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Synonym:
Agent Category: Nanoparticles
Target: Non-targeted
Target Category: Non-targeted

Method of detection: Multimodality imaging (magnetic resonance imaging/
computed tomography (MRI/CT))

Source of signal / contrast: Au and Gd(III)
Activation: No

Studies: No structure

o Invitro is available.
« Rodents

Background
[PubMed]

The gold nanoparticles (AuNPs) functionalized with the gadolinium (Gd(III))-
diethylenetriamine pentaacetic acid (DTPA) conjugate of cysteine, abbreviated as
Au@GdL, are a magnetic resonance imaging (MRI)/computed tomography (CT) dual-
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imaging agent synthesized by Park et al. for MRI/CT multimodality imaging of tumors
(D).

Development of hybrid imaging technology has triggered great effort in probe
development to boost the benefits of hybrid instrument technology (2-4). In contrast to
other agents, multimodal imaging agents for MRI/CT have rarely been explored, although
MRI and CT are frequently applied to the same patients for precise diagnosis and
treatment evaluation (5-7). Recently, AuNPs have been shown to induce strong contrast
enhancement as X-ray contrast agents (8, 9). These particles exhibit a higher X-ray
absorption coefficient than iodinated compounds (5.16 and 1.94 cm?/g, respectively, at
100 keV). Furthermore, AuNPs are easily controlled with regard to size, shape, and
surface modification (1). Gd(III) also possesses a higher X-ray absorption coefhicient
(3.11 cm?/g at 100 keV) than iodine, although this value is lower than that of gold.
Interestingly, when Gd(III) ions are bound to NPs, they exhibit a much higher relaxivity
than that of clinically approved Gd(III)-chelates (1, 8). Sanchez et al. have shown that the
water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide NPs (Gd-
Apoferritin) exhibit 10 and 70 times higher T1 and T2 relaxivity values, respectively, than
those of classic Gd(III)-complexes (Omniscan® and Gd-DTPA) (8).

On the basis of these facts, Gd(III)-coated AuNPs have been hypothesized to be an
efficient dual agent for MRI/CT imaging. Alric et al. demonstrated that Gd(III) chelate-
coated AuNPs (Au@DTDTPA-Gd5() provide strong X-ray absorption and R1 relaxivity
(9). Approximately 50.7 mM Au@DTDTPA-Gdsy NPs (10 mg Au/ml) exhibits X-ray
absorption equivalent to that of 280 mM iodine (35 mg iodine/ml). The R1 relaxivity of
the particles as low as 5 mM Gd(III) is nearly the same as that of Omniscan® (3.90
mM-Ls71). These particles are small enough (2-2.5 nm) to circulate freely in the blood
vessels without undesirable accumulation in organs such as lungs, spleen, and liver.
Recently, Park et al. developed a similar MRI/CT dual-imaging agent with Gd(III) and
gold reporters (Au@GdL) (1). Au@GdL was generated by encapsulating the gold core
within a multilayered organic shell. The contrast enhancement in the MRI stem is from
the GA(III) entrapped in the shell, whereas the gold core provides strong X-ray
absorption. Studies by Park et al. showed that Au@GdL had a long circulation time in
blood and accumulated within tumor xenografts in animals (1). This chapter summarizes
the data obtained with Au@GdL in MRI/CT imaging.

Related Resource Links:

« Multimodality imaging agents in MICAD
« Multimodality imaging clinical trials in ClinicalTrial.gov

Synthesis

[PubMed]

Park et al. described the synthesis of Au@GdL in detail (1). The ligand (L), a conjugate of
DTPA with cysteine, was prepared by the reaction of DTPA-bis(anhydride) with cysteine
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at 80°C for 6 h. The subsequent reaction of L with GdyO3 for 6 h at 90°C led to the
formation of GdL. The coating of AuNPs with GdL was accomplished by direct addition
of GdL to citrate-coated AuNPs (~12 nm in diameter) with stirring for 24 h. Au@L NPs
without Gd(III) were also synthesized similarly.

The Au@GdL NPs were well dispersed and spherical in shape with a mean diameter of

14 nm and a narrow size distribution. The total number of GAL per AuNP was ~2.9 x 103,
which was further confirmed by the weight loss of 5.6% in the temperature range 100-
800°C. A higher degree of oligomerization of thiols in L may be a partial explanation for
such a high loading of GA(III). The zeta potential of Au@GdL in water was —41.03 mV at
pH 6.0, which was negatively large enough to ensure colloidal stability.

Both Au@GdL and Au@L exhibited greater X-ray attenuation than Ultravist®, an iodine-
based CT agent used in the clinic, and the differences became greater as the concentration
increased. At a concentration of 200 mM, both Au@GdL and Au@L showed attenuation
almost three times greater than that of Ultravist®. When the comparison was made
between Au@GdL and Au@L, the former showed greater attenuation, demonstrating a
synergistic effect of GA(III). An additional contrast enhancement of ~15% seemed to be
contributed by 2% of Gd(III) (weight) bound on AuNPs.

At 293 K and 1.5 T, the R1 relaxivity of GdL (7.5 mM-1s—1) was twice as high as that of
Omniscan® (3.30 mM—1s-1). The same R1 relaxivity increased dramatically to 17.9 mM
~Is—1 with the formation of Au@GdL. When calculated in terms of the AuNP
concentration, the molecular R1 relaxivity was 4.6 x 10°. The high relaxivity
demonstrated by Au@GdL may partially be rationalized in terms of the slower tumbling
motion of GAL on AuNPs due to the formation of a rigid oligomeric framework as a result
of disulfide bonds.

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

The cytotoxicity of Au@GdL was evaluated with 14-day-old chick cornea stroma primary
cells and NTH-3T3 mouse embryonic fibroblast cells (1). No obvious decrease in cell
viability was observed when the cells were exposed for 24 h in the concentration range of
10-1,000 uM Au@GdL. Instead, the relative cell viability increased with the increase of
the Au@GdL concentration, indicating that Au@GdL stimulated the cell proliferation in
the given concentration range, which is consistent with the reports in the literature (10).

Animal Studies
Rodents

[PubMed]

MRI/CT imaging was performed in mice (n = 6) after intravenous injection of
Au@GdL.CT imaging at a dose of 1.75 mmol Au/kg showed clear contrast enhancement
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in all organs (1). The most dramatic enhancement was observed in the liver. The
maximum attenuation in the liver reached up to five times that of pre-injection and
maintained that level for up to 6 h after injection. The majority of A u@GdL accumulated
in the Kupfer cells of the liver as demonstrated with histological and electron microscopic
analysis. Some particles accumulated in the kidney and spleen as a result of glomerular
filtration function and macrophage activity, respectively.

In line with the observations from CT imaging, MRI at a dose of 0.03 mmol Gd(III)/kg
showed a strong signal enhancement, specifically in the liver (1). In addition, prolonged

signal enhancement of the abdominal aorta was observed because of the long-circulating
blood pool effect of Au@GdL.

Other Non-Primate Mammals
[PubMed]

No references are currently available.

Non-Human Primates
[PubMed]

No references are currently available.

Human Studies
[PubMed]

No references are currently available.
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