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Background
[PubMed]

The phosphorylation of glucose, an initial and important step in cellular metabolism, is 
catalyzed by hexokinases (HKs) (1). There are four HKs in mammalian tissues. HKI, 
HKII, and HKIII have molecular weights of approximately 100,000 each. HKI is found 
mainly in the brain. HKII is insulin sensitive and found in adipose and muscle cells. 
HKIV, also known as glucokinase, has a molecular weight of 50,000 and is specific to the 
liver and pancreas. Most brain HK is bound to mitochondria, enabling coordination 
between glucose consumption and oxidation. Tumor cells are known to be highly 
glycolytic because of increased expression of glycolytic enzymes and HK activity (2), 
which was detected in tumors from patients with lung, gastrointestinal, and breast cancer. 
The HKs, by converting glucose to glucose-6-phosphate, help to maintain the downhill 
gradient that results in the transport of glucose into cells through the facilitative glucose 
transporters (GLUT1-13) (3). GLUT4 and HKII are the major transporter and HK 
isoform in skeletal muscle, heart, and adipose tissue, wherein insulin promotes glucose 
utilization. HKIV is associated with GLUT2 in liver and pancreatic β cells.

2-Deoxy-D-glucose (2DG) was first developed to inhibit glucose utilization by cancer cells 
(4). HKs phosphorylate 2DG to 2-DG-6-phosphate, which inhibits phosphorylation of 
glucose. 2-[18F]Fluoro-2-deoxy-D-glucose ([18F]FDG) was later developed for molecular 
imaging studies (5). FDG is moved into cells by glucose transporters and is then 
phosphorylated by HK to FDG-6- phosphate. FDG-6- phosphate cannot be metabolized 
further in the glycolytic pathway and stays intracellularly in the cells. Tumor cells do not 
contain a sufficient amount of glucose-6-phosphatase to reverse the phosphorylation. The 
elevated rates of glycolysis and glucose transport in many types of tumor cells and 
activated cells enhance the uptake of FDG in these cells relative to other normal cells. 
Positron emission tomography (PET) with [18F]FDG has been used to assess alternations 
in glucose metabolism in brain, cancer, cardiovascular diseases, Alzheimer’s disease and 
other central nervous system disorders, and infectious, autoimmune, and inflammatory 
diseases (6-11).

Related Resource Links:
• Chapters in MICAD (Hexokinase, glucose transporter)
• Gene information in NCBI (Hexokinase, Glut1).
• Articles in Online Mendelian Inheritance in Man (OMIM) (Hexokinase, Glut1)
• Clinical trials ([18F]FDG)
• Drug information in FDA ([18F]FDG)

Synthesis
[PubMed]

2 Molecular Imaging and Contrast Agent Database (MICAD)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=PureSearch&db=pubmed&details_term=%22fluorodeoxyglucose%20f18%22%5BMeSH%20Terms%5D
http://www.ncbi.nlm.nih.gov/books?term=(hexokinase%20OR%20hexokinases)%20AND%20micad%5Bbook%5D
http://www.ncbi.nlm.nih.gov/books?term=glucose%20transporters%20%20AND%20micad%5Bbook%5D
http://www.ncbi.nlm.nih.gov/gene?term=hexokinase%20human
http://www.ncbi.nlm.nih.gov/gene/6513
http://www.ncbi.nlm.nih.gov/omim?Db=omim&Cmd=DetailsSearch&Term=hexokinase%5BAll+Fields%5D
http://www.ncbi.nlm.nih.gov/omim/138140
http://www.clinicaltrials.gov/ct2/results?term=FDG
http://google2.fda.gov/search?q=%5B18F%5DFDG&client=FDAgov&site=FDAgov&lr=&proxystylesheet=FDAgov&output=xml_no_dtd&getfields=*&x=3&y=9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=PureSearch&db=pubmed&details_term=%22Fluorodeoxyglucose%20F18%22%5BMeSH%5D%20AND%20%22chemical%20synthesis%22%5BSubheading%5D


[18F]FDG was synthesized by a direct electrophilic fluorination of 3,4,6-tri-O-acetyl-D-
glucal with [18F]F2 gas with a radiochemical yield of 8% (12). [18F]FDG was also 
prepared by reacting 18F-labeled acetyl hypofluorite, prepared by reaction of 18F-labeled 
molecular fluorine with sodium acetate in glacial acetic acid, and tri-acetyl-D-glucal at 
room temperature. Overall radiochemical yield was about 24% with a radiochemical 
purity of 98%. The specific activity of [18F]FDG was about 25 GBq/mmol (685 mCi/
mmol). The synthesis time was approximately 60 min (13). Subsequently, the 
radiochemical yields of [18F]FDG were improved to 50-60% by using various methods 
involving nucleophilic fluorination using fluoride of high specific activity (14-17). An 
automated synthesis of [18F]FDG using tetrabutylammonium [18F]fluoride was reported 
to give a radiochemical yield of 12-17% with 96-99% radiochemical purity (18).

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

FDG and other glucose analogs were investigated as anticancer agents by inhibiting 
glycolysis of tumor cells grown in cell cultures. In vitro uptake studies of [18F]FDG by 
endothelial cells, monocytes, macrophages, neutrophils, granulocytes, lymphocytes, and 
tumor cells have been reported and shed some light on [18F]FDG uptake mechanisms in 
these cells (19-23). On the other hand, in organs such as the liver, FDG is taken up and 
rapidly released because of dephosphorylation by FDG-6-phosphatase (24). Therefore, the 
overall FDG uptake into cells is dependent on the activity of glucose transporters, HKs, 
and phosphatases.

Uptake of [18F]FDG in isolated human monocytes-macrophages (HMMs) in vitro was 
compared with that in human glioblastoma and pancreatic carcinoma cells (25). HMMs 
were cultured for 0, 7, and 14 days. [18F]FDG uptake in HMMs significantly increased 
with culture duration as monocytes differentiated into mature macrophages. The uptake 
of day 14 macrophages was similar to the two cancer cell lines. Lipopolysaccharide 
stimulation further enhanced [18F]FDG uptake in HMMs. [18F]FDG uptake significantly 
decreased with increasing glucose concentration in the medium. Radio-thin layer 
chromatography of intracellular metabolites revealed that [18F]FDG was trapped by 
HMMs mainly as [18F]FDG-6-phosphate and [18F]FDG-1,6-diphosphate. HMMs in 
tumors and inflamed tissues could result in high uptake of [18F]FDG.

Animal Studies

Rodents
[PubMed]

[18F]FDG was accumulated rapidly into kidneys, liver, lung, and small intestine of normal 
mice, followed by a rapid clearance (26). On the other hand, the accumulation of the 
tracer in the brain and heart remained relatively constant during the 2 h of the 
experiment. [18F]FDG was tested as a tumor diagnostic agent in a transplantable rat 
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tumor (27). Tissue distribution studies in rats showed high uptakes of [18F]FDG in the 
tumor, heart, intestine, and brain. Tumor uptake reached 2.65% dose [18F]FDG/g at 60 
min and remained relatively constant until 120 min. Blood clearance [18F]FDG was very 
rapid, and tumor/blood ratios reached 22.1 at 60 min. Tumor/tissue ratios were very high 
in most organs, especially in the liver, kidneys, and pancreas.

Increased glucose metabolism of inflammatory tissues is the main source of false-positive 
[18F]FDG PET findings in oncology. The biodistribution of 3'-deoxy-3'-
[18F]fluorothymidine [18F]FLT and [18F]FDG was studied in Wistar rats that bore 
tumors (C6 rat glioma in the right shoulder) and also had sterile inflammation in the left 
calf muscle (induced by injection of 0.1 ml of turpentine). Tumor/muscle ratios of 
[18F]FDG at 2 h after injection (13.2 ± 3.0) were higher than those of [18F]FLT (3.8 
± 1.3). [18F]FDG showed high uptake in brain and heart, whereas [18F]FLT showed high 
uptake in bone marrow. [18F]FDG was also accumulated in the inflamed muscle, with 4.8 
± 1.2 times higher uptake in the affected thigh than in the healthy thigh. In contrast to 
[18F]FLT, [18F]FDG uptake was not significantly different between the two thighs. In 
[18F]FDG PET images, both tumor and inflammation were visible, but [18F]FLT PET 
showed only the tumor (28).

Other Non-Primate Mammals
[PubMed]

There was an early and high uptake of [18F]FDG in a variety of transplantable tumors in 
mice, rats, hamsters, and rabbits (29). Tumor/blood and tumor/normal tissue ratios 
ranged from 2.6 to 17.8 and 2.1 to 9.2, respectively. Various [18F]FDG uptake studies were 
performed using dogs [PubMed], pigs [PubMed], sheep [PubMed], and rabbits 
[PubMed].

Non-Human Primates
[PubMed]

Regional cerebral blood flow (rCBF) and regional cerebral metabolic rate of glucose 
(rCMRglc) were measured in old and young monkeys by PET. Studies were performed on 
six old and six young-adult male rhesus monkeys. rCBF and the rCMRglc were serially 
measured using PET with [15O]H2O and [18F]FDG, respectively. All PET emission scans 
were performed in the conscious state for the cerebellum, hippocampus, striatum, 
occipital cortex, temporal cortex, frontal cortex, and cingulate. Old monkeys had 
significantly lower rCBF in the cerebellum, hippocampus, striatum, occipital cortex, 
temporal cortex, and frontal cortex and significantly lower rCMRglc in the cerebellum, 
hippocampus, striatum, occipital cortex, temporal cortex, frontal cortex, and cingulate, 
compared with young monkeys (30).

Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques 
begins with acute viremia and then progresses to a distributed infection in the solid 
lymphoid tissues. PET imaging with [18F]FDG from SIV-infected animals was 
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distinguishable from uninfected controls and revealed a pattern consistent with 
widespread lymphoid tissue activation. Significant [18F]FDG accumulation in colon, 
along with mesenteric and ileocecal lymph nodes, was found in SIV infection, especially 
during terminal disease stages. Areas of elevated [18F]FDG uptake in the PET images 
were correlated with productive SIV infection. [18F]FDG PET images of SIV-infected 
animals correlated sites of virus replication with high FDG accumulation. Therefore, 
[18F]FDG can be used to evaluate the distribution and activity of infected tissues in a 
living animal without biopsy (31).

Human Studies
[PubMed]

In 1976, the first images of [18F]FDG metabolism in humans were obtained and showed 
the high uptake in the bladder, heart, and brain (5, 32). Regional kinetic constants and 
rCMRglc in normal human subjects were determined by [18F]FDG PET (33-36). Human 
dosimetry [PubMed] was estimated from absorbed dose in organs after intravenous 
administration of [18F]FDG using whole-body PET scans in six normal volunteers (37). 
The bladder received the highest dose of radioactivity, followed by the spleen, heart, and 
brain. Mejia et al (38) estimated the effective dose equivalent to be 0.024 mSv/MBq (81 
mrem/mCi).

[18F]FDG PET imaging techniques are widely used in clinical applications. In central 
nervous system disorders [PubMed], the clinical applications are in Alzheimer’s disease, 
dementia, epilepsy, brain trauma, Huntington disease, cerebrovascular disorders, brain 
tumors, Schizophrenia, and mood disorders (39, 40). In oncology [PubMed], the clinical 
applications are in diagnosis, treatment monitoring, and tumor staging have been used in 
non-small cell lung cancer, colorectal carcinoma, malignant melanoma, Hodgkin and 
non-Hodgkin lymphoma, esophageal carcinoma, head and neck cancer, breast cancer, and 
thyroid carcinoma (9, 41). In cardiovascular disorders [PubMed], the clinical applications 
are in myocardial viability and atherosclerosis (42). In infectious and inflammatory 
diseases [PubMed], the clinical applications are in orthopedic infections, osteomyelitis, 
ileitis, sarcoidosis, rheumatologic disease, and vasculitis (42).
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