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Preface 
The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based 

Practice Centers (EPCs), sponsors the development of evidence reports and technology 

assessments to assist public- and private-sector organizations in their efforts to improve the 

quality of health care in the United States. The reports and assessments provide organizations 

with comprehensive, science-based information on common, costly medical conditions and new 

health care technologies. The EPCs systematically review the relevant scientific literature on 

topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to 

developing their reports and assessments. 

To improve the scientific rigor of these evidence reports, AHRQ supports empiric research 

by the EPCs to help understand or improve complex methodological issues in systematic 

reviews. These methods research projects are intended to contribute to the research base and be 

used to improve the science of systematic reviews. They are not intended to be guidance to the 

EPC program, although may be considered by EPCs along with other scientific research when 

determining EPC program methods guidance. 

AHRQ expects that the EPC evidence reports and technology assessments will inform 

individual health plans, providers, and purchasers; as well as the health care system as a whole 

by providing important information to help improve health care quality. The reports undergo 

peer review prior to their release as a final report. 

We welcome comments on this Methods Research Project. They may be sent by mail to the 

Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither 

Road, Rockville, MD 20850, or by email to epc@ahrq.hhs.gov. 

 

 

Carolyn M. Clancy, M.D. Stephanie Chang, M.D. M.P.H 

Director Director, EPC Program 

Agency for Healthcare Research and Quality Center for Outcomes and Evidence 

 Agency for Healthcare Research and Quality 

 

Jean Slutsky, P.A, M.S.P.H. Suchitra Iyer, Ph.D. 
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A Pilot Study Using Machine Learning and Domain 
Knowledge To Facilitate Comparative Effectiveness 
Review Updating 
 

Structured Abstract 

Background. Comparative effectiveness reviews need to be updated frequently to maintain their 

relevance. Results of earlier screening efforts should be useful in reducing the screening of 

thousands of newer citations for articles relevant to efficacy/effectiveness and adverse effects 

(AEs). 

Methods. We collected 14,700 PubMed
®
 citation classification decisions from a 2007 

comparative effectiveness review of interventions to prevent fractures in persons with low bone 

density (LBD). We also collected 1,307 PubMed citation classification decisions from a 2006 

comparative effectiveness review of off-label uses of atypical anti-psychotic drugs (AAP). We 

first extracted explanatory variables from the MEDLINE
®
 citation related to key concepts, 

including the intervention, outcome, and study design. We then used the data to empirically 

derive statistical models (based on sparse generalized linear models with convex penalties 

[GLMnet] and gradient boosting machine [GBM]) that predicted inclusion in the AAP and LBD 

reviews. Finally, we evaluated performance on the 11,003 PubMed citations retrieved for the 

LBD and AAP updated reviews. 

Measurements. Sensitivity (percentage of relevant citations corrected identified), positive 

predictive value (PPV, percentage of predicted relevant citations that were truly relevant), and 

workload reduction (percentage of screening avoided). 

Results. GLMnet- and GBM-based models performed similarly, with GLMnet (results shown 

below) performing slightly better. The GLMnet-based model yielded sensitivities of 0.921 and 

0.905 and PPVs of 0.185 and 0.102 when predicting articles relevant to the AAP and LBD 

efficacy/effectiveness analyses respectively (using a threshold of p ≥0.02). GLMnet performed 

better when identifying AE-relevant articles for the AAP review (sensitivity=0.981) than for the 

LBD review (0.685). When attempting to maximize sensitivity, GLMnet achieved high 

sensitivities (0.99 for AAP and 1.0 for LBD) while reducing projected screening by 55.4  percent 

(1990/3591 articles for AAP) and 63.2 percent (4,454/7,051 for LBD). 

Conclusions. In this pilot study, we evaluated statistical classifiers that used previous 

classification decisions and key explanatory variables derived from MEDLINE indexing terms to 

predict inclusion decisions on two simulated comparative effectiveness review updates. The 

system achieved higher sensitivity in evaluating efficacy/effectiveness articles than in evaluating 

LBD AE articles. In the simulation, this prototype system reduced workload associated with 

screening updated search results for all relevant efficacy/effectiveness and AE articles by more 

than 50 percent with minimal or no loss of relevant articles. After refinement, these document 

classification algorithms could help researchers maintain up-to-date reviews. 
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Executive Summary 

Background 
Comparative effectiveness reviews need to be updated to maintain their relevance, but these 

updates are often impeded by the need to screen thousands of citations to locate the 1–10 percent 

that are included in the final report (―relevant studies‖). Such effort may match or exceed that 

involved in the original review. Prior studies have used machine learning methods to reduce the 

burden of comparative effectiveness review screening but have not formally simulated updating. 

Objective 
We aimed to create a prototype system for assisting researchers with preparing formal 

updates of comparative effectiveness reviews. In this report, we describe a pilot study using 

reviewer decisions from two Agency for Healthcare Research and Quality (AHRQ)-sponsored 

comparative effectiveness reviews to empirically derive statistical models that predict article 

relevance to efficacy/effectiveness and adverse effect analyses; we then evaluated these models’ 

performance identifying relevant articles from the literature searches retrieved for the updated 

reviews. We based these statistical models on two algorithms: gradient boosting machine (GBM) 

and generalized linear models with convex penalties (GLMnet). Each model predicted an 

article’s relevance based on how its indexing terms described a select number of key concepts 

(such as publication type, intervention, and outcome). The key challenge was accounting for how 

search strategies, therapies, outcomes, research personnel, and overall objectives may have 

changed from the original to the updated study. In accord with an earlier study that noted that a 

high proportion of reviews underwent minor or major changes, both strategies underwent major 

revisions. To overcome such challenges (known as ―concept drift‖ in other contexts), we 

represented specific drugs and outcomes as more abstract concepts such as ―intervention‖ and 

―outcome,‖ with the hypothesis that this procedure would improve generalizability between time 

periods.  

Methods 
We obtained PubMed citations retrieved by the AHRQ Southern California Evidence-based 

Practice Center (SCEPC) for two review topics (including the early and updated search results): 

the comparative effectiveness of interventions in preventing fractures in persons with 

osteoporosis (henceforth referred to as Low Bone Density or LBD) and the efficacy and 

comparative effectiveness of off-label uses of atypical antipsychotics (AAP). We considered 

articles to be ―relevant‖ if they passed the second stage screening process and would have been 

considered for analyses of either efficacy/effectiveness or adverse effects (AEs). We did not 

exclude duplicates or studies included in prior meta-analyses because these studies were not 

excluded for intrinsic problems in study design or target population. We did not evaluate 

PubMed citations that had not yet been assigned MEDLINE indexing information (such as 

MeSH and Publication Type terms).  

The body of articles included in the original LBD report (which we refer to as the training 

document literature) consisted of 14,700 citations retrieved for screening, of which 382 articles 

would have passed the second-stage screening—218 for efficacy/effectiveness and 279 for AEs 
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(some articles included data on both efficacy/effectiveness and AEs). The LBD update corpus 

consisted of 7,051 retrieved articles (of which 127 would have passed the second-stage filter: 63 

for efficacy/effectiveness and 92 for AEs). The AAP training corpus consisted of 1,307 retrieved 

articles, of which 98 articles would have passed the second stage filter-82 for efficacy and 91 for 

AEs. The AAP update consisted of 3,591 retrieved articles, of which 116 would have passed the 

second stage filter--101 for efficacy and 105 for AEs. 

Prior study designs used all terms from the index and abstract (i.e., a ―bag of words‖ 

approach) when modeling relevance. We hypothesized that a limited set of variables that were 

tightly related to certain key concepts would have substantial predictive power when used to 

model relevance. To test this hypothesis, we created a limited set of important predictor variables 

using key MEDLINE Subject Heading (MeSH) indexing terms and associated subheadings. 

Furthermore, transforming specific concepts such as ―alendronate‖ and ―fractures‖ into 

abstractions such as ―intervention‖ and ―outcome‖ should allow us to account for changes in 

outcomes and interventions over time. We selected these key terms by matching terms in the 

search strategies related to interventions and outcomes to MeSH terms within the MeSH 

database in a semi-automated fashion; in essence, our approach uses both statistical methods and 

domain knowledge (extracted from the search strategy) to make the modeling problem tractable. 

We then created a set of 92 binary explanatory variables representing whether intervention and 

outcome terms were present in the MEDLINE citation, and how they were described. In 

addition, we created a set of 29 binary explanatory variables related to article-level 

characteristics including demographic group (gender and age), treatment target (human, animal, 

in vitro study, and others), and publication type (review, randomized controlled trial [RCT], 

clinical trial, meta-analysis, and others), the presence of intervention or outcome terms (or 

synonyms) in the title, and whether ―randomized controlled trial‖ or ―meta-analysis‖ was 

mentioned in the title or abstract. 

We created a series of eight models based on all combinations of two outcomes (inclusion in 

the final report for either efficacy or AEs), two statistical learning algorithms (GBM and 

GLMnet), and training data from two reviews (AAP and LBD). For each model, the inclusion 

outcome was made a function of extracted explanatory variables for each dataset (described 

above) using either GBM or GLMnet. GBM is a nonparametric tree-based approach while 

GLMnet is based on parameterized generalized linear models specifically created to produce 

sparser models by using convex penalties on the coefficients. We also created a ―hybrid‖ 

approach that used the maximum prediction probability of relevance from both approaches 

(GBM- or GLMnet-based). This is equivalent to an approach that rejects only if both GBM- and 

GLMnet-based approaches reject. In addition, we evaluated how well GBM and GLMnet could 

predict inclusion for any outcome (efficacy/effectiveness or AEs) in a given review update (AAP 

or LBD). 

To simulate performance in a true update, we generated models using the initial search 

results while being blind to the true update search results. We generated prediction scores for the 

updated search (2006–2010 literature for LBD and 2007–2010 for AAP—the test data) using the 

models described above. We generated a set of predicted relevant and irrelevant articles for the 

LBD and AAP updates that we compared against decisions that members of the EPC team 

generated independently. We then calculated performance on the updated results: sensitivity 

(percentage of relevant articles retrieved, also known as recall), positive predictive value (PPV—

percentage of articles predicted to be relevant that were truly relevant, also known as precision), 

and the percentage of literature search screening that might have been avoided had this predictive 
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model been used exclusively. We evaluated performance at multiple probability thresholds.   

There is no perfect threshold, because neither error minimization nor sensitivity maximization 

can be considered absolute goals; a strategy that rejected all articles might have an error rate of 1 

percent (though all would be false negatives) while a strategy accepting all articles would have 

100 percent sensitivity (though low PPV). To balance these objectives and conform to researcher 

preferences, we often judged primary results against a probability threshold of p≥0.02 because 

this threshold appeared to substantially reduce the error rate while preserving sensitivity. 

However, we also derived sensitivity-maximizing thresholds based on performance in the 

original AAP and LBD studies. We also evaluated the performance of these statistical 

approaches (GLMnet and GBM) by comparing their receiver operating characteristic (ROC) 

curves visually and via a nonparametric approach described in DeLong and colleagues. 

Results 
There were substantial and statistically significant differences in the means of key variables 

between the original and updated searches, and between categories of each search (excluded, 

included in efficacy analysis, included in AE analysis, and included in both analyses). These 

differences suggest that combinations of variables could be used to distinguish between relevant 

and irrelevant studies; however, the design of the search differed between the update and original 

searches, which made modeling more difficult.  

Model performance differed slightly between the three approaches (GBM, GLMnet, and 

hybrid), although GLMnet performed slightly better overall. Results below refer to GLMnet. For 

efficacy analyses, performance in predicting relevant articles was similarly strong for both the 

AAP and LBD comparative effectiveness reviews. The vast majority of irrelevant citations were 

assigned relevance probabilities of less than 0.02. The GLMnet approach yielded a sensitivity of 

0.921 and PPV of 0.185 when predicting articles relevant to the AAP efficacy update. In 

considering articles relevant to efficacy for the LBD update, GLMnet model achieved sensitivity 

of 0.905 and PPV of 0.102 (using the p≥0.02 threshold).  

For the AE analyses, performance in predicting relevant articles was strong for AAP but not 

for LBD. In the AAP analysis, the GLMnet model achieved sensitivity for AE-relevant articles 

of 0.981 and PPV of 0.09 at a threshold of p≥0.02. However, for the LBD study, the GLMnet-

based model was able to predict AE-relevant articles with a substantially reduced sensitivity 

(0.685) for a similar PPV (0.116). When we analyzed articles missed for the AE analysis, we 

noted that there were relatively few relevant large observational studies (cohort and case-control 

studies) in the original review. As a result, the model assigned lower probabilities to 

observational studies in the LBD update as well. However, observational studies were more 

important in the update because the researchers updating the systematic review focused on 

several newly identified AEs that were largely studied in cohort and case-control studies. 

We also simulated (using GLMnet) a process for estimating potential workload reductions 

while maximizing sensitivity in identifying all articles relevant to AE and efficacy analyses. 

Sensitivity and PPV for a particular threshold were determined by selecting articles if the 

maximum predicted relevance for either outcome (efficacy or AE) exceeded the threshold. For 

the AAP study, the GLMnet-based model yielded projected sensitivity exceeding 0.99 (115/116 

true positives) while the proportion of title/abstract screening saved was 55.4 percent or 

1990/3591 articles. The GLMnet-based model produced perfect sensitivity when applied to the 

LBD update and decreased the projected article screening burden from 7,051 to 2,597 (63.2%). 

The GLMnet method seemed to perform slightly better than GBM in this context. The AUC for 
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the GLMnet method (in the AAP study) was 0.943 (95% CI: 0.927 to 0.960) versus 0.925 (95% 

CI: 0.899 to 0.950) with GBM. The p-value for null hypothesis of equality was 0.007. Similarly, 

the AUC for the GLMnet method (in the LBD study) was 0.954 (95% CI: 0.943 to 0.965) versus 

0.947 (95% CI: 0.933 to 0.961) for GBM. In the LBD study, p-value for null hypothesis of 

equality was 0.06. Both results suggest that the ROC curves differed between the two studies; in 

addition, GLMnet seems to perform somewhat better than GBM visually as well. Still, it would 

be difficult to establish GLMnet’s superiority (to GBM, SVM, or other algorithms) in this 

context (comparative effectiveness reviewing updating) without substantial additional research. 

The searchers updating the systematic review independently evaluated articles in the update 

that were included in the final reports but were assigned relatively low probability scores 

(p≤0.02) by the statistical classifiers. There were 29 false negatives at a threshold of p≤0.02 from 

both the LBD and AAP updates; nearly all were articles that were not tagged as randomized 

trials by MEDLINE, and 26 were from the LBD update. 

Conclusions 
In this report we utilized the large numbers of previously screened documents from two 

comparative effectiveness reviews to develop models that predicted whether citations retrieved 

for updated searches would have met final inclusion criteria. We tested several approaches based 

on the GBM and GLMnet statistical methods. Our approach achieved its best performance 

predicting relevance for efficacy/effectiveness articles; it performed worse when predicting 

articles relevant to the AE analysis for the LBD update. However, we estimated that these 

algorithms reduced (simulated) workload associated with screening updated search results by 

more than 50 percent with minimal or no loss of relevant articles. Furthermore, the researchers 

might have been able to retrieve the one excluded article (from the AAP update) because it was 

referenced in a relevant article and would plausibly have been caught using the researchers’ 

analyses of references accepted in the final reports. Based on the slight differences in model 

performance between the GBM, GLMnet, and hybrid approaches, improving identification of 

RCTs and refining methods for correcting differences between the original and updated reviews 

may be more important than algorithm selection in future research. 

Future research is needed on methods for reducing the likelihood of false negatives further 

(thus reducing the tradeoff between missed articles and workload reductions). Promising 

methods include incorporating active learning approaches and using text features extracted from 

the title and abstract to improve capture of study design details, such as RCT design or meta-

analysis. We will also need to test this method with other comparative effectiveness review 

topics. If future work validates these preliminary findings more broadly, we hope to integrate a 

more refined system into the workflow of comparative effectiveness review researchers. 

Additional research refining this system, expanding its scope, and comparing it to other methods 

could allow researchers to select an optimal machine learning method for updating their reviews. 
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Introduction 
Clinicians, clinical guideline developers, regulatory agencies, and research granting agencies 

all use systematic reviews to determine appropriate clinical practice and research needs. As such, 

systematic reviews need to be updated to maintain their utility; static reviews potentially ignore 

new research that could change the results of a systematic review, and thus clinical practice, 

substantially.
1,2

 Given these concerns, several experts suggested updating systematic reviews 

every 2 years and perhaps more often for rapidly advancing fields.
1,3,4

 

In actual practice, a minority of systematic reviews are updated that frequently.
5,6

 Several 

researchers have explored why updating frequency may fall short of the standard. First, updates 

may entail substantial cost, as the entire process of literature retrieval, filtering, data extraction, 

and interpretation needs to be repeated. Researchers filter citations in two labor-intensive stages: 

the first stage excludes articles that are obviously irrelevant based on reading the title and/or 

abstract; the second stage excludes additional studies after reading or screening the full text.
7-9

 In 

typical comparative effectiveness reviews, researchers retain remaining articles that are useful 

for analyses of efficacy/effectiveness or AEs (or some other outcome such as utilization). In 

several AHRQ comparative effectiveness review updates of rapidly advancing fields, researchers 

needed to screen thousands of citations to locate the 1-10 percent that were relevant;
7-11

 such 

efforts matched or exceeded those involved in the original studies. Second, validated updating 

protocols and algorithms for determining true signals are still under development.
12,13

 Finally, 

getting updates published in peer-reviewed journals may be more difficult than getting the 

original review published.
6
 

As a first step toward automating part of this process, several studies described information 

retrieval technologies aimed at improving the efficiency of relevant biomedical literature 

retrieval.
14,15

 
16-22

 Several focused specifically on reducing the human burden of systematic 

review creation and updating by limiting the number of retrieved citations that require initial 

human review.
14,15,17,20

 As acknowledged by many of the above studies,  systematic review 

facilitation is complicated by the relative paucity of relevant articles when compared to irrelevant 

literature; the above studies used a variety of approaches to try to mitigate such issues. These 

studies typically extracted large numbers of features (explanatory variables) based on variants of 

a ―bag-of-words‖ approach. In this approach, all terms in the text as well as MeSH indexing 

terms and publication types were used to create variables based on the presence or frequency of 

particular terms in the text or MeSH index of each article. Some studies added domain 

knowledge when classifying features using, for example, United Medical Language System 

(UMLS).
19

 A variety of algorithms have been used to model relevance as a function of these 

many thousands of potential explanatory variables. These include a support vector machines 

(SVM), a voting perceptron-based classifier, Naïve Bayes, boosting, a specialized AdaBoost 

algorithm, and linear and polynomial SVM.
14-17

,
19,20

  

In the specific context of systematic review facilitation, one study used a voting perceptron 

classifier to identify relevant articles on multiple systematic reviews (and explanatory variables 

derived from a bag-of-words approach).
14

 The study reported work reductions for 11 of the 15 

topics while maintaining 95 percent sensitivity for relevant articles; for 3 of those 11, the 

reduction was more than 50 percent. A later related study used a classifier based on the 

SVMlight algorithm as well as a bag-of-words feature set to predict updates to multiple 

systematic reviews prospectively (i.e. using earlier studies to predict studies retrieved in later 

years).
21

 The investigators found that predictive performance as measured by area under the 



2 

 

receiver operating curve (AUC) was stable in the update when compared to predictions 

generated for training data. 

Another research group used an active-learning strategy to aid the creation of new systematic 

reviews.
15,20

 Similar to the above study, the model predicts relevance based on independent 

variables derived from multiple sources including MeSH and text. However, they used a process 

that interactively builds a classifier using expert decisions on the most uncertain cases; the 

underlying hypothesis is that decisions chosen on the most uncertain instances produce better 

information for a given cost (reviewer time). They were able to reduce the number of citations 

that needed to be screened in a simulated de novo review by roughly 50 percent while retaining 

100 percent of relevant articles. 

The above studies all employed thousands of explanatory variables. While predictive 

accuracy is the main goal of machine learning, model parsimony may contribute toward 

improving out-of-sample predictions.
23-25

 We hypothesized that a parsimonious approach making 

explicit use of domain knowledge might be useful in comparative effectiveness review updating, 

because the original reviews frequently generate thousands of training observations and include 

substantial domain knowledge. We further hypothesized that the effort MEDLINE researchers 

put into indexing key concepts with subheadings can be leveraged for substantial predictive 

power, without requiring significant human reviewer input.  

MeSH indexing identifies key concepts in articles, which has proven very useful as a tool for 

retrieving literature. However, MeSH indexing further describes those concepts with descriptive 

subheadings ("chemically induced", "adverse effects", "epidemiology", etc.). Extracting data 

solely on a few key variables related to publication type, intervention, and outcome may have 

sufficient power, counterbalancing the slightly greater upfront time required for identifying key 

concepts beforehand. For example, if researchers are interested whether alendronate is safe and 

effective in preventing fractures, the most crucial variables might be those indicating whether the 

indexing term for alendronate is tagged with ―therapeutic use‖ and whether the corresponding 

term for fracture is associated with ―prevention and control‖. These and other key variables 

might be imperfect individually but their combination could yield a model that robustly predicts 

relevance. We published earlier work validating this approach for extracting articles that tested 

whether particular drugs caused any type of adverse effect (AE) regardless of study design.
26

 In 

this study, we adapted our earlier approach to make it useful for locating studies relevant to 

comparative effectiveness reviews, which require all articles assessing either 

efficacy/effectiveness or AEs using particular study designs. 

We tested the utility of a MeSH-based approach to text classification using two comparative 

effectiveness reviews. The first concerned the prevention of fractures in patients with osteopenia 

or osteoporosis (low bone density [LBD]) conducted by the Southern California Evidence-based 

Practice Center (SCEPC), under contract to the Agency for Healthcare Research and Quality 

(AHRQ).
7,8

 EPC researchers conducted the initial comparative effectiveness review in 2006 

using literature indexed in multiple sources including PubMed. As it became apparent that the 

field was advancing rapidly, the EPC group and AHRQ determined that an update was 

necessary; an updated literature search was conducted in 2010 that searched for new literature 

(2006-2010) covering the same interventions and conditions, as well as all literature for newly 

relevant interventions and conditions (discussed below). The second comparative effectiveness 

review covered off-label indications for atypical anti-psychotic drugs (AAP).
9
 The first AAP 

review covered literature published until December 2006, and the update covered literature 
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published subsequent to that date. In each case, we aimed to use the earlier study’s reviewer 

decisions to create a predictive model that could classify articles in the updated search results as 

meeting the criteria of second-stage filtering. Such studies were relevant for 

efficacy/effectiveness analyses, relevant for AE analyses, or irrelevant for both. 

The key challenge in using machine learning to facilitate systematic and comparative 

effectiveness review updates lies in accounting for the differences between the training (original 

search) and test (updated search) data. In both the LBD and AAP reviews, new conditions and 

interventions were added and others were dropped. Furthermore, both research personnel and 

study objectives changed between the first and updated review. In other contexts, the general 

problem of training data becoming inapplicable to test data over time has been described as 

―concept drift‖.
27-31

 Researchers have devised several strategies to address this problem including 

giving weight to more recent training observations or to the small number of classified test 

observations (if present). An earlier study explored how well an SVM-based machine learning 

framework performed in light of this issue on a series of systematic reviews, some of whose 

search criteria were revised significantly.
21

 They found that their framework performed well in 

many cases, though they noted that it was uncertain whether reviewers would be satisfied with 

their prospective performance in all cases and they did not explicitly address changes over time.  

In this study, we simulated a true update by creating predictive models while blinded to "true 

positive" and "true negative" articles from the update, while addressing the fact that both the 

AAP and LBD reviews substantially revised their inclusion criteria. To address concept drift in 

this context, we therefore elected to represent specific drugs and outcomes as more abstract 

concepts such as "intervention" and "outcome", with the hypothesis that this procedure would 

improve generalizability between time periods. We hypothesized that reviewers wanted the same 

types of studies, even though the exact interventions and outcomes differed. In the rest of the 

manuscript, we describe this method in detail and simulate how such a system might perform in 

predicting articles that would have passed the second stage screening process and been included 

in the update report for either AEs or efficacy/effectiveness.  
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Methods 

Data Sources 
We obtained PubMed citations retrieved by the SCEPC (until January 2011) for its review of 

the comparative effectiveness of interventions in preventing fractures in persons with 

osteoporosis (LBD) and its review of the efficacy and comparative effectiveness of off-label uses 

of atypical antipsychotics (AAP). MEDLINE citations were retrieved in plain text format and 

parsed using Python 2.7.2 (Python Software Foundation, http://python.org); specifically, we used 

the Biopython 1.52 package within Python to retrieve full MEDLINE citations from Entrez 

PubMed databases.
32

 We did not evaluate PubMed citations that had not yet been assigned 

MEDLINE indexing information (such as MeSH and Publication Type terms). We also excluded 

articles obtained exclusively from non-PubMed databases (such as PsycInfo and EMBASE). 

Excluding non-PubMed databases is a limitation whose importance varied by study. For the LBD 

update, all relevant studies were found in PubMed. For the AAP update, 31 articles included in 

the final report were not located in PubMed. Of those, 14 were scientific information packets 

(which will always require human review), 9 were identified by mining references of included 

reports, and 8 were found in poster presentations.  

The search strategies and primary selection criteria for LBD have been discussed extensively 

in other reports.
7-9

 Briefly, in the LBD study, the interventions consisted of multiple drugs 

(including bisphosphonate drugs, calcitonin, selective estrogen receptor modulators, parathyroid 

hormone derivatives, and menopausal hormone therapy) and exercise therapy. The primary 

outcomes of interest were fractures and AEs but the search strategy also attempted to capture 

articles discussing predisposing conditions by searching for terms such as osteoporosis, 

osteopenia, and bone mineral density, as well as fractures. The search was limited to English 

language articles, but no limits were placed on publication type. The initial search (1966-2006) 

yielded 14,700 articles with full MEDLINE citations, and the updated search (containing a 

slightly different set of interventions) retrieved 7,051 articles with full MEDLINE citations 

(spanning 2006-2010). We did not analyze 219 PubMed articles from the LBD updated search 

that were not indexed in MEDLINE, as our algorithms currently require MEDLINE indexing 

information. 

The search strategies and selection criteria for AAP have also been discussed in other 

reports.
9
 In the original AAP review, the interventions consisted of atypical antipsychotic drugs, 

including olanzapine, risperidone, quetiapine, and clozapine. Outcomes of interest included 

dementia, obsessive-compulsive disorder, and post-traumatic stress disorder, and outcomes could 

be excluded if re-classified by the U.S. Food and Drug Administration (FDA) as an approved 

indication. The search conducted in 2006 yielded 1,307 MEDLINE citations requiring human 

classification. The updated search added outcomes such as anorexia nervosa, bulimia, and 

substance abuse to the list of off-label uses under consideration; 3,591 MEDLINE citations were 

retrieved. We did not analyze 19 PubMed articles from the AAP original search and 142 PubMed 

articles from the updated search that were not indexed in MEDLINE. For both studies, articles 

retrieved for update and original searches were mutually exclusive. 

During the initial modeling phase, we had access to researcher decisions on the original 

search results. The LBD training document literature consisted of 14,700 retrieved articles, of 

which 382 articles would have passed the second stage filter: 218 for efficacy/effectiveness and 

279 articles for AEs. The LBD update body of literature consisted of 7,051 retrieved articles (of 
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which 127 would have passed the second stage filter: 63 for efficacy/effectiveness and 92 for 

AEs). The AAP training literature consisted of 1,307 retrieved articles, of which 98 articles 

would have passed the second stage filter: 82 for efficacy/effectiveness and 91 for AEs. The 

AAP update consisted of 3,591 retrieved articles, of which 116 would have passed the second 

stage filter: 101 for efficacy/effectiveness and 105 for AEs. Of note, articles were excluded at the 

second stage for critical reasons (e.g., inappropriate study design, no mention of fractures, 

inappropriate intervention, outcome was an on-label indication, etc.) and reasons of timing 

(duplicate data, inclusion in prior meta-analysis). We considered the latter articles to have passed 

a second stage of review because they were not excluded for intrinsic problems in study design 

or target population. We blinded the statistical learning model to researcher decisions involving 

the updated search results; as such, we could effectively simulate a true update in which the 

update search results would not have been known.  

We did not have access to completely accurate determinations of first-stage filtering 

outcomes; as a result we did not include this outcome in any model. In addition, while we did not 

model first-stage outcomes due to data limitations, we also believed that such articles were not 

important to the final results; indeed, reducing this number was also a researcher goal as all 

articles passing the first stage required a time-consuming full-text review.  

Processing MEDLINE Citations 
Each fully indexed MEDLINE citation contains several (usually 10–15) indexing terms; each 

term is often modified by one or more subheadings. As described above, we aimed to construct a 

limited set of important variables using key MeSH indexing terms and associated subheadings 

that are tied to the interventions and outcomes of interest. Figure 1 shows how a data was 

extracted from one citation using terms adapted from the 2006 LBD search strategy.
7,33

 Of note, 

data related to generic study characteristics (such as RCT or human study) were extracted from 

all studies. The key MeSH terms were found using the extent search strategies. One author 

divided each search strategy into terms related to interventions and terms related to outcomes. 

This task was made easier by the fact that outcome and intervention terms were usually grouped 

within each search. For example, one search in the original LBD review was ―(osteoporosis or 

osteopenia or osteopaenia or fracture* or bone mineral OR fractures [mh] OR bone density) 

AND (raloxifene* OR evista OR tamoxifen* OR nolvadex OR emblon OR fentamox OR 

soltamox OR tamofen)‖.
7
 Hence, we could identify interventions (raloxifene, etc.) and outcomes 

(osteoporosis, osteopenia, etc.) without substantial effort. (Clearly, we will need to expend more 

effort on poorly defined search strategies.) At that point the MeSH database was 

programmatically queried to retrieve potential matches (obtained by via direct term and synonym 

matching) that were reviewed by one of the authors. Several erroneous terms were excluded at 

this stage. For example, "exercise test"—a diagnostic test—was retrieved when searching for 

exercise but manually excluded because only therapeutic exercise therapy was relevant to this 

review. Because this process relies heavily on the original search strategies, it does not use 

substantially more expertise than what went into the original report.
34
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Figure 1. MEDLINE citation processing example 

 

MH = MEDLINE indexing term; PMID = PubMed identifier; PT = publication type; RCT = randomized controlled trial; TI = 

title 

We then created a set of 46 binary explanatory variables based on whether the exact 

intervention or outcome terms were present in the MEDLINE citation and linked to particular 

subheadings. We further created a set of 46 matching explanatory variables based on whether 

other interventions or outcomes (that are not the outcomes and interventions of interest) were 

present in the MEDLINE citation and linked to particular subheadings. For example, if the only 

outcome of interest in a particular article is "fractures," if "fractures" are indexed in the citation 

in association with "drug therapy", we set the variable "outcome_drug_therapy" equal to one. 

However, if in the same article, "rheumatic diseases" is also indexed in conjunction with "drug 

therapy", we would set a variable "other_outcome_drug_therapy" equal to 1 as well. The latter 

might indicate that other diseases were of primary importance in the article. We used a similar 

process for interventions. 

In addition, we created a set of 29 binary explanatory variables related to broader 

characteristics from MeSH indexing terms and publication type terms-- including demographic 

group (gender and age), treatment target (human, animal, in vitro study, and others), and 

publication type (review, clinical trial, meta-analysis, and others). Finally we created variables 

indicating whether any intervention or outcome (or synonym of either) was explicitly mentioned 

in the title or in the article's MeSH index, whether the article was particularly short (1 or 2 pages 

in length), and whether ―randomized controlled trial‖ or ―meta-analysis‖ was mentioned in the 

title or abstract. Our approach is parsimonious in that we used only these 121 variables, instead 

of the full text approach that would have to deal with potentially thousands of explanatory 

variables and consequently would have the potential for overfitting, resulting in possible loss of 

out-of-sample predictive power. Although we relied on expert knowledge to some extent while 
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extracting such data, we relied on statistical algorithms to select the most important features (see 

below). 

Statistical Classification 
We created a series of eight models based on all combinations of: two outcomes (inclusion in 

the final report for either efficacy or AEs); training data with associated explanatory variables 

from two reviews (AAP and LBD); and, two statistical learning algorithms (GBM and GLMnet). 

After deriving each model empirically using training data from original review, we generated 

predictions for articles in each corresponding update. All statistical modeling was conducted in R 

2.10 (R Foundation, www.r-project.org/). We also used these base models to create combination 

analyses. We tested a "hybrid" approach that used the maximum prediction probability of 

relevance from both approaches (GBM- or GLMnet-based). We also evaluated how well GBM 

and GLMnet could predict inclusion for any outcome (efficacy/effectiveness or AEs) in a given 

review update (AAP or LBD). We modeled relevance as a function of the explanatory variables 

discussed above while solely using those articles retrieved in the original search (1966-2005/6 

literature–the training data). To simulate a true update in which the update search results would 

not have been known, we blinded the statistical learning model to researcher decisions from 

study updates. Each step is explained in detail below. 

We constructed separate models for predicting inclusion in efficacy/effectiveness or AE 

analyses because article characteristics predictive of relevance were likely to be quite different 

between the two analyses. For both, we aimed to retain the maximum number of relevant 

citations (true positives), while minimizing the number of irrelevant citations detected (false 

positives). We also evaluated our models’ performance in predicting inclusion in either analysis. 

The latter analysis is most relevant to current AHRQ practice, as both efficacy/effectiveness and 

AE analyses are required for comparative effectiveness reviews. However, we showed 

disaggregated results as well because other researchers may be interested in one type of study.  

We determined each model specification (efficacy/effectiveness and AE analyses for both 

LBD and AAP) using several statistical methods. The first method we considered was gradient-

boosting machine (GBM), a non-parametric tree based prediction approach based on 

boosting.
35,36

 In the general boosting framework, models are built in a stage-wise fashion, with 

weak (i.e. moderately inaccurate) classifiers combined to create a strong final classifier. GBM is 

a specific implementation of boosting and consists of a general, automated, data-adaptive 

modeling algorithm that can estimate the nonlinear relationship between a variable of interest 

and a large number of covariates using a sequence of simple classifiers combined in an optimal 

way. The algorithm generates a large sequence of simple classification trees. Each tree is fit to 

the prediction residuals for the preceding tree (i.e. the deviations between the observed and 

predicted values). (See Figure 2 for an example tree). 
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Figure 2. Example GBM tree 

 

GBM = gradient boosting machine 

A single, simple classifier as above is inadequate for generating accurate predictions. In the 

example given in Figure 2, it is obvious that automatically discarding articles not tagged as RCTs 

would exclude relevant articles (such as systematic reviews). However, the GBM algorithm 

generates a model based on a series of simple classifiers, including, for example, decision trees 

that discard articles that are not systematic reviews. The algorithm sequentially evaluates each 

simple model and assigns it a weight computed to minimize the entire model's overall loss 

function (in this case based on the logistic function). The final model therefore includes all 

simple models, but each simple tree is assigned a weight proportional to its accuracy. By taking a 

weighted average across simple, weak classification trees, it is possible to generate more 

accurate predictions. 

We validated the results on these training data using five-fold cross validation (which 

reduces overfitting). Each fold of cross validation randomly selects 20 percent of the data to 

serve as test data; then the process fits a model on the remaining 80 percent of the data; finally, 

model performance is measured on the reserved test data. The process is repeated on all 5 folds 

and one ultimately finds the model which would minimize the prediction error averaged across 

all 5 folds and models. This approach reduces both overfitting (using cross validation) and 

improves overall performance (using boosting). The output results were probabilities that the 

articles were relevant; we examined a receiver operator characteristic (ROC) curve to determine 
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the optimal probability threshold for minimizing both false negatives and false positives using 

only the original search results.  

     We also used the GLMnet method, which is a parametric approach in that one fits a linear 

logistic model with convex penalty on the magnitude of coefficients. As above, we model the 

outcome variable (inclusion in the report for efficacy/effectiveness or AEs) as a function of the 

explanatory variables described above. In a standard linear model, the outcome would be made a 

function of all explanatory variables, but this may lead to over-fitting. The Lasso shrinkage and 

selection method for linear regression (and generalizations such as Elastic-Net) minimizes the 

usual sum of squared errors, with a bound on the sum of the absolute values of the coefficients.
23

 

The GLMnet method shrinks coefficients of less important variables to zero with a more general 

convex penalty, resulting in fewer independent variables that have better predictive power. 

GLMnet also employs cyclical coordinate descent (computed along a regularization path) to 

efficiently solve these problems.
37

 Both algorithms (GLMnet and GBM) outputted prediction 

probabilities that could be judged against the gold standard results obtained by the SCEPC team. 

Finally, to bridge some of the large differences between the parametric GLMnet and non-

parametric GBM procedures, we created a hybrid approach that would reject articles only if both 

procedures rejected them. Equivalently, we accepted articles if either procedure assigned 

sufficiently high probability of relevance to them. Of note, we considered using SVM and other 

established methods such as latent semantic indexing, but we chose GLMnet and GBM based on 

our prior experience, and because several reports suggested that it would be unlikely that SVM 

would be markedly superior to GBM and GLMnet.
16,38,39

 

We generated prediction scores for the updated searches (2006-2010 literature for LBD and 

2007-2010 for AAP–the test data) using the models and thresholds generated above. We 

generated a set of predicted relevant and irrelevant articles that we compared against decisions 

that members of the EPC team generated independently. We then calculated performance: 

sensitivity (% relevant articles retrieved, also known as recall) and positive predictive value 

(PPV: % predicted relevant articles that were truly relevant, also known as precision). We also 

computed the proportion of workload (literature search screening of both relevant and irrelevant 

articles) that might have been avoided had this predictive model been used exclusively. 

We evaluated performance at multiple probability thresholds. There is no perfect threshold, 

because neither error minimization nor sensitivity maximization can be considered absolute 

goals; a strategy that rejected all articles might have an error rate of 1 percent (though all would 

be false negatives) while a strategy accepting all articles would have 100 percent sensitivity 

(though low PPV). To balance these objectives and conform to researcher preferences, we often 

judged primary results against a probability threshold of p≥0.02 because this threshold appeared 

to substantially reduce the error rate while preserving sensitivity. However, we also derived 

sensitivity-maximizing thresholds based on performance in the original AAP and LBD studies. 

As described below, these empirically derived thresholds differed between the two studies. We 

also evaluated the performance of these approaches (GLMnet and GBM) by comparing their 

Receiver Operating Characteristic (ROC) curves visually and via a non-parametric approach. 
40

 

Of note, pure statistical comparisons may not produce the best results (from the perspective of 

comparative effectiveness review researchers) because maximizing the area under the curve 

(AUC) does not automatically select the proper balance of sensitivity and PPV/specificity. 

To estimate model variability, we calculated bootstrapped standard errors for the sensitivity 

and PPV results.
41

 We generated 100 models by sampling with replacement from the original 

literature review articles. We then generated 100 sets of predictions by applying each of the 
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models to the actual data (from the original and updated reports); we calculated standard errors 

from the resulting simulated sensitivity and PPV estimates. However, at the plausible thresholds 

discussed in the report (0<p<=.1), the standard errors were extremely small (due to the large 

sample sizes of the training data used to fit the original models) and are not shown for each case. 

For example, for sensitivity at a threshold of 0.1 for the original LBD study (efficacy), the 

estimated sensitivity was 0.995 and the standard error was 0.0008.
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Results 

Literature Characteristics 
Table 1 shows the characteristics of the original and updated AAP literature searches; each 

column (original and update) represents both excluded and relevant studies. We compared the 

proportions of each variable within the original and update search results using Fisher’s exact 

test. Substantial and statistically significant differences were observed between the means of 

variables in the AAP original and updated searches. This finding suggests that the composition 

of the search results (if not necessarily the included studies) differed substantially between the 

update and original searches. 

 

Table 1. AAP characteristics: original versus update 
Variable Original 

(Count, 
Proportion) 

Update 

(Count, 
Proportion) 

Comparison 
of Means (p-
value)* 

Number of Studies 1307 3591  

Year§ 2000.9 2005.7  

 (range) 1972-2006 1988-2011  

Any Outcome In Title 432 (0.331) 1394 (0.388) <0.001 
Any Agent In Title 893 (0.683) 1979 (0.551) <0.001 
Agent & Administration 254 (0.194) 586 (0.163) 0.011 
Agent & Therapeutic Use 937 (0.717) 2334 (0.650) <0.001 
Agent & Toxicity 581 (0.445) 1368 (0.381) <0.001 
Demographic Tags Include Child 233 (0.178) 822 (0.229) <0.001 
Outcome & Complications 104 (0.080) 300 (0.084) 0.681 
Outcome & Drug Therapy 542 (0.415) 1284 (0.358) <0.001 
Outcome & Prevention 5 (0.004) 39 (0.011) 0.024 
Outcome & Psychology 290 (0.222) 648 (0.180) 0.001 
Other Outcome & Psychology 305 (0.233) 657 (0.183) <0.001 
Clinical Trial 375 (0.287) 451 (0.126) <0.001 
Comparative Study 259 (0.198) 608 (0.169) 0.02 
Meta-Analysis 24 (0.018) 83 (0.023) 0.377 
RCT 214 (0.164) 501 (0.140) 0.035 
Text Contains RCT 133 (0.102) 414 (0.115) 0.2 

*P-value derived from Fisher’s Exact Test; RCT, Randomized Controlled Trial 

§ Year is reported as mean year of publication. 

 

Table 2 shows the characteristics for the AAP original search by category (excluded, 

included for AE analysis, included only for the efficacy/effectiveness analyses, included for both 

analyses). There are obviously substantial differences, as revealed by the one-way Anova test 

comparing means in all four groups; these differences were highly significant for most key 

variables including "RCT." The importance of each variable is unknown, but the differences 

suggest that combinations of variables could be useful in distinguishing between included and 

excluded studies.
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Table 2. Characteristics of the original AAP review (by category of article) 
Variable Excluded Efficacy 

only* 
AE Only Both 

Types of 
Outcomes 

Comparison 
of Means (p-
value)** 

Number of Studies 1209 7 16 75  

Year§ 2000.8 2002 2003.8 2002.6 NA 

Any Outcome In Title 0.307 0.714 0.312 0.68 <0.001 

Any Agent In Title 0.667 0.714 0.75 0.933 <0.001 

Agent & Administration 0.187 0.286 0.188 0.307 0.077 

Agent & Therapeutic Use 0.706 0.857 0.688 0.88 0.011 

Agent & Toxicity 0.432 0.143 0.938 0.573 <0.001 

Demographic Tags Include Child 0.17 0.286 0.062 0.333 0.002 

Outcome & Complications 0.079 0.143 0 0.107 0.469 

Outcome & Drug Therapy 0.405 0.429 0.375 0.573 0.04 

Outcome & Prevention 0.004 0 0 0 0.939 

Outcome & Psychology 0.207 0.429 0.062 0.48 <0.001 

Other Outcome & Psychology 0.227 0.286 0 0.387 0.002 

Clinical Trial 0.246 1 0.062 0.933 <0.001 

Comparative Study 0.174 0.286 0.625 0.493 <0.001 

Meta-Analysis 0.02 0 0 0 0.576 

RCT 0.108 1 0.062 1 <0.001 

Text Contains RCT 0.086 0.286 0.062 0.347 <0.001 

*Efficacy includes effectiveness analyses  

**P-value derived from Pearson’s Chi-squared Test;  

§ Year is reported as mean year of publication 

RCT = randomized controlled trial; NA = not applicable 

 

Table 3 shows select characteristics of the LBD literature; we show the same characteristics 

as in the AAP update (Tables 1 and 2) to demonstrate how characteristics may vary between 

different review topics. The original search results were published from 1966 to 2009 (articles 

published after 2006 were electronically published in 2006). The updated search results were 

predominantly published from 2007 to 2010, with some articles published from 1997 to 2006 

and in 2011. Roughly 10 percent of the retrieved studies were classified as RCTs in MEDLINE 

in both the original and updated literature searches. As noted in the third column of Table 3, the 

presence of several key variables differed substantially between the original and updated 

searches in univariate comparisons. In particular, the update included non-human studies and 

proportionally fewer articles in which the outcome was associated with drug therapy. This 

finding suggests that the original and updated data were somewhat different, which made 

creation of a generalizable model more difficult.



13 

 

 

 Table 3. Characteristics of LBD search results (original vs. updated) 
Variable Original 

(Count, 
Proportion) 

Update 
(Count, 

Proportion) 

Comparison of 
Means (p-value)* 

Number of Studies 14,700 7,051  

§ Year 1997.6 2007.5  

 (range) 1966-2009 1997-2011  

Any Outcome In Title 
6478 (0.441) 2431 (0.345) <0.001 

Any Agent In Title 
5770 (0.393) 3572 (0.507) <0.001 

Agent & Administration 
1364 (0.093) 1218 (0.173) <0.001 

Agent & Therapeutic Use 
3900 (0.265) 1916 (0.272) 0.318 

Agent & Toxicity 
1149 (0.078) 1046 (0.148) <0.001 

Demographic Tags Include Child 
2545 (0.173) 986 (0.140) <0.001 

Outcome & Complications 
1187 (0.081) 544 (0.077) 0.363 

Outcome & Drug Therapy 
2929 (0.199) 1246 (0.177) <0.001 

Outcome & Prevention 
2606 (0.177) 1266 (0.180) 0.691 

Outcome & Psychology 
67 (0.005) 29 (0.004) 0.743 

Other Outcome & Psychology 
142 (0.010) 76 (0.011) 0.467 

Clinical Trial 
1992 (0.136) 277 (0.039) <0.001 

Comparative Study 
1711 (0.116) 544 (0.077) <0.001 

Meta-Analysis 
88 (0.006) 121 (0.017) <0.001 

RCT 
1542 (0.105) 711 (0.101) 0.366 

Text Contains RCT 0.061 0.087 0.000 

*P-value derived from Fisher’s Exact Test; § Year is reported as mean year of publication 

RCT = randomized controlled trial 

 

Table 4 shows the original literature search results for LBD in greater detail, and compares 

characteristics among four categories (excluded studies, considered only for 

efficacy/effectiveness analyses, considered only for AE analysis, and considered for both AE and 

efficacy/effectiveness analyses). As is clear from the table, none of the predictors function 

perfectly. However, substantial differences exist for multiple variables, which make modeling 

based on some combination of these variables feasible via a regression approach. As expected, 

the vast majority of relevant studies were either meta-analyses or RCTs; in contrast, the results in 

irrelevant studies were occasionally tagged as in vitro or animal studies (not shown). 

Furthermore, large majorities of studies in every included category (efficacy, AE, or both 

analyses) contained indexing information that described the therapeutic use of a preferred 

intervention or the treatment of a preferred outcome. By contrast, relatively few excluded studies 

contained indexing information that linked the therapeutic use of a preferred intervention (0.257) 

or the treatment of a preferred outcome (0.192).
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Table 4. Characteristics of the original LBD review (by category of article) 
Variable Excluded Efficacy 

Only* 
AE Only Both 

Types of 
Outcomes 

Comparison 
of Means 

(p-value)** 

Number of Studies 14318 103 164 115  

§ Year 1997.5 2001.1 2000.7 2001.4  

Any Outcome In Title 0.433 0.806 0.604 0.8 <0.001 

Any Agent In Title 0.378 0.806 0.963 0.983 <0.001 

Agent & Administration 0.084 0.33 0.5 0.417 <0.001 

Agent & Therapeutic Use 0.253 0.777 0.634 0.809 <0.001 

Agent & Toxicity 0.071 0.097 0.445 0.426 <0.001 

Demographic Tags Include Child 0.177 0.029 0.03 0.043 <0.001 

Outcome & Complications 0.078 0.34 0.043 0.209 <0.001 

Outcome & Drug Therapy 0.188 0.689 0.537 0.661 <0.001 

Outcome & Prevention 0.169 0.67 0.317 0.6 <0.001 

Outcome & Psychology 0.004 0.019 0.006 0 0.13 

Other Outcome & Psychology 0.01 0 0.006 0 0.494 

Clinical Trial 0.116 0.816 0.878 0.887 <0.001 

Comparative Study 0.114 0.126 0.22 0.217 <0.001 

Meta-Analysis 0.005 0.136 0 0 <0.001 

RCT 0.083 0.835 0.902 1 <0.001 

Text Contains RCT 0.052 0.495 0.354 0.461 <0.001 

 *Efficacy includes effectiveness analyses  

**p-value derived from Pearson’s Chi-squared test 

§ Year is reported as mean year of publication 

 

Performance Predicting Efficacy/Effectiveness Results 

Predicting Articles Relevant to Efficacy/Effectiveness for AAP 

Review 
We developed a model for predicting the inclusion of efficacy/effectiveness articles using the 

original search results. Figure 3 shows the relative weights of different variables for GBM; 

variables with larger relative weights account for large fractions of the total explanatory power. 

In keeping with some of the differences in frequency distributions between included and 

excluded studies, "RCT" contains a substantial portion of the model’s explanatory power. 

Weights for GLMnet were similar, with ―RCT‖ providing the greatest explanatory power.
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Figure 3. Relative weights for variables in AAP efficacy analysis 

 

Table 5 shows efficacy/effectiveness results for all models (GLMnet, GBM, and hybrid) at 

multiple thresholds. For AAP, all models achieved high sensitivity when predicting on the 

original sample at relatively high thresholds (p≤0.02). For example, the GLMnet-based 

predictive model achieved a sensitivity of 1 and PPV of 0.38 using a threshold of 0.02 for 

predicting relevant articles in the original sample. Achieving good results on the original sample 

was expected because the underlying model was derived from the same outcomes and 

explanatory variables. Applying the GLMnet model to the updated AAP literature search results 

yielded a sensitivity of 0.921 and PPV of 0.185; GBM and hybrid models performed similarly.  
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Table 5. Model performance for efficacy/effectiveness  
   GLMnet GBM Hybrid 

Study Phase Threshold Sensitivity PPV Sensitivity PPV Sensitivity PPV 

AAP Original 0.001 1 0.144 1 0.383 1 0.144 

  0.01 1 0.366 1 0.383 1 0.366 

  0.02 1 0.383 1 0.383 1 0.383 

  0.1 1 0.421 0.976 0.476 1 0.418 

 Update 0.001 1 0.066 0.921 0.186 1 0.066 

  0.01 0.921 0.162 0.921 0.186 0.921 0.162 

  0.02 0.921 0.185 0.921 0.187 0.921 0.185 

  0.1 0.901 0.206 0.881 0.232 0.901 0.205 

LBD Original 0.001 1 0.07 1 0.108 1 0.068 

  0.01 0.991 0.143 0.991 0.142 0.991 0.133 

  0.02 0.982 0.174 0.982 0.179 0.986 0.168 

  0.1 0.862 0.322 0.872 0.378 0.894 0.321 

 Update 0.001 1 0.038 0.968 0.06 1 0.037 

  0.01 0.937 0.08 0.889 0.08 0.937 0.075 

  0.02 0.905 0.102 0.889 0.106 0.905 0.098 

  0.1 0.778 0.203 0.635 0.181 0.794 0.192 

GLMnet = Generalized Linear Models with Convex Penalties; GBM = gradient boosting machine; Hybrid = Maximum 

prediction from either GLMnet or GBM; PPV = Positive predictive value  

Note: We calculated bootstrapped standard errors for the GLMnet estimates. In all cases, the standard errors were substantially 

smaller (<0.005) than the estimates for sensitivity or PPV.  

 

Figure 4 shows these results graphically using a histogram of the prediction probabilities for 

the update, divided according to whether the article met final inclusion criteria. Excluded articles 

were predominantly given probabilities very close to zero, while articles considered for 

efficacy/effectiveness had probabilities that spanned the entire spectrum. Of note, this histogram 

displays densities; even small densities of false positive articles (from the much larger group of 

negative articles) entail a relatively high proportion of false positives among model predictions, 

which limits the PPV to 0.185.
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Figure 4. Histogram AAP efficacy analysis: distribution of predictions 

 

 

Predicting Articles Relevant to Efficacy/Effectiveness for LBD 

Review 
Figure 5 shows the relative weights of variables included in the GBM model of efficacy for 

LBD (weights for GLMnet were similar, in that RCT contained the greatest explanatory power). 

As in the AAP analysis, terms such as RCT and meta-analysis are important. Clearly, other 

variables carried different weights in the AAP analysis, suggesting that predictive models may 

need to be topic-specific. 
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Figure 5. Relative weights for variables in LBD efficacy analysis 

 

 

     The efficacy/effectiveness results were similar for the LBD review (Table 5.) The GLMnet-

based predictive model achieved sensitivity of 0.982 and PPV of 0.174 using a threshold of 0.02 

for predicting relevant articles in the original sample. We then tested these results on the updated 

literature search results; GLMnet yielded sensitivity of 0.905 and PPV of 0.102. 

Figure 6 shows model prediction performance on the LBD updated search graphically using 

a histogram of the prediction probabilities. Excluded articles were generally assigned very low 

probabilities. As in Figure 4 (for AAP), the small percentage of false positive articles reduced the 

PPV to 0.102 due to the much greater number of negative articles overall. 
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Figure 6. Histogram LBD efficacy analysis: distribution of predictions 

 

 

Performance Retrieving Articles Considered for AE Analysis 

Predicting AE-Relevant Articles for AAP Update  
We empirically developed a model for predicting AE articles using the original search 

results. We show the relative importance of the same select variables in Figure 7 for GBM 

(though GLMnet produced similar weights). Again, the "RCT" variable remains extremely 

important, even as the importance of the remaining explanatory variables differs from the 

efficacy/effectiveness models.
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Figure 7. Relative weights for variables in AAP AE analysis 

 

We show results from all models in Table 6. The GLMnet-based predictive model achieved a 

sensitivity of 0.978 and PPV of 0.215 using a threshold of 0.02 for predicting articles relevant to 

AEs in the original sample. Applying the GLMnet-based model to the updated literature search 

results yielded a sensitivity of 0.981 and PPV of 0.09. The GBM-based model performed better 

in the original (sensitivity, 1; PPV, 0.274) but worse in the update (sensitivity, 0.895; PPV, 0.11). 

The hybrid model yielded similar sensitivity to the GLMnet model, but worse PPV. 
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Table 6. Model performance for AEs  

   GLMnet GBM Hybrid 

Study Phase Threshold Sensitivity PPV Sensitivity PPV Sensitivity PPV 

AAP Original 0.001 1 0.078 1 0.07 1 0.07 

  0.01 1 0.168 1 0.138 1 0.118 

  0.02 0.978 0.215 1 0.274 1 0.194 

  0.1 0.901 0.392 0.934 0.436 0.956 0.385 

 Update 0.001 1 0.033 1 0.029 1 0.029 

  0.01 0.99 0.065 0.971 0.056 0.99 0.047 

  0.02 0.981 0.09 

0.895 0.11 0.981 0.078 

  0.1 0.867 0.172 0.848 0.2 0.886 0.162 

LBD Original 0.001 1 0.065 1 0.073 1 0.057 

  0.01 0.993 0.175 0.975 0.192 0.996 0.166 

  0.02 0.964 0.21 0.971 0.229 0.978 0.203 

  0.1 0.885 0.338 0.903 0.365 0.918 0.328 

 Update 0.001 0.946 0.04 0.957 0.039 0.967 0.033 

  0.01 0.739 0.097 0.674 0.098 0.739 0.09 

  0.02 0.685 0.116 0.663 0.119 0.707 0.112 

  0.1 0.511 0.179 0.478 0.191 0.522 0.167 

GLMnet = Generalized Linear Models with Convex Penalties; GBM = gradient boosting machine; Hybrid = Maximum 

prediction from either GLMnet or GBM; PPV = Positive predictive value  

Note: We calculated bootstrapped standard errors for the GLMnet estimates. In all cases, the standard errors were substantially 

smaller (<0.005) than the estimates for sensitivity or PPV. 

 

Figure 8 shows these results graphically using a histogram of the prediction probabilities, 

divided according to whether the article met final inclusion criteria. Articles not considered for 

AE analyses were predominantly assigned probabilities very close to zero; included articles had 

probabilities that spanned the entire spectrum including the 2 percent that were assigned a 

probability of inclusion <0.02. 
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Figure 8. Histogram AAP AE analysis: distribution of predictions 

 

 

Predicting AE-Relevant Articles for LBD Update  
Figure 9 shows key variables for this analysis (GBM only, though weights for GLMnet were 

similar, in that RCT contained the greatest explanatory power). By inspection, these importance 

weights do not appear extremely dissimilar to those from the AAP analysis.  
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Figure 9. Relative weights for variables in LBD AE analysis 

 

 

The GLMnet-based predictive model achieved a sensitivity of 0.964 and PPV of 0.21 using a 

threshold of 0.02 for predicting articles relevant for the AE analysis in the original LBD review 

(Table 6.) However, we were able to predict AE-relevant articles with a substantially reduced 

sensitivity (0.685) when compared to the AAP results. Reducing the threshold substantially (i.e., 

retaining all articles with p ≥0.001) would increase sensitivity to 0.946 but decrease PPV to 0.04. 

Our results for GBM-based and hybrid models were not substantially better at threshold p ≥0.02, 

with the hybrid model achieving sensitivity of 0.707 and PPV of 0.112.  

Figure 10 shows these results graphically as many AE articles relevant to the LBD update 

were assigned relatively low prediction probabilities. In fact, 11.6 percent of AE-relevant articles 

were assigned probabilities <0.005. When we examined missed AE articles, we noted that there 

were relatively few relevant large observational studies (cohort and case-control studies) in the 

original review. As a result, the both the GLMnet- and GBM-based models assigned lower 

probabilities to observational studies in the LBD update as well. However, observational studies 

were more important in the update because the SCEPC researchers focused on several newly 

identified AEs that were largely studied in cohort and case-control studies. 
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Figure 10. Histogram LBD AE analysis: distribution of predictions 

 
 

Performance Predicting Any Relevant Result and Potential 
Workload Reductions 

The workflow in many AHRQ comparative effectiveness reviews includes a first step in 

which reviewers select all articles that might be relevant to AEs or efficacy, and as the second 

step, a process that reviews the full text of articles to determine their relevance to 

efficacy/effectiveness or AE analyses. To simulate how our approach might improve the 

workflow for updates, we determined the GLMnet-based model's sensitivity and PPV at various 

thresholds for retrieving all AE and efficacy/effectiveness analyses. Sensitivity and PPV for a 

particular threshold were determined by selecting articles if the maximum predicted relevance 

from either model (efficacy/effectiveness or AE) exceeded the threshold. We show how 

sensitivity and the number needed to screen change as the threshold changes in Table 7. (We do 

not show sensitivities < 0.75 as these results are unlikely to be useful to comparative 

effectiveness review researchers.) We selected a threshold of p≥0.01 based on the performance 

of the model in the original search results, in which a threshold of p≥0.01 yielded perfect 

sensitivity with 58.1 percent of screening saved. When we applied this threshold to the update 

predictions, the projected sensitivity model exceeded 0.99, whereas the proportion of 

title/abstract screening saved was 55.4 percent. In other words, the total number of articles to be 

screened would have been reduced from 3,591 to 1,601. By contrast, the hybrid model had 

identical sensitivity, but more limited workload reductions at the same threshold (p≥0.01). 
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Table 7. GLMnet model performance in retrieving any relevant article (AAP Update) 
 Prediction 

Threshold 
True 
Positives 

False 
Negatives 

Sensitivity Total 
Screening 
Burden 

Screening 
Saved (%) 

Original 0 98 0 1 1307 0 

 0.001 98 0 1 1169 10.6 

 0.005 98 0 1 765 41.5 

 0.01 98 0 1 547 58.1 

 0.015 97 1 0.99 463 64.6 

 0.02 96 2 0.98 415 68.2 

 0.025 96 2 0.98 373 71.5 

 0.05 92 6 0.939 284 78.3 

 0.1 90 8 0.918 225 82.8 

 0.2 87 11 0.888 176 86.5 

 0.3 76 22 0.776 122 90.7 

Update 0 116 0 1 3591 0 

 0.001 116 0 1 3237 9.9 

 0.005 115 1 0.991 2191 39 

 0.01 115 1 0.991 1601 55.4 

 0.015 114 2 0.983 1312 63.5 

 0.02 113 3 0.974 1144 68.1 

 0.025 112 4 0.966 1026 71.4 

 0.05 106 10 0.914 737 79.5 

 0.1 102 14 0.879 549 84.7 

 0.2 95 21 0.819 452 87.4 

 0.3 89 27 0.767 366 89.8 

 0.4 88 28 0.759 308 91.4 

 

The GLMnet-based model for LBD performed worse, in that the model selected articles for 

the update with a sensitivity of 0.795 at a threshold of p≥0.02 (compared to 0.974 for AAP). 

(Tables 7 and 8.) However, this approach still provided potential benefits once we selected a 

suitable threshold. We chose a threshold of p≥0.001 based on the performance of the model in 

the original search results, in which a threshold of p≥0.001 yielded perfect sensitivity with 66.8 

percent of screening saved. Using the same threshold when evaluating results in the update 

yielded perfect sensitivity accompanying the drop in the projected article screening burden from 

7,051 to 2,597 (63.2%). While the probability thresholds differed between the AAP and LBD 

updates (0.001 in LBD and 0.01 in AAP), both thresholds could be derived from the original 

modeling process. 
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Table 8. GLMnet model performance in retrieving any relevant article (LBD update) 
 Prediction 

Threshold 
True 

Positives 
False 

Negatives 
Sensitivity Total 

Screening 
Burden 

Screening 
Saved (%) 

Original 0 382 0 1 14700 0 

 0.001 382 0 1 4880 66.8 

 0.005 380 2 0.995 2346 84 

 0.01 379 3 0.992 1836 87.5 

 0.015 378 4 0.99 1615 89 

 0.02 372 10 0.974 1477 90 

 0.025 370 12 0.969 1369 90.7 

 0.05 362 20 0.948 1098 92.5 

 0.1 338 44 0.885 837 94.3 

Update 0 127 0 1 7051 0 

 0.001 127 0 1 2597 63.2 

 0.005 117 10 0.921 1180 83.3 

 0.01 107 20 0.843 882 87.5 

 0.015 102 25 0.803 749 89.4 

 

We show these results graphically using ROC curves (Figures 11 and 12). The AUC for the 

GLMnet method (in the AAP study) was 0.943 (95% CI: 0.927 to 0.960) versus 0.925 (95% CI: 

0.899 to 0.950) with GBM. The p-value for null hypothesis of equality was 0.007. Similarly, the 

AUC for the GLMnet method (in the LBD study) was 0.954 (95% CI: 0.943 to 0.965) versus 

0.947 (95% CI: 0.933 to 0.961) for GBM. In the LBD study, p-value for null hypothesis of 

equality was 0.06. Both results suggest that the ROC curves differed between the two studies; in 

addition, GLMnet seems to perform somewhat better than GBM visually as well. Still, it would 

be difficult to establish GLMnet’s superiority in this context (comparative effectiveness 

reviewing updating) without further studies. 
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Figure 11. ROC curve for classifying AAP articles 

 

AAP = antipsychotic systematic review; GBM = gradient boosting machine; GLMnet = generalized linear models with convex 

penalties; ROC = receiver operating characteristic 

 

Figure 12. ROC curve for classifying LBD articles 

 

GBM = gradient boosting machine; GLMnet = generalized linear models with convex penalties; LBD = low bone density 

systematic review; ROC = receiver operating characteristic 
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Evaluation of Model Prediction Errors 
SCEPC researchers independently evaluated articles in the update that were included in the 

final reports but were assigned low probability scores by the statistical classifiers. We initially 

chose a probability threshold (p≥0.02) that reduced workload substantially; however, this 

threshold entailed 29 false negatives. Nearly all false negatives were non-RCT studies (along 

with an RCT that was not tagged as such by MEDLINE). Of the 29 false negatives (at threshold 

p≥0.02 from both updates), 26 were from the LBD update. The GLMnet model for LBD missed 

one RCT because the drug of interest ("raloxifene") was tagged with "pharmacology" and not a 

more revealing subheading. The remaining LBD false-negatives were non-RCT studies 

(including meta-analyses, case-control studies, retrospective analyses of claims databases, case-

control studies, and analyses of government registries). It is difficult to determine whether 

similar studies were present in the original data without actually re-reading all earlier studies, but 

we did note that words such as "cohort" and "database" were poorly represented among both 

included and excluded studies in the original LBD report. 

In considering the models used to predict inclusion of any relevant articles (Tables 7 and 8), 

just one article (from the AAP update) would have been excluded.
42

 This article was likely 

assigned a low probability because it was tagged as a letter although it reported on a clinical trial. 

Of note, despite missing this trial using machine learning, EPC researchers might have been able 

to retrieve this trial because it was referenced in a relevant article and would plausibly have been 

caught using the researchers’ analyses of references accepted in the final reports.
43

 

EPC researchers also evaluated several citations that were assigned high relevance 

probabilities but were deemed irrelevant by the original comparative effectiveness review 

researchers; none of these decisions changed on re-evaluation. These studies included one small 

RCT on calcitriol (that did not report fracture outcomes) and another RCT in a modest sized 

specialized population (Parkinson's patients).
44,45
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Discussion 

We created a prototype machine learning system that is designed to reduce the workload 

associated with comparative effectiveness review updating.  Our system first extracted domain 

knowledge and thousands of previously classified documents from two comparative 

effectiveness reviews (LBD and AAP), and then modeled article relevance (i.e., inclusion in the 

final updated review) using several approaches based on the GBM and GLMnet statistical 

methods. In two simulated comparative effectiveness review updates, our approach achieved its 

best performance predicting relevance for efficacy/effectiveness articles; it performed worse 

when predicting articles relevant to the AE analysis for the LBD update. However, we estimated 

that these algorithms could reduce workload associated with screening updated search results for 

relevant efficacy/effectiveness and AE articles by more than 50 percent with minimal or no loss 

of relevant articles. Based on the slight differences in model performance between the GBM, 

GLMnet, and hybrid approaches, improving identification of RCTs and refining methods for 

correcting differences between the original and updated reviews may be more important than 

algorithm selection in future research. 

Evaluating Model Performance  
Performance was similar when screening AAP citations for those relevant to 

efficacy/effectiveness and AE analyses. However, in the LBD analysis, we achieved 

substantially higher PPV for the same levels of sensitivity when predicting whether citations 

were relevant for the efficacy/effectiveness analyses as opposed to the AE analysis. Prior work 

has not focused heavily on AEs, so the benchmark is unclear here. However, we speculate that 

many of these false negatives (and the consequent poorer performance on the LBD study) can be 

attributed to the changed criteria for relevant AE citations. In the original LBD review, most of 

the articles relevant to AEs were RCTs because epidemiologic studies and retrospective database 

analyses are difficult to conduct prior to widespread use. Therefore, relevant citations in the 

original data set consisted (almost entirely) of RCTs; this would not have presented a problem if 

researchers only wanted RCTs in the update. However, the paucity of relevant non-RCT studies 

in the original data probably limited the ability of the model to efficiently retrieve relevant non-

RCT studies. In addition, key included outcomes may be present in the full text, and yet not 

mentioned in the abstract or MeSH indexing terms. For example, in the LBD study, the key 

outcome was fracture prevention. However, often the articles mentioned just bone density in the 

abstract, while fractures were a secondary outcome described in the full text. As a result, we 

assigned a number of articles to the intermediate range because both relevant and irrelevant 

articles were frequently indexed under bone density. Such data extraction errors were unrelated 

to improper feature encoding, and might only be resolved by analyzing the full-text of these 

articles. 

Our results concur with prior attempts at using machine learning to facilitate systematic 

review data collection; those studies used manually classified citations to predict inclusion in 

unclassified studies.
14,15,20,21

 These efforts were met with substantial success, particularly an 

active learning model, which achieved 50 percent workload reductions and 100 percent 

sensitivity. 
20

 Previous studies used all indexing and text terms when employing statistical 

algorithms to classify documents.
14,20

 The advantage of the prior approach is that little or no 

upfront investment is required outside of collecting an original data set. For a de novo search, 

removing upfront workload offers some advantages. 
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In contrast to prior studies, we adopted a more parsimonious approach that focused on a few 

key terms related to study design characteristics (publication type, demographic groups, and 

statistical design), intervention-specific characteristics, and outcome-specific characteristics. For 

many comparative effectiveness review updates, research librarians have already invested 

substantial time in creating optimal search strategies; we leveraged this effort using a prototype 

that parses previously created search strategies in a semi-automated fashion to locate key 

indexing terms. Furthermore, the vast majority of work was involved in creating the training 

data, which had already been completed. Therefore, the additional cost of making explanatory 

variables specific to each review was small when performing this simulated comparative 

effectiveness review update. 

Furthermore, our algorithms explicitly dealt with updating, which afforded us far more initial 

training data than active learning models. However, our approach needed to surmount several 

new challenges because we needed to predict updated citations even though the literature was 

different, the reviewers changed, the search strategies changed, and (possibly) some of the 

underlying goals changed. Our approach achieved some success in combating data changes over 

time (known as concept drift in other applications).
21,27,28,30,31

 Achieving similar levels of success 

suggests benefits to an approach incorporating domain-specific knowledge about key 

interventions and outcomes. However, these algorithms also assigned moderately low relevance 

probabilities to numerous non-RCT articles relevant to AEs, suggesting that this approach cannot 

mitigate all issues related to concept drift. This suggests some role for an active learning 

approach that classifies a small number of update articles to maximize accuracy on the 

update.
15,31

 In addition, this approach allows us to separate efficacy/effectiveness and AE 

analyses; although most comparative effectiveness reviews do not separate these analyses, 

independent filtering mechanisms may be of interest to other researchers. 

Workload Reductions 
For researchers seeking both AE and efficacy-relevant citations, we were able to remove 

approximately 50 percent of articles with loss of 1/116 articles for AAP and 0/127 articles of 

LBD. Clearly the false positive rate is high (~50%) but this process still could provide substantial 

value to researchers. One potential problem is that researchers conducting systematic reviews 

and comparative effectiveness reviews aim for 100 percent sensitivity; despite the high 

sensitivity rates achieved, the loss of one article suggests that researchers will have to make some 

tradeoffs between sensitivity and efficiency as it will be difficult to guarantee 100 percent 

sensitivity without excessively high false positive rates. On the other hand, it is unclear whether 

human reviewers can guarantee perfect sensitivity using current processes. In addition, other 

methods (such as reference mining) can be used to raise sensitivity further. In this case, the 

missed reference might have been found by searching among references for included articles. 

Our results also suggest possible improvements as well. The classifier’s false negatives were 

more related to indexing variability than to model development. This observation suggests that 

capturing additional key variables might be more helpful than further statistical development. 

One method of doing so would be to use text features to improve capture of study design details, 

such as RCT design or meta-analysis. We used limited text features in generating predictions, but 

we anticipate that adding features from the entire text would be helpful, much as other machine 

learning document classification systems have done. In addition, the GLMnet model performed 

well with a limited number of training examples (1,307) for AAP suggesting that this method 
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could be implemented within an active learning framework,
15,20

 and thus might be used to 

facilitate de novo reviews as well.  

Implication for EPC Processes 
The results we present (along with previous work in document classification) show that 

workload associated with updating could be substantially reduced if earlier classification 

decisions were used to reduce the workload involved in screening articles. We estimated that 

roughly 50 percent of title/abstract screening might be rendered unnecessary using a predictive 

model to reduce the screening burden. However, several outstanding issues need to be resolved 

prior to making these tools widely available. 

First, the classifier relied on having complete data (database identifier, decision regarding 

relevance to efficacy/effectiveness analyses, decision regarding relevance to AE analysis). If 

such data were not fully compiled in the initial report, creating a machine learning model would 

be unlikely to be cost-effective as excessive effort would be required to format the data properly. 

Second, although our statistical model relied on dozens of citation characteristics, it was very 

sensitive to MEDLINE’s publication type field and MEDLINE indexing generally. NLM 

validates MEDLINE indexing against its own internal criteria and is responsive to re-indexing 

requests.
46

 However, NLM’s criteria did not match our criteria perfectly, which made model 

predictions less accurate. Several authors associated with the EPC group independently assessed 

false negatives (relevant citations that the model assigned a low probability of inclusion); 

typically, the low prediction probabilities for these included articles were due to problematic 

MEDLINE indexing of the publication type field. If such discrepancies could be accounted for, 

our other encouraging results suggest that this document classification prototype could be used to 

improve the efficiency of comparative effectiveness review updating. To that end, we are 

developing techniques for extracting information from the text to allow for greater consistency in 

determining the publication type (from our perspective) and other variables independent of 

MEDLINE indexing. 

Third, predicting performance on update data using original data is imperfect thus far. While 

there was minimal performance declines in some cases (inclusion in any analysis), using 

identical thresholds in an update would have reduced sensitivity in other cases (inclusion in LBD 

effectiveness/efficacy analyses). Further testing on additional topics should allow us to provide 

researchers with better information regarding projected performance. 

Finally, these systems currently work only with fully indexed PubMed citations. One 

mitigating factor is that the vast majority of relevant articles are located in PubMed. As described 

in greater detail below, we plan to generalize this model to articles lacking MEDLINE indexing 

by developing additional text analysis tools. 
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Future Research 

1. Comparative effectiveness review methodologists will need to agree on a common data 

format and save all literature review decisions at the time of collection, as these data are 

much more easily accumulated over time than reconstructed later. At a minimum, the 

following elements are needed: data source (MEDLINE, EMBASE, PsycInfo, etc); 

source-specific identifier (e.g., PMID); study-specific identifier (e.g., LBD #1034); 

inclusion in final report for efficacy/effectiveness or AE analyses (or both); and 

title/abstract (if not in MEDLINE). Other information, e.g., inclusion after first stage 

screening and reason for exclusion from final study (if excluded) would be helpful as 

well. 

2. The current model was built entirely upon MEDLINE classifications and is heavily 

reliant on their accuracy. Clearly, this characteristic would result in delaying the 

classification of newer articles. If reviews are being conducted every 2-3 years, this 

limitation would exclude only a small percentage of articles from the analysis (and leave 

them entirely for human review). However, if researchers wished to update reviews 

continuously (or monthly) and use citations from non-MEDLINE databases (such as 

EMBASE), absent or delayed MEDLINE indexing would render MEDLINE-only 

modeling inadequate. Further research on adding structured text characteristics to the 

statistical model would be helpful. Adding more (and presumably useful) features would 

improve accuracy as well. Other researchers have made extensive use of approaches 

based on "bag-of-words" when classifying documents for systematic reviews.
14,20

 The 

underlying hypothesis in these studies is that term frequencies will differ between 

relevant and irrelevant documents. For example, a relevant document might be more 

likely to contain the phrases "randomized trial" or "RCT", whereas an irrelevant article 

might contain words such as "mouse" or "case-control." One can then use statistical 

algorithms (such as GBM or SVM) to model relevance as a function of these many text 

features.  

A modified approach using both text- and MeSH-derived features could be helpful. For 

example, one could classify citations that lack MEDLINE indexing by determining 

whether their text features are most similar to articles that are predicted to be highly 

irrelevant or to those that are predicted to be highly relevant (among MEDLINE-indexed 

articles). Using these shared text features, the MeSH indexing could be leveraged to 

provide additional information to articles lacking indexing. 

3. We will need to test our models on additional systematic reviews, surgical interventions, 

and on non-therapeutic applications; in addition, we will also test other commonly-used 

algorithms such as SVM. Additional research is needed before a particular updating 

approach can be recommended for practical use. 

4. We will examine whether training data can be used across systematic review topics, if the 

underlying inclusion criteria are similar enough. This experiment has been attempted 

before but has not been applied to true updating.
17

 If this attempt is successful, we could 

vastly increase the volume of useful training data at our disposal.  

5. We will need to streamline the process to make it production-ready and efficient. 

However, if classification decisions are readily available (see #1 above), the remainder of 

the process will not be labor-intensive; the key step will involve a clinical reviewer or 

research librarian spending 1–2 hours transforming the review’s search strategy into 



33 

 

groups of terms (interventions, diagnostic tests, outcomes, etc.). We plan on developing a 

platform that would allow further data processing and modeling without human input. 

While predictions will still need to be evaluated by human reviewers, we plan on making 

this step time-neutral by providing samples of articles to be evaluated by comparative 

effectiveness review researchers as part of their normal workflow. 

6. An active learning model could be adapted to perform in the updating context as well.
15,20

 

For example, one could generate predictions for updated data and sample predicted 

relevant articles in a stratified fashion – that is, all articles in the updated search predicted 

to be highly relevant and a sample of indeterminate and lower-ranked citations. The 

model could then be re-run using these new training data to generate a new model. This 

effort would offer two advantages: (a) Newer models could account for changes in the 

literature; and (b) less reviewer time would be wasted because many of the reviewed 

articles would likely be relevant and require review.  

7. Finally, we identified a small false negative rate associated with our approach. Using the 

references of included reports could reduce the false negative rate by identifying missed 

reports.  
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Conclusions 
In this pilot study, we created a prototype system that classified PubMed literature search results 

from two simulated comparative effectiveness review updates. We achieved good performance 

on both updates using statistical models that were empirically derived from earlier review 

inclusion judgments as well as explanatory variables selected using domain knowledge. 

Additional research refining this system, expanding its scope, and comparing it to other methods 

could allow researchers to select optimal machine learning methods for updating their reviews 

frequently and efficiently.   
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Abbreviations 
AAP  Atypical antipsychotic drug 

AE  Adverse effect 

AHRQ  Agency for Healthcare Research and Quality 

AUC  Area under the receiver operating curve 

EPC  Evidence-based Practice Center 

FDA  U.S. Food and Drug Administration 

GBM  Gradient boosting machine 

GLMnet   Generalized linear models with convex penalties 

LBD  Low bone density 

MeSH  Medical subject heading 

PPV  Positive predictive value 

ROC  Receiver operating characteristic 

SCEPC  Southern California Evidence-based Practice Center 

SVM  Support vector machines 

UMLS  United Medical Language System 
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