Au₃Cu₁ Nanoparticles

Au₃Cu₁-NPs

Kam Leung, PhD¹

Created: June 26, 2008; Updated: August 18, 2008.

Chemical name:	Au ₃ Cu ₁ Nanoparticles	
Abbreviated name:	Au ₃ Cu ₁ -NPs	
Synonym:		
Agent Category:	Metal	
Target:	Non-targeted	
Target Category:	Blood-pool retention	
Method of detection:	MRI	
Source of signal\contrast:	Cu	
Activation:	No	
Studies:	<i>In vitro</i>Rodents	No structure is available in PubChem.

Background

[PubMed]

Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used in MRI because of their abundance in water molecules. Water comprises ~80% of most soft tissue. The contrast of proton MRI depends largely on the density of the nucleus (proton spins), the relaxation times of the nuclear magnetization (T₁, longitudinal, and T₂, transverse), the magnetic environment of the tissues, and the blood flow to the tissues. Insufficient contrast between normal and diseased tissues requires the development of contrast agents. Most contrast agents affect the T₁ and T₂ relaxation times of the surrounding nuclei, mainly the protons of water. T₂* is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field (1).

¹ National Center for Biotechnology Information, NLM, NIH; Email: micad@ncbi.nlm.nih.gov.

NLM Citation: Leung K. Au₃Cu₁ Nanoparticles. 2008 Jun 26 [Updated 2008 Aug 18]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.

Cross-linked iron oxide nanoparticles and other iron oxide formulations primarily affect T_2 and lead to decreased signals. On the other hand, paramagnetic T_1 agents such as gadolinium (Gd³⁺) and manganese (Mn²⁺) accelerate T_1 relaxation and lead to brighter contrast images (2).

Gold nanoparticles have been used as X-ray and optical contrast agents in small animals with little toxicity (3). Su et al. (4) have developed hollow Au_3Cu_1 nanoparticles (nanoshells and nanocapsules) as bimetallic MRI contrast agents with enhancing effects in T₁- and T₂-weighted imaging. A Cu³⁺ ion has an electron configuration of d⁸ with two unpaired electrons and less magnetic moment than Gd³⁺, with seven unpaired electrons; however, hollow Au_3Cu_1 nanoparticles are made of large numbers of paramagnetic Cu³⁺ ions to provide a superparamagnetic effect. The large surface area of the porous nanoparticles also provides an effective interaction of Cu³⁺ ions with water molecules.

Synthesis

[PubMed]

Su et al. (4) produced Au₃Cu₁ nanoparticles by adding 1×10^{-6} mol HAuCl₄ (dehydrated) to a Cu-colloidal solution, which was prepared with laser irradiation of CuO in 2-propanol. The mixture was sonicated for 10 min to form hollow Au₃Cu₁ nanoshells. The Au₃Cu₁ nanoshells were coated with polyelectrolyte polyethylenimine (PEI) and poly(acrylic acid) (PAA) polymers to form Au₃Cu₁ nanocapsules. The nanoshell cores were 48.9 ± 19.1 nm in diameter, and the shells were 5.8 ± 1.8 nm thick as determined with transmission electron microscopy. The pores were 1-2 nm in diameter. The nanocapsule shells were 6.1 ± 1.2 nm thick. The number of copper atoms/nanoparticle was estimated to be 4.98×10^5 .

In Vitro Studies: Testing in Cells and Tissues

[PubMed]

For *in vitro* MR images as well as both T₁ and T₂ measurements at 3 T, all nanoshells and nanocapsules were dispersed in 5% agarose gel at various concentrations (0.125, 0.25, 1.25, 2.5, and 5 mg/ml) (4). Adding Au₃Cu₁ nanocapsules to the agarose gel brightened the T₁ image and enhanced the T₁⁻¹ (longitudinal relaxation rate) of water protons. The T₁-weighted MR signal intensity increased up to ~89% as the Au₃Cu₁ nanocapsule concentrations increased from 0 to 5.00 mg/mL; however, use of Au₃Cu₁ nanoshells resulted in only ~26% increase in T₁ image intensity. Interestingly, both nanoparticles enhanced T₂-weighted image intensity by 8% to 11% at 0.125 mg/ml and decreased by 6% and 76% at 5 mg/ml for nanoshells and nanocapsules, respectively. The proton r_1 relaxivities were as large as 3.0×10^4 mM⁻¹s⁻¹ (Au₃Cu₁ nanocapsules) and 2.3×10^4 mM⁻¹s⁻¹ (Au₃Cu₁ nanoshells). The proton r_2 relaxivities were 2.39×10^5 mM⁻¹s⁻¹ for Au₃Cu₁ nanocapsules and 1.82×10^6 mM⁻¹s⁻¹ for Au₃Cu₁ nanoshells. Both exhibited little cytotoxicity to monkey kidney epithelial Vero cells in culture at concentrations of 0.1-10,000 ng/ml at 37°C up to 24 h.

Animal Studies

Rodents

[PubMed]

Su et al. (4) studied the long-term toxicological effects in normal mice (n = 6 mice/group) at 30 days after intravenous injection of 2, 20, and 40 mg/kg Au₃Cu₁ nanocapsules with viability rates of 100%, 83%, and 67%, respectively. Most of the Au and Cu were found in the urine at 3 h after injection. MRI studies (T₁- and T₂-weighted imaging at 3 T) were performed in normal mice after injection of 20 mg/kg Au₃Cu₁ nanocapsules. Both images were enhanced in the heart and major vessels at 2 h after injection. Images of the blood vessels in the liver were also enhanced. The calculated blood concentration is ~0.25mg/ml after injection of 20 mg/kg. Au₃Cu₁ nanocapsules may be a tool as positive contrast agent for use in MR angiography.

Other Non-Primate Mammals

[PubMed]

No publication is currently available.

Non-Human Primates

[PubMed]

No publication is currently available.

Human Studies

[PubMed]

No publication is currently available.

References

- 1. Wang Y.X., Hussain S.M., Krestin G.P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;**11**(11):2319–31. PubMed PMID: 11702180.
- 2. Kabalka G., Buonocore E., Hubner K., Moss T., Norley N., Huang L. Gadoliniumlabeled liposomes: targeted MR contrast agents for the liver and spleen. Radiology. 1987;**163**(1):255–8. PubMed PMID: 3454163.
- 3. Hainfeld J.F., Slatkin D.N., Focella T.M., Smilowitz H.M. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;**79**(939):248–53. PubMed PMID: 16498039.
- 4. Su C.H., Sheu H.S., Lin C.Y., Huang C.C., Lo Y.W., Pu Y.C., Weng J.C., Shieh D.B., Chen J.H., Yeh C.S. Nanoshell magnetic resonance imaging contrast agents. J Am Chem Soc. 2007;**129**(7):2139–46. PubMed PMID: 17263533.