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Very Short Primality Proofs

By Carl Pomerance*

Dedicated to Daniel Shanks on the occasion of his 10th birthday

Abstract. It is shown that every prime p has a proof of its primality of length 0(logp)

multiplications modulo p.

1. Introduction. In 1975, Pratt [8] showed that the prime recognition problem is in

the complexity class NP. That is, for each prime p there is a short (polynomial time)

proof that p is prime. Finding the short proof may well take exponential time, but

at least such a short proof always exists.

Pratt's proofs (or "certificates" as they are often called) are based on the old

theorem of Lucas that p is prime if and only if there is some g such that

(1.1) gp~l = lmodp   and    g(p~l)/q £ 1 mod p   for all primes q \ p - 1.

Thus the proof that p is prime also involves proofs that the various prime factors q

of p — 1 are prime, and so on. There is no combinatorial explosion, for as Pratt

showed, the total number of primes involved is 0(\ogp). Thus verifying a Pratt

certificate takes 0(\og2p) modular multiplications with moduli all at most p.

Measured in bit operations, Pratt's proofs thus have length 0(log4p) or 0(log3+ep)

for every e > 0, depending on whether one uses a naive or a fast multiplication

subroutine.

For some primes p, Pratt's certificate is considerably shorter. For example, if

p = 22 +lisa Fermât number with k > 1, then p is prime if and only if

(1.2) 3(/>-D/2 = _imodp.

This theorem, known as Pepin's test, gives a Pratt certificate for Fermât primes. The

work in verifying (1.2) is just 2k - 1 = [log2 p] - 1 multiplications (in fact, squar-

ings) modulo p.

However, it is not known if there are infinitely many Fermât primes—the

conjecture is that there are not. Although there are probably infinitely many primes

p with a Pratt certificate involving just 0(\ogp) modular multiplications, this is also

not known.

Another class of primes with very short primality proofs is the class of Mersenne

primes. For q an odd prime, it is known that p = 2q - 1 is prime if and only if

s    x = 0 modp, where sx = 4 and, in general, sk+x = s2 - 2 mod p. This result,
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316 CARL POMERANCE

known as the Lucas-Lehmer test, takes q - 2 = [log2p] - 1 squarings modulo p

and a like number of subtractions. Thus the Lucas-Lehmer test provides an 0(log p )

certificate for Mersenne primes p. It is conjectured that there are infinitely many

Mersenne primes.

In this paper we shall show that every prime p has an 0(log p ) certificate. More

precisely, we shall show the following result.

Theorem 1. For every prime p there is a proof that it is prime which requires for its

verification (f + o(l))\og2p multiplications modp.

As with the recent Goldwasser-Kilian [4] primality test, this theorem exploits some

deep results on elliptic curves over finite fields. In particular, p is shown to be prime

by showing that otherwise, for any prime factor r < Jp~ of P, there is an elliptic

curve defined over Z/r which has more points than allowed by the Hasse-Weil

theorem. This contradiction shows that p has no prime factor r < \Jp~ and so must

be prime. This idea is common to the Goldwasser-Kilian test and to the certificate

described here. However, the Goldwasser-Kilian test requires an iteration of the

basic step O(logp) times, while the certificate described here need not be iterated.

Although it is conjectured that every prime has a Goldwasser-Kilian certificate, it

has only been proved that most primes have such a certificate. In fact, they prove the

stronger result that for most primes the certificate can be found in expected

polynomial time. If it exists, a Goldwasser-Kilian certificate has length 0(log2p)

modular multiplications with moduli at most p and is thus comparable with a Pratt

certificate.

Miller [6] has shown that on the assumption of the Extended Riemann Hypothesis

(ERH), p > p0 is prime if and only if it passes strong pseudoprime tests for each

base b with 1 < b < c0log2p. From recent work of Bach [1] (see Review 5 in this

issue of Mathematics of Computation) the constant c0 may be chosen to be 2 and p0

may be 13. It is not so important for our purposes what a strong pseudoprime test is,

except that it takes 0(\ogp) multiplications modp to verify. Thus the Miller

ERH-conditional certificate takes 0(log3 p) multiplications mod p to verify.

Finally, a remark should be made about lower bounds for the lengths of the

above-mentioned certificates. The Miller ERH-conditional certificate is easy to

examine. There is some positive constant cx and infinitely many primes p such that

the certificate for p involves at least cx\og3p multiplications modp. For example,

any prime p = 3 mod 4 will do. It is conceivable that if p - 1 is divisible by a high

power of 2, then a strong pseudoprime test for p might take as few as O(loglogp)

multiplications mod p, but this is the absolute minimum. Thus for all primes p, the

Miller ERH-conditional certificate is at least of length c2 log2p log log p multiplica-

tions modp. It is my guess that the correct universal lower bound is actually of

order log3 p, but this may be difficult to prove.

For the Goldwasser-Kilian certificate, the minimal length depends on the exact

protocol followed. The general iteration step involves replacing p with a prime

q = p/2, but there are variations where q ~ p/m and m = 0(log'3 p) for some c3.

If the first version is followed, the certificate is at least of length c4log2p modular

multiplications with moduli at least yfp. If the latter version is used, then the

number of multiplications is at least c5 log2 p/\og log p.
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VERY SHORT PRIMALITY PROOFS 317

We have seen that sometimes a Pratt certificate is of length O(logp) multiplica-

tions mod p and that conjecturally there are infinitely many such primes p. This is

optimal—that is, for some c6 > 0, a Pratt certificate is always at least of length

c6logp multiplications modp. It is almost certainly true that there are infinitely

many primes p whose Pratt certificate is not of length O(logp) multiplications

mod p, but I have not been able to prove this.

In view of (1.1), one possible way of showing that sometimes a Pratt certificate is

fairly long is to show there are primes p for which p - 1 has many distinct prime

factors. This is in fact not so hard. It is possible to show via Linnik's theorem in

analytic number theory that there is a positive constant c7 and infinitely many

primes p for which p - 1 has at least c7logp/loglogp distinct prime factors q. It

would thus seem that verifying (1.1) would take at least order log2p/loglogp

multiplications modp. However, from Yao [14] it is possible to reduce this to

0((logp/loglogp)2), and it is not inconceivable (but unlikely) that it could be

reduced to O(logp).

The basic step (1.1) in Pratt's algorithm needs to be iterated for the various primes

q that divide p - 1. Thus, another possible way of showing that sometimes a Pratt

certificate is fairly long is to show that there exist long chains of primes p =

q0,qx,...,qn where

9/+11 ?< - ! for / = 0,..., í - 1 and q, > ps.

Specifically, if for some fixed 8 > 0 there are such chains of primes with t arbitrarily

large, then there would be infinitely many primes p whose Pratt certificate was not

of length O(logp) modular multiplications with moduli between ps and p. It is not

known, however, if there are such long chains of primes. I conjecture that there are.

Specifically, there is a heuristic argument (note presented here) that there is some

c9 > 0 and infinitely many primes p = q0 for which there is a chain of primes of

length t > c9 log p/\og log p and qt > pl/2. If this is correct, a Pratt certificate

would be of length at least c9log2p/loglogp modular multiplications with moduli

at least p1/2 for infinitely many primes p.

Because we know of no shorter primality proofs than Pepin's test or the Lucas-

Lehmer test, it is tempting to conjecture that but for the constant factor 5/2,

Theorem 1 is optimal. This conjecture could be made in either a weak or strong

form. The weak conjecture is that there is some c10 > 0 and infinitely many primes

p such that any certificate of primality for p has length at least cxo log p multiplica-

tions mod p. The strong conjecture is that this is true for all primes p. (Because the

exact complexity of one modular multiplication is uncertain and because all known

primality certificates are dominated by modular multiplications, it has been conveni-

ent to measure lengths with the nonstandard unit of one modular multiplication.)

Although tempting to make such conjectures, I shall resist since I know of no

heuristic supporting them, nor of any direct numerical evidence (cf. Shanks [11]).

2. Background Results on Elliptic Curves Over Finite Fields. Until recently, the

theory of elliptic curves over finite fields was perhaps not so well known in the

computational number theory community. But with H. W. Lenstra, Jr.'s elliptic

curve method for factoring [5] and the Goldwasser-Kilian elliptic curve method for

primality testing mentioned in Section 1, it is becoming standard fare. Nevertheless,

in this section some basic results are briefly presented.
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Let p > 3 be prime. Although the theory goes through over arbitrary finite fields

of characteristic p, it will be simpler if we restrict ourselves to the prime field Z/p. If

a, b are integers with

(2.1) b(a2 - 4b) ^0 modp,

then

(2.2) y2z = x3 + ax2z + bxz2

defines an elliptic curve Epb over Z/p. Thus Epb is the set of triples (x, y, z) g

(Z/p)3 - {(0,0,0)} with homogeneous coordinates (so that (x, y, z) and (cx, cy, cz)

are considered the same point when c J= 0) that satisfy (2.2). The point (0,1,0) G Epb

is denoted 0. Note that if (x, y, 0) G EPM then (x, y, 0) = 0.

There is a natural way we can "add" points on Epb that makes Epb into an

Abelian group with identity 0. We shall be particularly interested in the formula for

adding a point to itself, i.e., doubling a point. If P = (x, y, z) g (Z/p)3 satisfies

(2.2) and y, z # 0, then 2P = (x', y', z'), where

(2.3) x' = (x2 - bz2)2,       z' = 4xz(x2 + axz + bz2).

The formula for y' is more complicated and not needed here, but note that from

(2.2), if we know x and z and if z + 0, then

y2 = (x3 + ax2z + bxz2)/z.

If y - 0, then 2P = 0. If z = 0, then as mentioned, P = 0, so that also 2P = 0.

Thus the points of order 2 in the group Epb are precisely those points with y = 0.

Note also that (0,0,1) g Epb, so that Epb always has at least one point of order 2.

In fact (2.2) is the general equation for an elliptic curve with a point of order 2.

Although the transformation (2.3) does not apply when P is a point of order 2, it

can be applied to recognize points of order 2.

Lemma 2.1. If P = (x, y, z) G Egb, then P has order 2 if and only if z * 0 and

z' = 0, where z' is given by (2.3).

Proof. Let P = (x, y, z) G Epb. Recall that P = 0 if and only if z = 0, so assume

z =£ 0. As we have seen, P has order 2 if and only if y = 0. But from (2.2), y = 0 if

and only if x3 + ax2 + bxz2 = 0 if and only if z' = 0.   □

Iterating this idea we may use the transformation (2.3) to recognize points of order
2k.

Lemma 2.2. If P = (x0, y0, z0) G Epb, let (xt, z,) G (Z/p)2 be the result of

applying the transformation (2.3) i times to the initial pair (x0, z0). Also let z_x = 1.

Then P has order 2k if and only ifzk = 0 andzk_x # 0.

Proof. The result is obvious if k = 0 and is Lemma 2.1 if k = 1. Suppose k > 1,

z¿ = 0, and zk_x =£ 0. Then each of z0, zx,..., zk_x + 0. Since zx + 0, it follows

that P does not have order 1 or 2 and that there is some yx g Z/p with

2P = (x,, yx, zx). That is, we are saying that since P does not have order 1 or 2, the

transformation (2.3) is valid for finding the first and third coordinates of 2 P.

Similarly, if z2 # 0, then 2P does not have order 1 or 2 and there is some y2 g Z/p

with 4P = (x2, y2, z2). Continuing in this fashion, we deduce that there are j>, g Z/p
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for i up to k — 1 with 2'P = (x¡, y,, z¡). Since zk_x ¥= 0 and zk = 0, Lemma 2.1

implies that 2k~lP has order 2. That is, P has order 2k.

Now suppose P has order 2k where k > 1. Then there is some v^.j g Z/p with

2*~1P = (xk_x, yk-X, zk-i). Since 2*"1i> has order 2, it follows that zk_x ¥= 0 and

**-0.   □
Our primality certificate shall make use of the following three results.

Theorem 2.1. The order of the group Epb is p + 1 - t, where \t\ < 2\[p .

Theorem 2.2. For each even integer t satisfying \t\ < 2y^p there is some elliptic

curve Epb of order p + 1 — t.

Theorem 2.3. The group Epb is either cyclic or the direct sum of two cyclic groups.

Of course, Theorem 2.1 is the Hasse-Weil theorem specialized to even-order

elliptic curves over fields of prime order. Theorem 2.2 is a special case of a theorem

of Waterhouse [13] which itself has roots in work of Deuring [3] (see Schoof [10]).

Theorem 2.3 is an elementary result on elliptic curves over finite fields; see, for

example, Täte [12].

3. Very Short Primality Proofs. Suppose n is an integer suspected to be prime. In

this section we show how the results of Section 2 can be used to prove n prime.

Theorem 3.1. Suppse n, a, b, k are positive integers satisfying

(3.1) (6b(a2-4b),n) = 1,       a < n, b < n,

(3.2) n > 34,       2)fn~ < 2k < 4jn~.

Also suppose P = (x0, y0, z0) G Z3 with 0 < x0, y0, z0 < n satisfies (2.2) modulo n.

Let {(x¡, z,)} be the sequence of integer pairs with 0 < x¡, z, < n obtained by applying

the transformation (2.3) modulo n to the initial pair (x0, z0) i times. If (zk_x, n) = 1

and zk = 0, then n is prime.

Proof. Suppose not, so that n has a prime factor p «s -/ñ. From (3.1), p > 3 and

Epb is an elliptic curve over Z/p. If u g Z, let ü denote the residue of u mod p in

Z/p. Let P = (xQ,y0,z0). Since p\n, applying the transformation (2.3) /' times to

the initial pair (xQ, z0) gives (3c,, z,). Thus zk_x + 0 and zk = 0, so that by Lemma

2.2, P has order 2k in Epb. But (3.2) implies 2k > p + 1 + 2y[p, contradicting

Theorem 2.1. Thus n is prime.

Theorem 3.2. Suppose n, a, b, k are positive integers satisfying (3.1) and (3.2) and

suppose k = kx + k2, where kx, k2 are positive integers. Suppose P = (x0, y0, z0),

Q = (u0, vQ, w0) satisfy (2.2) modulo n, the coordinates of P and Q are in [0, n - 1],

and {(x¿, z,)}, {(«,., w,.)} are the sequences of integer pairs in [0, n ~ l]2 obtained by

repeatedly applying the transformation (2.3) modulo n to the initial pairs (xQ, zQ),

("o'^o)' respectively. If

(3-3) (**,-i»B) = !»    zkx - 0,    (*%_!,«) = 1,    wki = 0,

(3-4) (xkl-xwk^x - uki_xzki_x,n) = 1

hold, then n is prime.
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Proof. If not, then n has a prime factor p < 4n~. As in the proof of Theorem 3.1,

(3.3) implies the points P,Q g Epb have orders 2*1,2*2, respectively. Thus

and so (3.4) imphes that 2kl~lP + 2kl~lQ. It follows that ££fc contains a subgroup

isomorphic to Z/2*' X Z/2*2 and thus #Epb > 2*> + /i2 = 2*.' Thus, as before, (3.2)

contradicts Theorem 2.1.   D

If n > 34 is prime and a, b, k, P exist satisfying the hypotheses of Theorem 3.1,

we shall say that n has a "type 1" certificate of primality. Similarly, if the

hypotheses of Theorem 3.2 hold, we shall say that n has a "type 2" certificate of

primality. The next theorem establishes our main result, but with the larger constant

7/2. The reduction to 5/2 is established in the remarks following the proof.

Theorem 3.3. If n > 34 is prime, then it has either a type 1 or type 2 certificate of

primality. Moreover, such a certificate may be verified in \ \og2n + 0(1) multiplica-

tions mod«, flog2« + 0(1) additions mod«, and one greatest common divisor

computation with n and a natural number smaller than n '.

Proof. To see the length of a type 1 or type 2 certificate, just note that on input of

x, z, the transformation (2.3) allows us to compute x', z' with 7 multiplications

mod n and 5 additions mod n. Indeed, by first computing the products

x2, z2,bz2, xz,   and    axz

mod n, the value of x' can be computed with one addition (actually a subtraction)

and one more multiplication. The value of z' can be computed with two additions to

get x2 + axz + bz2, a multiplication by xz, and two more additions to simulate

multiplying by 4. Moreover, since the transformation (2.3) is repeated k = \\og2n

+ 0(1) times, the assertion in the theorem about the length of a type 1 or type 2

certificate is now apparent.

To show the existence of a type 1 or type 2 certificate, first note that if n is odd

there is always a unique power of 2 satisfying 2]/n < 2k < 4{n. Moreover, there

must be some integer m with

(3.5) n + 1 - 2\fn~ < m < n + 1 + 2\fn~,       m = Qmod2k.

If « is prime, then by Theorem 2.2, there is some elliptic curve É£h of order m. If

there is a point P g E^b of order 2k, then P satisfies the hypotheses of Theorem 3.1

and n has a type 1 certificate. If there are points P,Q ^ E£b and positive integers

kx, k2 with kx + k2 = k, o(P) = 2k\ o(Q) = 2k\ and 2k^lP * 2k'~lQ, then P, Q

satisfy the hypotheses of Theorem 3.2 and n has a type 2 certificate. From Theorem

2.3, one of these two possibilities must exist for the curve £a" b.   D

Remarks. 1. The g.c.d. operation in Theorem 3.3 can be accomplished in time

comparable to 0(1) multiplications mod«, provided the naive multiplication algo-

rithm is used. If a fast multiplication algorithm is used, the comparison is harder to

make. But in any case, the g.c.d. can always be accomplished in 0(log2«)-bit

operations using only naive methods, and in 0(log«(loglog«)2logloglog«)-bit

operations using Schönhage's algorithm [9].
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2. Suppose p > 3 is prime and (b/p) = 1. Then there is some c G Z/p with

b = c2, c =£ 0. For x g Z/p, let x = x/c. Using the homogeneity of the coordinates

of the points on Epb, we may replace (2.3) with

x' = c-3(x2-c2z2)2 = c(jc2-z2)2,

(2 3)'
z' = 4c~3xz(x2 + axz + c2z2) = 4Jcz(Jc2 + ac~lxz + z2).

Consider now the transformation (cf. Montgomery [7] and Chudnovsky and Chud-

novsky [2])

(3.6) u' = (u2-v2)2,        v' = 4uv(u2 + ac^uv + v2).

If (2.3)' is applied /' times to the initial pair (x, z), getting (x¡,z¡), and (3.6) is

applied i times to the initial pair (u, v), getting («„ v¡), then

u = x, v = z    imply    u, = x¡, v¡ = z¡.

Thus, in Theorems 3.1 and 3.2 we may use (3.6) instead of (2.3) or (2.3)'. Following

Montgomery [7], with (3.6), («', v') can be computed from (u, v) in 5 multiplications

modulo p and 4 additions modulo p. Indeed, by computing

u - v,    (u - v) ,    u + v,   (u + v) ,   (u - v) (u + v) ,

the value of u' may be computed with 3 multiplications and 2 additions. Moreover,

since 4uv = (u + v)2 - (u - v)2 and

9-1           ?     /         \2      ac'1 — 2
u   + ac   uv + v  = (u + v)  H- • 4uv,

we may compute v' in 2 more multiplications and 2 more additions, provided

(ac'1 - 2)/4 mod « has been precomputed.

We conclude that if « > 34 is prime, the hypotheses of either Theorem 3.1 or 3.2

hold, and (b/n) = 1, then « has a certificate of primality of length (f + o(l)) log2 «

multiplications mod «.

3. We now show that every prime n > 34 has either a type 1 or type 2 certificate

with (b/n) = 1 and so, by Remark 2, has a certificate of length (f + o(l))log2«

multiplications mod«. I was originally only able to show this for primes « = 1

mod 4, but thanks to a suggestion from Hendrik Lenstra, this can now be shown for

all primes and by a simpler argument.

If « > 34 is prime and m is given by (3.5), then 8|w. Thus, by Theorem 2.3, if

E"b is an elliptic curve of order m, then E"b has a point P of order 4. Say

2P = (a,0,1). Making the change of variables x -» x + a in (2.2), we may assume

2P = (0,0,1). But if (s, t, 1) is on £a% and 2(s, t, 1) = (u, v, 1), then from (2.3),

u = (s2 - b)2/4t2.

Applying this to P = (s, t, 1), we deduce that s2 - b = 0 mod «, so that (b/n) = 1.

4. It finally should be remarked that every prime « > 34 has both type 1 and type

2 certificates. Indeed from Proposition 2.2 and Theorems 4.6 and 4.9 of Schoof [10]

it follows that Theorem 2.2 above is true with the extra condition that E"b does not

contain the subgroup Z/2 X Z/2, and it is also true with the extra condition that

E"b does contain such a subgroup. (We have applied Schoof's Theorem 4.9 to
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2-torsion points, and it is stipulated in this result that it should only apply to

«-torsion points with u odd. However, from the proof of this theorem, it holds for all

u when working over a prime field.)
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