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Elliptic Curves Over Finite Fields

and the Computation of Square Roots mod p

By René Schoof

Abstract. In this paper we present a deterministic algorithm to compute the number of

F^-points of an elliptic curve that is defined over a finite field Fv and which is given by a

Weierstrass equation. The algorithm takes 0(log9 q) elementary operations. As an application

wc give an algorithm to compute square roots mod p. For fixed .ï e Z, it takes 0(log9p)

elementary operations to compute fx mod p.

1. Introduction. In this paper we present an algorithm to compute the number of

F(/-points of an elliptic curve defined over a finite field F , which is given by a

Weierstrass equation. We restrict ourselves to the case where the characteristic of F^

is not 2 or 3. The algorithm is deterministic, does not depend on any unproved

hypotheses and takes 0(log9<7) elementary operations (bit operations).

As an application, we give an algorithm to compute the square root of x e

Z mod p, whenever x is a square mod p. This algorithm is deterministic and for

fixed x g Z it takes 0(log9p) elementary operations; here the O-symbol depends on

x; in general, the algorithm takes 0((|x|1/2+elog p)9) elementary operations for any

e > 0. If one applies fast multiplication techniques, the algorithm will take

0((|x|1/2log p)6+f) elementary operations for any e > 0.

Let £ be an elliptic curve defined over the prime field Fp and let an affine model

of it be given by a Weierstrass equation

Y2 = X3 + AX + B    (A,BeFp).

An explicit formula for the number of F^-points on £ is given by

«(,,)-! +   E  ((ii±^±*) + 1).
.v mod p \ \ " I I

Here (f) denotes the Legendre symbol. Computing #E(Fp) by evaluating this sum

in a straightforward way takes 0(p1 + E) elementary operations; this is the way Lang

and Trotter do it in their paper [6]; see also [1], [2]. For small p, this method is

practical. Another method which works well in practice, even for primes of moderate

size (up to 20 decimal digits say), was suggested to me by Lenstra and is based on an

algorithm of Shanks to compute the class groups of complex quadratic orders.
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484 RENE SCHOOF

It runs as follows: one tries to compute a point P = (x, y) in £(F ); in practice

there is no problem in finding a point P, but I do not know how to prove that

computing a point in E(Fq) is easy. Next, one searches for a number r satisfying

rP = 0 and q + 1 - 2\[q < r < q + 1 4- 2\/q. Here we use the—additivity written

—group structure on E(Fq) and the estimate

|#£(F?)-(^ + l)|<2v^;

these matters are explained in the next section. The searching for the number r may

be done by means of Shanks' baby-step-giant-step techniques. If r is the only

number satisfying the conditions above, we have that #£(Fi) = r. If not, we can

easily compute the subgroup generated by P, which is of order < 4\fq, and we pick

a new point Q and compute an integer r such that rQ = 0 as we did before; we

determine the group generated by the points P and Q and so on, until the group

generated by the points we picked has its order 5 satisfying q + 1 - 2\fq < 5 < q +

1 + 2\fq ; if q > 37, we must have that #E(Fq) = s. For details concerning these

strategies see [10]. The computations in the group E(Fq) can be done using the

addition formulas given in the next section. In practice, this algorithm runs in time

0(q1/4).

Computing square roots mod p can be done using Berlekamp's probabilistic

method to find zeros of polynomials mod p; this algorithm is expected to take

0(log3p) elementary operations [4]. Computing \[q mod p using the deterministic

algorithm given by Shanks in [11] takes 0(log4p) elementary operations; however,

since in this algorithm one needs a quadratic nonresidue mod p, an unproved

hypothesis, viz. the Riemann hypothesis for the £-function attached to the quadratic

character mod p, is needed to prove this.

Note that both of these algorithms to compute f~x mod p have running times

independent of x.

2. Elliptic Curves Over Finite Fields. Let F^ be a finite field with q elements of

characteristic p not equal to 2 or 3; let £ be an elliptic curve over F . An affine

equation for £ can be given as follows:

(1) Y2 = X3 + AX + B

with A, B&Fq and 4,43 + 27£2 # 0.

The set of F^-points of £ will be denoted by E(Fq) and consists of the solutions

(x, y) of (1) and the point at infinity which will be denoted by 0. In general, for any

field K with Fq <z K <z Fq, we denote by E(K) the set of ^-points of £, i.e., the

solutions (x, y) of (1) with x, y e K and the point at infinity. It is well-known that

E(Fq) carries the structure of an Abelian group; the point at infinity plays the role of

the zero element of the group and all subsets E(K), where AT is a field satisfying

Fqcz K cz Fq, are, in fact, subgroups. The addition laws can be given very explicitly

as follows:

If£ = (x, y) e £(fJ    then -P = (x, -y).

Let Px = (xx, yx) and P2 = (x2, y2) e E(Fq) both not equal to 0 and assume that

Px + P2 ¥= 0. If £, ¥= P2, we have that xx + x2 and we put X = (y2 - yx)/(x2 - xx),
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ELLIPTIC CURVES OVER FINITE FIELDS 485

otherwise we have that^ ¥= 0 and we put X = (3xx + A)/2yx. Put £3 = (x3, y3) =

Px + £2.We have that

(2) x2 = -xx - x2 + X2,       y3 = -yx - \(x3 - xx),

see Lang [5].

The ring of endomorphisms of £ that are defined over F^ is denoted by End F £

and is either an order in a complex quadratic number field of a noncommutative

ring of Z-rank = 4. The same holds for Endp £, the ring of endomorphisms that are

defined over F^; we call an elliptic curve £ over Fq super-singular, if Endp £ is a

noncommutative ring.

By </> we denote the Frobenius endomorphism of an elliptic curve £ that is defined

over F^; this endomorphism acts on £(F ) as

(x,y)^(x",y").

In EndF £ the Frobenius endomorphism satisfies a unique relation

(3) <t>2 - t<t> + q = 0       (reZ).

We call / the trace of the Frobenius endomorphism. It holds that

(4) |/| < 2^/q        (Riemann hypothesis)

and that

(5) E(Fq) = q+\-t.

For all these facts see, for instance, [12]. The absolute value of / is obviously

bounded by q + 1 as is easily seen from the covering £ -» P1 via (x, y) '-> x of

degree two. For our applications the latter bound is sufficient.

Next, we study the structure of E(Fq) as an Abelian group and as a Gal(F?/F9)-

module in more detail. The group £(F ) is infinite torsion; if n g Z is not divisible

by p, then E[n], the subgroup of points in £(F ) that are killed by n or the «-torsion

points, is isomorphic to Z/«Z X Z/nZ. The group of points in £(F ) killed by p,

that is £[p], is either zero or cyclic of order p, depending on whether the curve is

super-singular or not.

We introduce polynomials *„(X, Y) g Fq[X, Y) for n e Z>_1; cf. [5].

•*_X(X,Y) = -\,    %(X, y) = 0,    *X(X,Y) = \,    %(X, Y) = 2Y,

%(X, Y) = 3X4 + 6AX2 + \2BX- A2,

%(X, Y) = AY(Xb + 5AX4 + 20BX3 - 5A2X2 - AABX - 852 -A3),

%n(X, Y) = %,(%1 + 2%lx - %-2*¿+i)/2Y    (n G Z>x),

%„ + x(X, Y) = *„ + 2^ - *ï+x%_x (n G Z>x).

On £, the polynomial ♦„ vanishes precisely at the nonzero «-torsion points. We

define the polynomials/„(jc) g Fq[X] as follows. First we eliminate all F2-terms

from ^ using the relation (1); the resulting polynomial ^'(A', Y) is either in Fq[X]

or in YFq[X]. Define

fn(X) = %:(X,Y) if «is odd,

f„(X) = %:(X,Y)/Y    if «is even.
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486 RENE SCHOOF

From the recursive formulas for tyn given above, one easily deduces that

deg/„ = \(n2 - 1)    if « is odd,p + «,

deg/„ = t(«2 — 4)     if «is even, p t «.

Proposition (2.1). Let P = (x, y) g E(Fq) with P G £[2] and let « g Z>_1; then

nP = 0 «*/„(x) = 0.

Proof. See Lang [5].

Proposition (2.2). Let P = (x, y) g E(Fq); let « g Z>x with nP * 0; then

(>Tr       \Tr y\r       ylf2      _ ^j/       \J>2      \
^n-l^n+1       Til + 2Yn-l *»-2*n+l

(By ^k we mean ^k(x, y).)

Proof. See Lang [5].

These explicit formulas will enable us to do the computations on /-torsion points

of E(Fq) that we need in our algorithm.

Finally, we relate endomorphisms of £ and Gal(F(//Fiy)-endomorphisms of torsion

points. Let / be a prime different from p. We have a map

EndF„£^ EndoauiT/F,)^]-

Let <i>, denote the image of $ in the right-hand side group. By (3) we have the

following relation holding on £[/]:

(8) tf - t<f>, + q = 0.

On the other hand, suppose that the relation

(9) (<?2-t'<?l + q)P = 0

holds for all P g £[/] and some t' g Z; using (8), we deduce that (t' - t)<j>,P = 0

for all P G £[/]. Since <f>, g EndGal(F/F )E[l] is invertible, we find t = r'(mod /). So

we see that

,    .       we can compute the trace of the Frobenius endomorphism mod / by

checking which of the relations (9) hold on £[/].

3. Computation of the Number of F^-Points on an Elliptic Curve Over F . In this

section we give a deterministic algorithm to compute the number of points on an

elliptic curve £ over F which is given by a Weierstrass equation (1).

Let £ be an elliptic curve over F^; let charF^ # 2 or 3. We make this assumption

to be able to use the polynomials ^!n from Section 2; it should be possible to obtain

polynomials like these if the characteristic is 2 or 3.

To compute £(F ), we may as well compute the trace t of the Frobenius

endomorphism <¡> g End F £ by (5). Since we have a bound on the size of t by (4), we

can compute t by computing / (mod /) for sufficiently many small prime numbers /:

if we compute t (mod /) for / = 3,5,7,11,... ,L such that

(n) n/>4v^
1*2. p
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ELLIPTIC CURVES OVER FINITE FIELDS 487

we can unambiguously determine / by applying the Chinese Remainder Theorem. So

we need only describe how to compute t (mod /) for / a prime not equal to 2 or p.

We will first give a sketch of these computations.

By the remark (10) at the end of Section 2, we can compute t (mod /) by checking

which of the relations

(12) tf + q = T*,        (tgZ/ZZ)

holds on £[/]. These tests can be effected by computations with polynomials in

Fq[X, Y]: let / be a prime not equal to 2 orp and let P = (x, y) g £[/] not equal to

0. By Proposition (2.2) the relation (12) holds for (x, y) if and only if

{x"2,y"2)+\

vl>       \J/ \I>       vfr2       _ \fr       tf/2
^q-\^q+\       ^q+2*q-l Vq-2*q+l

3

V 4y*q
(13) (0   ifT = 0(mod/),

%-^A"        *T+2*T2   1   -   *r-2*r2+

V      I 4y%3
otherwise.

(By ^ we denote ^k(x, y) as before.) By Proposition (2.1) the point P = (x, y) is

in £[/] if and only if ^(x, y) = 0 or, equivalently,/^*) = 0. Using formula (1) and

the addition formulas (2), the relation (13) can be transformed into relations of the

form

Hx(x) = 0   and   H2(x) = 0

for some polynomials in Fq[X\ This comes from the fact that P = (x, y) satisfies

(13) if and only if -P = (x, -y) does. The final test boils down to testing whether

(14) Hx = 0 (mod /,)    and   H2 = 0 (mod /,)

in F [ AÏ. This test is done for every t g Z//Z, until a value of t is encountered for

which (15) holds; then we have that / s T (mod/). Note that testing (12) is

equivalent to testing whether tí + k = t<¡>, holds on £[/], where k = q (mod /) and

1 < k < I.
Next, we give a detailed description of the algorithm. The first step consists of

computing a number £ for which (11) holds and of making a list of the polynomials

/„ for « = 1,2,...,£. The second step is the computation of / (mod/) for every

prime / < L not equal to 2 or p. This is done as follows:

We will use formula (13); since we use the addition formulas (2) to evaluate (13),

we distinguish the cases where the points are distinct or not: First test whether there

is a nonzero point P = (x, y) in £[/] for which tí¡P = +kP holds. Here k = q

(mod /) and 1 < k < I. So we must test whether

c.l   = ■ k~\*k + l

&2
(x,y)

holds or, using/„,( A") rather than *m( A", Y)

fk-Ax)fk+i(x)

(15)
fk2(x)(x3 +Ax + B)

fk-x(x)fk + x(x)(x3 + Ax + B)

fk2(x)

(if k even),

(if A: odd).
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488 RENE SCHOOF

Note that the denominators in the above expressions do not vanish on £[/]. We find

that tíP = ± kP if and only if

(x«: - x)f2(x)(x3 + Ax + B) +fk.x(x)fk + x(x) = 0    (¿even),

(x"2 - x)f2(x) +fk-x(x)fk + x(x)(x3 + Ax + B) = 0    (¿odd),

and we can test whether a point like P exists in £[/] by computing

gcd{(X«2-X)f2(X)(X3 + AX+B)+fk_x(X)fk + x(X),fl(X))

(16) (A: even),

gcd((AV - X)f2(X) + fk_x(X)fk+x(X)(X3 + AX+B),f,(X))

(¿odd).

If this gcd *lwe have that a point P exists in £[/] with $2£ = ±qP; we will return

to this case. If, on the other hand, this gcd equals 1, we have that t # 0 in (11). In

testing (11) for other values of t, we can, when adding </>2(x, y) and q(x, y), apply

the version of the addition formulas where the two points have distinct A"-coordi-

nates.

Case 1. This is the case where for some nonzero P g £[/] we have that d>2£ = -qP.

If <i>2£ = -qP, for some nonzero P, we have by (3) that t4>¡P = 0, whence, since

<¡>¡P * 0, that / = 0 (mod /). If <£2£ = qP for some nonzero P, we have by (3) that

(2q-t4>,)P = 0    and   <$>,P = ^-P.

(Note that r * 0 (mod/) since / # 2 or p.) From this we deduce that t2 = Aq

(mod /). Let w G Z with 0 < w < I denote a square root of q (mod /); this number

may be computed by successively trying 1,2,_Since (</>, - \t)2 = 0, the eigenval-

ues of <j>i acting on £[/] are w or -w. We can decide Case 1 by the following

computations:

If (7) = -1 we clearly have that / = 0 (mod /); if not, we compute w, a square

root of q (mod / ) with 0 < w < I and we test whether w or -w is an eigenvalue of #,;

if this is not the case, we conclude that t = 0 (mod /) and if indeed a nonzero point

P exists with <b¡P = ± wP, we test whether either <t>,P = wP or <j>¡P = -wP holds. In

the first case we have t = 2w (mod/); in the second case, r= -2w (mod/).

Explicitly (with w2 = q (mod /)):

If

gcd(( X" - X)f2(X)(X3 + AX + B) +fw-1(X)fw+x(X),f,(X))

(17) ( w even),

gcd(U" - A-)/„2(A-) +/_1(A-)/H.+ 1(A-)(A-3 + AX+B),f,(X))

( w odd)
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ELLIPTIC CURVES OVER FINITE FIELDS 489

equals 1, we have that / = 0 (mod /) otherwise, if

gcd(4U3 + AX+ B)l"-l)/2mx) -f¿+2(X)fw_x(X)

(18) +/,2-2(A')/„, + i(A'),//(A-)),

gcd(4(A"3 + AX+ £)(" + 3)/2/„3(A") -ft+2(X)fw_x(X)

+L2-2(x)fw+x(x),fl(x))

(for w even, resp. odd) equals 1, we have that t = -2w (mod /) else t = 2w (mod /).

Case 2. This is the case where we know that (f>2£ and qP are neither equal nor

opposite for any P g £[/]. In this case we will test which of the relations (11) holds

with t g Z//Zx. We have with P = (x, y) and k = q (mod /) and 0 < k < I, that

,iD   ,       d        I        ir i * -1    * +1     i   \! a2        \ I    T    a2 i     ^k-l^k+14>]P + qP =    -x '  - x H-—— ■ + X , -yq - X | -2xq  — x + ■   ——-—

where

** "I   " *2

x= %+2*t-i-*k-2*Li-4yql+l*ï

4%y((x - x«2)*2 - %^%+1)  '

Note that the denominator of X does not vanish on £[/] since tyk has no zeros on

£[/] and since we are in Case 2. Let t g Z with 0 < t < /; we have

t4>,P xi _

1

<tr      \J/        \ *   / \T,       vT/2      _ a,       ^2      \ ?
^T+1YT-1 *T + 2YT-1 *T-2TT+1

^2 ^ ^3

In a way analogous to the computations above one can test, by computations in

F [A"], which of the relations (11) holds by trying r = 1,...,/ - 1. The computations

involve evaluating polynomials modulo/^A-) and testing whether they are zero

mod //(A"). We do not give all the details; testing whether tí + <7 = T<t>i holds on

£[/] boils down to testing whether

((**-!**+! - ^k(X"2 + X" + A"))/?2 + *2a2)%2<> + V-r%\iß2*l and

(19) 4y^T3l'(a((2A'<?2 + A-)*2 ~ **-i** + i) - 1^**)

-ß*K%+2*ix-%^+xy

are zero mod f,(x). Here

and

ß=((X-Xq2)*2-%_x%+x)4Y%.

By the expressions (19) we understand the polynomials in Fq[X] one gets after

eliminating Y using (19) and, if necessary, by dividing the expressions by Y. The

result is a polynomial in F [AÏ. This completes the description of the second step of

our algorithm.
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The third step is the computation of / from the values of t (mod /) obtained using

the Chinese Remainder Theorem and the estimate (4). This is straightforward. This

completes the description of the algorithm.

Next we estimate the number of elementary operations involved in these computa-

tions. It is well-known that there exists an effectively computable universal constant

Cx for which

(20) fi     l>CxeL
/< /.. prime

1*2. p

holds for every £ > 0; see [8] for instance. So we can take £ to be 0(log q) and all

primes / < £ are 0(log<7) as well. The number of primes occurring in (20) is also

0(\ogq).

To compute in F we assume that we are provided with an irreducible polynomial/

of degree [F^F^] a zero of which generates Fq over Fp; we compute in F by

computing in Fp[X]/(f).

The number of elementary operations needed to compute fx up fofL is 0(log7<7);

this follows from the fact that £ = 0(log<7) and that deg/„, = 0(m2). Evaluating

the expressions (19) modulo f¡ and the gcd's (16), (17) and (18) can be done using

0(d2 \og3 q) elementary operations; here d denotes the degree of/,. Since deg/, =

0(log2<?) we see that we need 0(\og7q) elementary operations to do this. If we

happen to be in Case 2 for some /, we have to repeat these computations 0(1) =

0(\ogq) times. So for each /, the second step of the algorithm takes 0(log8<7)

elementary operations. We conclude that the entire Step 2 takes 0(log9^r) elemen-

tary operations.

The computations of L and the computations involving the application of the

Chinese Remainder Theorem are easily seen to be dominated by C>(log9g). This

proves the result stated in the first section.

In the algorithm we precompute the polynomials/,; it takes 0(log5 q) bits to store

these polynomials. The amount of memory used in the rest of the algorithm is

dominated by 0(log5<7).

We believe that this algorithm may work well in practice. In this paper no effort

has been made to be economic from the practical point of view. For instance, in

practice one should also consider the prime 1=2 and in fact work on E[lk] for

prime powers /*.

We do not find the group structure of £(F ). We know that the /-parts of £(F )

need at most two generators for any prime / and we have that the /-part can only be

noncyclic if l\q - 1 and l2\#E(Fq). So sometimes it is easy to find the group

structure as well, but in general we do not know how to compute the group structure

in time polynomial in log q.

4. Square roots mod p. In this section, we describe a deterministic algorithm to

compute the square roots of x g Z modulo a prime p, provided that (f) = +1. The

algorithm takes 0((|x|1/2 + Flog p)9) elementary operations for all e > 0. The amount

of work involved to compute (£) is dominated by this.

Let x g Z and letp be a prime not equal to 2 or 3 with (j) = +1; we may and do

assume thatp = 1 (mod 4), because, if p = -1 (mod 4) and (f) = +1, a square root

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ELLIPTIC CURVES OVER FINITE FIELDS 491

of x (modp) is given by X<p+X)/4 and this number can be evaluated mod p in

0(log3p • log|jc|) elementary operations. We also assume that x is the discriminant

of a complex quadratic order; for, if it is not, either Ax or -Ax is, and we compute

either {Ax or both {Äx and f-Ax. All these numbers are in F^ since p = 1

(mod 4).

Briefly, the algorithm runs as follows: we write down a Weierstrass equation of an

elliptic curve £ over Fq, a suitable extension of Fp, which has complex multiplication

by &, i.e., its ring of F^-endomorphisms contains &. Next we compute the Frobenius

endomorphism <j> in 0 by means of the algorithm given in Section 2. We have that

a + b{x , „ , .      ,„..
<f> =-        (a,b eZ;a= b(mod2))

and Aq = a2 - b2x. So, (a/b)2 = x (mod p). We shall see later that the fact that

(f) = 1 implies that b * 0 (mod p); for definitions and facts concerning elliptic

curves, their endomorphism rings etc., see for instance [12].

Letj(z) denote the modular function

(21) j(z) = e-2™ + 144 + 196884e2™ + ...,       (Im z > 0)

or, more precisely,

j(z) = \23G2(zf/{G2(zf-G3(zf),

where

G2(z) = 1 + 240 £ o3(k)e2,nkz    (Im z > 0),

k = \

G3(z) = 1 - 504 £ os(k)e2"ikz    (Im z > 0),
k = \

om(k)=    E   d'
0<d\k

Define the integers c(k) by

j(z) = e-2<"* +  £ c(k)e2,,,kz.

k = 0

We have that

-i    e4"«'"
lim c(«)~ 7=—¡7j = i;

«-oo \/2 ■ n '

this is due to Petersson [7]; the result is effective and we deduce: there exists an

effectively computable constant Cx, such that

for all « g Z>1. From this estimate one easily deduces that for z g Z with |Re z\ < \

and \z\ > 1 (i.e., z is in the standard fundamental domain for the action of SL2(Z)

on the upper half-plane), we have

2
(22) |y(z)-e"Im'|<C

for some universal, effectively computable constant C2.
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Next, we will explain how to compute a Weierstrass equation of an elliptic curve

over F that has complex multiplication by 0. Here 0 denotes the unique complex

quadratic order of discriminant x. If x = -3 • square or -4 • square we may as well

assume that x = -3 resp. x = -A. It is easy to test whether x is of this form and {x

is easily determined from \^3 resp. \^4 .

If x = -3 we take as a Weierstrass equation for £: Y2 = A"3 - 1; if x = -4 we

take F2 = A-3 — X. If jc is not -3 or -4 times a square, we compute all invertible

ideal classes of the ring &; since these classes are, in a way which is well-known, in

one-to-one correspondence with the set of triples

{(a, b, c) g Z3: a > 0; gcd(a, b, c) = 1; \b\ < a < c;

b2 — Aac = x; b > 0 whenever \b\ = a or a = c),

we compute these triples instead. For a triple (a, b, c) in the above set it holds that

|6| < a < y(|jc|/3) and one can compute all these triples in time 0(\x\x + t).

Let h(x) denote the cardinality of the set of triples. For every triple (a, b, c) we

approximate j((b + i^\x~\)/2a) using the Fourier expansion (21), such that the

absolute error is smaller than exp(-C3|x|1 + F) for some constant C3 depending on e

only. We need [C4|x|1 + f] terms of the expansion to accomplish this. The numbers

j((b + iyj\x\)/2a) are conjugate algebraic integers; they are precisely the/-invariants

of elliptic curves over C with complex multiplication by 6. These numbers are the

zeros of an irreducible polynomial £ g Z[X] of degree h(x). We have that h(x) =

0(|x|1/2 + E) for every e > 0.

We approximate the coefficients of this polynomial by evaluating symmetric

functions of the approximations of its roots. We leave it to the reader to verify that

for every e > 0, one can determine constants C3 and Q, independent of x, such that

the coefficients of £ can be deduced unambiguously from these approximations. All

computations can be done using 0(|x|25 + f) elementary operations, for every e > 0.

Proposition (4.1). Let & be the unique complex quadratic order having discriminant

x, which is not -3 or -A times a square. Let £g Z[X] denote the irreducible

polynomial having the j-invariants of the elliptic curves with complex multiplication by &

as its roots. Let p be a prime which splits in 0, i.e., for which (f) = 1. Then, it holds

that v(Ç) = v(Ç — 1728) = 0 for every zero of F and every valuation v of Q that

extends the p-adic valuation ofQ.

Proof. Let v extend the p-adic valuation of Q; let^ be a prime ideal of some finite

extension £ of Q that corresponds to v. Let £(f ) = 0 and let £ denote an elliptic

curve defined over Q(0 that has its /-invariant equal to f. The curve £ has

potentially good reduction at^, i.e., it has good reduction over some finite extension

of Q(D- Since we may replace £ by any finite extension and^ by any prime over it

in that extension, we enlarge L such that £ is defined over £ and has good reduction

atyè. Let F denote the residue class field of^.

We have

(0 ■-» End, E   and    End L E t-* End F ( £ mod ft )

by a result of Deuring [3, Section 4], If X, g^ or I - 1728 g^ we have that

Z[f3] ^ EndF (£mod/)    resp.    Z[f4] ^ EndF (£mod^)
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by the same argument. This implies, by the assumption that x ¥= - 3 or -4 times a

square, that EndF(£mod^) cannot be a quadratic order; so EndF(£mod/) is

noncommutative and £ mod ft is a super-singular curve. This is impossible since ft

splits in Frac(fi>). This proves the proposition.

For the facts concerning reduction of elliptic curves used in the proof, see [9].

We continue the description of our algorithm. After computing the polynomial £,

we write down an elliptic curve defined over F which has its /-invariant equal to a

zero of £. This curve has complex multiplication by 0 and is elliptic by Proposition

(4.1):

F2+ FA-=AT3
£ - 1728 £ - 1728 '

Here f denotes a zero of £ in F ; the/-invariant of this curve is f.

We let F = F (f ); the field F does not depend on the choice of f, since £ is in

F [ A"] a product of irreducible factors that all have the same degree. It is not difficult

to deduce an equation

Y2 = X3 + AX + B

with A, B g F (f ) for the curve £ from the equation given above.

Now, there is only one problem to solve before we can apply the algorithm of

Section 2 to compute the Frobenius endomorphism of £ and the square root of

x mod p. The problem is that we do not necessarily have an irreducible polynomial

G, a zero of which generates F over F . We only have £, a polynomial which may be

reducible.

We compute in F^ by computing with expressions

d-\

x= Z «*f*    (d= deg F;ak GFp);
k = Q

it is obvious how to compute sums and products of these numbers and these

computations are as hard as the analogous computations in Fp,i. Essentially, the only

problem is how to test whether

d-\

x= L «JA = o?
A = 0

We will perform this test by testing whether

/rf-i \

G = gcd    T,akTk,F(T)   =1;
U=o /

if this gcd = 1, we have that x ¥= 0, independent of our choice of f; if this

gcd = £(£), we always have that x = 0; if the gcd is a proper divisor G of £, we

may replace £ by G and we may take x = 0 or we do it the other way around: we

replace £ by F/G and we take x ± 0. We will always do the former. Computing in

F (£) in this way, is not harder than computing in Fp^iF. Since initially deg £ = h(x)

and since h(x) = 0(|jc|1/2+f), we find that computing x mod p takes 0(log9(pA(-v)))

= 0((|x|1/2+£log q)9) elementary operations for any e > 0.

Finally, we give one further application.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



494 RENE SCHOOF

Proposition (4.2). There exists a deterministic polynomial time algorithm to

compute fx mod p if p £ 1 (mod 16). This algorithm has a running time independent

ofxforx < p.

Proof. In view of the algorithm presented by Shanks in [11], it suffices to show

how to compute a generator of the 2-part of Z/pZx in time polynomial in log p. If

p * 1 (mod 16), either f2 = -1> fa = v'-T or f8 = \~ïI2(î + V^T) is a generator.

Since we can compute these numbers in time polynomial in log p by means of our

deterministic algorithm, the proposition is proved.
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