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Magnetic resonance spectroscopy (MRS) has been noninvasively used to detect small 
molecules in tissues in vivo (1-4). Proton (1H) and carbon-13 (13C) are the most 
frequently investigated MRS applications (5-7). One technique has been often used to 
enhance 13C nuclear spins with dynamic nuclear polarization (DNP), which dramatically 
increases sensitivities in MRS spectra of 13C-labeled substrates in solutions and tissues (2, 
3, 8). DNP transfers high electron-spin polarization to nuclear spins via microwave 
irradiation. The 13C MRS signals from tissues are near background levels, whereas regions 
with hyperpolarized 13C-labeled substrates provide strong signals. Thus, hyperpolarized 
13C-labeled substrates can provide >10,000-fold enhancement of the 13C MRS signals 
from the substrate and its subsequent metabolites. 13C-Labeled substrates must exhibit 
long spin-lattice relaxation time (T1) values, be rapidly metabolized, and produce an 
observable change in the chemical shift (δ) value between the substrate and its 
metabolite(s). 13C-Labeled substrates, such as [1-13C]pyruvate, [2-13C]fructose, 
[13C]bicarbonate, α-keto[1-13C]isocaproate, and [1,4-13C2]fumarate have been studied 
using the DNP technique in tumors in preclinical studies to measure changes in 
metabolism in vivo through glycolysis, citric acid cycle, amino acid metabolism and fatty 
acid synthesis (1-3).

Vitamin C (ascorbic acid, AA) is reversibly oxidized to DHA, which is a substrate of 
glucose transporters GLUT1 and GLUT3 (9). Epithelial cells of the intestine, liver, and 
kidney transport AA directly through sodium-dependent transporters, whereas most 
normal tissues acquire AA through transport of DHA (10). Intracellular DHA is then 
converted to AA through reaction with glutathione (GSH) or GSH-dependent enzymes 
and through NADPH-dependent thioredoxin reductases (11). On the other hand, tumor 
cells have been found to lack the capacity to transport AA and to exhibit upregulation of 
the GSH and thioredoxin antioxidant systems, reflecting high oxidative stress in tumor 
cells (10). High oxidative stress has also been implicated in neurodegenerative and 
cardiovascular conditions (12). Bohndiek et al. (13) generated a hyperpolarized small 
molecule, [1-13C]dehydroascorbic acid ([1-13C]DHA), as an imaging agent of 13C MRS 
for evaluation of intracellular reduction/oxidation (redox) status in tumors and other 
pathological conditions. [1-13C]DHA has been evaluated as an intracellular redox probe 
using tumor cells in vitro and in vivo. Keshari et al. (14) have performed MRS imaging of 
redox status in normal organs and prostate tumor in mice using hyperpolarized 
[1-13C]DHA.

Related Resource Links:
• Chapters in MICAD (Hyperpolarized 13C)
• Gene information in NCBI (Thioredoxin reductase 1, thioredoxin reductase 2, 

GLUT1, GLUT3).
• Articles in Online Mendelian Inheritance in Man (OMIM) (Thioredoxin reductase 

1, thioredoxin reductase 2, GLUT1, GLUT3)
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Synthesis
[PubMed]

[1-13C]DHA was prepared by charcoal oxidation of commercially available [1-13C]AA. 
[1-13C]AA 1 (2.9 mmol) was dissolved in 15 mL methanol, and then highly purified 
activated charcoal Norit (0.75 g) was added as a catalyst (13). The mixture was stirred 
vigorously for 90 minutes at room temperature, with oxygen bubbled through at 0.2 L/
minute. Charcoal was removed from the product with filtration. The final product, 
[1-13C]DHA, was then lyophilized to give a yield of 70% with >99% chemical purity. 
[1-13C]DHA (8.2 ± 1.1%, n = 8) exhibited a significantly higher degree of polarization (P 
< 0.05) than [1-13C]AA (5.1 ± 0.6%, n = 6) at pH 7 at 8 s after dissolution in phosphate-
buffered saline (PBS) measured at 9.4 T. The δ values for [1-13C]AA and [1-13C]DHA 
were 179 ppm and 175 ppm, respectively. The T1 values for [1-13C]AA and [1-13C]DHA 
were 15.9 ± 0.7 s and 20.5 ± 0.9 s, respectively.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

Bohndiek et al. (13) analyzed the conversion of [1-13C]DHA to [1-13C]AA in PBS 
containing 1, 5, 10, 25, and 50 mM GSH. 13C MRS spectra were acquired at 9.4 T. The 
[1-13C]AA signal (179 ppm) reached maximal intensity within 7–16 s. Reduction of 
[1-13C]DHA to [1-13C]AA was observed in RPMI medium, which contains 3.3 nM GSH 
and other factors. The rate of conversion observed in RPMI medium and EL4 mouse 
lymphoma cell suspension (1 × 108 cells in 2 mL) in RPMI medium were 99 ± 6 nmol/s (n 
= 2) and 223 ± 18 nmol/s (n = 3), respectively. On the other hand, no oxidation of 
[1-13C]AA to [1-13C]DHA was observed in either RPMI medium alone or in EL4 cell 
suspension in RPMI medium within 60 s.

Animal Studies

Rodents
[PubMed]

Bohndiek et al. (13) performed in vivo MRS studies in female C57BL/6 mice (number of 
mice not reported) bearing subcutaneous EL4 tumors. Hyperpolarized [1-13C]AA or 
[1-13C]DHA (6 mmol/mouse) was injected via tail vein catheter over a period of ~6 s. 
13C MRS spectra were acquired at 9.4 T. After injection of [1-13C]DHA, the signals from 
[1-13C]AA and [1-13C]DHA were seen at 179 ppm and 175 ppm in the tumors, 
respectively. The apparent rate constant for the conversion of [1-13C]DHA to [1-13C]AA 
was 0.020 ± 0.004 s−1. The ratio of the peak integrals of [1-13C]AA to [1-13C]DHA was 
0.35 ± 0.08 with an average signal/noise ratio of 67 ± 20. The EL4 tumor concentration of 
GSH was determined to be 1,180 nmol/g. The calculated spontaneous reaction rate 
constant of [1-13C]DHA to [1-13C]AA with GSH was 0.0004 s−1 and would produce a 
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maximum relative signal of only 0.013 for [1-13C]AA in the tumors. These data suggest 
that an enzymatic reaction is required to account for the high rate and level of [1-13C]AA 
produced from [1-13C]DHA observed in the tumors. On the other hand, no observable 
[1-13C]DHA signal was detected in the tumors after injection of [1-13C]AA.

Keshari et al. (14) performed in vivo MRS imaging (3 T) in normal mice (n = 5) and in 
transgenic mice (n = 4) with adenocarcinoma of the mouse prostate (TRAMP) model 
after injection of 17.5 mmol of hyperpolarized [1-13C]DHA. T2-weighted images were 
obtained for 25 s at the start of [1-13C]DHA injection. The conversion of [1-13C]DHA to 
[1-13C]AA was measured as a ratio of [AA]/[AA+DHA]. In normal mice, the conversions 
were rapid in the liver (0.41 ± 0.03) and kidney (0.25 ± 0.03), and were significantly 
different (P < 0.01). These ratios were similar in TRAMP mice. In tumors of TRAMP 
mice, the ratio was 0.23 ± 0.03 and significantly higher than that in the normal prostate 
(0.06 ± 0.03, P < 0.02). Hyperpolarized 13C MRS imaging data acquired from rat brains (n 
= 3) demonstrated an even faster conversion (0.51 ± 0.10) with [1-13C]AA localized to the 
brain and [1-13C]DHA localized to the surrounding muscle tissue. In summary, the 
conversions of [1-13C]DHA to [1-13C]AA were rapid in the brain, liver, kidney, and 
TRAMP tumor. The conversions were slow in the normal prostate and muscle.

Other Non-Primate Mammals
[PubMed]

No references are currently available.

Non-Human Primates
[PubMed]

No references are currently available.

Human Studies
[PubMed]

No references are currently available.
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