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AUCTIONS OF SHARES

ROBERT WILSON

Unit and share auctions, 67 5.—Formulation, 676.—No proprietary information,
677.—Proprietary information, 680.—Discriminatory pricing, 686.—Vickrey auctions,
687.—Conclusion, 688.

This paper compares the sale prices resulting from two different
types of auctions. In an ordinary “unit” auction an item is sold, to the
bidder submitting the highest bid, at a sale price equal to the highest
bid. In a “share” auction the bidders receive fractional shares of the
item at a sale price that equates the demand and supply of shares.
Several examples are studied in detail in order to obtain exact com-
parisons of the sale prices.

The main conclusion derived from this study is that a share
auction can yield a significantly lower sale price. In some cases the
share-auction sale price is only half of the unit-auction sale price.

UNIT AND SHARE AUCTIONS

In a unit auction there is a single indivisible item that is to be sold
to some one of the bidders. Each bidder submits to the seller a sealed
tender specifying a price bid for the entirety of the item. The seller
then awards the item to the bidder submitting the highest bid price
at a sale price equal to the highest bid price. This is the type of auction
used by the Department of Interior to sell leases of tracts on the Outer
Continental Shelf for oil and gas exploration and development.

In a share auction there is an item of which shares are to be sold
to several of the bidders. Each bidder submits a sealed tender speci-
fying a schedule of prices bid for varying fractional shares of the item.
An alternative, equivalent format is a schedule that for each possible
price per share specifies the number of shares requested. The seller
then selects that sale price such that the total of the shares requested
by all of the bidders matches the available supply of shares. Each
bidder receives the number of shares he requested at the sale price
and for these he pays the sale price per share. This type of auction is
a significant feature of the Phillips’ Plan for selling OCS leases. Ac-
cording to this proposal, the “item” to be sold in the auction would
be the collection of leases of all the tracts covering a specified geo-
logical structure; namely, a “unitized” lease of the entire structure.
The shares of the item to be sold in the auction would be working-
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interest shares of the unitized lease. The proposal is designed to enable
smaller firms and more risk-averse firms to participate in the auctions
of highly risky leases by allowing them to bid for fractional working-
interest shares, thereby reducing their capital requirements for
payment of the sale price, and also reducing their exposure to risk.

It is an important matter for public policy to determine whether
the adoption of a share-auction system for selling leases would be
likely to increase or decrease government revenues. Of course, some
increase can be expected if a share auction attracts more bidders and
allows each bidder to limit his exposure to risk; also, there are well-
documented benefits to be expected from the greater productive ef-
ficiency of unitized leases. The question remains, however, of whether
a share auction would enable the major firms (with ample capital and
negligible aversion to risk) to exploit the system by adopting a bidding
strategy that would reduce the sale price. If this kind of exploitation
is possible, then the benefits from a share auction may be more than
offset by the resulting loss of revenue to the government.

In the next sections the methods of game theory are used to study
share auctions and to compare them with unit auctions. Several ex-
amples are examined in detail in order to obtain exact characteriza-
tions of the sale prices resulting from the two types of auctions.

The main conclusion derived from this study is that a share
auction is subject to manipulation by the bidders, with the result that
the sale price is reduced significantly. In some cases the seller may lose
up to half of the unit-auction sale price by adopting a share
auction.

FORMULATION

I assume that the number of bidders is known beforehand by all
participants to be a fixed number n = 2. Moreover, in this paper I
consider only situations in which the bidders are entirely alike in their
characteristics; that is, the bidders are symmetric. In such a situation
whatever is an optimal bidding strategy for any one bidder must also
be an optimal strategy for any other bidder.! Thus, each bidder uses
the same optimal strategy in preparing his bid. The subsequent
analysis, therefore, is aimed at determining that strategy which is
optimal for any one bidder if each other bidder is using it. An optimal
strategy of this kind is a prevailing standard of behavior among the

1. That is, an optimal strategy is a symmetric Nash equilibrium.
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bidders that is the commonly used rule or procedure for preparing
bids.

The actual value of the item is assumed to be some number v. The
value v is the same for each bidder. In the case of an OCS lease, for
instance, the value is the discounted present value of the stream of
revenues obtained minus the costs incurred. Ordinarily the value is
not known with certainty at the time of the auction by any of the
bidders. In the next section, however, I shall first illustrate the analysis
by studying the special case in which the value is known with perfect
certainty, or at least no bidder has any proprietary information about
the value.

NO PROPRIETARY INFORMATION

The first example to be studied is the one in which no bidder has
any proprietary information about the value. This example includes
two different situations. In one situation each bidder knows the value
with certainty. In the other situation each bidder is uncertain but
lacking any proprietary information each bidder assesses the same
certainty equivalent for the value (namely, that certain amount which
he would accept in lieu of the uncertain true value).

Consider first the situation in which the value v is known with
certainty by each bidder. If a unit auction is used, it is evident that
the only optimal strategy is for each bidder to submit a bid price equal
to the value. Consequently, some one of the bidders will receive the
item at a sale price p*, which is equal to the value, namely p* = v, and
the seller receives the full value.

I claim that if a share auction is used, then it is possible for the
seller to receive a sale price p, which is only half of the value, namely
p® =v/2. This claim is substantiated by exhibiting an optimal strategy
that results in such a sale price. A strategy must specify a schedule
of bids for shares. Consequently, a strategy is a function, say x(p),
which specifies that if the sale price is p® = p, then the bidder requests
a fraction x (p) of the available shares. The sale price p® is then that
price p such that nx(p®) = 1, since there are n bidders submitting the
same schedules and the available supply of shares is 1. I assert that
an optimal strategy is to submit a schedule that at each price p re-
quests

1—-2p/nv

x(p)=——"-

shares. Note first that if each bidder uses this strategy, then the sale
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price, which satisfies nx(p? = 1, is p® = v/2, and the fraction of the
shares received by each bidder is x(p°) = 1/n. In order to demonstrate
that this is an optimal strategy, we must show that it is optimal for
any one bidder if each other bidder uses it. If n — 1 other bidders are
using it and the remaining bidder submits a schedule y(p), then the
clearing price p° will be the one satisfying

(n = Dx(p°) +y(p% =1,

and his profit will be

[v = py(p® = [v = p°]2p°/nv.
The price p° that maximizes his profit is p® = v/2. Since this is pre-
cisely the sale price that will result if he submits the schedule x, it
follows that in fact x is an optimal schedule to submit.

The above analysis is also valid if the value is uncertain, no bidder
has proprietary information, and no bidder is risk-averse. For one can
take v to represent the certainty equivalent of the value, which is just
its expectation.

Now suppose that the value is uncertain, and there is no pro-
prietary information, but each bidder is risk-averse. Since this sit-
uation is rather complicated mathematically, it will suffice for illus-
trative purposes to consider the special case of two bidders, n = 2, each
having a constant Arrow-Pratt measure of risk aversion r > 0 corre-
sponding to an exponential utility function U(z) = —(1/r)exp(—rz).
Also, assume that the value has a normal probability distribution with
mean m and variance s2. From these assumptions one can show that
the certainty equivalent of a bidder’s profit [v — p]x when the sale
price is p, he receives x shares, and v is uncertain, is

[m —plx — (r/2)(xs)2.

I claim that in this example an optimal strategy is to request at each
price p that number x of shares which satisfies the equation,

p=m+s?rx —r/2—c\/x/(1—x)],

where c is a specified positive constant. Such a schedule is depicted
in Figure I as the function p(x). The intersection of the two curves
p(x)and p(1 — x) at x = 1/2 shows how the sale price p® = p(1/2) is
determined. Note that the sale price can be made arbitrarily small
by increasing the undetermined constant ¢ to sufficiently large val-
ues.” It is worth noting that this is also an optimal strategy even if r

) 2. The constant ¢ must satisfy ¢ > r3v/3/8 in order to ensure that the schedule
1s a non-increasing function.
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Price p Supply x=1

p=m—r52/2

(o] x =1/2 x=1
Quantity x

FIGURE I

= 0, corresponding to the case of no risk aversion.

In order to demonstrate that this is an optimal strategy, we must
show that if one bidder uses it, then it is optimal for the other bidder
also. If one bidder uses it, then the second bidder wants to submit a
schedule that will maximize his certainty equivalent at the sale price.
If we regard p as a function of x, he wants to maximize

[m=p@ —x)]x = (r/2)s2x2

by choosing x, since the bidder knows that if he is to receive x shares,
then the sale price must be p® = p(1 — x). The share x that accom-
plishes this maximization is in fact x = 1/2, which is precisely the share
that the bidder would receive if he submitted the same schedule as
the other bidder. Consequently, the strategy is an optimal one for each
bidder.

From these two examples, both of which assume that no bidder
has any proprietary information, we see that share auctions may be
distinctly unfavorable to the seller. In the first example the seller
receives only half of the value no matter how many bidders there are.
In the second example, which allows uncertainty about the value and
risk aversion among the bidders, matters may be even worse for the
seller: there are many different optimal strategies corresponding to
the continuum of possible values of the arbitrary constant ¢, and if
¢ is sufficiently large, then the sale price, which is p® = m — ¢s2, may
be less than the sum of the two bidders’ certainty equivalents, avhich
is m — (r/4)s?, by an amount s2[c — r/4]. Since ¢ can be made as large
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as m/s? without driving the sale price below zero, we see that the
seller’s loss in revenue may be quite large if the mean m is sufficiently
large compared to the variance s2.

In the next section I shall demonstrate that these unfavorable
characteristics remain essentially unaltered when the bidders have
proprietary information.

PROPRIETARY INFORMATION

In this section I compare unit auctions and share auctions in
situations in which the bidders have access to proprietary information
about the value. The actual value v is assumed to be uncertain. In
particular, each bidder supposes that the actual value v is the reali-
zation of a random variable V which has the distribution function
G(v) = prob{V = v}. Each bidder i (i =1,...,n)has, however, been
able to obtain sample information about the value that is summarized
in an estimate or statistic s;. Again, each sample s; is considered to
be the realization of a random variable S;, which has the conditional
distribution function F(s;;v) = prob{S; =s;|V =v}given that V =y,
The bidders’ samples are assumed to be independently and identically
distributed given V. Bidder i’s sample s; is proprietary information
that only he among the participants is able to observe.

For a bidder participating in a share auction, a strategy is de-
scribed by a function x (p;s;) of both the price p and his sample s;, such
that after he obtains the information that S; = s;, then he submits a
schedule specifying that at each price p he requests x(p;s;) shares.
As before, an optimal strategy is one that is optimal for any one bidder
when each other bidder is using it. '

An optimal strategy can be characterized mathematically in the
following way. If each one other than bidder i is using the strategy x,
then when i uses a strategy y the sale price p° will be that price for
which

2 x(pY%sj) + y(p%s;) = 1.

J#=1
Note that the sale price p° depends upon all of the samples (s),
whereas bidder ; knows only his own sample s;. Hence, for him the sale
price remains uncertain. He can, however, assess the probability
distribution function of the sale price, which conditional on V is a
function,
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H(p,v,y) = prob{p® = p|V = v,y(p;s;) = y}

= prob {_Z‘ 2(p;S)) =1 =y(p;s)|V = v].
J#1

Using this function, i may express his expected utility when he uses

the strategy y as

E { ﬁ “u(v - p]y(p,-si»dH(p;v,y(p;si))},

and it is this expression that an optimal strategy must maximize by
choosing y = x. A solution to this maximization problem can be
characterized by using the Euler condition from the calculus of vari-
ations. For the particular problem at hand the Euler condition takes
the following simple form:

0= E{U’[(V = p)H,, + x(p;s;,)H,]|S; = s;},

where the marginal utility is U’ = U’([V — p]x(p;s;)) and H,and H,
are the two partial derivatives of H evaluated at y = x(p;s;). In ad-
dition to the Euler condition the calculus of variations requires also
that various transversality conditions are satisfied, but I shall not spell
these out here.

The Euler condition has an appealing intuitive interpretation
that it is worth emphasizing. It can be shown that the Euler condition
is, in this case, equivalent to the requirement that among all pairs (p,y)
the one that maximizes the conditional expected utility,

ENU([V = ply)|Si =s;, g x(p;Sj)=1- x(p;Si)],
J 13

is the choice (p,y) = (p, x(p;s;)). This property expresses two features
of an optimal strategy. First, the bidder i uses the information, that
if the sale price turns out to be p® = p, then 3 i=ix(p;s)) =1 —x(p;s;),
to infer information about the other bidders’ sample observations.
Second, he recognizes that the schedule he submits will affect the sale
price by moving it along the locus of price-quantity pairs (p,y) satis-
fying 2;_.:x(p;sj) = 1 — y; thus, he takes account of his schedule’s
effect on the sale price.

This interpretation is illustrated most clearly in the case of two
bidders (n = 2) with linear utilities (U’ = 1). In this special case
H(p,v,y) = F(s(p,1 = y),v), where s(p,1 — y) is that sample that would
lead the other bidder to request 1 — y shares at the price p. Consider
bidder i = 1 and let the other bidder bej=2.Letss =s(p,1 — x(p;s1))
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be the other bidder’s sample, and let p(1 — y;s5) be the price at which
bidder 2 requests 1 — y shares. Then the Euler condition can be recast
in the form,

0=E{V|[S; =51, S2=s9) — p(1 = x;59) + xp’(1 — x;52),

where x = x(p;s;). This expresses the fact that bidder 1 infers bidder
2’s sample observation ss from the price p, because he knows that p
= p(1 — x;s9) if p is the sale price; and, that the choice of y that
maximizes his conditional expected profit

[EtV|S) =51, S2 =59} — p(1 — y;59)]y

along bidder 2’s schedule is the choice y = x(p;s1).

With these general results as background, I now turn to the de-
tailed study of some examples.

Example 1. In this example I assume that the bidders have no
risk aversion, so that the utility function U is linear and U’ = 1. The
value V is assumed to have a gamma distribution with parameters m
and k, namely with mean m/k and variance m/k2 Conditional on V
= v each sample S; has a Weibull distribution with the distribution
function F(s;v) = e~vs~" (the subsequent analysis can easily be gen-
eralized to allow S;® to have a gamma distribution whose second
parameter is v). Actually, to simplify matters, I shall replace —s—?
by s so that each sample S; has the distribution function F(s;v) = evs
fors = 0.

I claim that in this example an optimal strategy for a share auc-
tion is

k — ns;
x(p;s;) = [1 - 2pn(n _l_n;)]/[n - 1].

Assuming that each bidder j > i uses this strategy one finds that the
Euler condition reduces to

(n—1n+m) _ (n=-1)(n+m)
2p2 Yo 2p

n+m
0=

>

k—s —2z
where
z=(n—1[k/n = (n+ m)y/2p],

for bidder i’s optimal choice of y, from which it follows that the in-
dicated strategy is optimal.
When each bidder uses the optimal strategy, the sale price is

po=-"" —CEWV|S =s1,...,5, = sl
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That is, regardless of the number of bidders the seller receives half
of the conditional expectation of the value given all of the bidders’
information. The share received by the ith bidder is

0.¢.) = — ﬂ] / -1
x(p%s;) = |1 =,k = ns) [n—1],
which one can show to be always nonnegative, and his expected profit
is this same fraction of the sale price.

An important feature of this example is the fact that the seller’s
part of the conditional expectation of the value that he receives as the
sale price stays at one-half for any number of bidders. He benefits not
at all from increased competition among the bidders as their number
increases.

This feature can be compared with the outcome of a corre-
sponding unit auction. Suppose that all of the shares are to be awarded
to the bidder submitting the highest bid price. A strategy in such a
unit auction is a function p(s;), which specifies for bidder i that if he
observes S; = s;, then he submits the bid price p(s;). I claim that the
optimal strategy for the corresponding unit auction is

(s)) = m+ 2 m+1
pis: m+1+n/(n—1) k—ns;
m+ 2

m+1+n/(n—1) ElVISl T r;l:?sj}.

This is verified by supposing that each bidder other than ; uses this
strategy and then showing that bidder i’s best response is to use the
same strategy. If each other bidder uses the strategy and bidder ;
submits the bid price q after observing that S; = s;, then he will be
awarded the shares if max;.;p(s 7) < g, in which case his profit is v —
g when V = v; or he will receive no shares and zero profit. Conditional
on V his probability of winning is

- n—1
prob ‘maxp(Sj) =q|V= v] =F (k a/q ,'v) ,
=L

wherea = (m+ 1)(m + 2)/(m + 1 + n/(n — 1)). His expected profit
is therefore

E {[V —q|F (}f_nm"/q;v)"_1 Isi = si]

=[ m+1 _ “ k—s; |m+1
k=sin =Dk =—a/g)/n ||k —sin 1)k — alg)/n]
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and it is this quantity that his optimal choice of the bid price ¢ must
maximize. In fact, one verifies, by setting the derivative of the ex-
pected profit equal to zero, that the optimal choice is q =p(s;). Thus,
the strategy is an optimal one for every bidder.

The sale price received by the seller in a unit auction is

m+ 2 m+1 v
m+1+n/(n—1) k- n(max;s;)

p* =maxp(s;) =
l

_ m+ 2
m+1+n/(n—-1)

The expectation of the sale price is the corresponding fraction of E{V}.
Observe that as the number n of bidders increases, the expected sale
price becomes very nearly equal to the expected value. In contrast,
the expected sale price received by the seller in a share auction under
the same circumstances is one-half of E{V} for any number of bidders.
Thus, the seller’s expected revenue is greater from a unit auction than
from a share auction, at least in this example, and the advantage of
a unit auction increases as the number of bidders increases.
Example 2. In this example I illustrate briefly the effects of risk
aversion in circumstances analogous to the second example in the
previous section. Each bidder has an Arrow-Pratt measure of risk
aversion that is a constant r > 0. The case of no risk aversion corre-
sponds exactly to r = 0 in the subsequent analysis. The value V has
anormal distribution with mean m and variance 1/h (h is called the
“precision”). Conditional on V = v, each sample S; has a normal
distribution with mean v and precision £’. Due to the mathematical
complexities involved, I present here only the special case of two
bidders, n = 2. I claim that an optimal strategy is to request at each

price p that number x = x(p;s;) of shares that satisfies the equa-
tion,

E [V’ max S; = max si}.

l

p hm+2h’sl+rx—§—c\/ ol ],

1
h + 2h’ 1—x

where ¢ is a positive constant that is arbitrary except for the re-
quirement that ¢ > r3 1/3/8 in order to ensure that the schedule is a
non-increasing function. The verification that this is an optimal
strategy is obtained by checking that it satisfies the Euler condition
and the transversality conditions. Two typical schedules are depicted
in Figure IT to show how the sale price is determined. Each schedule
is tangent to the two lines x = 0 and x = 1, and to one of them at p =
—; and there is an inflection point at x = 1/4.
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Price p

1'X(D;Sz)

x(p; sy)

|
|
|
|
|
|

0 x(p°; s7) 1
Quantity x

FIGURE II

If both bidders observe the same sample observation s; = s, then
the sale price is

(c/2)

0= hm + 2h’s —c] = E{V|S; = 5,8 = §} — — =2
PO gy Pt 2 =] = EIVIS) = 5,8, = o} (h + 21")
depending on how large ¢ is compared to the posterior precision h +
2h’. On the other hand, if bidder 2’s sample observation is s3 = +w,
then the sale price is

r/2
p°=E{V|S| =5,,8; = s} — (7(?;1,)
depending on how large the risk aversion is, but note here that the
conditional expectation of the value is based on So = sy rather than
the actual fact that Sy = 4. In general, the allocation of shares is the
solution of a cubic equation in x. If the risk aversion is negligible, say
r = 0, then one can solve explicitly for the sale price to obtain

1
h + 2k’
The sale price is reduced as the parameter c is increased, and it is
further reduced if the risk aversion r is positive.

I'have presented the analysis of the corresponding unit auction
in an earlier paper [Wilson, 1969]. The relevant feature to be noted

p®=E{V|S; =518 = 59} — V|hs1 = hso? + c2.
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here is that the share auction invariably yields a lower sale price to
the seller.

In addition to these two examples others can be analyzed by
solving the Euler condition, using the transversality conditions to
determine the constants of integration, by employing numerical
methods to integrate the resulting partial differential equation. I have
not succeeded in solving any other examples in explicit algebraic
form.

DISCRIMINATORY PRICING

It is sometimes argued that in a share auction the seller can in-
crease his revenue by employing discriminatory pricing of the shares
to each bidder. This argument is false, however, since the bidders will
respond to this maneuver by altering their strategies.

Suppose that in a share auction with nondiscriminatory pricing
a bidder were to submit a schedule specifying that if the sale price is
p, then he requests x(p) shares, or equivalently, he requests x shares
at the sale price p(x). Similarly, suppose that in a share auction with
discriminatory pricing he requests x shares at the sale price ¢ (x). If
the pricing is nondiscriminatory, he will pay p(x)x to the seller if the
sale price is p® = p(x) and he receives x shares. If the pricing is dis-
criminatory, he will pay % q(v)dy if the sale price is ¢° = g(x) and
he receives x shares. Each bidder will receive the same allocation of
shares and pay the same amount to the seller if his two strategies in
the two types of auctions are related by the equation,

px)x = fo " a)dy.

Differentiating this equation with respect to x yields the relation-
ship

q(x) = p(x) + xp’(x).

Thus, from his strategy for an auction with nondiscriminatory pricing,
he can easily derive a corresponding strategy for an auction with
discriminatory pricing. Moreover, it is simple to verify that if p(x)
were an optimal strategy with nondiscriminatory pricing, then also
g(x) is an optimal strategy with discriminatory pricing. The conse-
quence for the seller is that the sale price is reduced by converting to
discriminatory pricing but his revenue remains unchanged, and the
allocation of shares among the bidders remains unchanged.
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VICKREY AUCTIONS

Another variant of the share auction that has been proposed is
one described by William Vickrey [1961]. In a Vickrey auction the
seller offers to each bidder a “rebate.” The rebate is designed to induce
the bidders to submit higher schedules so that the sale price will be
equal to the expectation of the value; however, the seller’s net revenue
is less than the sale price by the amount of the rebates he must pay.
I'shall show that a Vickrey auction need not increase the seller’s net
revenue.

In Vickrey’s form of a share auction a bidder i who receives x
shares when the sale price is p obtains a profit of [v — p]x + B;(p) if
the realized value is V = v, where B;(p) is the amount of the rebate
he receives from the seller. The rebate is calculated as follows. Suppose
that each bidder j 5 i submits the schedule x (p;s ;). Let p; be the sale
price that would have resulted in the absence of bidder i, namely

2 x(pisj) = 1.
J#1

Then bidder i’s rebate is

Bip)=p-pi— " 2 x(g;s;)dg.
: pi =1
Using the same methods employed before, one can show that an op-
timal strategy for a bidder in a Vickrey auction must satisfy the fol-
lowing property: at each price p the number of shares requested,
namely x(p;s;), must be the same as the choice of vy, which maximizes
his conditional expected utility:

CE{U(V - ply + Bi(p))|S; = s, 2 x(p;Sj))=1- x(p,‘si)]-

JF1
In the next paragraphs I examine several examples of Vickrey
auctions.
Example 1. This example is the same as the previous Example
1 except that a Vickrey auction is used. Omitting the derivation here,
I claim that an optimal strategy is

x(p;si) = (1/n)[1 = c(k — ns; — (m + n)/p)],

where the parameter ¢ can be any positive constant. If each bidder
uses this strategy, then the sale price is

0 m+n

D —k_—z:iSi=E{V|S1=sl,...,Sn=sn}
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as was intended in the original design of the Vickrey auction. Thus,
the sale price is the expectation of the value of the shares. Neverthe-
less, the seller’s net revenue is

1 m+n

S | ]
Z B (po) Z p; = k- Z}#;SJ + 1/ncJ

=_ZE{VISi=_,O#i)Sj=Sj.
n i nc

In particular, observe that if the parameter ¢ is chosen to be suffi-
ciently small, then the seller’s net revenue, after payment of the
- bidders’ rebates, is nearly zero. This feature indicates that the Vickrey
auction is subject to manipulation by the bidders, at least in this
example.
Example 2. This example is the same as the previous Example
2 except that a Vickrey auction is used; also, I assume that there is no
risk aversion so that r = 0. Omitting the derivation here, I claim that
an optimal strategy is

x(p;s;) = (1/n)[1 + c(hm + nh's; — p[h + nh']],

where again the parameter ¢ can be any positive constant. It is true
here as well that the sale price is the conditional expectation of the
value, but the seller’s net revenue may be made arbitrarily small by
making the parameter ¢ sufficiently small.

CONCLUSION

I conclude from this study of examples of share auctions that,
compared to unit auctions, the seller may experience a considerable
reduction in revenue. The loss in revenue stems from two features:
as in Example 1 it may be that the seller obtains no advantages from
increased competition as the number of bidders increases, or as in
Example 2 the multiplicity of optimal strategies enables the bidders
to choose an optimal strategy that is severely disadvantageous to the
seller. Altering the procedure to enforce discriminatory pricing, or
to offer incentives to the bidders as in a Vickrey auction, does not
improve matters for the seller.

This conclusion does not necessarily imply that a share auction
will actually prove to be disadvantageous to the seller in practice. It
may be that the bidders do not adopt optimal strategies, or do not
adopt the same optimal strategy, or that other considerations lead
to the choice of an optimal strategy that is favorable for the seller.
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Also, the generality of the conclusions derived from the few examples
studied here is open to question.
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