDA) by AAAD and retained in the striatum. FDA can be O-
methylated by catechol-O-methyltransferase (COMT) to 3-O-methyl-6-[18F]fluoro-L-
dopa (3-OMFD), which is uniformly distributed throughout the brain. FDA is also 
metabolized via monoamine oxidase to yield [18F]6-fluoro-3,4-dihydroxyphenylacetic 
acid (FDOPAC) and subsequently by COMT to yield [18F]6-fluorochomovanillic acid 
(FHVA). AAAD and COMT are also present in peripheral tissues such as liver, kidneys, 
and lung. In clinical studies, AAAD is commonly inhibited with carbidopa, whereas 
COMT is blocked by entacapone and nitecapone. These two types of inhibitors enhance 
the availability of FDOPA in the brain.

Related Resource Links:
• Chapters in MICAD (Amino acid transporters, dopamine)
• Gene information in NCBI (L-type amino acid transporter, aromatic L-amino acid 

decarboxylase)
• Articles in Online Mendelian Inheritance in Man (OMIM) (Amino acid 

transporters, aromatic L-amino acid decarboxylase)
• Clinical trials (Amino acid transporters, FDOPA)
• Drug information in FDA (Amino acid transporters, FDOPA)

Synthesis
[PubMed]
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FDOPA can be synthesized by either electrophilic or nucleophilic process (6). 
Regioselective electrophilic fluorodemetallation of either a mercuryl or a trimethylstannyl 
precursor is rapid and simple. Electrophilic fluorination of L-methyl-N-acetyl-
[methoxy-4-acetoxyphenyl]alanine with [18F]acetyl hypofluorite to provide FDOPA in 
8% radiochemical yield at the end of bombardment after hydrolysis and high-
performance liquid chromatography (HPLC) purification (7). An overall synthesis time is 
100 min with a 95% chemical purity and a specific activity of 7.4 GBq/mmol (200 mCi/
mmol) at the end of synthesis (EOS). A robotic synthesis was performed using [18F]F2/
neon gas and the trimethylstannyl precursor in about 110 min (8). The radiochemical 
purity was >97% and the specific activity was 2.59 GBq/mmol (70 mCi/mmol) at the EOS. 
The radiochemical yield was about 8.2% (uncorrected for decay)

A multi-step synthesis, based on the nucleophilic displacement of a nitro group using the 
standard [18F] potassium Kryptofix complex, has been reported (9). The chemical purity 
was >96% with the specific activity of 1 Ci/μmol (37 GBq//μmol) at the EOS. The overall 
radiochemical yield was 23% at the EOS. The total synthesis time was 90 min. 
Nucleophilic methods using [18F]fluoride ion have the potential to provide a higher yield 
and a higher specific activity.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

The enzyme kinetic parameters for AAAD of DOPA and FDOPA were determined in 
vitro (10). The Km and kcat values for DOPA were 0.091 mM and 9.1 s-1, respectively. The 
Km and kcat values for FDOPA were 0.7 mM and 8.2 s-1, respectively. The presence of 
fluorine at ring position 6 decreased binding to the active site of AAAD without 
significantly affecting the enzyme activity of AAAD.

Unlabeled FDOPA (50 μM) reduced [3H]L-DOPA (25 nM) uptake by 69% and 49% in rat 
striatal and cortical synaptosomes, respectively. L-DOPA showed a higher inhibition than 
FDOPA (11). In another study, 3-OMFD, L-DOPA and unlabeled FDOPA inhibited the 
uptake of [3H]trytophan (0.1 μM) into cells transfected with human L-type amino acid 
transporter with IC50 of 84, 46, and 878 μM, respectively (12).

Animal Studies

Rodents
[PubMed]

Ex vivo iodistribution studies showed a high uptake of radioactivity in the kidneys (5.6% 
ID/organ), pancreas (0.9% ID/organ) and liver (0.7% ID/organ) of mice at 1 h post 
injection of FDOPA (13).

Total extracellular [18F] radioactivity in rat striatum was observed to peak at 30 min after 
injection of FDOPA and declined with clearance half-life of 2 h (14). In the extracellular 
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space, the dominant FDOPA metabolite at early times was FDOPAC, followed by FHVA 
at 50 min. F-sulfoconjugates appeared at 70 min, and finally 3-OMFD appeared later. 
Analysis of the striatal tissue confirmed the intraneuronal localization of FDA, most likely 
stored in vesicles, slowing its cerebral clearance.

In rat brain, carbidopa pretreatment increased striatal FDA (700%) and 3-OMFD (230%) 
at 30 min postinjection of FDOPA and cerebellum FDA (370%) and 3-OMFD (300%) 
(15). FDOPA plasma levels were increased by 20% and 3-OMFD plasma levels by 220%. 
FDOPAC and FDA were not detected. FHVA levels (>5%) were not changed by carbidopa 
pretreatment. Carbidopa restricted peripheral FDOPA metabolism to 3-OMFD formation 
and increased FDOPA bioavailability to the brain, resulting in greater FDA accumulation 
in the striatum.

The uptake of FDOPA was studied in a rat model of PD (16). The brains of these rats were 
unilaterally lesioned with an intranigral injection of 6-hydroxydopamine. The uptake in 
the lesioned side was 16-31% lower than the sham controls and intact side of the striatum 
and substantia nigra. The uptake data correlated with the behavioral tests and the number 
of nigral dopaminergic neurons.

Other Non-Primate Mammals
[PubMed]

In dogs, FDOPA uptake was greatest in the pituitary, followed by the liver, spleen and 
kidneys at 1 h post injection. The uptake in the brain cortex, striatum, thalamus and 
cerebellum was <50% of the liver uptake (17).

FDOPA metabolism of immature brain was studied in newborn piglets (18). The 
estimated values of FDOPA decarboxylation in the basal ganglia were similar to values 
calculated in adult animals and humans. However, a significant FDOPA decarboxylation 
was also found in the frontal cortex and the cerebellum. HPLC analysis of brain samples 
also revealed extensive and rapid metabolism of FDOPA in the frontal cortex, caudate/
putamen, midbrain, and cerebellum. At 8 min after tracer injection, about 80% of FDOPA 
was already converted to FDA and its metabolites. Surprisingly, a rather high fraction 
(16-21%) of [18F]fluoro-3-methoxytyramine was found, indicating a low storage capacity 
of vesicular dopamine at this perinatal stage. In a later study, it was found that the 
metabolism of FDOPA in young pigs was significantly faster than in newborns (19).

Non-Human Primates
[PubMed]

FDOPA PET studies in non-human primates have provided useful assessment of the 
dopaminergic function in the brain. The major metabolite detected in the periphery was 
3-OMFD (15). Carbidopa pretreatment increased FDOPA bioavailability to the brain and 
increased FDOPA metabolism to FDA and 3-OMFD. In the striatum, FDA and 3-OMFD 
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were the major FDOPA metabolites with lower levels of FDOPAC and FHVA. In contrast, 
the cerebellum and cortex had mainly FDOPA and 3-OMFD accumulation (20-22).

Carbidopa pretreatment of monkeys showed inhibition of peripheral decarboxylation of 
FDOPA and higher uptake in the striatum and cortex than the control monkeys (15). 
There was no change in the FDOPA influx constant. Therefore, the higher uptake was 
because of higher FDOPA bioavailability for transport into the brain.

FDOPA metabolites from putamen of normal and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-treated monkeys were measured to correlate FDOPA 
metabolism with those of the endogenous dopamine system (23). There were less than 2% 
of control FDOPA and dopamine levels in the MPTP-treated putamen, which had 80% 3-
OMFD as the major metabolite. FDA metabolism was increased for the lesioned putamen 
as measured by FHVA/FDA ratios (6:1 vs. 0.38:1). At 60 min post FDOPA injection, 
similar plasma activity for FDOPA and its metabolites were found for both control and 
lesioned monkeys. The results suggested that PET studies with FDOPA in PD patients 
could provide kinetic evaluation of striatal biochemistry and evidence of in vivo 
dopamine turnover changes.

Human Studies
[PubMed]

Human dosimetry was estimated based on murine and human biodistribution data (13, 
17). The bladder wall receives the highest dose (0.215 mGy/MBq or 0.797 rad/mCi). 
Other organs receiving high doses are the kidneys (0.089 mGy/MBq or 0.329 rad/mCi) 
and pancreas (0.030 mGy/MBq or 0.110 rad/mCi). The brain, liver and lungs receive 
<0.008 mGy/MBq (0.029 rad/mCi). Effective dose equivalent of 0.026 mSv/MBq (96 
mrem/mCi) was estimated in the intravenous administration of FDOPA.

The first FDOPA PET study of human brain was reported in 1983 (24), showing the 
localization of radioactivity in the striatum. Only about 1% of FDOPA entered the brain. 
Striatal-to-occipital ratio, FDOPA influx constant, and AAAD activity constant are 
commonly used as analytical parameters in FDOPA PET studies. In patients with 
established bilateral PD, FDOPA PET showed bilateral influx constant reductions in the 
caudate, putamen, striatal nigra, and midbrain tegmentum. The decline in FDOPA uptake 
was more rapid in PD than normal subjects (25). In PD patients, AAAD activity was 
reduced in striatum, putamen, and caudate and no change in frontal and occipital cortices 
(26).

In carbidopa-pretreated subjects, peripheral FDOPA was rapidly metabolized by COMT 
to 3-OMFD. There were significant increases in FDOPA plasma levels for 30 min, but 
FHVA level decreased. Inhibition of COMT by entacapone in mild to moderate PD 
patients prolonged the circulation time of FDOPA in the plasma (27). but did not change 
rate constants for striatal FDOPA influx or decarboxylation. In advanced PD patients 
pretreated with entacapone, the FDOPA influx constant decreased significantly in the 
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caudate and putamen, and no change in healthy controls. This may be because of the 
advanced disease, decreased storage capacity, or both (28).

FDOPA PET permits objective monitoring of PD progression and neuroprotection 
therapies [PubMed]. It allows diagnosis of PD in early disease stages. In recent studies, 
FDOPA has also demonstrated its usefulness as in the imaging of brain tumors (29) and 
neuroendocrine metastatic lesions in bone (30).
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