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In the United States, more than two-thirds of decedents with multi-
child families divide their estates exactly equally among their children.
In contrast, gifts given before death are usually unequal. These find-
ings challenge the validity of existing theories regarding the deter-
mination of intergenerational transfers. In this paper, we develop a
theory that accounts for this puzzle based on the notion that the
division of bequests provides a signal about a parent’s altruistic pref-
erences. The theory can also explain the norm of unigeniture, which
prevails in other societies.

I. Introduction

In the United States, more than two-thirds of testate decedents with
multichild families divide their estates exactly equally among their chil-
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dren.1 This finding challenges the validity of existing theories regarding
the determination of intergenerational transfers. If bequests reflect al-
truism (as in Barro [1974]) or intrafamily exchange (as in Bernheim,
Shleifer, and Summers [1985]), the optimal division of an estate should
vary with the characteristics of the children as well as with the attitudes
and preferences of the parent, and equal division should be a “knife-
edge” case.2 If bequests are accidental (because the length of life is
uncertain and annuity markets are imperfect), then equal division might
reflect indifference concerning the division of assets.3 However, indif-
ference cannot account either for the prevalence of equal division
among those who go to the trouble of writing wills or for the widespread
and apparently deliberate inequality of gifts (see, e.g., Dunn and Phillips
1997; McGarry 1998). Likewise, if parents simply feel that fairness re-
quires equal division of bequests, the same principle should apply to
gifts. These observations give rise to the “equal division puzzle.”

The absence of a coherent theoretical explanation for equal division
represents a serious gap in the literature.4 Bequests feature prominently
in theoretical and empirical discussions of capital accumulation, fiscal
policy, income distribution, and other issues (see, e.g., Barro 1974; Bern-
heim and Bagwell 1988). Moreover, the altruistic model of bequests is
often invoked to justify the practice of studying models with infinite-
lived agents (“dynastic” families). As long as one of the most notable
empirical regularities concerning bequests remains unexplained, econ-

1 According to Wilhelm (1996), 68.6 percent of all decedents with multichild families
divide their estates exactly equally among their children, and 76.6 percent divide their
estates so that each child receives within 2 percent of the average inheritance across all
children. Two studies by Menchik (1980, 1988) place the frequency of exact equal division
at, respectively, 62.5 percent and 84.3 percent. Tomes (1981) obtains a significantly lower
figure (21.1 percent), though he also finds that children received within $500 of the
average inheritance in 50.4 percent of all cases. Menchik (1988) argues that the lower
frequency of equal division in Tomes’s sample reflects data problems.

2 Bernheim et al. argue that the strategic exchange motive has fewer difficulties with
the prevalence of equal division than other theories of bequests, but they do not provide
a theoretical framework that yields equal division as a robust prediction (see also Unur
1998).

3 The accidental bequest hypothesis is inconsistent with the observation that many in-
dividuals appear to resist annuitization. For additional evidence, see, e.g., Bernheim et al.
(1985), Hurd (1987), Bernheim (1991), and Gale and Scholz (1994).

4 Any arbitrary rule for dividing bequests, including equal division, is ex post optimal
for an altruistic parent provided that the parent anticipates the application of the rule
and fully compensates through gifts prior to death. Thus, in some settings, the optimal
division of bequests is indeterminate. Lundholm and Ohlsson (2000) propose a model
that resolves this indeterminacy in favor of equal division. They proceed (as we do) from
the premise that gifts are observable whereas bequests are not. However, in contrast to
our analysis, their model assumes—and therefore does not explain—the existence of an
equal division norm. Moreover, their theory is inconsistent with the available evidence
indicating that gifts are only partially compensatory. In practice, the frequencies and
magnitudes of gifts do not seem sufficient to offset the effects of changing resources,
preferences, and other conditions on the optimal division of bequests.
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omists must carefully qualify all conclusions that are linked to assump-
tions about transfer motives.

In this paper, we propose a theory of intergenerational transfers that
accounts for the equal division puzzle, including the unequal division
of gifts. We consider a model in which an altruistic, utility-maximizing
parent divides his or her estate between potentially heterogeneous chil-
dren. To this relatively standard framework we add a new element: each
child’s perception of parental affection directly affects his or her sub-
jective well-being. This assumption is grounded in psychological evi-
dence (see, e.g., Coopersmith 1967; Bednar and Peterson 1995). In
particular, children care about the extent to which they are loved or
valued by a parent, relative to brothers and sisters (see, e.g., Tesser 1980;
Brody, Stoneman, and McCoy 1994; Bank and Kahn 1997).

Our theory requires one additional plausible assumption: children
cannot directly observe the parent’s preferences and instead infer these
preferences from the parent’s actions, including bequests. The altruistic
parent must then consider the possibility that an unequal bequest may
cause the children to infer that they are loved either more or less than
their siblings. In this setting, bequests serve as signals of parental affec-
tion. Under conditions identified in the text, no separating equilibrium
exists, but there is an attractive equilibrium in which a positive fraction
of the population adheres to a norm of equal division. For appropriately
chosen parameter values, this fraction can be arbitrarily large.

The intuition for our central result is straightforward. If parents prefer
to appear less partial than they actually are, then those who love their
children unequally have incentives to imitate the behavior of those with
relatively little bias. To differentiate himself or herself from any partic-
ular potential imitator, a relatively impartial parent must give the child
who is less loved by the imitator a larger share than the child would
receive if the parent’s preferences were observable. Since each child is
favored by some potential imitator, it therefore is impossible to divide
the estate of a relatively impartial parent in a way that discourages all
imitation. Consequently, equilibrium tends to produce a pool at the
center of the parental type space.

Our analysis also accounts for the unequal division of gifts prior to
death. The key difference between gifts and bequests relates to observ-
ability: the division of bequests is perfectly observable by all concerned
parties, whereas the division of gifts need not be. As long as “secret”
gifts are feasible, neither child is in a position to verify that the parent’s
resources have been divided equally, and an equal division norm cannot
survive.

There are also conditions under which parents prefer to appear more
partial than they actually are. In such cases, parents shade their choices
toward favored children to differentiate themselves from those who love
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their children more equally. This gives rise to pools at the boundaries
of the feasible choice set, with a single child receiving the parent’s entire
estate. Thus, under appropriate parametric assumptions, our model can
also account for the pattern known as “unigeniture.” This is of interest
since unigeniture is a common norm in many societies (see, e.g., Chu
1991; Guinnane 1992).

II. The Model

A. The Environment

We consider interactions among three parties: a parent (P) and two
children ( ). The parent is endowed with wealth whichi p 1, 2 w 1 0,P

he or she divides between the children by making nonnegative bequests,
We focus on the division of bequests and abstract from the pos-b ≥ 0.i

sibility that the parent might consume some portion of his or her re-
sources (imagine that death is imminent and that rapid consumption
is not attractive).5 Thus the parent chooses bequests to satisfy the con-
straint Each child i is endowed with wealth andb � b p w . w 1 01 2 P i

consumes For simplicity, we assume that all parties can ob-c p w � b .i i i

serve each others’ endowments. We examine the role of this last as-
sumption in Section IIIC1.

It is convenient to think of the parent as dividing the family’s total
resources, Specifically, the parent picksW { w � w � w . x � [x, 1 �P 1 2

where and child 1 consumes xW, and child 2¯ ¯x], x { w /W x { w /W;1 2

consumes With this change of variables, it is important to keep(1 � x)W.
in mind that the phrase “equal division” refers to the parent’s endow-
ment rather than to the family’s resources. That is, equal division occurs
when or, equivalently, whenb p b1 2

1 � (w /W ) � (w /W )1 2Ex p x { .
2

B. Preferences

We use and to denote the utilities of the parent and children,U UP i

respectively. We assume that the parent is an altruist. Since the parent
does not consume anything directly, his or her utility depends only on

5 Our theory does not attempt to explain why so many individuals reach the end of life
with positive bequeathable assets (indeed, it suggests that parents should prefer to make
transfers as gifts rather than as bequests). This phenomenon is potentially attributable to
factors outside the model, such as uncertainty concerning the length of life combined
with imperfections in annuity markets. Individuals may also derive feelings of security,
control, or satisfaction from asset ownership.
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the outcomes for the children: whereU p tU � (1 � t)U , t � [0, 1].P 1 2

Parents differ according to the relative weight t that they attach to the
first child’s utility. We assume that t is known to the parent but not to
the children. Though children may have had many opportunities to
learn about their parents’ preferences, significant uncertainty remains.
Children’s prior beliefs about t are given by some atomless cumulative
distribution function F, and the support of F is the interval [0, 1]. We
use f to denote the density function associated with F, and we assume
that f is symmetric around (i.e., ).61 f(t) p f(1 � t)2

We assume that each child cares about his or her own consumption,
ci, as well as about t. That is, each child’s sense of well-being is affected
by the extent to which he or she feels “loved” relative to a sibling.
Though children cannot observe t directly, they may attempt to infer it
from aspects of the parent’s behavior, including the choice of x. When
the children believe that their utilities are given byˆt p t, U p1

and where u is defined overˆ ˆu(c ) � bv(t ) U p u(c ) � bv(1 � t ),1 2 2

[0, ��), and v is defined over [0, 1]. The parent’s utility is therefore

ˆ ˆU p [tu(xW ) � (1 � t)u((1 � x)W )] � b[tv(t ) � (1 � t)v(1 � t )]P

ˆ{ U(x, t) � bV(t, t). (1)

Assumption 1. The functions u and v are strictly increasing, strictly
concave, and twice continuously differentiable on (respectively) (0, W]
and [0, 1], is finite, and′ ′ ′lim cu (c) p ��, v (0) v (1) p 0.cr0

Most of assumption 1 is reasonably standard. Weaker conditions would
suffice for most of our results.7 Since it is possible to live without parental
affection but not without consumption, it is reasonable to assume that
the derivative of v is finite at whereas the derivative of u is infinitet̂ p 0,
at It is also natural to assume that a child is satiated when he orc p 0.
she has all of the parent’s affection. From assumption 1, it follows that

is twice continuously differentiable on ˆ¯U(x, t) [x, 1 � x] # [0, 1], V(t,
is twice continuously differentiable on 2t) [0, 1] , U (7) ! 0, V (7) ! 0,11 11

andU (7) 1 0, V (7) 1 0.12 12

Thus far, we have confined our discussion of preferences to cases in
which children are certain about the parent’s type (“degenerate” be-
liefs). To analyze pooling equilibria, we also need to describe payoffs
when the children have nondegenerate beliefs (i.e., they are not certain
about the parent’s type). We imagine that there is a mapping fromB̂
beliefs about types (probability distributions) into types, with the fol-

6 The symmetry assumption is not essential, but it allows us to simplify some of the
proofs. Conceptually, cases in which t is distributed asymmetrically are similar to cases in
which the children have unequal endowments, which we treat explicitly.

7 For example, since the properties of u near zero are inconsequential.c ≥ w 1 0,i i
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lowing interpretation: if the children’s beliefs about the parent’s type
are summarized by the probability distribution f, their reaction is the
same as though they knew with certainty that the parent’s type was

The parent’s utility is then given by equation (1), whereˆ ˆB(f). B(f)
replaces the term t̂.

In much of the subsequent analysis, we focus on cases for which
children learn only that the parent’s type lies between some lower bound
r and some upper bound s. The corresponding posterior probability
distributions have the form forf(t) p [F(t) � F(r)]/[F(s) � F(r)] t � [r,

with for and for where Ons), f(t) p 1 t ≥ s f(t) p 0 t ! r, 0 ≤ r ! s ≤ 1.
this restricted domain, one can write asB̂(f) B(r, s).

Naturally, it is difficult to proceed analytically unless we impose some
restrictions on the mapping One possibility is to assume that eachB̂.
child’s utility depends on the subjective expectation of v (in which case

is a certainty equivalent). Since, however, uncertainty about theB̂
parent’s preferences does not entail a lottery over outcomes (if t is never
fully revealed, then the children’s uncertainty is never completely re-
solved, and the utilities and are never actually realized),v(t) v(1 � t)
standard justifications for using subjective expectations may not apply.
We therefore proceed by imposing a small number of minimal and
relatively unobjectionable restrictions.

Assumption 2. (i) If, for some and for′ ′ ′t , f(t ) p 1 f(t) p 0 t ! t ,
then (ii) For and such that for all t with′ ′ ′′ ′ ′′B̂(f) p t . f f f (t) ≤ f (t)
strict inequality for some t, we have (iii) The function′ ′′ˆ ˆB(f ) 1 B(f ).

is twice continuously differentiable, andB(r, s) B(r, s) p 1 � B(1 � s,
1 � r).

Part i is essentially a tautology. Part ii requires that, if the children’s
beliefs shift toward higher types (in the sense of first-order stochastic
dominance), they react as though the parent is a higher type. Part iii
includes a technical differentiability condition along with the require-
ment that B is symmetric around From these assumptions, one can1 .2
derive two additional properties: first, is increasing in r and s;B(r, s)
second, for we have Note in particular that ther ! s, B(r, s) � (r, s).
expectations operator satisfies assumption 2.

C. Parental Bliss Points

Ignoring for the moment the possibility that children may infer fromt̂
x, we optimize over to find the parent’s “action blissU(x, t) x � [0, 1]
point,” Because is strictly concave, is the solution of theX(t). u(7) X(t)
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following first-order condition:8

′ ′tu (X(t)W ) p (1 � t)u ([1 � X(t)]W ). (2)

From assumption 1, it follows that is well defined, single-valued,X(t)
strictly increasing, and continuous with andX(0) p 0, X(1) p 1,

Moreover, is single-peaked in x, with a maximum at1 1X( ) p . U(x, t)2 2
x p X(t).

Example 1. The utility function with (so thatgu(c) p c /g, g ! 0
as required in assumption 1). Then′lim cu (c) p ��, X(t) p (1 �cr0

whereh h h �1t) [t � (1 � t) ] , h p 1/(g � 1).
Similarly, we maximize over to find the parent’sˆ ˆV(t, t) t � [0, 1]

“perception bliss point,” Since is strictly concave, is thep(t). v(7) p(t)
solution to the following first-order condition:9

′ ′tv (p(t)) p (1 � t)v (1 � p(t)). (3)

From assumption 1, it follows that is well defined, single-valued,p(t)
strictly increasing, and continuous with andp(0) p 0, p(1) p 1,

Moreover, is single-peaked in with a maximum at1 1 ˆ ˆp( ) p . V(t, t) t,2 2
t̂ p p(t).

Example 2. The function Then2ˆ ˆv(t ) p �(1 � t ) . p(t) p t.
In figure 1, we exhibit indifference contours for two types of parents,

t and Notice that these contours are ellipses and generally cross twice′t .
or not at all. Consequently, preferences do not satisfy the familiar Spence-
Mirrlees single-crossing property.

D. The Direction of Imitation

The perception bliss point function, plays a critical role in ourp(t),
analysis. Its relation to t is particularly important. We focus on two special
cases.

Condition 1. Imitation toward the center.—The function forp(t) 1 t
for and1 1 1′t � (0, ), p(t) ! t t � ( , 1), p ( ) ! 1.2 2 2

Condition 2. Imitation toward the extremes.—The function forp(t) ! t
for and1 1 1′t � (0, ), p(t) 1 t t � ( , 1), p ( ) 1 1.2 2 2

Figure 2 depicts perception bliss point functions satisfying conditions
1 and 2. Under condition 1, all types wish to be perceived as loving
their children more equally than they actually do, so imitation tends to
occur toward the center of the type space. Under condition 2, all types
wish to be perceived as loving their children less equally than they
actually do, so imitation tends to occur toward the extremes of the type

8 Since we know that the solution to the first-order condition is in-′lim u (c) p ��,cr0

terior for all Plainly, andt � (0, 1). X(0) p 0 X(1) p 1.
9 Since is finite and we know that the solution to the first-order condition′ ′v (0) v (1) p 0,

is interior for all Plainly, andt � (0, 1). p(0) p 0 p(1) p 1.
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Fig. 1.—Illustration of indifference contours

space. Naturally, it is possible to have mixed configurations, but we do
not examine them in the current paper.

Example 3. Suppose that and that v otherwise2ˆ ˆv(t ) p h(�(1 � t ) )
satisfies assumption 1. Then condition 1 is satisfied if h is concave, and
condition 2 is satisfied if h is convex. In example 2, we considered the
boundary case in which h is linear, so p(t) p t.

The curvature of v (and hence the shape of p) plays an important
role in determining the qualitative properties of equilibria. Indeed, sys-
tematic variation in the shape of utility functions across different cul-
tures emerges as a potential explanation for the observed differences
in norms (equigeniture vs. unigeniture). One would expect the function
v to exhibit greater curvature in societies in which the returns to factors
associated with parental affection (e.g., assistance with securing a job)
decrease at a more rapid rate. This characteristic may be related to the
availability of good substitutes for parental support and attention. In
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Fig. 2.—Illustration of conditions 1 and 2

open, highly mobile societies, individuals who have achieved a basic
level of functionality can successfully strike out on their own, whereas
in closed societies, such individuals may remain closely tied to their
communities and therefore more dependent on parental goodwill.
These observations suggest that condition 1 may be more likely to prevail
in developed economies, whereas condition 2 may be more likely to
prevail in less developed economies.

E. Decisions, Inferences, and Equilibrium

The structure of the game is simple. After observing t, the parent selects
x and may also send a message, This message representsm � [0, 1].
“pure” communication about the parent’s type, in the sense that the
value of m does not directly enter the utility function of any party (in
the pertinent literature, this is usually referred to as “cheap talk”). We
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elaborate on the role of pure communication in the next section. Chil-
dren observe x and m and draw inferences about the parent’s preference
parameter, t. The preceding expressions for and describe theU , U , U1 2 P

resulting payoffs.10

In this setting, the parent’s choices of x and m can signal the parent’s
type, t. Formally, the model is a “signaling game” in the sense of Banks
and Sobel (1987) or Cho and Kreps (1987): the parent is a “sender,”
the children are “receivers,” (x, m) is the sender’s “message,” and ist̂
both the receivers’ inference and the receivers’ “response.” While it is
somewhat unconventional to identify the receivers’ inference with the
receivers’ response, this is easily reconciled with standard formulations
of signaling.11

A signaling equilibrium involves a pair of choice functions, andm(t)
mapping the parent’s type t to, respectively, decisions concerningg(t),

the division of bequests, x, and a pure message, m, as well as an inference
function mapping all feasible choices into probability distri-ˆf(t, x, m)
butions over perceived type, 12 The choice function must prescribet̂.
optimal decisions for all types t given the inference function. The in-
ference function must be consistent with the choice function, in the
sense that it is derived from the choice function by applying Bayes’ law
for all choices occurring with positive likelihood in equilibrium.

III. Imitation toward the Center

In this section, we explain the prevalence of equal division by identifying
conditions that give rise to equilibria in which a substantial fraction of
the population chooses We account for the emergence of thisEx p x .
norm by demonstrating that the corresponding pooling equilibria have
attractive properties, and we attribute the stability of this norm to the
robustness of the equilibria.

10 Implicitly, we assume that the parent correctly anticipates and cares about the infer-
ences that children will make after the parent’s death and that the children attempt to
make the best inferences possible. We do not explore the interesting possibility that
children might have incentives to engage in self-deception, intentionally forming incorrect
inferences.

11 Instead of assuming that the parent cares directly about a child’s inference, assume
that the parent cares about the child’s reaction to his or her inference. One can then
renormalize the set of possible reactions to conform with the set of possible inferences.
In other words, one can use to denote a child’s reaction to the inference that the valuet̂
of the parent’s altruism parameter is t̂.

12 Naturally, and also depend on the endowments We omit theˆ ¯m(t) f(t, x, m) (x, x).
dependence on these parameters for notational brevity.
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A. Equilibria without Social Norms

Even the simplest signaling models can give rise to vast sets of equilibria
(see, e.g., Spence 1974). Typically, many of these equilibria entail some
pooling. If one associates pools with social norms, the potential existence
of norms in the present environment may not seem particularly sur-
prising at first. However, in many familiar signaling problems, equilibria
with pooling have unattractive properties, and full separation is a more
plausible outcome (see, e.g., Cho and Kreps 1987). Consequently, the
emergence of a social norm—let alone a norm of equal division—is not
a foregone conclusion. To make the case that signaling provides a plau-
sible explanation for equal division, we must provide an explicit justi-
fication for studying equilibria with norms (pooling) rather than equi-
libria without norms (full separation). In this subsection, we provide a
particularly compelling justification: for some ranges of the model’s
parameters, pooling is unavoidable because full separation is infeasible.

Our first result identifies some important properties of equilibrium
separating action functions (when they exist).

Theorem 1. Suppose that condition 1 is satisfied. Then, in any sep-
arating equilibrium with endowments given by some pair the¯(x, x),
function is strictly monotonically increasing and continuous,m(t)

for for and1 1 1 1m(t) 1 X(t) t � (0, ), m(t) ! X(t) t � ( , 1), m( ) p .2 2 2 2
Thus, in any separating equilibrium, a child’s equilibrium share of

the family’s resources increases monotonically with the relative weight
that the parent attaches to him or her.13 Moreover, parents who favor
one child or the other “lean” toward egalitarianism, whereas parents
who place equal weight on both children divide resources equally.

Our next task is to characterize the circumstances under which it is
possible to construct a separating equilibrium satisfying the properties
listed in theorem 1. Note that any separating equilibrium for our model
must also constitute an equilibrium when the type space is restricted to
either or With either restriction, our model presents a1 1[0, ) ( , 1].2 2
relatively standard signaling problem in which either every type prefers
to be mistaken for a higher type ( ) or every type prefers to1t � [0, )2
be mistaken for a lower type ( ). Consequently, on an intuitive1t � ( , 1]2
level, we can proceed in two steps. First, we solve for a separating equi-
librium action function, when the set of types is restricted tom(t),

as well as for another separating equilibrium action function,1[0, ),2

13 In standard signaling models wherein preferences satisfy the single-crossing property,
it is easy to prove that actions must be monotonic in type. In our model, the single-crossing
property is not satisfied, so the standard argument does not apply. The proof of mono-
tonicity is surprisingly subtle and depends heavily on the assumption that the type space
is a continuum. With a finite number of types, it is sometimes possible to construct sep-
arating equilibria that violate monotonicity. Even with a continuum of types, it is sometimes
possible to construct pooling equilibria that violate monotonicity.



744 journal of political economy

when the set of types is restricted to . Second, we check to1m(t), ( , 1]¯ 2
see whether it is possible to construct an equilibrium for the complete
model by “pasting” these functions together.

Assume for the moment that the set of types is The indifference1[0, ).2
contours of each type must be tangent to at the equilib-1t � [0, ) m(t)2
rium outcome assigned to that type. Thus corresponds to the so-m(t)
lution of the differential equation

bV (t, t)1′m(t) p � (4)
U (m(t), t)1

on the interval The existence and uniqueness of for a1t � [0, ). m(t)2
given initial condition (i.e., a value for ) follow from modificationsm(0)
of standard arguments. If the set of types is the characterization1( , 1],2
of is analogous.m(t)¯

Since parents lean toward egalitarianism (theorem 1), we know that
and that Since the action function for a1 1lim m(t) ≥ lim m(t) ≤ .¯tF1/2 tf1/22 2

separating equilibrium is necessarily monotonic (also theorem 1), it is
impossible to construct a separating equilibrium for the complete model
by “pasting” and together if either of the preceding inequalitiesm(t) m(t)¯
is strict. Consequently, full separation of types can occur only if

1lim m(t) p lim m(t) p . (5)¯ 2
tF1/2 tf1/2

Equation (5) may or may not hold in any given instance. If it fails to
hold with the most extreme feasible initial conditions ( andm(0) p x

), then it fails to hold for all other feasible initial condi-m(0) p 1 � x¯
tions. As one increases the utility attached to perceptions (b) or chil-
dren’s endowments ( and ) or both, any given type must1¯x x t � (0, )2
choose a larger x, and any given type must choose a lower x,1t � ( , 1)2
to discourage imitation. As a result, full separation (the absence of a
norm) is impossible when children have sufficient resources or attach
sufficient importance to parental affection. The following theorem states
this formally.

Theorem 2. Suppose that condition 1 is satisfied. For any pair of
endowments there exists such that a fully separating∗¯ ¯(x, x), b (x, x)
equilibrium exists if and only if Moreover, is de-∗ ∗¯ ¯b ≤ b (x, x). b (x, x)
creasing in and strictly positive iff 1¯ ¯max {x, x} max {x, x} ! .2

It follows that any equilibrium must involve some pooling when b 1

In the next subsection, we investigate the structure of pooling∗ ¯b (x, x).
equilibria.
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B. Equilibria with Social Norms

1. Central Pooling Equilibria

As is usually the case with signaling models, our model gives rise to a
wide variety of pooling equilibria. We focus attention on equilibria char-
acterized by “central pooling.” In Section B of the Appendix, we justify
this focus by discussing and applying formal criteria for selecting among
equilibria.

In a central pooling equilibrium, full separation occurs for individuals
with sufficiently extreme preferences, but all those with intermediate
preferences select the same action (i.e., they conform to a social norm).
Despite conforming with respect to actions, intermediate types may nev-
ertheless differentiate themselves to a limited extent through credible
verbal statements (m). Thus, for example, when a norm of equigeniture
prevails, parents who divide their bequests equally may nevertheless
make informative statements about the extent to which they favor one
child or the other.

Formally, a central pooling action function is characterized by three
variables: (the action chosen by all intermediate types), (the1x t !p l 2
lowest intermediate type), and (the highest intermediate type).1t 1h 2
We refer to as the social norm of the central pooling equilibrium andxp

to as the action pool. The action function is constructed as follows:[t , t ]l h

x for t � [t , t ]p l h

m(t) p m(t) for t ! tl{m(t) for t 1 t .¯ h

Feasibility requires We restrict attention to cases in which¯x � [x, x].p

to assure that the action function is monotonic. Notem(t ) ≤ x ≤ m(t )¯l p h

that a separating equilibrium is a special (degenerate) case of a central
pooling equilibrium wherein 1t p m(t ) p x p m(t ) p t p .¯l l p h h 2

Types within the action pool may also differentiate themselves through
cheap-talk messages. For any m with for some weg(t) p m t � [t , t ],l h

refer to as a segment of the action pool (it is the set{t � [t , t ]Fg(t) p m}l h

of types that conform to the norm while conveying the message m).xp

Under assumption 1, these segments must consist of N consecutive in-
tervals, where …[t , t ], [t , t ], … , [t , t ], t p t ! t ! ! t p1 2 2 3 N N�1 l 1 2 N�1

t .h

Equilibrium obtains when a collection of indifference conditions are
satisfied. First, type must be indifferent between separating andt p tl 1

joining the lowest segment of the central pool:

U(m(t ), t ) � V(t , t ) p U(x , t ) � V(B(t , t ), t ). (6)1 1 1 1 p 1 1 2 1

Second, each type on a boundary between consecutive segments of the
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central pool must be indifferent between the inferences associated with
those segments:14

V(B(t , t ), t ) p V(B(t , t ), t ) for n p 2, … , N. (7)n�1 n n n n�1 n

Third, type must be indifferent between separating and joiningt p th N�1

the highest segment of the central pool:

U(x , t ) � V(B(t , t ), t ) pp N�1 N N�1 N�1

U(m(t ), t ) � V(t , t ). (8)¯ N�1 N�1 N�1 N�1

In some instances, it is of course possible to have equilibria with
in which case cheap talk is unnecessary. However, as a generalN p 1,

matter, cheap talk is important because one cannot guarantee the ex-
istence of a central pooling equilibrium without it. In particular, a prob-
lem arises when the parent’s perception bliss point, is sufficientlyp(t),
close to his or her own type, t. In that case, it may be impossible to find
values of (with ) and that satisfy condition (6).151 1t ! m(t ) ! x t 11 1 p 22 2

Our next result establishes that, with cheap talk, a (nondegenerate)
central pooling equilibrium necessarily exists whenever No-∗ ¯b 1 b (x, x).
tably, this is precisely when separating equilibria fail to exist.

Theorem 3. Suppose that condition 1 is satisfied and that ∗b 1 b (x,
Then there exists a central pooling equilibrium with some norm xpx̄).

in which parent types choosing xp separate themselves into a finite num-
ber (possibly just one) of subgroups through pure communication (m)
and each of these subgroups is a connected interval.

2. Central Pooling Equilibria with a Norm of Equal Division

So far, nothing guarantees that it is possible to sustain equal division as
a social norm ( ). When the children have identical endowments,Ex p xp

the model is symmetric, so one would naturally expect to obtain a central
pool with equal division. This, however, would not account for the ro-
bustness of the norm. Exact equality of endowments is a “measure zero”
event, and yet in practice many parents are heavily predisposed to divide
bequests equally even when children’s resources are unequal.

14 This portion of our analysis is reminiscent of Crawford and Sobel (1982). It differs
from Crawford and Sobel’s in two respects. First, in our model, it is not the case that

for all t within the group choosing xp. Second, the equilibrium in pure commu-p(t) 1 t
nication must be consistent with the equilibrium conditions for the overall game. Section
A of the Appendix includes further comments on related signaling models.

15 Since we know that Thus, ifX(t) ≤ m(t ) ≤ x , U(m(t ), t ) ≥ U(x , t ). V(t, t) 1 V(B(t,1 p 1 1 p 1

for all then the left-hand side of (7) exceeds the right-hand side for all values1 1), t) t ! ,2 2
of and Intuitively, segmentation of the central pool through cheap talk may1 1t ! t 1 .1 22 2
be necessary because, otherwise, the central pool may be too large (in the sense that the
inference associated with the central pool, is less attractive to the boundary typesB(t , t ),l h

and than full disclosure).t tl h
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Our model provides a plausible explanation for the equal division
puzzle because a norm of equigeniture can prevail even with unequal
endowments, provided that the degree of inequality is not too great.
To understand why, note that, if we think of as a parameter ratherxp

than as an endogenously determined variable, expressions (6)–(8) form
a system of equations in unknowns ( ). SupposeN � 1 N � 1 t , … , t1 N�1

for the moment that the children’s endowments are equal ( ¯x p x p
), and consider the equilibrium with a norm of equal division0x

( ). By the implicit function theorem, as long as the system of1x pp 2
equations is locally invertible, there also exists a solution for every

in some neighborhood of This neighborhood1 0 0¯(x , x, x) ( , x , x ).p 2
includes points of the form for all withE ¯ ¯ ¯ ¯(x (x, x), x, x) (x, x) x ( x
sufficiently close to Each of these solutions corresponds to a0 0(x , x ).
central pooling equilibrium with a norm of equal division for an en-
vironment with unequal endowments. One can also show that, gener-
ically (i.e., “almost always”), the system is locally invertible. Thus equi-
geniture is a robust social norm.

Formally, let L denote the set of functions v satisfying assumption 1
for which condition 1 holds. Using a standard mathematical notion of
genericity, we obtain the following result.16

Theorem 4. Suppose that condition 1 is satisfied. Consider any
For almost all a central pooling equilibrium with0x � (0, 1). v � L,

equal division exists for all endowments within some neighborhood of
0 0¯(x, x) p (x , x ).

The nature of the preceding argument makes it plain that xp is locally
indeterminate. Why select ? When many outcomes are consistent withEx
equilibria, “meeting in the middle” is often the most natural rule for
coordinating activity (Schelling 1960). Moreover, any equilibrium not
involving some form of equal division would require the parties to share
a common understanding of the “ordering” of the children (i.e., which
child has received x and which has received ). If, for example, the1 � x
norm is a 60–40 split, there may be confusion as to whether a 40–60
split constitutes a deviation from the norm. Families could base the
ordering on some objective criterion such as age, but there are many
competing criteria (gender, income, and so forth). With a norm of
unequal division, the ordering always favors one child over the other,
so the children might even take the ordering itself as a signal of t.

Equal division of the family’s resources (as opposed to equal division
of bequests) is also appealing as a focal norm. However, unlike equal
division of bequests, it is not always feasible (one child may have more

16 We say that a property holds for “almost all” v if it holds on an open-dense subset of
L, where L is endowed with the topology of uniform convergence (i.e., two functions1C
v and are close if their values and first derivatives are close everywhere on [0, 1]).ṽ
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than half of the family’s resources), and it requires parents to constantly
adjust their wills through time when children accumulate resources at
different rates. We also doubt that it would be robust if one added some
degree of asymmetric information about w1 and w2; unlike equal division
of bequests, equal division of total family resources is not easily verified.

3. Computations

Our next objective is to determine whether the model can generate
outcomes in which equal division of estates is the predominant mode
of behavior, even among families for which children’s endowments are
substantially unequal. We investigate this issue computationally using
the following parameterization: with (as in examplegu(c) p c /g g ! 1
1) and with (a special case of example 3 whereinlˆ ˆv(t ) p �(1 � t ) l 1 2
condition 1 is satisfied).17 Under these assumptions, we can rewrite equa-
tion (1), which defines the parent’s utility, as

g gU x (1 � x) bP l lˆ ˆp t � (1 � t) � [t(1 � t ) � (1 � t)t ].( )g g[ ]W g g W

We have divided through by the constant to highlight the fact thatgW
behavior depends on W and b only through the ratio For all thegb/W .
calculations presented here, we assume that andg p 0.5 l p 3.

Figure 3 shows that an equilibrium norm of equal division is consistent
with greater inequality between children’s endowments when children
care more about parental affection. This is intuitive. A necessary con-
dition for the existence of a central pooling equilibrium with a norm
of equal division is that lies between and (otherwise actions1 1Ex m( ) m( )¯ 2 2
would not be monotonic in type). As we increase b, it becomes more
difficult to discourage imitation by more extreme types, so decisions
become more distorted from until one reaches a point at whichp(t),
this necessary condition is satisfied.

For the purpose of the figure, we assume that children collectively
own two-thirds of the family’s resources ( ), and we¯x { x � x p 0.66k

consider all possible values of and (equalgb/W � [0, 25] x � [0, 0.66]
division of children’s endowments corresponds to ). The lightlyx p 0.33
shaded area identifies parameter values for which the aforementioned
necessary condition is satisfied. The dark area identifies parameter val-

17 To compute equilibria, we numerically approximate the solutions to the differential
equations that define the separating functions and For any candidate value for wem m. t ,¯ l

compute the implied segments of the central pool using the indifference conditions (6)
and (7). This generates a candidate for If the indifference condition (8) is satisfied,t .h

the configuration is an equilibrium. To find all equilibria, we search exhaustively over all
possible values of in 1t [0, ).l 2
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Fig. 3.—Existence of equilibria with an equal division norm: the effects of b and W

ues for which a central pooling equilibrium with equal division actually
exists. Note that the shaded areas widen as increases. Forgb/W

equigeniture emerges in equilibrium essentially irrespectivegb/W 1 20,
of how children’s endowments are divided.18 The figure also implies
that an increase in the family’s resources (with proportional endow-
ments held fixed) can make equal division more or less feasible, de-
pending on whether g is, respectively, negative or positive.

Figure 4 shows that an equilibrium norm of equal division can be
consistent with either greater or lesser inequality between children’s
endowments when the parent is wealthier relative to the children. The
figure consists of three panels, corresponding to different values of

We consider all possible values of (wheregb/W . w /w � [0, 1] w {1 k k

so signifies equality of the children’s endowments)w � w , w /w p 0.51 2 1 k

and ( denotes the parent’s endowed share of thew /W � [0, 1] w /WP P

family’s resources). The shaded areas (light and dark) are defined as
before.

For small values of an equilibrium norm of equal division isw /W,P

18 We say “essentially” any division of children’s endowments because our computational
approach encounters boundary problems as approaches zero or xk.x



Fig. 4.—Existence of equilibria with an equal division norm: the effects of a,w /W.p

; b, ; c,g g gb/W p 10 b/W p 2 b/W p 1.
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always consistent with substantial inequality of children’s endowments.19

This is intuitive. When the parent has little wealth, the necessary con-
dition for an equilibrium with equal division is always satisfied,20 and
the costs of giving offense to a less loved child are potentially large
relative to the benefits of giving the favored child a larger share. As the
parent’s share of the family’s wealth rises, the parent has more to gain
from dividing bequests unequally (particularly if the degree of inequality
between the children’s endowments is great); consequently, the exis-
tence of an equal division norm requires greater equality of children’s
endowments. Note, however, that this relationship reverses in figure 4a
when the parent is sufficiently wealthy relative to the children. This
occurs for two reasons: (i) for high values of an equilibrium withgb/W ,
an equal division norm always exists when and (ii) when1w /w p ,1 k 2

is close to unity, the children are endowed with so few resourcesw /WP

that there is no substantive difference between and any other1w /w p1 k 2
value of 21 For intermediate values of varies substantiallyEw /w . w /W, x1 k P

with consequently, may be inconsistent with the equilibriumEw /w ; x1 k

conditions for central pooling when the value of is sufficientlyw /w1 k

extreme.
This analysis generates at least one robust and potentially testable

implication: when the parent’s share of the family’s resources is small,
the likelihood of equal division rises as this share shrinks. However,
since the relationship between the frequency of equal division and

may be nonmonotonic and since family resources are often dif-w /WP

ficult to measure, one must interpret pertinent empirical evidence with
caution.

C. The Role of Assumptions Concerning Observability

1. The Observability of Endowments and Preferences

So far, we have assumed that parents and children are asymmetrically
informed only about the parent’s preferences (the parameter t). It is
perhaps equally plausible to assume that the parent is unable to observe
some aspect of a child’s preferences. In practice, parents and children
also have limited abilities to observe each other’s resources. The intro-

19 We suspect (but have not proved) that, for sufficiently small values of any valuew /W,P

is consistent with the existence of an equal division equilibrium. This is not apparentw /w1 k

in figs. 4b and c because we do not use a sufficiently fine grid for w /W.P
20 This follows from the fact that must exceed ( must exceed ) if is1 1E Em( ) x x m( ) m(0)¯2 2

close enough to ( is close enough to ).E Ex m(1) x¯
21 For this reason, we suspect (but have not established) that, for sufficiently large values

of any value is consistent with the existence of an equal division equilibriumw /W, w /wP 1 k

in fig. 4b as well. Figure 4b may obscure this property because we have not used a sufficiently
fine grid for w /W.P
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duction of asymmetric information with respect to these additional var-
iables does not, however, significantly alter our analysis.

To illustrate, suppose that the parent is uncertain about the value of
the preference parameter b. Also imagine that each party has private
information concerning his or her own endowment (but not concerning
the endowment of any other party) and that it is impossible for the
parent to infer the children’s endowments from observed expenditures.
Since bequests are observable, children can always compute the parent’s
terminal resources prior to inferring the parent’s preferences. Conse-
quently, we can continue to treat the parent’s endowment as though it
is publicly observable.

Given the parent’s uncertainty about b, w1, and w2, we replace equa-
tion (1), our expression for the parent’s utility, with the following (where

is the expectations operator corresponding to the parent’s beliefs):EP

U p [tE u(w � xw ) � (1 � t)E u(w � (1 � x)w )]P P 1 p P 2 p

ˆ ˆ� E (b)[tv(t ) � (1 � t)v(1 � t )].P

Though one can no longer think in terms of the parent dividing total
family resources W, few other changes in our analysis are required, and
our central results are unaffected. The reason is that the informativeness
of the parent’s choices depends on the parent’s beliefs about the pa-
rameters b, w1, and w2 rather than on their actual values.

2. The Observability of Cheap Talk

We have assumed that the cheap-talk signal m is observed by both chil-
dren. With minor modifications, the model can accommodate the pos-
sibility that the parent can also speak privately to either child. Formally,
the parent selects a triplet of pure messages, where both(m, m , m ),1 2

children receive m, and child i privately observes mi. It is easy to dem-
onstrate that this changes nothing of substance since the private signals
mi are necessarily uninformative. Assume on the contrary that, for a
given (x, m), leads to a different inference than Changing mi

′ ′′m m .i i

affects only the utility of child i. Moreover, every parent type t has the
same preference ranking over child i’s inference. Thus, if leads to a′mi

more favorable inference than for one parent type, it does so for all′′mi

parent types. Consequently, there can be no separation of types along
the mi dimension.

3. Gifts versus Bequests: The Observability of Transfers

Next, imagine that, contrary to our assumptions, a transfer to one child
is not observable by the other child. If everything else is observable
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(aside from t), each child can compute the magnitude of the transfer
to his or her sibling from endowments and expenditures, so our results
are unchanged. However, in more realistic cases in which endowments
or expenditures are also imperfectly observable, the preceding analysis
is inapplicable.

In our model, a norm of equal division emerges because transfers
serve as a signal of a parent’s preferences that is common to both
children. In other words, there is a single signal and two audiences.
When transfers are neither directly observable nor perfectly inferable
from other public information, they cannot serve as a common signal.
Instead, each transfer provides a private signal to each child. If neither
child is in a position to verify that the parent’s resources have been
divided equally, then the equilibrium inference function cannot syste-
matically link the children’s beliefs about the parent’s preferences to
the equality of transfers. Without such a link, an equal division norm
cannot survive.22

As we mentioned in Section I, the available evidence suggests that a
norm of equal division applies to bequests, but not to gifts. Our analysis
suggests that the key difference between gifts and bequests relates to
observability: the division of bequests is perfectly observable by all con-
cerned parties, whereas the division of gifts need not be. Since a parent
can give gifts to a favored child without revealing this to another child,
gifts cannot serve as a common signal of the parent’s preferences, so
the analysis of the previous section does not apply.

IV. Imitation toward the Extremes

Having completed our analysis of condition 1, we briefly consider the
implications of condition 2. When children have complete information
concerning parents’ preferences, any parent with or�1t ≤ X (x) t ≥

bequeaths everything to the most preferred child. This practice,�1 ¯X (x)
known as unigeniture, is of interest because it serves as a behavioral
norm in a number of societies outside of the United States. Existing
theories of unigeniture (e.g., Chu 1991; Guinnane 1992) provide rea-
sons to believe, in effect, that the population distribution of parental
action bliss points, is skewed toward the extremes. The mechanismX(t),
outlined in this section should be viewed as a complement to these

22 Imagine a candidate equilibrium in which a positive fraction of parent types divide
their resources equally between their children conditional on each realization of the
parent’s resources. Provided that the parent transfers to each child i some amount bi

(possibly different for each child) such that 2bi lies in the support of the probability
distribution for the parent’s endowment, the child must assume that he or she is observing
an equilibrium choice rather than a deviation. Consequently, the parent has the ability
to deviate from an equilibrium by giving more to one child and less to the other without
encountering undesirable inferences associated with out-of-equilibrium beliefs.
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theories in the following sense: for any distribution of incompleteX(t),
information about parents’ preferences enlarges the set of individuals
practicing unigeniture.

Formally, the problem is similar to one that we have already studied.
Refer once again to figure 2. Note that the parent’s perception bliss
point functions, have the same shape on the half interval 1p(t), [0, ]2
for condition 1 and on the half interval for condition 2. One can1[ , 1]2
therefore analyze behavior for the half interval under condition1[ , 1]2
2 analogously to our treatment of the half interval under con-1[0, ]2
dition 1.23 In this instance, each parent discourages imitation by those
who care about their children more equally by leaning toward greater
inequality. This enlarges the set of parents selecting relative to thex̄
case of complete information.24 An analogous argument implies that
incomplete information also enlarges the set of parents selecting x.

Often (but not always), unigeniture takes the form of primogeniture,
which means that the oldest child typically receives the parent’s estate.
Our model cannot explain a preference for older children. However,
any other consideration that favors transfers to the oldest child would
skew the distribution of parental action bliss points to one side of the
parent type space (the side that represents favoritism toward the oldest
child). The mechanism considered here would then enlarge the set of
individuals practicing primogeniture.

V. Conclusion

In this paper, we have studied environments in which parental choices
concerning the division of bequests provide children with information
about the parent’s preferences and in which children are directly af-
fected by their perceptions of parental affection. Under conditions iden-
tified in the text, the model gives rise to equilibria that support norms
of equal division, and these equilibria have attractive properties that

23 Despite the obvious similarities, there are some important technical differences be-
tween the problems considered here and in Sec. III. Equation (4) still defines a dynamic
system governing the evolution of the separating action function from any initial condition.
However, since is now, in effect, the lowest type for both halves of the type space,1t p 2

(rather than or ) is the natural initial condition. This means1 1 ¯m( ) p m(0) p x m(1) p x2 2
that, in a separating equilibrium, the lowest type receives both its action bliss point and
its perception bliss point. It follows that the initial condition is a stationary point of the
dynamic system described by (4). To obtain separating functions, one must therefore
examine the stability properties of the dynamic system around the stationary point 1( ,2

It turns out that the system is saddle-point stable and that the unstable arm corresponds1).2
to a separating equilibrium with the desired properties. We omit the proof to conserve
space (see Bernheim and Severinov 2000).

24 Thus we obtain an extremal pool as in Cho and Sobel (1990) rather than a central
pool. The analysis of pooling equilibria is actually much simpler than in the preceding
section: one must make sure that nonimitation constraints are satisfied on both sides of
a central pool but on only one side of an extremal pool.
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argue in favor of their selection. Since these results depend critically
on the assumption that transfers are necessarily observable by all chil-
dren, the theory applies to bequests, but not to gifts given prior to
death. Consequently, our model not only provides an explanation for
the equal division of bequests but also reconciles this pattern with the
unequal division of gifts. Under an alternative set of conditions, the
model gives rise to equilibria that support norms of unigeniture. This
is of interest because unigeniture is a common pattern outside of the
United States.

Appendix

A. Relationships with Other Signaling Models

Standard signaling models (e.g., Spence 1974) assume that all senders wish to
be perceived as the “highest” type, and imitation occurs in only one direction.
In our framework, this corresponds to the assumption that for allp(t) p 1 t �
[0, 1].

In Crawford and Sobel (1982), is strictly increasing (as in our model),p(t)
but (as in the standard setting) for all t. Consequently, imitation occursp(t) 1 t
in only one direction. Signaling is permitted through pure communication
(cheap talk), but senders cannot take costly (and therefore potentially discrim-
inatory) actions. Crawford and Sobel demonstrate that a limited degree of sep-
aration through cheap talk is usually possible: in some equilibria, senders seg-
ment themselves into a finite number of groups.25

In Banks (1990) and Bernheim (1994), for all Imitation1p(t) p t � [0, 1].2
occurs toward the center of the type space (and is therefore multidirectional,
as in the current setting). However, does not vary with t (as in the standardp(t)
setting), and cheap talk is not permitted. Both Banks and Bernheim exhibit
signaling equilibria with central pools.

Our model combines features of the settings studied by Crawford-Sobel and
Banks-Bernheim. Because the perception bliss point is increasing in type, there
is a role for cheap talk. However, since imitation is multidirectional (the per-
ception bliss point function crosses the 45-degree line), we also obtain central
pooling with respect to the costly action.

B. Equilibrium Refinements and Central Pooling

Intuitively, central pooling equilibria are plausible because they satisfy the fol-
lowing two properties: (1) the action function is monotonic,26 and (2) the set
of types choosing any pooling action x includes Since preferences are1t p .2
monotonic (those with higher values of t prefer higher actions x), the first
property strikes us as natural. The desirability of the second property requires
further explanation.

25 Austen-Smith and Banks (2000) have extended the model of Crawford and Sobel by
allowing costly signaling (burning money). They assume that the marginal cost of action
is type-independent. In their model, a set of types take costly actions, whereas other types
segment into a number of pools through cheap talk.

26 Even though separating equilibria are necessarily monotonic (theorem 1), there are
usually nonmonotonic pooling equilibria.
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Fig. A1.—Pooling and equilibrium refinements

Standard equilibrium refinements for signaling games usually eliminate most
types of pooling equilibria. To understand the nature of the argument, consider
figure A1. The three dark line segments represent the equilibrium action func-
tion, There is a single pool consisting of all types between and Sincem(t). t t .l h

equilibrium prevails, type is indifferent between point A, the outcome if itt l

joins the pool, and point B, the outcome if it separates; represents a typeI tl l

indifference curve passing through these points. Likewise, type is indifferentth

between points A and C; represents a type h indifference curve passing throughIh

these points. To obtain the equilibrium inference function, we invert the action
function where possible. Consequently, inferences are given by for�1m (x) x ≤

and (the lowest and highest segments of m in the graph) and byx x ≥ x B(t ,l h l

for (point A). The action function does not tie down inferences fort ) x p xh p

actions between and other than since these actions are not taken by anyx x xl h p

type in equilibrium.
Suppose that receivers attribute all actions just below the pooling action (those

in ) to the lowest type in the pool, and all actions just above the pooling(x , x ) t ,l p l

action (those in ) to the highest type in the pool. Graphically, this(x , x ) t ,p h h

amounts to supplementing the inference function with the open intervals BD
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and With these inferences, type would not deviate to any x in butCE. t (x , x ),l l p

would deviate to some x in Thus the pool unravels from the top.t (x , x ).h p h

Various equilibrium refinements eliminate pooling equilibria by establishing
criteria that isolate the aforementioned inferences (see Banks and Sobel 1987;
Cho and Kreps 1987; Cho and Sobel 1990). For example, the D1 criterion of
Cho and Kreps attributes choices in to (and choices in to )(x , x ) t (x , x ) tl p l p h h

because no other type is willing to take the action in question for as wide a
range of possible inferences.

In standard settings, a pooling equilibrium can survive the application of such
a refinement only if the action space is bounded and if the pool is located at
the highest action. Since the highest type in the pool cannot deviate to a higher
action, the pool cannot unravel from the top (see Cho and Sobel 1990). In the
context of our model, similar reasoning suggests that one should confine at-
tention to pools that include Recall that the direction of imitation is1t p .2
always toward Thus, for a pooling interval with is the top,1 1t p . [t , t ] t ! , tl h h h2 2
whereas for a pooling interval with is the top. In either case, one1[t , t ] t 1 , tl h l l2
might expect the pool to unravel from the top in the usual fashion. In contrast,
a pooling interval with has, in effect, two bottoms and no top.1[t , t ] t ! ! tl h l h2
This renders the associated equilibrium highly robust with respect to reasonable
assumptions about inferences for actions not chosen in equilibrium.

We formalize this analysis as follows. Consider an equilibrium (m(7), g(7),
Let and For any x not chosen inˆ ˆˆf(7)). b(x, m) p B(f(7, x, m)) b(t) p b(m(t), g(t)).

equilibrium ( for all ), let and ¯x ( m(t) t � [0, 1] b(x) p sup b(t) b(x) p!t : m(t) x

inf b(t).1t : m(t) x

Definition. We shall say that an equilibrium satisfies the monotonic D1 criterion
if the following conditions are satisfied: (i) The function is weakly increasingm(t)
in t. (ii) For all x and m, (iii) Consider some′ ′ ′ˆ ˆb(x, m) ≥ sup b(x , m ). x′ ′!x x,m �[0,1]

such that for all Suppose that there exist t1, and t2 with′ ′m(t) ( x t � [0, 1]. t ,
and such that if′t ! t t � [t , t ]1 2 1 2

′U(x , t) � bV(b, t) ≥ U(m(t), t) � bV(b(t), t)

for some and then′ ′¯t � [t , t ] b � [b(x ), b(x )],1 2

′ ′ ′ ′ ′ ′ ′U(x , t ) � bV(b, t ) 1 U(m(t ), t ) � bV(b(t ), t ).

Then, for all m, ′ ′f(t , x , m) p f(t , x , m).1 2

Parts i and ii, respectively, simply require monotone action and inference
functions. If one substituted for then part iii would′ ′¯b � [0, 1] b � [b(x ), b(x )],
be equivalent to the D1 criterion, which requires that a receiver not attribute
a deviation to a particular type if there is another type that is willing to make
the deviation for a strictly larger set of inferences. For the monotone D1 cri-
terion, we restrict the possible inferences in advance to make sure that they
respect monotonicity.

Theorem 5. Let E denote the set of all response functions, asso-(m(t), g(t)),
ciated either with some central pooling equilibrium or with the separating action
function (if it exists) for which and Let D be the set of all¯m(0) p x m(1) p x.
response functions associated with monotonic D1 equilibria. Then E p D.

C. Sketches of Proofs

At the request of the editors, we provide abbreviated sketches of proofs. Com-
plete proofs are available at http://www.stanford.edu/˜bernheim/. Though a
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number of details have changed, the reader can also consult the working paper
version of this article (Bernheim and Severinov 2000).

Proof of Theorem 1 (Sketch)

First observe that and Consequently, as¯m(0) ≥ x 1 0 p X(0) m(1) ≤ x ! 1 p X(1).
t moves from zero to one, must cross overm(t) X(t).

We argue that cannot coincide with except at If1
m(t) X(t), t p . m(t) p X(t)2

for some then some type (for small ) would imitate t. In-1 ′t ! , t p t � e e 1 02
tuitively, for such imitation yields a first-order gain from the change in in-′t ,
ference, but at most a second-order loss from the change in action. A symmetric
argument rules out for 1

m(t) p X(t) t 1 .2
Next we argue that cannot jump discontinuously over . If there wasm(t) X(t)

such a discontinuity, then, for all one could find with′ ′′ ′′e 1 0, t , t Dt p t �
but positive and bounded away from zero. As e gets′ ′ ′′t p e 1 0 Dm p m(t ) � m(t )

small, the difference between the loss in utility for types and occurring′ ′′t t
when the inference changes from to is on the order of However, the′′ ′ 2t t (Dt) .
difference between the gain in utility for types and occurring when the′ ′′t t
action changes from to is on the order of Since type values an′′ ′ ′′m(t ) m(t ) Dt. t
increase in action more than if is not hurt by a switch from to′ ′ ′′ ′′t , t (m(t ), t )

then, for sufficiently small, must strictly benefit from the same′ ′ ′′(m(t ), t ), Dt t
switch.

From the preceding discussion, we conclude that for 1
m(t) 1 X(t) t ! , m(t) !2

for and1 1 1 1X(t) t 1 , m( ) p X( ) p .2 2 2 2
To establish continuity, suppose that there is a sequence converging to sometk

with converging to Since if then wouldt m(t ) m ( m(t ). m(t) 1 X(t), m 1 m(t ), t¯ ¯d k d d k

imitate for large enough k; if then would imitate for large enoughdt m ! m(t ), t t¯d d k

k.
To establish monotonicity, note that for all t and with′ ′ ′m(t) ! m(t ) t t ! t !

; if not, then which implies that t would strictly1 ′ ′p(t) ! m(t) 1 m(t ) 1 X(t ) 1 X(t),2
prefer the action and inference assigned to . The argument for monotonicity′t
on is analogous. Q.E.D.1( , 1]2

Proof of Theorem 2 (Sketch)

First we claim that there exists a unique separating function on 1
m(t) t � [0, )2

satisfying (A similar statement holds for the upper half of the typem(t) p x.
space.) From theorem 1, we know that, in our search for separating functions,
we can confine attention to that are strictly increasing and continuous andm(t)
that satisfy for One can show that any with these1

m(t) 1 X(t) t � [0, ). m(t)2
properties is a separating function if and only if it satisfies the following con-
dition:

bV (t, t)1′m(t) p � (A1)
U (m(t), t)1

at all points of differentiability. Note that (A1) is a first-order differential equa-
tion for Unfortunately, since for all t, the right-hand sidem(t). U (X(t), t) p 01

of (A1) is not Lipschitz on A slight modification of1(t, x) � [0, ) # [x, 1].2
standard arguments nevertheless establishes existence and uniqueness.

Next we claim that there exists such that (i) for∗ ∗b (x) b ≤ b (x),
and for ; and (ii) iff1 1 1∗ ∗lim m(t) p , b 1 b (x), lim m(t) 1 b (x) 1 0 x ! .tF1/2 tF1/22 2 2



bequests as signals 759

(Since the problem is completely symmetric apart from endowments, it also
follows that, for and for .) The1 1∗ ∗¯ ¯b ≤ b (x), lim m(t) p , b 1 b (x), lim m(t) !¯ ¯tf1/2 tf1/22 2
case of is trivial, so consider For large enough b, nonimitation of1 1x ≥ x ! .2 2
type by type t requires to select an action greater than Since is1′ ′t p p(t) t . m2
monotonic, for large b. From an inspection of the differential1lim m(t) 1tF1/2 2
equation (A1), one can see that the slope of the solution through any given
point is steeper for higher b. Therefore, for all (and hence1t � [0, ), m(t)2

) is increasing in b. This establishes the existence of satisfying∗lim m(t) b (x)tF1/2

property i. Now consider a straight line L in the (t, x) plane passing through
the point and intersecting the vertical axis above By taking suf-1 1( , ) x. b 1 02 2
ficiently small, one can make the slope of evaluated at any point on L lessm(t)
than the slope of L (this follows from [A1], though some work is required to
show that the same value of b will work for all points close to ). For such1 1( , )2 2

can never cross L; hence This implies that1 ∗b 1 0, m(t) lim m(t) p . b (x)tF1/2 2
satisfies property ii.

To complete the proof, simply define ∗ ∗ ∗ ∗¯ ¯b (x, x) { min {b (x), b (x)}. b ≤ b (x,
is necessary and sufficient for which in turn is1x̄) lim m(t) p p lim m(t),¯tF1/2 tf1/22

necessary and sufficient for the existence of a separating equilibrium. It is easy
to verify that is increasing in from which it follows that is decreasing∗m(t) x, b (x)
in Consequently, Q.E.D.∗ ∗ ∗¯ ¯x. min {b (x), b (x)} p b (max {x, x}).

Proof of Theorem 3 (Sketch)

Define such that Also, for all define1∗ ∗ ∗ ∗t � (0, ) m(t ) p m(1 � t ). t � [0, t ],¯2
to be the value of x that solvesx (t) � [m(t), m(1 � t)]¯p

U(m(t), t) � U(x, t) p U(m(1 � t), 1 � t) � U(x, 1 � t). (A2)¯

It is easy to verify the existence and uniqueness of both and∗t x (t).p

Now consult figure A2. By definition, lies on Define as∗ ∗ ∗˜(t , x (t )) m(t). t ! tp

the type that is indifferent between and (graphically, note˜ ˜ ˜ ˜(t, m(t )) (p(t ), x (t ))p

the tangency between the horizontal line at and the type indifference˜ ˜x (t ) tp

curve through labeled ). Again, existence and uniqueness are easy to˜˜ ˜(t, m(t )), I
establish.

Consider As indicated in the figure, there are two crossings between′ ∗˜t � (t, t ).
the horizontal line at and the type indifference curve through′ ′ ′x (t ) t (t ,p

labeled If we attempt to construct a pooling equilibrium by setting′ ′m(t )), I .
then, applying the indifference condition (6), we know that there are′t p t ,l

two choices for the highest type in the first segment of the central pool ( ). Int 2

the figure, these choices correspond to the horizontal coordinates of the points
and Next, applying the indifference condition (7), we know thatL ′ U ′s (t ) s (t ).1 1

each of these choices maps into a unique choice for the highest type in the
second segment of the central pool ( ). In the figure, these choices correspondt 3

to the horizontal coordinates of the points (under the assumption thatL ′s (t )2

we began with ) and (under the assumption that we began withL ′ U ′s (t ) s (t )1 2

). With repeated applications of (7), we generate two sequences of points.U ′s (t )1

For large enough k, must cross the vertical line at (in the figure,1U ′s (t ) t pk 2
this occurs for ).k p 2

Note that when (the two crossings converge as More-L U˜ ˜ ˜ ˜t p t, s (t ) p s (t ) t r t ).k k

over, when (in the case of the first segment of the∗ L ∗ U ∗ Lt p t , s (t ) p s (t ) s (t),k k�1 1

central pool shrinks as t approaches and becomes degenerate in the limit).∗t
As we have drawn the figure, the horizontal coordinate of exceeds 1U ∗s (t ) .2 2

As we reduce t continuously from to traces out a continuous path,∗ U˜t t, s (t)2
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Fig. A2.—Existence of a central pooling equilibrium

shown as the dashed curve in the figure. Once we get to we switch to L˜ ˜t, s (t )2

(which is, of course, the same point). As we increase t continuously from tot̃
also traces out a continuous path, shown as the continuation of the∗ Lt , s (t)2

dashed curve. Because the path from to is unbroken, it must intersectU ∗ L ∗s (t ) s (t )2 2

the vertical line at for at least one value of t, say Construct a central pooling1 ′′t .2
equilibrium by setting and and partitioning the′′ ′′ ′′t p t , t p 1 � t , x p x (t )l h p p

central pool into segments as dictated by the indifference condition. By con-
struction of the segments are symmetric on both sides of and they meet1x (t), ,p 2
in the middle, at Symmetry of the segments guarantees that type which1 1. ,2 2
lies at the boundary between two segments, is indifferent between them. Q.E.D.

Proof of Theorem 4 (Sketch)

The first step of the proof is to construct a function defined for t inj(t, x, x ),p

some interval that describes configurations of the central pool that are[0, t̄],
consistent with equilibrium starting from one side of the parent type set. In
particular, for the values and satisfyt � [0, 1], t p j(t, x, x ) t p j(t � 1, x, x )1 p 2 p

equation (6), and for the valuest � [1, t̄ � 1], t p j(t � 1, x, x ), t p j(t,n�1 p n

and satisfy equation (7). Using a construction relatedx, x ), t p j(t � 1, x, x )p n�1 p
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to the one used in the proof of theorem 3 (for and ), one can guaranteeL Us (t) s (t)1 1

that is differentiable with bounded derivatives. As t varies from zeroj(t, x, x )p

to one, maps out various configurations of possible(j(t, x, x ), j(t � 1, x, x ), …)p p

endpoints for segments of the central pool.
For any pooling action and pair of endowments and define¯x x x,p

¯j(t , x, x ) � j(t � 1, x, 1 � x ) � 11 p 2 p¯y(t , t , x, x, x ) { .1 2 p [ ]¯j(t � 1, x, x ) � j(t , x, 1 � x ) � 11 p 2 p

Note that if then the existence of a solution to equations¯y(t , t , x, x, x ) p 0,1 2 p

(6)–(8) is guaranteed, and a central pooling equilibrium exists. If detD y(t ,t 1

at any for which then, by the implicit¯ ¯t , x, x, x ) ( 0 (t , t ) y(t , t , x, x, x ) p 0,2 p 1 2 1 2 p

function theorem, for any in some neighborhood of there′ ′ ′¯ ¯(x , x , x ) (x, x, x ),p p

exists satisfying′ ′ ′ ′ ′ ′ ′¯(t , t ) y(t , t , x , x , x ) p 0.1 2 1 2 p

Using an argument similar to the one given in the proof of theorem 3, one
can show that, when (equal endowments), there is always a central¯x p x p x
pooling equilibrium corresponding to the value of satisfying 1∗ ∗t j(t , x, ) p2

(i.e., equal division and a symmetric partition, where the1∗1 � j(t � 1, x, )2
central segment is centered at ). Consequently, if at1 1∗ ∗detD y(t , t , x, x, ) ( 0t2 2
some for which then there exists a central1 1∗ ∗ ∗t j(t , x, ) p 1 � j(t � 1, x, ),2 2
pooling equilibrium with equal division for all endowments sufficiently close to
(x, x).

Note that

1 1 1∗ ∗ ∗ 2 ∗ 2detD y(t , t , x, x, ) p [j (t , x, )] � [j (t � 1, x, )] .t 1 12 2 2

Thus, as long as we have1 1∗ ∗ ∗ ∗Fj (t , x, )F ( Fj (t � 1, x, )F, D y(t , t , x, x,1 1 t2 2
which implies the existence (locally) of central pooling equilibria with1) ( 0,2

equal division and asymmetric endowments.
Define as the set of functions for which 1

L v � L Fj (t, x, )F ( Fj (t � 1, x,x 1 12
at all t with We claim that is open dense1 1 1)F j(t, x, ) p 1 � j(t � 1, x, ). Lx2 2 2

in L.
We demonstrate that is open by showing that is closed. First we defineL L\Lx x

the function and show that the correspon-1 1
w(t) p j(t, x, ) � j(t � 1, x, ) � 12 2

dence mapping L into values of t satisfying is upper hemicontinuous.w(t) p 0
Using the fact that a function v is in iff there is a value t withL\L w(t) p 0x

and one can then show that there exists a value1 1Fj (t, x, )F p Fj (t � 1, x, )F,1 12 2
of t with the same properties for any function in the closure of L\L .x

Finally, we argue that is dense. This requires two steps. The first step is toLx

define as the set of functions v for which zero is a regular value of andRL w(t)x

to show that is dense in L. This is accomplished by introducing a perturbationRLx

function, parameterized by a scalar q (with indicating no perturbation)q p 0
such that v depends on q only in a small neighborhood of and is increasing1

2
in q within this neighborhood. One can verify that at any t satisfyingw(t) 1 0q

The transversality theorem then implies that zero is a regular valuew(t) p 0.
of for almost all (in the sense of full measure) q. But then one can find qw(t)
arbitrarily close to zero (and hence a function arbitrarily close to v) for which
zero is a regular value of w(t).

The second step is to show that lies in the closure of Take anyRL L . v �x x

We consider a perturbation that leaves the value of unchanged atRL . v(t) t p
and outside of a small neighborhood of and that changes By construc-1 1 1′v ( ).2 2 2

tion, this perturbation leaves unchanged the set of t such that It isw(t) p 0.
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easy to verify that changing alters but not Since1 1 1′v ( ) j (t � 1, x, ), j (t, x, ).1 12 2 2
the set of t such that is finite (zero is a regular value of and thew(t) p 0 w(t)
range of t is compact), one can always choose an arbitrarily small perturbation
such that for all t with Q.E.D.1 1Fj (t, x, )F ( Fj (t � 1, x, )F w(t) p 0.1 12 2

Proof of Theorem 5 (Sketch)

The main part of the proof involves establishing that We demonstrateD P E.
this by showing that any equilibrium with monotonic actions and an action pool
not containing cannot satisfy the monotonic D1 criterion.1

2
Since actions are monotonic in type, an action pool is a nondegenerate in-

terval, Since every segment within is also an interval. It is[t , t ]. V 1 0, [t , t ]l h 12 l h

easy to show that must belong to a nondegenerate segment, which impliesth

b(t ) ! t .h h

Let and Clearly, It is straightfor-′ ′ ′m p lim m(t) b p lim b(t). b ≥ t 1 b(t ).tft tft h hh h

ward to show that, in equilibrium, must be indifferent betweent (m(t ), b(t ))h h h

and and that′ ′ ′(m , b ) m 1 m(t ).h

Choose some ; note that this action is not chosen in equilibrium′m � (m(t ), m )d h

by any type. Let m be an arbitrary message. We claim that, if the monotonic D1
criterion is satisfied, But then would deviate to (provided thatb̂(m , m) p t . t md h h d

we have chosen sufficiently close to ), which overturns the equilibrium.m m(t )d h

To establish the claim, we need to demonstrate that, for all b � [b(m ),d

and impliesb̄(m )] t ( t , U(m , t) � bV(b, t) ≥ U(m(t), t) � bV(b(t), t) U(m , t ) �d h d d h

Consider Suppose that t weakly prefersbV(b, t ) 1 U(m(t ), t ) � bV(b(t ), t ). t ! t .h h h h h h

to Then t must also weakly prefer to But(m , b) (m(t), b(t)). (m , b) (m(t ), b(t )).d d h h

then, since and must strictly preferb ≥ b(m ) p b(t ), m(t ) ! m , V 1 0, U 1 0, td h h d 12 12 h

to The argument for is similar, except that it uses(m , b) (m(t ), b(t )). t 1 t b ≤d h h h

and′ ′b̄(m ) p b m ! m .d d

To complete the proof, one must show that The separating equilib-E P D.
rium, if it exists, obviously satisfies the monotonic D1 criterion (since actions
are monotonic and all actions are taken by some type in equilibrium). Consider
any central pooling equilibrium characterized by the three parameters andt , t ,l h

The set of out-of-equilibrium actions is Construct out-x . (m(t ), x ) ∪ (x , m(t )).¯p l p p h

of-equilibrium beliefs as follows: for let andx � (m(t ), x ), f(t , x, m) p 1 f(t,l p l

for and for let andx, m) p 0 t ! t , x � (x , m(t )), f(t , x, m) p 1 f(t, x, m) p¯l p h h

for It is easy to check that this is an equilibrium. One establishes that0 t ! t .h

it satisfies the monotonic D1 criterion through an argument analogous to that
used in the first part of this proof. Q.E.D.

References

Austen-Smith, David, and Banks, Jeffrey S. “Cheap Talk and Burned Money.” J.
Econ. Theory 91 (March 2000): 1–16.

Bank, Stephen P., and Kahn, Michael D. The Sibling Bond. New York: Harper
Collins, 1997.

Banks, Jeffrey S. “A Model of Electoral Competition with Incomplete Informa-
tion.” J. Econ. Theory 50 (April 1990): 309–25.

Banks, Jeffrey S., and Sobel, Joel. “Equilibrium Selection in Signaling Games.”
Econometrica 55 (May 1987): 647–61.

Barro, Robert J. “Are Government Bonds Net Wealth?” J.P.E. 82 (November/
December 1974): 1095–1117.

Bednar, Richard L., and Peterson, Scott R. Self-Esteem: Paradoxes and Innovations



bequests as signals 763

in Clinical Theory and Practice. 2d ed. Washington: American Psychological
Assoc., 1995.

Bernheim, B. Douglas. “How Strong Are Bequest Motives? Evidence Based on
Estimates of the Demand for Life Insurance and Annuities.” J.P.E. 99 (October
1991): 899–927.

———. “A Theory of Conformity.” J.P.E. 102 (October 1994): 841–77.
Bernheim, B. Douglas, and Bagwell, Kyle. “Is Everything Neutral?” J.P.E. 96 (April

1988): 308–38.
Bernheim, B. Douglas, and Severinov, Sergei. “Bequests as Signals: An Expla-

nation for the Equal Division Puzzle.” Working Paper no. 7791. Cambridge,
Mass.: NBER, July 2000.

Bernheim, B. Douglas; Shleifer, Andrei; and Summers, Lawrence H. “The Stra-
tegic Bequest Motive.” J.P.E. 93 (December 1985): 1045–76.

Brody, Gene H.; Stoneman, Zolinda; and McCoy, J. Kelly. “Contributions of
Family Relationships and Child Temperaments to Longitudinal Variations in
Sibling Relationship Quality and Sibling Relationship Styles.” J. Family Psy-
chology 8 (September 1994): 274–86.

Cho, In-Koo, and Kreps, David M. “Signaling Games and Stable Equilibria.”
Q.J.E. 102 (May 1987): 179–221.

Cho, In-Koo, and Sobel, Joel. “Strategic Stability and Uniqueness in Signaling
Games.” J. Econ. Theory 50 (April 1990): 381–413.

Chu, C. Y. Cyrus. “Primogeniture.” J.P.E. 99 (February 1991): 78–99.
Coopersmith, Stanley. The Antecedents of Self-Esteem. San Francisco: Freeman, 1967.
Crawford, Vincent P., and Sobel, Joel. “Strategic Information Transmission.”

Econometrica 50 (November 1982): 1431–51.
Dunn, Thomas, and Phillips, John. “Do Parents Divide Resources Equally among

Children? Evidence from the AHEAD Survey.” Aging Studies Program Paper
no. 5. Syracuse, N.Y.: Syracuse Univ., 1997.

Gale, William G., and Scholz, John Karl. “Intergenerational Transfers and the
Accumulation of Wealth.” J. Econ. Perspectives 8 (Fall 1994): 145–60.

Guinnane, Timothy W. “Intergenerational Transfers, Emigration, and the Rural
Irish Household System.” Explorations Econ. Hist. 29 (October 1992): 456–76.

Hurd, Michael D. “Savings of the Elderly and Desired Bequests.” A.E.R. 77
(June 1987): 298–312.

Lundholm, Michael, and Ohlsson, Henry. “Post Mortem Reputation, Compen-
satory Gifts and Equal Bequests.” Econ. Letters 68 (August 2000): 165–71.

McGarry, Kathleen. “Inter Vivos Transfers and Intended Bequests.” Manuscript.
Los Angeles: Univ. California, Dept. Econ., 1998.

Menchik, Paul L. “Primogeniture, Equal Sharing, and the U.S. Distribution of
Wealth.” Q.J.E. 94 (March 1980): 299–316.

———. “Unequal Estate Division: Is It Altruism, Reverse Bequests, or Simply
Noise?” In Modelling the Accumulation and Distribution of Wealth, edited by Denis
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