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rehensive and up-to-date monograph covers the fundamentals and i-ecent
nts in the mathematical modeling of metabolic systems, providing the basis for
inderstanding of the behavior and functioning of cells. In particular, it presents
e-art theoretical 'descriptions of the regulation of enzymatic systems, including
f stoichiometric, kinetic, and control and optimality properties.
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optimality properties of enzymauc systems and their interrelations with
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ic oscillations, and modular treatment as well as a multitude of illustrations
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a theoretical approach to the regulation of cellular processes. this outstanding
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maticians, and physiochemists. It 1s also an exceptional textbook for faculty and
students in departments of cellular and molecular- biology. neurobiology,
,and biomedical research departments.
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Die angewandteMathematik hat im Verlaufeder letzten Jahrhun-
derte eine so hohe Stufe der Ausbildung erreicht, ihre Schliisse
haben einen solchen Grad von Sicherheit erlangt, da sieunter den
Wissenschaftenden ersten Rang einzunehmen berechtigt ist. Sie
ist der Anfang und das Endefiir den Sternkundigen, den Techni-

ker, den Seemann, sieist die feste Achse aller Naturforschung jet-
ziger Zeit. Nur der Biol ogiehaben dieEntdeckungen Galileis, New-
tons und Mariottes verhiltnismiBig geringe Friichte getragen; fiir
die Lebenserscheinungenwurden keine Formeln aufgefunden . . .

Throughout the last centuries, applied mathematics has attained
such a high level of perfectionand such a degree of certainty in
its conclusionsthat it is entitled to take the first place among the
Sciences. Mathematicsis thebe-dl and end-all for theastronomer,
the engineer, and the seaman; it is the solid basis of all natural
sciences today. Only for biology, the yield of the discoveries of
Galilei, Newton and Mariotte has been comparatively smdl; no
formulae have been found for the phenomenacdf life. ..

RoBERT MAYER, Die organische Bewegung in ihrem Zusammen-
hange mit dem Stoffwechsel (Organic motionin its relationto me-
tabolism), Heilbronn, 1845
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Preface

Thereis no doubt that nowadays, biology benefits greetly from mathematics. In
particular, cellular biology is, besides population dynamics, a field where tech-
niques of mathematical modeling are widely used. This is reffected by the large
number of journal articles and congress proceedings published every year on the
dynamicsof complex cellular processes. Thisapplies, among others, to metabolic
control anaysis, where the number of articles on theoretical fundamentals and
experimental applications has increased for about 15 years. Surprisingly, mono-
graphs and textbooks dealing with the modeling of metabolic systems are till
exceptionally rare. We think that now timeis ripe to fill this gap.

This monograph covers various aspects of the mathematical description of
enzymatic systems, such as stoichiometric analysis, enzyme kinetics, dynamical
simulation, metaboliccontrol analysis, and evolutionary optimization. We believe
that, at present, these are the main approaches by which metabolic systems can
be analyzed in mathematical terms. Although stoichiometricanalysisand enzyme
kinetics are classical fidlds tracing back to the beginningof our century, there are
intriguing recent devel opmentssuch as detection of elementary biochemical syn-
thesis routes and rate laws for the situation of metabolic channeling, which we
have considered worth being included. Evolutionary optimization of metabolic
systemsis arather new field with promising prospects. Itsgoadl is to elucidatethe
structure and functions of these systems from an evolutionary viewpoint. This
may entail important applications in bioengineering, where optimization obvi-
oudly plays a fundamental role. One of our major goas s to present the state of
the art in metabolic control analysis, focusing on its mathematical aspects. We

xiii




xiv Preface

would be glad if we could contributeto unifying the nomenclaturein this field.
Besidesits theoretical implications, metabolic control analysis, like the other ap-
proaches reviewed in this book, provides aframework for the planning and con-
duction of experiments. In that sense, the book is also addressed to experimen-
talists. However, reviewing the multitudinous experimental applications of the
theoretical tools presented would be beyond the scope of our monograph.

The present book is, to some extent, an outcome of our teaching mathematical
biology for undergraduateand graduate studentsin biophysicsat Humboldt Uni-
versity, Berlin. This biophysics program is based on comprehensive studies not
only in biological disciplines but also in mathematicsand physicsand includesa
specialized training in thermodynamics, systemstheory, and computer modeling,
among others. Thisinterdisciplinaryapproach isreflectedin this book. Neverthe-
less, mogt of the text will beinstructive to all biologists and chemists having the
usual mathematical training in these disciplines. As far as the biologica back-
ground i s concerned, it is supposed that the reader is familiar with basic features
o enzyme catalysis, the main pathways and regulatory mechanismsin interme-
diary metabolism, and principles of membranetransport.

The theoretical presentationisillustrated by many examples. For pedagogical
purpose, we made them as simple as possible. Often, they are reduced versions
of more elaborate moddls, for example, of calcium oscillations, oxidative phos-
phorylation, and glycolysis, taken from theliterature.

To many biochemists, the present text may appear a rather specialized and
somehow sophigticated view on metabolic systems. On the other-hand, in light
of the recent developmentsin the mathematical analysis of these systems, the
book must be considered asintroductory. Nevertheless, we havetried to takeinto
account a representative selection of the recent literature.

The reader will become aware of many open questions. This concerns, for
example, the mathematical description of the interaction of metabolismand gene
expression, thesimulation of cellular metabolismon alargescal e, including many
interacting pathways and membrane transport, and appropriate ways of modeling
the varioustypes of metabolic channeling. One of the pending problemsin met-
abolic control analysisis acomprehensiveextension to oscillations in living cells.
Although cellular metabolism is one of the best studied objectsin biology, we
are far from satisfactorily understanding the emergence and evolution of such a
complex machinery in terms of basic theories of self-organization.

Whilewriting this book, we benefited greatly from discussions with Dr. Milan
Brumen (Maribor), Dr. David Fell (Oxford), Dr. Jannie Hofmeyr (Stellenbosch),
Dr. Hermann-Georg Hol zhiitter (Berlin), Dr. Daniel Kahn (Toulouse), Dr. Boris
N. Kholodenko (Moscow), Dr. Jean-PierreMazat (Bordeaux), Dr. Tom A. Rapo-
port (Boston), Dr. Christine Reder (Bordeaux), Dr. Enrique Meléndez-Hevia (La
Laguna), Dr. Francisco Montero (Madrid), Dr. Gosta Pettersson (Lund), Johann
Rohwer (Amsterdam), Dr. ThomasG. Waddell (Chattanooga), and Dr. Hans Wes-

Preface  xv

terhoff (Amsterdam). Wediscussed with these colleagus intensively awidevariety
of topics relevant to cellular regulation, ranging from nonlinear dynamics to or-
ganic chefmistry and from rapid biochemical equilibria to molecular evolution.
The venture of writing this monograph would probably have been impossible
without the stimulating and cooperative atmosphere within the scientific com-
munity of metabolic modeling, which is reflected, for example, in thelarge num-
ber of scientific congresses in recent years.

In our institute, many colleagues have contributed to the completion of the
manuscript in different ways. Margrit Sternberg took care of the bibliography
with patience and painstaking. PetraSchubert expertly typed the manuscript, drew
many reaction schemes and rescued what we lost in the many different computer
files of thetext. Dr. Edda Klipp did several numerica simulations and produced
many of the nice figures. Several colleagues and students have cross-read drafts
of the manuscript and helped us eliminatesomeinconsistencies. In particular, we
mention Stephan Frickenhaus, Ines Jentzsch, EddaKlipp, Ulrike Laitko, Amadeus
Stephani, Thomas Wilhelm, and Jana Wolf. We are glad to thank all of them. We
are gratefully indebted to Dr. Clas Blomberg (Stockholm) for reviewing a draft
of the manuscript very carefully and giving many helpful suggestions.

We would liketo express our warmest thanks to Chapman & Hall for friendly
and efficient cooperation. Of particular help has been the fruitful work of the
publishersDr. Eleanor S. Riemer and Gregory Payne, who have never been out
of patience when we were not ableto meet the deadlines. \We a so remember with
pleasure our discussion with Gregory Payne on our book project on a restaurant
terrace above the roofs of Washington. We also thank Mary Ann Cottone and
Jennifer G. Lanefor expertly managing the production of the book. \We are grate-
fully indebted to Dr. Michael Conrad (Detroit) for establishing our contact with
this publishing house.
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1

I ntroduction

The increasing role of mathematicsin cell biology is witnessed by the ever-
increasing number of mathematical models representing particular processesand
subsystems of living cells. This development was made possible by the explora-
tion of multitudinous elementary processes underlying the phenomenaof life at
the molecular level. Nevertheless, there appears to be somelack of general for-
malized theory in biology. Physics comprises very elaborate buildings of theory
for severd centuries. Attempts to develop general theoretical bases for mathe-
matical description of living organisms have been madeonly in thelast decades,
partly with the aid of the laws of physics. The fact that formalized theories in
biology are still rare is not only due to difficulties arising from the enormous
complexity of living matter but also to the fact that experimental quantitation in
biology had begun relatively late. In biochemistry, in particular, the quantitative
approach has been considerably stimulated by the identificationdf the main met-
abolic pathways and the isolation of the enzymes involved, that is, since the
middle of our century, We would like to stress, however, that aso rigorous for-
malization of classical mechanicsfrom the beginningswith Galilei in 1590 up to
Lagrange's formalismin 1788 took almost 200 years.

The present book is devoted to thetheoretical description of metabolicsystems,
that is, networksof enzyme-catalyzedreactionsproceedingin living cells. Chapter
2 outlines some fundamentals d biochemical modeling and is meant to beintro-
ductory to the subsequent chapters. Aswedo not extend thewidth of thetreatment
too much, this chapter may be skipped by advanced readers. It includes the math-
ematical description of single enzymes in terms of rate laws. Starting from a
generalized mass-action kinetics, we give several specific rate equations which
we will usein subsequent chapters. Furthermore, thermodynamic flow-forcere-
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2 Introduction

lationships and the power-law formalism are compared with classical enzyme
kinetics. A major part of Chapter 2 is devoted to the systemic level. Steady states
are treated, including stability analysis and multistationarity, and conditions for
the occurrenceof metabolic oscillations are given. Basic modelsof bistable be-
havior and of glycolytic and calcium oscillations are considered.

Chapter 3 deals with structural analysis of metabolic networks. This approach
is aimed at elucidating relevant relationships among system variables(e.g., con-
centrations or fluxes) on thebasis of the network stoichiometrywithout reference
to kinetic properties. Such analysis is motivated by the extreme complexity of
cell physiology. Topological properties are often difficult to recognize by mere
inspection and require formalized methods.

Chapter 4 deals with the implications of time hierarchy (i.e., the wide sepa-
ration of time constants) for model construction in the fidd of enzyme systems.
In particular, we address the quasi-steady-state and rapid-equilibrium approxi-
mation methods, which can be applied when separate time scales are relevant.
Moreover, we give an overview of moda anaysis, which serves to decompose
the system dynamics into motions on different time scales.

Chapter 5 is meant to present the state of the art in the mathematical andysis
of metaboliccontrol. Thisisa theoretical framework that has been developed for
about 20 years, originally based on the problem of how to definerate limitation
in metabolic pathways. Metabolic control analysis servesto quantify, in terms of
control coefficients, the extent to which different enzymes limit the flux under
particular conditions. This analysis has become increasingly relevant for experi-
mental investigation of metabolism; in the present book, however, we focus on
theoretical aspects with some applications to concrete pathways.

Chapter 6 deals with the mathematical analysis of optimality properties of
metabolismand evolutionaryaspects. Asissuggested by Darwin's concept of the
"aurviva of thefittest," optimization plays an important role in evolution. This
aspect opens a further access to mathematical treatment of metabolic systems.
Our presentation is far from giving a comprehensive overview of the biologica
aspectsof evolution of metabolic pathways. First steps are made toward an anal-
ysisconcerningthe problem of whether thecontemporary stateof enzymesystems
is optimal compared to other conceivable states.

As mentioned above, the main effortsin thefield here considered are directed
toward development of models. In science, both physical objects, such as space-
filling or wire models of DNA double helices or proteins, and nonmaterial, in
particular, mathematical, representations are used. The usefulness of a modd is
determined by the compromise between adequacy (i.e., the correctness of repre-
sentation) and simplicity (tractability). Every mathematical model is based on
simplifying assumptionsto render possible or facilitatethe analytical or compu-
tational treatment and the interpretation of results. As for models of metabolic
systems, such an assumption concerns, among others, the distinction between

Introduction 3

internal and external metabolites. The latter substances are assumed to have fixed
(buffered) concentrations, which can sometimes, in fact, be achieved by an ap-
propriate expgrimental setup. Paradoxically,even model assumptions contradict-
ing each other may be useful when they are favorablefor tractability (e.g., the
quasi-electroneutrality assumptionand theexistence of an electricfield in models
of ion distributions across and near biologica membranes). A model is known
from the very beginning of its development not to be correct to a certain extent.
The following aphorism may fit in this context: “If we do not develop models,
we do not learn why they arefdse" Of course, the iterative process of mode
building tends to gradually eliminate errors and unjustified assumptions, but a
certain remainder of incorrectness is deliberately accepted for the sake of Sm-
plicity. No theory can be completely correct either; any scientific representation
isasimplificationand a more or lessdistorted pictureof theobject it isto reflect.
So the delimitation between the terms theory and mode is not sharp. A mode is
usudly not ascorrect and general asatheory, and itslogical basisislessrigorous.

Models of metabolic processes, as any other model, are usualy developedfor
a certain pragmatic purpose. One may intend to give a detailed mathematical
representation of all the underlying enzymic reactions, which is very important
for fitting experimental data in the best way possible. This type of modeling in
biochemistry was stimulated to a considerable extent by the availability of pow-
erful computers. Therefore, rather largekinetic model sweredevel oped and solved
numericaly. The resulting curves are often very impressive but bear the risk of
pseudo-exactness because it is often unclear how reliable the theoretical back-
ground and the parameters used in the model are. The results of detailed, very
complex models are difficult to interpret owing to the high number of variables
involved. Alternatively,one may beinterested in explaining specific phenomena,
such as calcium oscillations or the dependence of ATPconcentration on energetic
load in cellularenergy metabolism, or in finding theconditionsfor theemergence
of chaos or multistationarity. It is then suitable to develop minimal models by
restricting oneself to essential features. This can be donein two ways. One can
start from a real pathway and try to describe it by a model simplified asfar as
possible so that the phenomenon of interest is retained. This generally leads to
skeleton models of metabolic pathways, in which groupsof reactions are lumped
into overall reactions, and simple kinetic rate laws are used (e.g., linear kinetics
or power laws). The lumping of reactions may be donein an ad hoc way or by
more sound methods based on, for example, temporal and spatid hierarchiesin
thesystem. Another approachis by focusing on aspecific phenomenonand trying
to find the smplest model to produce this. In the present book, we study, as an
example, a minima model of a chemical reaction scheme with mass-action ki-
netics showing limit cycle behavior.

Efficient dynamica simulation in biochemistry requires one to analyze the
underlying structureof the system. The kinetic parameters of enzymic reaction




4 Introduction

systems are often unknown and are subject to frequent changes, even in short
time periods. In contrast, the structure of these systems (i.e., the topology of
connection of substances by reactions) remains virtualy constant, unless evolu-
tionary time scales are studied. Therefore, the modeling of any biochemical sys-
tem should include the analysis of its structural invariants, such as conservation
relations among concentrations and restrictionsto fluxes imposed by balance
equations. Moreover, thermodynamic aspects may be included in this analysis.
For example, when some reactions areirreversible, additional sign conditionsfor
the flux vaues arise. In the context of structura anaysis, the repeatedly posed
question of how to delimit metabolic pathwaysis worth being tackled. The dif-
ficulty of this question resultsfrom the fact that all reactionsin theliving cell are
virtually interdependent. One possible way of approaching this problem is by
looking for the smplest routes leading from certain substrates to some product.
Under the additional condition that the pathway operates at steady tete, these
routes may be represented by specific vectorsin the so-called null-space of the
stoichiometry matrix, that is, the space of al conceivable steady-state fluxes.
Furthermore, practica independence of reactions often results from specia ther-
modynamic and kinetic properties, such as irreversibility of reactions, saturation
of enzymes, and separation of time constants.

Structural (topological) analysisin many fieldsis often done by using graph
theory. Asfar as biochemical networks are concerned, problems arise when re-
actions other than monomolecular are studied, because they cannot simply be
represented by arcs. Indeed, several attempts have been made to adapt graph
theory to biochemica networks by introducing auxiliary vertices. In our eyes,
structural anadlysis of metabolic systems can be tackled more elegantly by using
a matrix formalism than by graph theory.

Time hierarchy is a ubiquitous phenomenonin biology. Biologica evolution,
ontogenetic development, transfer of geneticinformation, metabolic interconver-
sions, and elementary processes of enzymecatalysis proceed on very distinct time
scales, ranging approximately from 107 to 1012 s, Importantly, even at a given
level of biologica organization, for examplein one and the same metabolic path-
way, processes with very different time constants are involved. Relevant changes
in metabolism mostly occur in a time range from seconds to hours. Tempora
hierarchies have important implications for the methodology of modeling, be-
causeit allows one to detect the changes relevant in the velocity **window™ of
interest. Simplificationsmay result by neglecting very sow processes, which can-
not be observed experimentally. A third classis made up by the reactions which
are so fagt that they can be considered to have terminated in the time scale of
interest. This has the consequencethat although a metabolic system generally
operates far from equilibrium, subsystemsmay attain quasi-equilibria.

In contrast to the thermodynamic properties of reactions, such as the standard
free-energy differences, the velocities of biochemical processes are determined
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by the properties of enzymes catalyzing them. Therefore the question of why
evolution has brought about large differences in time constantsin one and the
same metabalic pathway isintriguing. It may be supposed that quasi-equilibration
of subsystems by time hierarchy serves to preclude complex behavior such as
chaotic dynamicsin situationswhere such behavior is of no functional use.

Over a long time, common belief in biochemistry had been that only one,
namely the dowest enzymein a pathway, would control the flux (in some recent
textbooks, this view is still maintained). This enzyme would then be the rate-
limiting step, also called a pace-maker enzyme. When metabolic control analysis
was introduced in the early seventies, it turned out that occasionally a particular
enzyme may beratelimiting, but generally thereisadistribution of control anong
many enzymes that varies with circumstances.

A genera pointin theconstruction of modelsof complex systemsistodescribe
the system behavior in termsof the propertiesof their constituents. In metabolic
control analysis, this is achieved by equations linking the systemic properties
expressed by " control coefficients™ to the component properties of the enzymes
expressed by " eladticity coefficients" Both types of coefficients are defined so
as to refer to the response to very small perturbations of reaction rates or con-
centrationsof reactants and effectors. The concept of control coefficientswasaso
extended to quantify the response of other steady-state variables, such as concen-
trations of pathway intermediates. Restricting the mathematical analysis to infin-
itesma changes, one arrives at a linear theory. This simplifies the mathematical
treatment and makes possible comprehensiveand general elaboration, to a large
extent by the use of matrix formaism.

Metabolic control anadysis provides a framework for experimenta investiga-
tion in that it clearly shows that understanding of the functioning of enzyme
networksis mainly achieved by measuring changes around the in vivo state after
perturbations, rather than by only determining this state itself. The analysis in-
dicateswhich quantities have to be measured to determine the response behavior
of metabolic systems. For a large number of metabolic pathways, such as gly-
colysis, the pentose phosphate pathway, oxidative phosphorylation, and trypto-
phan biosynthesis, the distribution of control among the enzymesinvolved have
been determined experimentally or theoreticaly for various physiological states.

It is often useful to analyze metabolic systems at a higher level by grouping
enzymes into "'modules.” This can be done according to the existence of func-
tiond units, which are not only the particular pathways but also organelles, such
as mitochondria. Thisleads to a modular approach to metabolic control analysis.
A further generalization of the original concept is to analyze time-dependent
responses, in particular the control of relaxation processes and oscillations.

As mentioned above, control analysisonly providesreliable predictions when
small changes are considered. However, this may not be sufficient for many ap-
plications (e.g., in biotechnology and medicine). Furthermore, it may be difficult
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to produce sufficiently small perturbationsin experiment. First attemptshave been
made to cope with the nonlinear effects of larger changes. One method is based
on the concept of "deviaion index" and the other is a second-order approach
resulting from a Taylor expansion of the system equations. In any case, control
analysisshould preferably be combined with construction of asimulation mode,
in order to obtain an integrated picture of the system behavior for small and large
changesin environmental and internal conditions.

Criginally, one of the goasin the development of metabolic control analysis
was to provide a tool for elucidation of the principles governing regulation of
intracellular processes. There have been manifold speculations about the differ-
ences between " control" and "'regulation.” Clearly, control coefficientsdescribe
nothing but the potential response of metabolite concentrations or fluxes to
changes in a reaction rate. Whether or not such changes actualy occur under
physiological conditions (e.g., by action of an effector) is at present beyond the
realm of control analysis. Regulation is somehow linked with the functions of
metabolic systems, with the difficulty that thereis no clear-cut definition of the
term "'function." Obviously, specific functions(in theintuitive sense of the term)
can be distinguished for different pathways and different cells. Examplesare the
fairly constant supply of a metabolic product, the homeostasis of certain sub-
stances involved in many different pathways (e.g., ATP), transmission and am-
plification of intercellular signals, and maintenance of biorhythms by metabolic
oscillations. Many theoretical approaches to regulation have concentrated on ho-
meostasisin systems with feedback loops. Based on conceptsof metaboliccontrol
analysis, quantities that may be useful to characterize regulation in the sense of
homeostasis have recently been introduced, such asinternal response coefficients
and coresponsecoefficients.

Practica applications of metabolic control analysis are manifold. It can be
used to study diseasescaused by enzyme deficiencies, thus enabling us to under-
stand why a pathway does not function properly. Conversdly, oneis often inter-
ested in suppressing metabolic activity in pathogenic microorganisms. To this
end, itisimportantto detect theenzymeswith the highest flux control coefficients.
It may be supposed that inhibition of these by some drugs reduces pathway flux
most. Similarly, one may derive from the distribution of flux control which en-
zymes should be amplified by genetic manipulation to give the highest effect in
increasing the synthesisrate of a target biosynthetic product. Onecan even derive
estimatesfor the gain in production rate when enzymes are altered in concentra-
tion or kinetic parameters. In this way, metabolic control analysis may provide
toolsfor optimization in biotechnology.

The number of journa papers on metabolic control anaysis has increased
rather rapidly. The growing interest in this field is also documented by recent
congressproceedings(e.g., Control of Metabolic Processes, Cornish-Bowden and
Cérdenas (eds.), 1990; Modem Trendsin BiothennokineticsSchuster et al. (eds.),
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1993b; What is Controlling Life?, Gnai ger et al. (eds.), 1994]. However, control
analysis has hitherto been dealt with in very fen monographs. The present book
is planned tori]l the gap. We tried to cover most recent developments, inclusive
control in singleenzymes and control in metabolic channeling.

Metabolic systems are characterized by two distinct groupsof data. Onesetis
composed of the variables (essentially concentrations and fluxes); the other set
comprises the system parameters (stoichiometric coefficients, kinetic constants,
etc.). Simulation models serve to compute the system variables on the basis of
given vaues for parameters. The question ariseswhether the latter quantities are
also amenable to theoretical explanation. To answer this question, one should
consider time scales on which the kinetic properties and stoichiometry of enzy-
matic properties have changed, that is, the dimension of biologica evolution. In
contrast to chemical reactionsof inanimate nature, all the enzyme-catalyzed pro-
cesses in the living cell are the outcome of naturd selection which have acted
over hillions of years.

It may well bethat we will never beableto follow thedetails of theemergence
of thecontemporary enzymesand metabolic pathways. However, a certain degree
of understanding may be gained by considering evolution as an optimization
process. This view impliesthat metabolicsystemsfoundin living cellsshow some
fitness properties, which may be described by extremum principles. One should
bear in mind, however, that biological evolution has not reached a fina stage.
Investigation of extremum principles in biology is not, therefore, necessarily
based on the hypothesis that living organisms have attained states refemng to
certain globa optima. However, it can be assumed that subsystemsof living or-
ganisms, such as metabolic pathways, cannot be further optimized under given
external conditions. Moreover, usage of extremum principlesisamethodology of
research, which alows one to filter outimportant limit situations, such as special
congtellationsin the high-dimensional parameter space, between which, or in the
vicinity of which, thereal systems are situated.

Obvioudly, investigation of optimization principlesis even meaningful at the
level of individual reaction steps. Here, it is an intriguing task to understand the
extremely high cataytic efficiency of enzymes. One may ask, for example,
whether the parameters of enzyme kinetic mechanisms (i.e., the vaues of de-
mentary rate constants or the Michaelis constants) may be explained on the as-
sumption of maximal catalytic power. On thelevel of multienzyme systemsit is
interesting to study how far the topology of enzymeatic networks, represented by
the stoichiometries of the pathwaysor special enzyme-modifierrelationships, re-
flect optimum properties. Only recently, theoreticians became aware of theim-
portance of the ""historical dimension™ for the mathematical modeling of meta-
bolic systems,in order to gain deeper insight into structure-functionrel ationships.

Extremum principles have along tradition in physics; Hamilton's Principle of
Least Action and the Second Law of Thermodynamicsare important examples.
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However, these principlesare not considered as optimization principles. Biology
and physics have in common to deal with processeson very distinct time scales.
Wheress classical celestial mechanics deals, for example, with the motion of
planets with given vauesfor the gravitational constant and the massesof planets
and the sun, cosmology has the goal, among others, to explain such parameters.
Thisis a situation analogous to the explanation of those biologica parameters
that may change on long time scales.

From the methodologica point of view, evolutionary optimization is related
to optimizationin biotechnology. Also here, relevant objectives concern the max-
imization of metabolicyield, the optimization of stability, and so on. On theother
hand, there are some differences in that optimization in biotechnology is aimed
at theimprovement of one or few speciaized functions, whereas biologica evo-
Iution has mainly acted to achievea well-tunedbal ance between several functions.
Thisisareasonfor therelevanced multicriteriaoptimizationin theunderstanding
of evolution.

The reader of this book is supposed to be acquainted with basic concepts of
elementary algebra, standard differential calculus, aswell as operationswith vec-
tors and matrices. Moreover, for the particular chapters, additional mathematical
knowledgeis helpful. Thismainly concernslinear a gebraand nonlinear agebraic
and ordinary differential equation systems. Some basic knowledge of nonlinear
optimization is needed for the understanding of the treatment of significant evo-
Iutionary extremum principles. In the chapters on structural analysis and control
analysis, ampleuseis made of matrix notation. Many relationscan be formul ated
in this way very concisely, because the mathematical treatment of metabolic sys-
tems requires a number of variables of the same type for its constituents (e.g.,
concentrations of many substances, or fluxes of reactions). Linear algebra had
been used in the stoichiometric analysisof chemical systems as early as at the
beginning of our century. Over the last two decades, it has been realized that
standard linear dgebra aone is insufficient for this analysis becauseit does not
cope with non-negativity conditions. As many relevant quantities such as con-
centrationsof reacting species, numbersof atom groups constituting thesespecies,
and velocitiesof irreversible reactions are aways non-negative, such constraints
must be taken into account. Accordingly, mathematical toolsfrom convex algebra
have turned out to be helpful.

The topics dealt with in the present book are multidisciplinary and may be
treated from different viewpoints. We chosea mathemati cal approach correspond-
ing to our own research. Thisis meant quitein the sensedf what Robert Mayer,
one of the discoverers of the First Law of Thermodynamics, regretted, in the
above epigraph, to be missing in biology.

L A —
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Fundamentalsof
Biochemical M odeling

In this book, we deal with deterministic kinetic modeling of biochemical reaction
systems. The principal notions are the concentration (i.e., the number of moles
of agiven substance per unit volume) and the reaction rate (expressed as concen-
tration change per unit time). This type of modeling is sometimes referred to as
macroscopic or phenomenologica approach, at variance with microscopic ap-
proaches, where molecules and their interactions are considered as fundamental
concepts. In the latter approaches, rate constants are calculated in terms of mo-
lecular quantities, for example, in the Transition State and Kramers Rate Theories
(cf. Hanggi et a., 1990).

Startingfrom general balance equations, we outline, in this chapter, important
fundamentals of biochemical modeling concerning rate laws, steady states, and
time-dependent phenomenaof nonlinear enzymic systems. The section dealing
with enzyme kineticsis meant to give an overview of basic concepts of a wide
field which we do not wish to cover comprehensively. For systematic treatises of
enzyme kinetics, the reader is referred to the books by Cornish-Bowden and
Wharton (1988) and Kuby (1991). We aso give several specific rate laws which
we will usein the chapter devoted to metabolic control analysis (Chapter 5) and
a newly derived rate law for a channeled pathway. Furthermore, thermodynamic
flow-forcerel ationshipsand the power-law formalismare compared with classica
enzyme kinetics.

Asmetaboliccontrol analysisand optimization studies on biochemical systems
are usualy confined to steady states, we outline, in Section 2.3, fundamental
concepts of analyzing stability of such states and treating multistationarity. Out
of the wide domain of oscillatory behavior of biological systems, in particular,
biochemical networks, we will sketch, in Section 2.4, the basic conditions for
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such behavior and some exemplifying models of glycolytic and calcium oscilla-
tions. Moreover, the frequently posed problem of finding minimal models show-
ing oscillations is addressed. A three-component model of a chemica reaction
system with very simple mass-action kinetics showing Hopf bifurcation is pre-
sented. Furthermore, the possible physiologica significanced oscillationsisdis-
cussed.

21. BALANCE EQUATIONS

Chemical and biochemical kinetics are based on the postulate that the reaction
rate, v, a apoint r = (x,yz) in space at atimet can be expressed as a unique
(usually nonlinear) function of theconcentrations,S;, of all participating chemical
species at the point r and at thetimet, and possibly of time,

wr,) = v[S@r),1, .1)

where 'S denotes the vector of concentrations. This equation allowsfor the pos-
sibility that therate v is explicitly dependent on time t. Furthermore, Eq. (2.1)
impliesthat (bio)chemical reactions are not subject to memory effects nor tolong-
range interactions; that is, interactions over distances longer than the diameter of
the volume element taken for defining concentration as average number of moles
per volume. It isworth noting, however, that in other fieldsof biological modeling
[e.g., in population dynamics (cf. Gopalsamy, 1992) and molecular biology (cf.
Heinrich and Rapoport, 1980)], memory effects play a major role and are then
described by delay differentia equations.

Direct dependence o reaction rates on time occurs, for example, in systems
with oscillating inputs (Markus and Hess, 1990). |n most cases, however, auton-
omoussystemsareconsidered;that is, systemsthat do not depend on timedirectly.
For such systems, Eq. (2.1) impliesthat thestatedof abiochemical system at some
pointin spaceis uniquely given by all the concentration variables(i.e., by afinite-
dimensional vector). Thestateis also characterized by parameters(e.g., rate con-
stants), which are (in contrast to variables) constant in the time span of interest.
As we will only ded with isothermic and isobaric systems, we also consider
temperature and pressure as parameters. Furthermore, some concentrations can
be trested as parametersif they are virtually constant (externa metabolites, see
below).

A further simplification used in many kinetic biochemical models and also
throughout this book concernsspatial homogeneity; that is, all concentrationsare
considered uniform in the volume under study. This assumption is substantiated
by thesmallness of the volumeof living cells and organelles, so that usual inter-
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mediates distribute uniformly by diffusion in a very short time. As for experi-
mental setupsin vitro, the test volumes have to be well stirred for the assumption
o spatial homggeneity to be justified.

An essential characteristics of metabolic reaction networks is their stoichi-
ometry. It indicatesthe molecularity (moreexactly, the proportionsof molecular-
ities) with which the reactants and products enter the reactions. For example, in
the reaction

IH,0, = 2H,0 + O, 2.2)

catalyzed by the enzyme catalase (EC 1.11.1.6), hydrogen peroxide, water, and
oxygen have the stoichiometric coefficients — 2, 2, and 1, respectively. The signs
o stoichiometric coefficientsdepend on the chosen orientation of the reaction.
Usually, one considers the chemicals on the left-hand side of a reaction equation
asreactantsand those on theright-handsideas products, with theforward reaction
going from "left to right" and the reversereaction going from "'right to left."
This convention is not essential. Formally, the forward and backward reactions
can beinterchanged by inverting the signs of stoichiometric coefficients.

The set of stoichiometric coefficients of a reaction can be considered as a
vector. When analyzing systems of severa reactions, it is useful to arrange the
set of these vectorsin a matrix. Usudly, the rows of this stoichiometry matrix
refer to substances, whereas the columns refer to reactions. For instance, to the
system of reactions

glucose + ATP ~ glucose6-phosphate + ADP, (2.3a)
glucosed-phosphate — glucose-1-phosphéte, (2.3b)
catalyzed by the enzymes hexokinase (HK, EC 2.7.1.1) and phosphoglucomutase

(PGM, EC 5.4.2.2), respectively, and proceeding, for example, in liver cells, one
may attach the stoichiometry matrix

HK PGM
-1 0 gluc
1 -1 G6P
N= 0 1 G1P 24

-1 0 ATP
1 0 ADP

Here, all reacting species involved have been included into N. For larger bio-
chemical systems, thisis neither necessary nor useful. One often excludes those
substances from the analysis, the concentrations of which are constant and vir-
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tually independent of the system parametersdueto presencein largeexcess (e.g.,
water) or to homeostasisof the substanceas maintained by the biological organ-
ism (e.g., glucose in the blood). They are usualy referred to as externa sub-
stances. Another exampleisthe influx of a species at constant rate. This species
can then be considered as the product of thefirst-order degradationof a substance
present in time-invariant concentration (see Horn and Jackson, 1972). If in the
example given in Eq. (2.3). glucose and glucose-1-phosphateare considered as
externdl, thefirst and third rowsin N can be canceled.

Kinetic modeling in biochemistry has been made possible by experimental
identification of the structureof metabolic pathways, resulting in highly detailed
charts and metabolic maps. Therefore, the situation is somewhat different from
chemical kinetics dealing with an inanimate nature. The latter is often concerned
with detecting the reaction mechanism; that is, identifying the compilation of
elementary steps for a multistep process (cf. Bauer, 1990; Corio and Johnson,
1991). This search may not lead to a unique adequate mechanism, as severd
mechanismsconsistent with someoveral process may not be distinguishable (cf.
Vajda and Rabitz, 1994).

Things are different in biochemistry, where most reactions are catalyzed by
enzymes. [Examples of nonenzymic reactions in living cells are processes in-
volving free radicalsand several glycation reactions of proteins (cf. Giardino et
al., 1994)]. Thus, themechanismis normally uniquely determined by the presence
of enzymes, providedthey are highly specific. Therefore, the stoichiometry of the
systems can be taken as a prerequisiteof the anaysis. In contrast, the atomic
compositiondf thesubstances(e.g., proteins) isoften incompletely known, unlike
in ""nonbiological chemica kinetics.

Reactionrates, v, are usually given astherateof changein theextent of reaction
divided by the volume, V,

) = %' % 2.5

The extent of reaction, &, is defined as
1
o = o AN(D) (2.6

(cf. Frigogine and Defay, 1954; Smith and Missen, 1992), where AN; is the dif-
ferenceN((f) — N{t;) of mole numbers of substanceS;, with #, being some ref-
erence point in time, and »; denotes the stoi chiometric coefficient of substanceS;
for the reaction under consideration.

If the stoichiometric coefficients coincide with the molecularities in the reac-
tion, the reaction rate is uniquely defined in terms of concentration changes by
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Egs. (2.5) and (2.6). When detailed knowledge about the molecular mechanism
is not availablefor a given overal reaction equation, stoichiometric coefficients
are indetermjnate up to rescaling by a common factor. Accordingly, the reaction
rate can be arbitrarily scaled as well.

In the usud situation that the biochemical system encompasses (much) more
than one reaction, we denote reaction rates by v, (j = 1,...,) and the stoichio-
metric coefficientsby n;;, wherei and j refer to the subscripts of the substance
and the reaction, respectively.

When (bio)chemical reactionsaretheonly causeof concentrationchanges(i.e.,
when there is no mass flow due to convection, diffusion, etc.), the temporal be-
havior of concentrationsis given by the balance equation

ds; z
PP @72
p-

(cf. Glansdorff and Frigogine, 1971; Horn and Jackson, 1972). This equation is
a consequenceof the definition (2.6) and the conservation of mass, so that the
contributions of al reactions can be summed. Equation (2.7a) can be written in
matrix notation as

— =Ny, 2.7b)

wherev and Sdenotethevectorsof reaction ratesand concentrations, respectively.

Because we wish to excludediffusion and convection, we can apply Eq. (2.7)
to the trangport of substances from one compartment to another, both of which
arespatialy homogeneous(for example, proton transport from mitochondriainto
the cytosol). The transported substance then has to be indicated by different sub-
scripts for the two compartments. If the compartments have different volumes,
one must either express S; in moles rather than moles/volume or divide the stoi-
chiometric coefficientsby the compartment volume, so that Eq. (2.7) can still be

applied.
When the system is autonomous, Eq. (2.7) becomes, more specifically,

asi
Tﬁt—) = Nv(S(1)) = fiS()), 2.8)

wheref () is a vector function of the time-dependent concentrations.
In the frequent situation that a biochemical system subsistsin a steady state
(cf. Section 2.3). the balance equation (2.8) becomes

Nv(S) = 0. 29
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Thisrepresents an dgebraic equation systemin the variables S;. For reaction rates
at seady state, we will frequently use the term flux. Note that this term will
normally refer to a scalar quantity rather than to a flow in space.

22. RATELAWS

2.2.1. Generalized Mass-Action Kinetics

The functionsv«S) entering Eq. (2.8) represent rate laws (also called kinetic
functions). More exactly, they should be written v{S,p) withp being a vector of
parameters p,. Certain classes (types) of rate laws can be discerned. A very well
known and fundamental kinetic function is the mass action rate law suggested by
Guldberg and Waagein thelast century (cf. Smith and Missen, 1992). It isderived
from the idea that the reaction velocity is proportional to the probability of col-
lision of reactants, which in turn is proportional to each concentration raised to
the power of the respective molecularity, becausethisis the number of molecules
that have to meet to initiatethe reaction. This gives

v(8.p) = ko L1877 — ke, TL 870 (2.10)
(cf. Moore, 1972; Horn and Jackson, 1972), wherek . ; and k _ ; denote theforward

and reverse rate constants, respectively, of reaction j.n; and n,-;-‘ stand for the
stoichiometric coefficientsof reactants and products, respectively, that is,

ne = T if ny <.0 (2.11a)
Yy 0  otherwise,
pt =1 M Eny>0 (2.11b)
Y 0 otherwise.

Thisimpliesn; = n) — nj. Inthecaseof theratelaw (2.10). k., k_; and the
n;, ni form the parameter vector p. The rate constants depend on temperature

and pressure.
At equilibrium(i.e. when v; = 0), Eq. (2.10) implies

[T

k+'
i — = Y — = = R (2.12)
IR TR

which is the well-known law of mass action, with q = k. ;/k_; dencting the
equilibrium constant of reaction j.
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If external metabolites, P,, participatein the reaction, their concentrationsmay
be included in the mass-action term
=

w82y = ke, I157 [LPE7 -k, IT s TLPE, (2.13)

where the products over i and k run over all interna and external metabolites,
respectively. The stoichiometric coefficients,m;; andmy; , are defined similarly
asin Egs. (2.11a) and (2.11b). Alternatively, the external concentrations may be
incorporated into the rate constants. An apparent equilibrium constant can then
be defined as

g =gq I;I P, 2.14)

Any (bio)chemical ratelaw must satisfy the condition that upon insertioninto
the balance equation (2.8), the concentrations aways remain non-negetive. This
condition is actually met by the kinetics (2.10) and (2.13), as can be seen by the
following. Theinitial concentration values are clearly non-negative. Assume that
at some point in time, some concentration §; becomes zero. For each reaction,
one can distinguish the three following cases. If ny is positive, the second term
on the right-hand sides of Egs. (2.10) and (2.13) equals zero, because of the
assumptions §; = 0 and n; > 0. The velocity therefore remains non-negative,
which ensures, owing to the balance equation (2.8) and n; > 0, that S; cannot
decrease below zero. If ny; is negative, the first term on the right-hand sides of
Egs. (210) and (213) iszero, dueto S; = 0 and »; > 0. The rateis then zero
or negative, so that the balance equation (2.8) implies that S; cannot decrease
further. If n; = 0, the rate has no effect on S; owing to Eq. (2.8).

For reactionsin nonideal solutions, it is sensibleto use the rate law (2.10) in
amoregeneral way, by allowing the exponentsto differ from the stoichiometric
coefficientsand even to be noninteger (Othmer, 1981).

Enzyme-catalyzed reactions can be described at least at two different levels.
Fird, al elementary steps of enzyme-substrate binding, isomerization, and dis-
sociation of enzymeintermediates may be taken into account. For these steps, the
mass-action rate law is normally well suited. Kinetic modeling of enzymic sys-
tems can, however, be smplified considerably if overall enzymic reactions rather
than all the elementary steps are treated as basic units, because the order of the
governingdifferential equation system and the number of parametersare reduced.
Ratelaws of these enzyme-catalyzedreactionscan then bederived, in which only
the concentrations of nonenzymicsubstrates and products but not the concentra-
tions of enzyme intermediates occur (cf. Cornish-Bowden and Wharton, 1988;
Kuby, 1991). To derive enzymatic rate laws, usually certain approximations are
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employed; for example, the assumption that enzyme-contai ningintermediatesare
at equilibrium with the substrates(equilibrium models) or the quasi-steady-state
hypothesis, which says that enzymeintermediates attain a quasi -steady-stateeven
when the concentrations of the nonenzymic substances still changein time (see
Section 4.2).

At thelevel of overdl enzymic reactions, the enzyme-kineticrate laws exhibit
featuresthat cannot immediately be described by mass-action kinetics(e.g., sat-
uration, cooperativity, inhibition or activation by effectors). The phenomenon of
saturation, for example, arisesfrom thefact that at high substrate concentration,
nearly all enzymemolecules are bound to the substrate, so that a further increase
in substrateconcentration has almost no effect on reaction rate.

To cope with the various specific phenomenain enzyme kineticsin a genera
way, Schauer and Heinrich (1983) proposed a generalized mass-action rate law
of theform

v(S.p) = F:,(S.p)[k+j HW -k, [I s ] (2.15)

The F(S,p) are positive functions which describe the above-mentioned specific,
nonlinear effects. The parameter vectorp in this notation contains all parameters
apartfrom the rate constants and the stoichiometric coefficientss; andn; . Note
that the requirement that concentrationsremain always non-negativeis again sat-
isfied and that this kinetics is consistent with the law of mass action, because at
equilibrium, where v; = 0, Eq. (2.15) entails Eq. (2.12). Moreover, the usud
mass-action kinetics (2.10) is comprised in Eq. (2.15) as a specia case with
F(Sp) =1

The mass-action kinetics can be writtenin terms of thereaction affinity, which
is defined as

A; = RT 1n<q, I1 s,.-"'f). (2.16)

From Eqg. (2.15), oneobtains

= G,-(S,p)[exp(%) - 1], 217
where
GiS.p) = FyS.pk_; T1 57 @18)
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From Eq. (2.17), it can be seen that for nonzero concentrations, a velocity v;
iszeroif and only if the reaction affinity A; is zero, becausefor positive concen-
trations, the fuggtion G«(S,p) is unequal to zero.

A drawback of Bq. (2.17) is that it is only gpplicable to reversible reactions,
whereasEq|. (2.15) also describesirreversiblereactions,whenk., ; = 0 ork_; = 0.

222. Various EnzymeKineticRate Laws

A fundamental rate law for enzymic reactionsis the Michaelis—Menten Kinet-
ics, which appliesto enzymesfollowing the uni-uni mechanism shown in Scheme
1 (Henri, 1902; Michaelis and Menten, 1913). While it wasfirst derived for ir-
reversible reactions, it was later generdized for the case of reversible uni-uni
reactions (Haldane, 1930). The temporal changes in the concentrations of the
enzyme-substrate complex and free enzyme are determined by

dES dE
P kS - E — (kg + kES + k_,S8, - E. 2.19)

This equation is consistent with the fact that the tota enzyme concentration is
constant, E + ES = Er = const. Usng thequasi-steady-stateassumption dES/dz
= ( (cf. Section 4.2), one obtainsthe rate equation

VESUKey — ViaSulKong

8,,8;) =
YOS = TSI 5K

(2.20)

which containsseveral phenomenological constants. Vit and V; denotethe max-
imal activities of theforward and reversereactions, respectively. X, and &X,,, are
the Michaglis constantsof §; and S,, respectively.

K
’E*‘sl"“T]’*ES=7fz=_E"'S2 Scheme 1
. 1 -2

In the case of Scheme 1, the phenomenologica constants are linked with the
elementary rate constants by

ko, + ko, +

Ku=ttth o _kath (2.21a,b)
3 k.

Vi = kEr, Va = k_,Er. (2.223,b)

In thecasethat the concentrationsare small compared to the respectiveMichaelis
congtant, the kinetics(2.20) smplifiesto the linear mass-actionkinetics
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v Vo
VWSS = Eﬁl s, - ﬁsz. (2.23)
m

The ratios of maximal activities and Michaelis constants then play the role of
first-order rate constants.
Setting S, = 0 in Eq. (2.20). one obtainsthe irreversible Michaelis—-Menten
kinetics
V.S

y = m, (224)

with thesimplified notationS = S,, V,, = Vi , and Kg = Ky -
ThereversibleMichaglis—Menten kinetics (2.20) fitsinto thegeneralized mass-
action kinetics (2.15), with

1
FSpSp) = ——— .
Svs) = TSI, + Sk, 2.2

and

q= Vn-thZ
V;Kml '

_—
[
[
(<))

N

Relation (2.26) interrelating the phenomenological coefficientswith the equilib-
rium constant was derived by Haldane (1930).

Theratelaw (2.20) isaminimal model in that aminimal catalytic schemewas
assumed, in whichonly oneform of thefreeenzymeand oneform of theenzyme-
substratecomplex exist. Thereis experimental evidence that for many enzymes,
thecatalyticmechanismismorecomplex; for example, involving distinctenzyme-
substrate and enzyme-product complexes. The three-step mechanism depicted in
Scheme 2 is more redlistic than the two-step mechanism shown in Scheme 1,
becauseit involves separate stepsof binding and catal ytic conversion.

& k
= ES; == E+5,; Scheme2
2 =

E+S, :L~ ES,
-1

The three-step mechanism can a so be described by the reversible Michaglis—
Menten kinetics (2.20), but therelationsbetween the phenomenol ogi cal constants
and the elementary rate constantsread now

kksEr
+ e
Vo = ot + ko (2.27a)
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k_ik_,Er

~ Moot 2.27b)
V by + k_y + k2, ( )
£y
Toks + k_ ks + k_jk_y
= 2.27
K bt + ks +kp) ' @27¢)
K, = k¥ kot ¥ ks 2270

ksl + ko + k_p)

A generalized ratelaw can be derived for unbranched catalytic schemes with
any number, r, of elementary steps

r 1 r—1 1 i+j—1 kh -1

v=(¢j~—1)ET(Hk—+H — I -—) , (2.28)

i=1K-j i=1j=1 k—(i—l) b=t ke
where by definition k4,45 = ky;and k_g = k_, (Wilhelm et al., 1994). This
type of scheme coversall ordered mechanismswith one or more substratesand
products. Thismeans, in particular, that bimolecul ar reactions are also comprised.
The concentrations of substrates and products are incorporated into the rate con-
stantsof the respectivesteps wherethey enter the scheme, giving rise to apparent

rate constants. The apparent equilibrium constant is linked with the (apparent)
rate constants by

-

L
g = - 2.29)
= ik_;

Thekinetics (2.28) fitsin thegeneralized mass-actionkinetics(2.15), with F(S,p)
being thereciproca of a polynomial in the concentrations. Special cases of Eq.
(2.28) for monomolecular reactions (uni-uni reactions) had been derived by Peller
and Alberty (1959), and for systems involving two reactants and two products
(bi-bi reactions) by Bloomfied et al. (1962). It is easy to see that for uni-uni
reactionswith the substrate bindingin thefirst step and the product being rel eased
in thefind step, Eq. (2.28) leads, irrespectiveof the number of elementary steps,
to the phenomenological ratelaw (2.20).

Thosereactions of molecularity higher than one (e.g., bi-uni and bi-bi) follow-
ing a catalytic scheme other than the ordered mechanism (e.g., random or ping-
pong mechanisms) do not obey the rate law (2.28), but are comprised in the
generalized mass-action kinetics (2.15) with Fi(S,p) being aquotient of two poly-
nomials. Specific rate laws of this type are given, for example, by Kuby (1991).

As was seen above, the phenomenological constants are linked with the ele-
mentary rate constants in a different way and, hence, have different physical
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meanings for different reaction mechanisms. Although experimenta determina-
tion of the valuesof elementary rate constants has advanced appreciably (Baykov
et al., 1990, 1993; Christensen et al., 1990; Patel et al., 1991), it is generally
impossible to assign values to all of these constants in a mechanism which in-
volves even areasonable number of intermediates. On the other hand, this knowl-
edgeis often not necessary to write down phenomenological rate laws.

For deriving phenomenol ogical ratelaws, the catalytic mechanismcan becon-
sidered, to some extent, as a black box. The question arises about which exten-
sionsto a given enzymeschemewould change theratelaw and which would not.
An exampleof auni-uni mechanism where the phenomenological rate law hasa
structuredifferent from Eq. (2.20) isprovided by athree-stepmechanismin which
the free enzyme isomerizes between two different forms. The rate law can be
derived from Eq. (2.28). Setting the number of steps r = 3, assigning the index
3 to the isomerization step of the enzymeand replacing &, by £,,, and k_, by
k_»S,, we obtain theformula

E
v = Br(kxquasx — k_tk_zk_3S,)

D = k_jky + ks + kgl + k_ihs + ki, + k5)S, (2.30)
4 kg + k_9)S, + kyk_3S,S,

which has also been derived by Cornish-Bowden (1994). It can be seen that this
rate law is not comprised in the Michaglis—Menten kinetics (2.20), because the
denominator includesa term proportiona to §,S,.

An important aspect in enzyme kinetics is the effect of inhibitorsand activa-
tors. There are numerous catal ytic mechanismsincluding the action of effectors.
For illustration, we discuss an example of a mixed-typeinhibitor of areversible,
uni-uni reaction. Consider a two-step catal ytic mechanism with an effector bind-
ing to thefreeenzymeand to the enzyme-substratecomplex with thedissociation

constants

E-J

K, = T (2.31)
ES.|

Kn= %5 232

El and ES| are dead-end complexes which are not transformed into product (see
Scheme 3).
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ki ky
E + §j==—n ES-=;:==E+S;
+

v ki o+ 2
AR 1 1
” ” Scheme3
Kh Kl‘b
El ESI

The enzyme species are subject to the relation

EtE + Est+ ES = E; = const. (2.33)

Applying the quasi-steady-state approximation to ES (cf. Section 4.2), dES/d! is
assumed to equal zero. Thisgives

— ET(lel + k—ZSZ) . (234)
T (Sy + k_2S(1 + UKy + (k_y + k(1 + IUKy) ,

ES

Withv = kES — k_,E- S, and the definitions(2.21) and (2.22), one obtainsfor
the quasi-steady-state reaction rate

5.5 = Vit Si/Knt — Vi SilKin 39)
YO0 = TR, + (SiKan + SiKa)(1 + UKy)'

Thisinhibition kinetics also fits in the general form (2.15). It coincideswith the

reversbleMichaglis-Menten ratelaw (2.20) when| = 0, as should be expected. -

Three specia cases of theinhibition kinetics(2.35) are of particular interest:

(a) Competitive inhibition (0 < Ky, < %, Ky, — ). |n this casg, the inhibitor only
hinds to the free enzyme Equation (2.35) then spedifiesto

VSKny — VaSy/Kuy
68D = Tk, + Sk, + S,/Km 2.39)
() Noncompetitive inhibition (0 < Kj, = Ky, < ). In this casg, binding o the

inhibitor to E and to ES is equaly tight. Equetion (2.35) then Smplifiesto

Vi Syt = Via Sa/Kma 2.37)
(U + Sy/Kny + S:/Kna)(1 + IKry)

v(S1,87) =

This type of inhibition amounts to an effective diminution of totd enzyme.
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(©) Uncompetitive inhibition (K, = %, 0 < Ky, < ). Equation (2.35) spedifiesto

VaSiKmt = Vi So/Kmp

) 2.38
1 + (/K + Sy/E)(1 + UKg) 238)

WSSy =

Although in the above kinetic equations describing enzyme inhibition, | de-
notes, strictly speaking, thefree-inhibitorconcentration, it is often approximately
identified with its total concentration, I, because this quantity is normally better
known, for example when the inhibitor is added in experiment. This approxi-
mationisjustified whenever total inhibitor concentrationis much higher than total
enzymeconcentration. In the caseof high dissociation constants K, and K, (poor
binding), a weaker condition for validity of the approximation| = I resultsin
that the total enzyme concentration may be of the same order of magnitude as,
or evenlower than, thetotal inhibitor concentration, becausemost of theinhibitor
then subsists in the free form. When the contribution of the bound inhibitor to
the mass balanceis not neglected, the quasi-steady-state equation givesrise to a
quadratic equation in ES (cf. Gellerich et al., 1990). Things become simpler in
the case.of irreversibleinhibition; that is, when either or both of the equilibrium
congtants Kj, and Ky, are extremely low. If I, < E; dmost al of the inhibitor
then subsists in the form bound to the enzyme. If I > Er, al of theenzymeis
bound to the inhibitor and, hence, inactive, whereas the excess inhibitor remains
in the free form. The reversible Michaelis-Menten rate law (2.20) can then be
modified by the consideration that the total enzyme concentration is approxi-
mately diminished by the inhibitor concentration to give

VESUK o — VaS,/Keg ( - Q) £ <E
ySuS) =1 1+ 5K + SolKan Er,

0 f1I > Ey

(2.39)

Wang and Tsou (1987) stressed the fact that the enzyme-kinetic literatureon
enzymeinhibition mainly concernsreversibleinhibition,athough irreversiblein-
hibition is also very important. Many chemotherapeutic agents as well as pesti-
cides are irreversible enzyme inhibitors by alkylating, phosphorylating, or acy-
lating at the active Sites.

The above rate laws for inhibition mechanisms are based on the assumption
that El and ES| are dead-end complexes (see Scheme3). In themoregeneral case
that an interconversionof El and S; to ES| and perhapsa dow reactionfrom ESI
to El and S, occur, the quasi-steady-state rate laws are more complex and gen-
erdly involveterms proportiona to 8%, 2, §21, and S, even under thesimplifying
assumption that thefind stepsof product formation areirreversible(cf. |.H. Segel
and Martin, 1988). Ratelawsfor enzymesinvolvingtwo substratesin the presence
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of modifierscan befound, for example, in the works of Wang and Tsou (1987)
and Kuby (1991, Chap. 5). A special case of inhibition studied in recent yearsis
the so-called smjgide inactivation, where the enzyme-substrate complex converts
into enzyme and product(s) and in paralel into an inactive complex (cf. Casas et
al., 1993).

Derivation of quasi-steady-staterate laws generally involves solving a system
of linear algebraiceguations for the enzyme-containing species (such as dES/dt
= 0 in the mechanism shown in Scheme 3). The number of concentration vari-
ablescan be diminished by consideration of thefact that total enzyme concentra-
tion is conserved [such as expressed in Eq. (2.33)]. The solution of the resulting
inhomogeneous linear equation system can be found by standard methods of
linear algebra. The solving procedure can be simplified by a graph-theoretical
method developed by King and Altman (1956). This method isexplainedin detail
in a number of textbooks (e.g., Cornish-Bowden, 1976b; T.L. Hill, 1977; Kuby,
1991). Due to the ever increasing facilities of symbolic computation software
such as MATHEMATICA or MAPLE, enzymatic rate laws can nowadays dso be
derived with the aid of these programs.

Plots of enzymatic activity versus substrate concentration often exhibit sig-
moidal kingtics, that is, the rate increases more than linearly for low substrate
concentrations. Onedf thefirst to detect such behavior was A.V. Hill (1910) when
studying the binding of oxygen to hemoglobin. He used an empirical equation to
describe this binding mathematically, which can be trandated into the following
rate equation:

Vio(SIK™
= —mls) 2.40
VET + SIK)™ 249

(ny: Hill coefficient, K: half-saturation constant). A mechanistic explanation of
this equation would be that nz molecules bind simultaneoudly to the enzyme E
before transformation into the product occurs. In the more redlistic situation that
the substrate molecules bind sequentially, Eq. (2.40) has to be replaced by a
quotient of polynomialsinvolving powers of concentrations with exponentsfrom
0 to ny (cf. Ricard and Noat, 1986).

For example, consider an enzyme that can bind two moleculesof substrate, so
that theternary complex E(S), isableto irreversibly generate the product, whereas
the binary complex ES is not. The corresponding quasi-steady-state rate law fits
into the general form

aS + ps?

— 2.41
y + 85 + &8 (241

wS) =

witha = 0 (cf. Kuby, 1991, Chap. 7). In case that both an active and an inactive
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form of the ES complex exist, an equation of theform (2.41) with a # 0 results
(Frieden, 1964). Ratelaws of this type also apply to other mechanisms, for ex-
ample, in the Situation that the substrate contains an impurity that forms an in-
active complex with the enzyme (Kuby, 1991), or when the enzyme can exist in
two forms (e.g., conformers) with two different activities (Ricard, 1978). Note
that Eq. (2.41) does not necessarily produce sigmoidd kinetics. Under the con-
dition

By > a3, ' (242)

one obtains §?v/as? > 0 for S = 0 and, therefore, sigmoidal kinetics.

A biphasic, but not sigmoidal, ratelaw is obtained in the case that oneand the
same reaction is catalyzed by two enzymes, or by an enzyme with two catalytic
sites per molecule. Indeed, the sum of two Michaglis—Menten rate laws of the
type given in Eq. (2.24) gives, when written over a common denominator, an
equation of the type (2.41). A similar procedure can be applied to multiphase
saturation curves. Recently, Holzhiitter et al. (1994) fitted experimental data of
the transport rate of the oxoglutarate-malate exchanger of rat-heart mitochondria
to asum o five Hill equations.

Sigmoidal kinetics is also obtained for enzymes composed of several subunits
that interact with each other. A classical model was established by Monod et al.
(21965). It starts from the assumptions that the enzyme can exist in two confor-
mations with different catalytic activity and that binding of substrate, activator,
and/or inhibitorleads to transitions between these states. We now givetheMonod-
Wyman-Changeux equation for the case that one conformation is completely
inactive and the reaction isirreversible:

V..(SIKs)(1 + SIKg)*™!

T R T @43
(1 UK )
U= L(———l AR (243b)

(n: number of subunits of the allosteric enzyme, L. dlosteric constant of the
trangition from active to inactive state, K: intrinsic dissociation constants of the
enzyme-substrate complex, I: inhibitor concentration,A: activator concentration,
K;: inhibition constant, K,: activation constant). Equation (2.43) takes into ac-
count both homotropic and heterotropic effects (i.e., the interactions between
identical ligands and theinteraction between different ligands, respectively). The
Monod-Wyman-Changeux model is based on the assumption that al subunits
switch simultaneously from one conformation to the other. When the correspond-
ing equilibrium constant L becomes negligibly small, Eq. (2.43) smplifiesto the
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Michaglis—Menten equation (2.24). A more general case where the subunits can
exig in different conformations simultaneoudly isdescribed by amodel of Kosh-
land et al. (1966).5

The presentation of enzyme kinetics in this section focuses on time-indepen-
dent ratelaws, which indeed constitute the main objectiveof researchin thisfield.
In addition, the temporal behavior of enzymes has been treated since the very
beginning of investigationsin enzyme kinetics (Henri, 1902). Recent develop-
ments in this direction are, among others, the description of non-steady-state
enzyme kinetics (Schauer and Heinrich, 1979; Segel, 1988; Frenzen and Maini,
1988; Chou, 1993) and the kinetics of enzyme-catalyzed reactionsin the presence
of an unstable modifier (which is assumed to decay exponentialy) (Topham,
1990).

In recent years, the putativeimportance of heterologousenzyme-enzymecom-
plexes and of the direct transfer of metabolic intermediates between these have
been discussed intensively (Srivastava and Bernhard, 1986; Srere, 1987; Cheung
et al., 1989; Ovadi, 1991; Anderson et al.. 1991). This phenomenon is usudly
referred to as metabolic channeling. Traditional equations of enzyme catalysis,
which take into account complexes of enzymes with metabolites or with modi-
fiers, but not with other enzymes, are insufficient in the situation of metabolic
channeling.

We will here derive an enzymatic rate law for a very simple channel mecha
nism, whichis depicted in Figure 2.1 and studied in moredetail in Sections5.6.4
and 5.15. The symbol w is used for the net rates of elementary steps. For the
present derivation, this reaction system is further smplified. First, the channel is
to be considered perfect; that is, the route of catalysisby the separate enzymes
E, and E, isexcluded (i.e., wy, = w,, = 0). Second, the two dissociation steps

W Wop
Wic ﬁ
E; E;

Figure2.1 Reaction schemewithtwo sequential reactionsincludinga parallel branch of dynamic
channdling.
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2b and 2c are assumed to be irreversible. A further idedlization is that the asso-
ciation stepsfor the two enzymes are so fast as to be at quasi-equilibrium. This
gives

PoE_ g, (2.442)
ES,
ESi B _ o (2.44b)
EISIEZ

The two enzymes obey the conservation relations
E, + ES, + E\S\E, = Er,, (2.45a)
E, + E,S, + E\S\E, = Ep,. (2.45b)

The quasi-steady-state assumption for E,S, yields

£y, = E- ES\Ey (2.46)
b

Substituting E, and E; in Egs. (2.44a) and (2.44b) by Egs. (2.45a) and (2.45b),
respectively, gives, under consideration of Eq. (2.46),

P\(Er, — EiS, — E\S,E)) = K, * E,S;, (2.47a)
— E = . 2.4
E\S\\Er2 — E\S\E;, — %, ES\E ) =K, - ESiE;. (2.47b)
b

These two equations entail a quadratic equation for the concentration of the com-
plex E;S&,. For thesteady-statereaction velocity of thechannel,v = k, . E\S; E,,
it follows

K
y = e [ET,, + aEr, + Kza(l + P—‘)]

2 1 (2.48)

- (1 _ 4aEr,Ery )‘”
(Ery + aEry + Ka(l + K\/P))?

with
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. 0=sa=1. 249

= (2.49)
’

Thelimiting casS?or a are characterized by high &y, and high &, which imply
that oneof the dissociation stepsis extremely fast. From among the two solutions
to the quadraticequation, the solution with the plussign isirrelevant, becausefor
Epy—0o0r Er, =0, theratemust vanish. For very large substrate concentrations,
therate v tends to a finite value.

An interesting situation is when the second term in the square root in Eq.
(2.48) issmall compared with unity. Thisoccurs, for example, in thecase of high
dissociation constant K, compared with both enzyme concentrations, or if one
enzyme concentration is much lower than the other one, or if the substrate con-
centration is very low compared with X;. The squareroot in Eq. (2.48) can then
be expanded into a Taylor series. Neglecting terms of order greater than unity
yields the approximation formula

ky8Er, EroP)
v = e . 2.50
(Ery + aEr))Py + aKy(P; + K)) ( )

For vanishing substrate concentration, the rate v tends to zero, as should be ex-
pected. In contrast to the usual Michaelis-Menten kinetics, where the rate is
proportional to the total enzyme concentrations, now saturation occurs in the
dependence of v on enzyme concentrations.

Equation (2.50) can be written in theform of the irreversibleMichaelis—Men-
ten equation (2.24) with P, = S,

aEy E '
= ky0Er Ery , @2.51a)
Ery + aEr, + akK,

aK\K,

= E——m T by, + a; (2.51b)

K

The Michaelis constant now depends on enzyme concentrations, except for the
casethat X; is very high. In this case, we have

E
Vo = k’°E12 LIy (2.52a)

K. = K. (2.52b)

Therate of the channel is then a bilinear function of the two total enzyme con-
centrations.
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We see that in contrast to the equations encountered in traditiond enzyme
kinetics, enzyme-enzyme interactions lead, for obvious reasons, to equations
quadratic in the concentration of an enzyme-containing species. Therefore, clas-
sical methods such as the King—Altman procedure are no longer applicable.

Rate laws for overall enzymatic reactions are an instructive example for the
situation that a scientific description at somelevel can be derived, under certain
assumptions, from a description at a lower level (the dementary steps in this
case). There are other situationsin science where such derivation is not or only
incompletely feasible, so that the description at a higher level must again start
from first principles (axioms). An example is provided by the interrelation be-
tween classi cal mechanicsand thermodynamics. Interestingly, in enzymekinetics,
thetype o the relevant equati onschanges depending on thelevel of description.
Whereas the simple mass-action kinetics relevant for the elementary reactionsis
linear in substrate and product concentrations, the overal enzyme-kinetic equa-
tions are nonlinear in these variables.

2.2.3. Thermodynamic Flow-Force Reationships

The ratelaws given in the preceding sectionsare usualy referred to as kinetic.
They express reaction velocities as functions of concentrations. In an dternative
approach based on principlesof nonequilibrium thermodynamics, velocities are
expressed in terms of thermodynamic forces. Besides (bio)chemical reactions
driven by reaction affinities, standard situations are the heat flow as driven by
temperature gradients and the electric current as driven by electric potentia gra-
dients. The fundamentals of irreversible thermodynamics and its application to
chemical and biological processes can be found, for example, in the textbooks of
Katchalsky and Curran (1965), Nicolis and Prigogine (1977), and Jou et d.
(1993).

Substance fluxes across biological membranes are aso flows in the thermo-
dynamic sense, with the electrochemical -potential difference being the corre-
sponding force. It can, such as any reaction afinity, be defined as the negative
changein Gibbs free energy accompanying the membraneflux or reaction.

A basic postulate of irreversible thermodynamicsis that the flowsin a given
system can be expressed asfunctionsof al thermodynamicforcesactingin or on
the system,

J= XX Xy i= 1., (2.53)

When reaction affinitiesare the only macroscopically relevant forcesin the sys-
tem, this equation can be specified to a ““thermodynamic rate law,”

y; = Vi(AhAZr""Ar)l | = 1,...,r (254)

Rare Laws 29

What may be important are el ectric flows and forces, in particular, in the case of
membrane transport processes. They can, however, be included in the variables
v; and A, respectiyely, by considering the electric current as a superposition of
ion fluxes and by using the concept of electrochemica potential gradient (cf.
Guggenheim, 1967).

In thermodynamicequilibrium, all affinitiesand all reaction ratesare zero. The
function (2.54) must therefore satisfy the condition

v(0,0,...,0 = 0. (2.55)

The thermodynamicapproach is particularly important for systemstheinternal
mechanisms of which are incompletely known. Lacking detailed knowledge of
the functions (2.53) and (2.54), one often uses a linear approximation in the
vicinity of equilibrium,

P
Jp = 2 LyX,, (2.56a)
k=1

vi = % LA (2.56b)
k=1

The Ly, are called phenomenological coefficients or Onsager coefficients. In Eq.
(2.56a), a coefficientL; expresses the influence of the force X; on its conjugate
flow J; (e.g., the effect of the temperaturegradient in driving heat flow), whereas
the coefficientsZy; reflect the cross-effectson other flows (e.g., the effect of the
temperature gradient on diffusion). As far as chemica reactions are concerned
(Eq. (2.56b)], cross-effectscan usualy beexcluded (L,; = 0 for i # k), provided
that the reactions are described at a sufficiently detailed level. Equation (2.56b)
can then be written as

v = (dgLu (257)

with A and (dg L) denoting the vector of affinitiesof the elementary reactions
and the (here diagonal) matrix of Onsager coefficients, respectively.

This assumption concerning the absence of cross-effectsis no longer fulfilled
when two or more distinct reactions share common intermediary Species. It de-
pends on the level of description whether such (possibly short-living) interme-
diates are included explicitly in the model. In biochemical modeling, this is of
particular interest for enzymes coupling exergonic to endergonic processes. An
exampleis provided by the mitochondrial H* -transporting ATP synthase (H*-
ATPase, EC 3.6.1.34). A scheme representing the basic steps involved in this
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enzyme are shown in Figure 2.2 (cf. also Pietrobon and Caplan, 1985). As was L L
stressed by T.L. Hill (1977), energy-transducing enzymes operate along at |east : cytoplasmicside | matrixside
two interconnected reaction cycles. In theexample shown in Figure 2.2, theseare : i
thecycle of proton influx (reactionsi, 7, 5, and 6) and the cycle of ATP—ADP 4 ‘ E(o)‘ 6 E@
interconversion (reactions2, 3, 4, and 7). ! e

When the condition is imposed that the system subsists in a steady state, the ' nH+(°) — nH+®
particular reactions do become interdependent due to Eq. (2.9). In the example 3 1 5
shown in Figure 2.2, steady-state conditions applied to the enzyme-containing i
speciesyield equationsof theformv, = vs, v, + v, = v, andsoon. Thecoupling L H*,,E(o) __l_._. HﬁE(D
by the steady-statecondition brings about that the number of independent fluxes :
and forces is decreased. One can therefore introduce a reduced flow vector, J, £ — ATP
and a reduced affinity vector, A', for which E 4

J =LA (2.58)

holdstrue. L' is areduced matrix of Onsager coefficients, which is not normally
diagondl. In theconsidered example, A" could encompassthe proton-motiveforce
and phosphate potential,and I would comprise the proton influx rate and phos-
phorylation rate (cf. Westerhoff and Van Dam, 1987).

According to the fundamental Onsager reciprocity relations (Onsager, 1931;
cf. Guggenheim, 1967), L' is a symmetric matrix,

H*. ATPase

Ly = L. (259

For the considered case of coupled enzymic processes, this relation will be ana-
lyzed in detail in Section 3.3.3.

The original idea underlying linear irreversible thermodynamicswas to line-
arize the function (2.53) around an equilibrium point. Later, it was found both
experimentally and theoretically that this function often exhibits a multidimen-
sional inflection point, that is, a point where some or dl second derivatives
847/aX2 vanish (Rottenberg, 1973b; cf. Caplan, 1981). In the neighborhood of
such a point, linearity between flows and forces (possibly with an additive con-
stant), but not necessarily proportionality, approximately holds.

Thermodynamic approaches were intensely used in biochemical modeling
several years ago (Kedem and Caplan, 1965; Kedem, 1972; Rottenberg, 1973b;
Stucki et al., 1983; Caplan, 1981; Westerhoff et al., 1983; Westerhoff and Ven
Dam, 1987; Westerhoff, 1989; Groen et al., 1990). In a number of models, both
kinetic and thermodynamicrate laws were used (Bohnensack, 1981, 1985; Holz-
hiitter et al., 1985a; Pietrobon and Caplan, 1985; Pietrobon et al., 1986; Stoner,
1992). It is worth noting that these approaches were employed to describe exclu-
sively processes of biological energy transduction (oxidative phosphorylationin
mitochondriaand bacteria, photosynthesis, etc.). Thisis certainly due to thefact

Figure 2.2 Reaction scheme of H*-ATPase including elementary reaction steps. Symbols: E,
ATPase; the supercripts (0) and (i) refer to theoutsideand insideof themembrane, respectively; Step
7 represents a dlip reaction.

that energy isa centra notion in thermodynamics. It is not clear, however, why
the description by irreversible thermodynamicsshould be more appropriate for
biological energy transduction than for other biochemical systemssuch as amino
acid synthesis or the tricarboxylic acid cycle, which have usually been modeled
by kinetic approaches. Even most models of glycolysis, which is part of energy
metabolism, are kinetic (Selkov, 1975b; Ataullakhanov et al., 1981; Werner and
Heinrich, 1985; Markus and Hess, 1986; R. Schuster et al., 1988; Joshi and
Palsson, 1989a). Thisargument can be put also the other way around. Given that
kinetic modeling has turned out to be very powerful in the modeling of many
biochemical networksof anabolismand catabolism, why not apply it to biological
energy transduction? Severa advantagesand drawbacks of thermodynamic and
kinetic modeling were outlined in an interesting dispute between Westerhoff
(1982) and Wilson (1982).
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It is our impression that nowadays, for the construction of simulation models,
kinetic ratelaws are more and morefavored compared to flow-force relationships
(Heinrich e al., 1977; Goldbeter et al., 1990; Majewski and Domach, 1990b;
Novak and Tyson, 1993; Ko ef al., 1994, as well as the paperson glycolysiscited
earlier). The kinetic paradigm gives a degper insight into biochemical systems,
as it alows one to make use of more detailed knowledge about the enzymatic
processesinvolved (cf. Korzeniewski and Froncisz, 1991).

A comparison of the (linear or nonlinear) thermodynamic flow-forcerelation-
ships (2.54) with the genera kinetic rate law (2.15) shows that the affinitiesare
insufficient in number to reflect all degrees of freedom that determine the reac-
tions. Consider, for example, a single monomolecular reaction interconvertingSy
and ;. In the thermodynamic description, the rate would be written as afunction
of the affinity

v = v(A), (2.60a)

A= R-Tln(M), (2.60b)
S,

whereas in the kinetic description, it reads
v = FS1,S)k+S, — k_S5). (2.61)

Imagine now the situation that both the concentrations S; and §, are multiplied
by somefactor 4, S; = AS}, S; = 4S,. Thereaction velocity given by Eq. (2.60a)
would not changein thissituation, not even if v(A) were anonlinear function; but
the rate given by Eq. (2.61) generaly would, which reflects reality more ade-
quately. To elucidate this discrepancy, we rewrite Eq. (2.61) as

v =k_ (53 + ASQ[exp(%) - 1}, (2.62)

where the factor F(S,,5,) has been dropped for the sake of simplicity and S32
denotes the concentration of S, at some equilibrium point. v can now be regarded
as afunction of AS, and A, that is, of thedeviation of the concentration S, from
its value at the chosen equilibrium point and of the reaction &ffinity. The usud
way to derive flow-force relationships to describe reaction kinetics is to expand
Eq. (2.62) into aTaylor series. Thisgives, because A = @ at equilibrium,

A 2
v=k S‘q-A—+k_ASZE]:+I-(£<A—) + ... (2.63)

2 \R

"2 RT
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which contains only one linear term and two second-order terms. Only in the
linear approximation can v be written as afunction of the only argument A [cf.
(2.60a)]. To be ablego describe the kinetically relevant situation that all concen-
trations are increased by (approximately) the samefactor (see above), one hasto
include &t least the second-order terms. The reduction of two variables(S; and
S») to only one degree o freedom (affinity) is therefore an oversmplification.

Reaction rates depend not only on concentration ratios but also on their ab-
solute values because the probability of collision of molecules becomes higher
with increasing concentrations. For example, the dependence o ATP synthesis
on interna and externa pH in chloroplasts cannot be subsumed under a depen-
dence on the proton-motiveforce, as was shown by experiment (Possmeyer and
Griber, 1994). Furthermore, the fluxes across biological membranesare not nor-
mally a uniquefunction of theoverall forcegiven by theelectrochemical potential
difference, but depend on the electric potential differencein a different way than
on the concentration ratio (Pietrobon and Caplan, 1985; Skulachev, 1988).

It has sometimes been argued that the rates of many biochemica reactions
depend on the concentration ratio ATPIADP, so that this ratio is a global signal
variable. One should not, however, forget that changes in the absolute va ues of
ADP and ATP generally aso have an effect. Indeed, such changesare excluded
when the sum d ADP and ATP is constant, but there are many instances where
thisis not the case, for example when adenylatekinase is operative, so that AMP
must be included in the balance of adenine nucleotides. In some cases, it is con-
venient to work with concentration ratios, namely when they can be measured
more easily than the particular concentrations(e.g., pH differences by the distri-
bution of special substances, cf. Skulachev, 1988), but in many casesthey cannot.

Alternatively to the ATPIADP ratio, the energy charge, (ATP + LADP)I(ATP
+ ADP + AMP) was suggested to be a key variable by Atkinson (1968) (see
Reichand Selkov, 1981). Theaimin defining such global varigblesis to compress
the body of datainto a tractable number of variableseasy to survey. Indeed, the
energy charge obtains as a pool variable under some conditions concerning the
separation of time constants of the reactionsof interconversionof adenine nucle-
otides(Heinrich et d., 1977). However, alsoin thiscase, thesigna effect on other
enzymes by the particular adenine nucleotides cannot necessarily be expressed
by theenergy charge only. Therefore, such compression of variablesinto the ATP/
ADPratio or energy charge usualy eliminatesrelevant variables.

We have seen above for the case of a monomolecular reaction that thermo-
dynamicratelawsare more restrictivethan kineticfunctions. Let us now consider
the linear flow-forcerelationship resulting in the more general case of reactions
of any stoichiometry. We start from the generalized mass-action rate law (2.15)
for asinglereaction with the stoichiometric coefficientsn,. It can be split up into
therate laws for the forward and reverse reactions:
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n

vF(S) = FSk. I] s, (2.64a)
i=1

s, (2.64b)

1

v (S) = F(S)k_

respectively. Dividing these two equationshby each other, we find

+

i A
= -0 = —]. 2.65
q E S; exp(RT> (2.65)

< [<
!

Thisequation can be written in logarithmic form as

yt — ¢ yvo - 17> A
- =4 2.66
ln<l TR ) m(l P04 (2.66)

where 7 denotes the arithmeticmean of v and v~ . In the neighborhood of ther-
modynamic equilibrium states, the unidirectiond rates are much higher than net
velodity (v*,v~ 3> Iv© — v~I) and, hence, much higher than the quantities Iv*
— 9 and v~ — 8L Accordingly, we can approximate Eq. (2.66) by using the
Taylor expansionIn(1 + X) = x at athermodynamic equilibrium state, where v©
= v~ = 8. Thisgives

v
= — 2.67
v RTA. ( )

The net rate depends on the average unidirectiond velocity, 7, and hence, on
the equilibrium point chosen for the approximation. For a single reaction, this
point depends on the conservation quantity of the concentrationsinvolved (in the
case of a monomolecular reaction, S, + S). In the andlysis of multienzyme
systems, the question of how to choose an appropriate reference state is even
more problematic. For example, when the system involves conservationrel ations,
the equilibrium state depends on al conservation quantities and is, therefore, a
systematic property. However, arate law should be defined in a very genera way
to be applicable wherever the considered reaction occurs. This requirement is
fulfilled by kinetic rate laws such as the Michaglis-Menten kinetics (2.20).

This kinetics can be rewritten as a function of the affinity and the sum of
substrate and product concentrations,2 = S; + S,

A 1 K 1 A K\
v = [exp(R—> - 1} [‘—’n:, (1 + T';%) + Vm;exp(l—ﬁ)(l + ?l>] (2.68)
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(Rottenberg, 1973b; Westerhoff and Van Dam, 1987). When the reaction is stud-
ied in isolation, &2 isconstant. The reaction rate can then be regarded as afunction
of theafﬁnity‘ggly, that is, as a (nonlinear) flow-forcerel ationship (2.60a), which
contains parameters that are only available by a kinetic characterization of the
reaction. When the reaction is embedded in a metabolic system, the dependence
on £2 becomes essential. Accordingly, rewriting the Michaglis—Menten kinetics
in theform (2.68) is not of particular use.

A way to circumvent some difficultiesin applying flow-forcerelationships to
chemical reactions is to define separate affinities for the forward and reverse
reactions (Lengyel, 1989), but thisamountsto rewritingkinetic equationsin other
variables.

Dueto the treatment of systems as black boxes, the thermodynamicapproach
only necessitatesasmall number of parameters. On theother hand, by a moderate
increasein the number of parameters and using some knowledgeof the internal
mechanismsof thesystem, an enormousgain in modeling power can be achieved.
For example, replacing the linear version of the thermodynamicrate law (2.60a)
for an enzymic uni-uni reaction by the reversible Michadlis—-Menten rate law
(2.20) increasesthe number of parametersto be estimated from one to four. Due
totheHaldanerelation (2.26), only threeof thesefour parametersareindependent.
On the other hand, the Michadlis—Menten rate law, which is based on the knowl-
edgethat thereaction is catalyzed by an enzyme, allowsoneto describea number
of additional phenomena, such as saturation, the limit case of irreversibility (g =
0 or g - =), and thefact that the rate depends on the absolute values of concen-
trations. Apart from situations where the knowledge about the system is redly
very limited, thereis no reason why not to prefer a kinetic description in the case
of biochemical reactions. For several other processes such as diffusion, electro-
diffusion, and hesat flow, thermodynamicflow-forcerelationshipsare very helpful.

An attempt to marry the simplicity of thermodynamicswith the adequacy of
kineticsis the Mosaic Non-Equilibrium Thermodynamics(MNET) devel oped by
Westerhoff and Van Dam (1987). Flow-forcerel ationships are combined with en-
zyme-kineticratelawslikeinamosaic. Therequirementof proportionality between
fluxes and forcesis relaxed so as to only require linearity, possibly including ad-
ditiveterms. Thisal so servesto extend the validity of thetreatment to the vicinity
of multidimensional inflection points. Onsager Symmetry is no longer invoked.
The number of applicationsof this approach is, however, limited until now.

In this book, we focus on kinetic approaches. Nevertheless, reference to ther-
modynamicsis made whenever appropriate [e.g., in the determination of the di-
rection of fluxes (as will be donein optimization, see Section 6.2) or of detailed
balanced subnetworks (see Section 3.3)]. Thermodynamics plays the role of an
"accountant™ deciding what is feasiblein terms of energy balances and what is
not. Its tools are not, however, sufficient to predict steady states and time-depen-
dent behavior of biochemical systemsfar from equilibrium.
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2.24. Power-Law Approximation

Rate laws of enzymic reactions in terms of the concentrations of substrates
and products are usually nonlinear. Therefore, analytical treatment of models of
larger reaction systemsis very difficult or even impossible. For example, the flux
through achain of enzymic reactions endowed with reversibleMichaelis-Menten
kinetics cannot be expressed in terms of parametersin explicit form (cf. Section
54.31).

In many fieldsof science, intricate mathematical functions are often approxi-
mated by moreconciseexpressionsto simplify mathematica treatment. Caremust
be taken, however, that the essential properties are still reflected in this simplifi-
cation. The most common approximation method is linearization. Accordingly,
biochemical ratel awshave often been linearized in terms of concentrations(Hein-
rich and Rapoport, 1974a; Palsson et al., 1985; Liao and Lightfoot., 1987; S.
Schuster and Heinrich, 1987; Cornish-Bowden, 1991) or in terms of reaction
affinities(Kedemand Caplan, 1965; Rottenberg, 1973a; Westerhoff and VVan Dam,
1987). By this method, however, many biochemicaly reevant effects such as
saturation and sigmoidicity cannot be described.

Another possibility is to use power-lawv approximations (Savageau, 1969,
1976; Savageau et al., 1987a; Peschel and Mende, 1986; Cascante et al., 1989a,
1989b). Development of this method was inspired by the mathematical structure
of usual mass-action kinetics, which involves products of concentrations raised
to some power each. Any reaction rate v; can be written as the difference of a
forward and areversereaction rate, which arefunctionsof concentrations|cf. Eq.
(2.15)],

v = v"(8) ~ v (S). (2.69)

It can aso be written in terms of |ogarithmic concentrations,
v, =S - v (9. (2.70)
An essential prerequisite of the power-law approachis that some operating point
must be chosen, which is, in most cases, some stationary state. Theregfter, the

logarithms of the forward and reverse rates are linearized around the operating
point,

. B dln vJ o 0
Inv*(In ) = In v*(In $%) + El o 5, 1 05 In §), 2.71)

wheres? denotes the concentrationsat the operating point. With the abbreviations
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dln
Iny (s - 3 —VJ— n$ =Ina, @72)
£y
di
In v (In $% — E MY =g, @.73)
: aln S; g
UL 274
Jln si 0 - gjlv ( . a)
dln v~
i/ I
o 5 e By (2.74b)
onecan write
ny'WS) =g+ X glns, @.75)
Inv (nS) =g + X kIS, (2.76)

Transforming back into Cartesian coordinates, one obtains
v =g H P — B; H S, 2.77)

It can be seen that the power-law approximation is equivalent to a linearization
in logarithmic space. A directly linearized rate law,

v =a + gl b;S,, ) (2.78)

hasn + 1 parameters (for a given reaction j), whereas the power law (2.77)
involves 2(n» + 1) parameters. The latter function can therefore be expected to
exhibit alarger richnessin different curve shapes.

In the considered approach, the parametersa; and §;in Eq. (2.77) play therole
o rate constants. The concentrations of external metabolitescan either beincor-
porated into these rate constants or be written in the same way as the concentra-
tions of internal substances. The exponents g; and &; are referred to as kinetic
orders. Note that if the approximation procedure outlined above [Egs. (2.70)-
(2.76)) isapplied to the mass-actionrate law (2.10). thelatter remains unchanged.
In that rate law, the kinetic orders are given by the stoichiometric coefficients. In
the general power-law function (2.77), the kinetic orders are phenomenological
parameterswhich may or may not be integer.
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Animportant aspect in enzymekinetics istheeffect of inhibitors. It is obvious
that in the power-law equation (2.77), the concentration of an inhibitor, I, must
be raised to a negative power. This givesrise to the singularity v = = a | = 0,
which would paradoxically imply an activationfor very small inhibitor concen-
trations. Accordingly, several models using the power-law approach lead to huge
concentration values of many orders of magnitude higher than redlistic values
(e.g. Torreset al., 1993). In contrast, usual inhibition kineticssuch asin Eq. (2.35)
ensuresthat the reaction rate remainsfinite and nonzero as | tends to zero.

Replacing enzyme-kinetic rate laws such as Michaelis-Menten kinetics by
power laws means that certain knowledge about the mechanism of enzyme ca-
talysis and, accordingly, about kinetic propertiessuch as saturation is deliberately
sacrificed for the sake of the simplicity of mathematical treatment. As computa-
tional resources are nowadaysno longer limiting in biochemical modeling, usage
of power-law approaches only seems to be acceptable for processesfor which a
detailed kinetic description is not yet available.

23 STEADY STATESOF BIOCHEMICAL NETWORKS

2.3.1. Genera Consderations

To restrict modeling analysis to essential features, one often investigates the
asymptotic time behavior of dynamica systems only, (i.e., the behavior after a
sufficiently long time span). The asymptotic behavior may be oscillatory or even
chaotic, but in many important situations, the systems will reach steady states.

The concept of steady state playsan outstanding role in kinetic modeling. A
metabolic or any other macroscopic system is said to subsist in a steady state
(alsocalled gationary or time-invariantstate) if the macroscopicvariables(in the
caseof biochemicd pathways, these are usudly concentrationsand fluxes) do not
changewithin atol erableaccuracy over acertain timespan of interest. Asamatter
o course, the concept of steady state is a mathematical idedlization that can
describe real situations only in an approximative way, due to fluctuationsof dif-
ferent nature. Steady states comprise, as specia cases, thermodynamic equilib-
rium states, in which al net flows as well as entropy production are zero. In
generd, however, net flowsin steady states are not equal to zero (but constant),
so that entropy production is positive.

Staticsituationsare widespreadin biology. Well-knownexamplesare thefairly
constant body temperature of homeothermic animas, the glucose concentration
in the blood, and the pH in agreat variety of living cells. Biochemical examples
of virtudly time-invariant states are erythrocyte glycolysis (cf. Ataullakhanov et
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al., 1981; Werner and Heinrich, 1985; Joshi and Palsson, 1989a) and amino acid
synthesis (cf. Fell and Snell, 1988). On the other hand, many biologica events
such as growth, negye excitation, heart activity, and, on alonger time scale, bio-
logical evolution are clearly nonstationary. Nevertheless, examination of steady
states and their neighborhood often helps to better understand the behavior of
biological processes (cf. Edelstein-Keshet, 1988).

A more detailed analysis shows that the frequent occurrence of stationary be-
havior in biochemica networks results from the phenomenon of separation of
time congtants. In living cells, fast and dow processes are coupled with each
other. Thefast processes attain, under some stability conditions, a quasi-steady-
state after an initial transient period (cf. Chapter 5). Every steady state can, in
fact, be considered as a quasi-steady-state of a subsystem embedded in a larger,
nonstationary system.

The usefulness of analyzing time-invariantstates of biochemica systems be-
comes clearer by consideration of the general approach of classical thermody-
namics. Thistheory starts with thestudy of equilibrium states, because a number
o physical quantities such as temperature and entropy can be much more easily
defined for these states. Moreover, severd extremality principlesderived from the
Second Law of Thermodynamicsare related to equilibrium states. Nevertheless,
assertions about nonequilibrium systems can be made, as long as transition pro-
cesses between equilibrium statesare analyzed.

Because biological organismsare characterized by a throughput of energy and
matter, it has to be acknowledged that time-invariant regimes in biology must
usudly be nonequilibrium phenomena. The German word Fliessgleichgewicht
(equilibrium of flows) coined by von Bertalanffy (1953) properly expresses the
fact that in steady states input flows balance output flows.

The modeling of nonequilibrium systemsiis one step up the ladder compared
to equilibrium thermodynamics. Here, theanalysis of steady statesisthefirststep,
because of the widespread occurrence of these states and the favorable property
that differential equationscontaining time as an independent variable smplify to
agebraicequations (similar to theequilibrium states studied in thermodyndMics).
Also for these states, extremality principles such as the principle of minimum
entropy production (cf. Glansdortf and Prigogine, 1971) can be derived. As for
biochemicd reaction systems, the analysis o steady states implies that the dif-
ferential equation system (2.8) isreplaced by the algebraic equation system (2.9).

In analogy to equilibrium thermodynamics, transitions between steady states
can be studied dso. Relaxation processes (i.e., atainment of a steady state after
a perturbation) and oscillatory regimes with small amplitudes can be approxi-
mately described by linearizing the equationsin the neighborhood of the station-
ary state, which allows analytical solution of these equations. Moreover, lineari-
zdtion is awell-suited prerequisitefor stability analysis.
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232. Stableand Ungtable Steady States

A steady state, S, of a metabolic system described by the autonomous differ-
ential equation system (2.8)is considered to be stable if after an initia pertur-
bation

AS(0) = S(0) — §; 2.79)

the concentrations S(#) remain within a close neighborhoodof theoriginal steady
state. Otherwise, the steady stateis ungtable. It is said to beasymptotically stable if

AS(r) = 0. : (2.80)

e

[For amorerigorousdefinitionof stability, comparetextbookson differential equa-
tions(e.g., Andronov et al., 1966; Guckenheimer and Holmes, 1983)]. Very often
it is sufficient to analyze stability with respect to infinitesimally smal perturba-
tions8S? = 85,0) (local stability).In thiscase, stability analysiscan be performed
on the basis of a Taylor expansion of the system equations (2.8).that is,

2 af'b 8SBS + ...s 2.81)

where the derivativesof the functions f(Sy, . . ., S,) defined in Eq. (2.8) have to
be calculated at the referencesteady state S.

If infinitesmally small perturbations are considered, the quadratic terms on
theright-hand side of Eq. (2.81)can often be neglected and onearrives at alinear
differential equation system for 8Sy(#). In matrix notation this linear equation

system may be written as

469 _ s, 2.82)
dr

wherethe matrix M with the elementsm;; = 4f,/aS; denotes the Jacobian of the
origina differential equation system. Taking into account Eq. (2.8), M may be
expressed in terms of the stoichiometry matrix and the rate laws,

=3 .% o M=NZ. (2.83)
k=1 J

(Thederivativesav,/as; which enter thematrix M aso play abasicrolein metabolic
control analysis where they are called easticity coefficients; see Chapter 5).
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Thesolutionsof thelinear differential equation system (2.82)may beexpressed
in different ways. A formal solution may be given as
Co
38() = exp(Mr)3S°, (2.84)

where the exponential function is a matrix which transforms the initial pertur-
bation 8S° into 8S(¢). It is defined as the following expansion of the matrix Mt:

expMr) =1 + Mt + %(Mt)z + %(Mt)e’ + ..., (2.85)

wherel denotes theidentity matrix. For more practical purposes, the solutions of
Eq. (2.82) may be written as

38(¢r) = E ch; exp(A;t), (2.86)

i=1

where b; denote the eigenvectorsand 4; the eigenvalues of the Jacobian. The
unknown constants ¢; aredetermined by theinitial perturbations. Theeigenvalues
may be calculated by solving the characteristic equation

DetM — A = @, A" + @, A" + ... + ad + a5 = 0, (2.87)

which is a polynomial equation of order n.

From the solution (2.86) of the linearized differential equation system (2.82),
it can immediately be seen that a steady state of this system is asymptotically
stableif, and only if, all theeigenvaluesof the Jacobianfor §; = §; have negative
red parts. If at least one eigenvaluehas a positivered part, then the steady state
is unstable. Strictly speaking, Eq. (2.86) can only be applied if all the solutions
o thecharacteristic equation aredistinct. Otherwise, somefunctions3S;(?) involve
polynomia functions, which do not, however, have any effect on stability (cf.
Section 4.4).

Upon reduction of the complete equation (2.8) to the linearized equation
(2.82), nonlinear terms have been neglected. Concerning the problem of whether
the stability behavior is affected by these terms, one may prove the following
theorem (cf. Hahn, 1967):

Theorem 2A. If the steady state of the linearized system (2.82)is asymptotically
stable then the steady state of the complete system (2.8) is also asymptotically
stable. If the steady state of the linearized system isunstable (at least one eigen-
value of the Jacobian has a positive real part), then the steady state of the com-
plete system is also unstable.
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In the framework of thelinear theory, conclusions on the behavior of the tra-
jectoriesfor the case that some elgenvalues have negativerea parts and the re-
maining eigenvalues have zero red parts can hardly be drawn. In that case the
stability behavior can only be determined when the nonlinear termsin the expan-
sion (2.81) are taken into account.

From Theorem 2A, it followsthat for stability analysisit is often sufficient to
test the signs of the roots of the characteristic equation (2.87). To this end, the
so-called Hurwitz criterion may be applied (cf. Hahn, 1967). The coefficientsof
the characteristicequation are used to form the Hurwitz matrix

a,.; a, 0 0 0 o
ay.3 Gy G-y a, ... 0 0
y_5 Gy_yq Gpez Gy_p ... 0 0
H= . (2.88)
0 0 0 0 ... a4 a
0 0 0 0 ... 0 a
The elements&;; of H are defined as
_lanze; f0<2 —j=n
Hy = {0 otherwise. (289

The Hurwitz determinants D, are defined by the following sequence of principal
subdeterminants

Dy=a,,, Di=a.,1a,_2- a4, ..., (2.90)
Dn—l = aan—Zv Dn = aODn—l = Det(H).
The following theorem is due to Hurwitz (1895).

Theorem 2B. The characteristic equation (2.87) hasonly motswith negativereal
partséf and only #, theinequalities

Gimln g, %2, %50 2.912)
a, a, a,
and
D, >0, D;>0,...,D0,>0 2.91b)
hold true.

[For aproof of thistheorem, cf. Hahn (1967).]
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It followsimmediately that for one-component systems (n = 1), asteady state
is asymptoticaly stablef
e
oh
38,1515, <0. (2.92)
Let usdiscussin moredetail thecasen = 2. Despitethefact that real metabolic
systemscontain a huge number of variable concentrations, many important mod-
els areformulated as two-component systems (cf. Sections4.2 and 4.3 for the
reduction of the number of variables using quasi-steady-state and rapid-equilib-
rium approximations). Moreover, the behavior of two-component systems is
mathematically very well understood (Andronov et d., 1966; Guckenheimer and
Holmes, 1983). The time-dependent properties of a two-component system are
governed by the differential equations

ds
5 = fiuS), (2.932)
ds

& = S8, (293b)

where the functions /; and £ include dependencies on parameters. The linear
approximationin the neighborhood of a steady state gives

a@sy) _ o i
& % 58, + s, 55, (2.942)
46Sy) _ 9 o '
& s 88, + %, 85, (2.94b)
The characteristic equation reads
P—tr-d+4=0, (2.95)
where
o | 9 ofi 8 8f 9
r=_t4+-%  g=_1=2 L2
T %, T asy 35,85, a5, S, (2.96)

denotethe trace (tr) and the determinant (A), respectively, of the Jacobian. Be-
causea, = 1 the Hurwitz criterion leads to the stability conditions
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tr <O0. (2.97a)
4>0. (2.97b)

For n = 2 the stability conditions follow directly from the explicit solutions of
the characteristicequation (2.87)

b= 3o+ P2 @98)

The dynamical properties of a metabolic system with only two variable con-
centrations may be studied by consideration of the motion within a plane which
is spanned by the two concentration variables. There, the solutions of the differ-
ential equation system (2.93) may berepresented by thesolution of thedifferential
equation

"~ \

s, _ S8y o
=2 =21 o B(S,,S,) (2.99)
as)  A(SuS) o

with given initial conditionsS,(0) for i = 1, 2, wherethe time variablehas been
eliminated. The curves determined by Eq. (2.99) are called trajectories of the
system.

After small perturbations, adynamical system may approach an asymptoticaly
stablesteady statein different ways. Accordingly, a stablesteady state may be of
different type. For n = 2 thefollowing two cases are possible.

1. Thegeady Sateisa stablenode if both eigenvalues 4; and A, of the Jacobian are
real and negative,that is, if in addition to relations(2.97a) and (2.97b), the follow-
ing condition is fulfilled:

> 44. (2.100)

2. Thegeady gateisa stable focusif the Jacobian hasa pair of complex eigenvalues
A, and 4, with a negativereal part. Thisisthe caseif in addition toreations(2.97a)
and (2.97b), the following condition is fulfilled

" < 44. .101)
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Conditions (2.97), (2.100), and (2.101) follow directly from the solution (2.98)
of the characteristicequation and by consideration of the general solution (2.86).

Unstablesteady,states may be classifiedin asimilar way. For an unstablenode
(1, and A, arered and positive) or an unstablefocus (complex eigenvauesi; and
2, with a positivereal part) condition (2.97a) is replaced by tr > 0.

Thereexistsathird type of unstable steady states, called a saddle point, which
corresponds to the occurrence of two real eigenvaueswith opposite sign. Ac-
cording to Eq. (2.98), thisis the casefor A < 0 irrespective of the sign of the
trace of the Jacobian.

The stability of stationary states depends on the system parameters. Upon
changesd the parameters, theeigenvaluesof the Jacobian alter as well. At certain
critical points called bifurcations, this will lead to a change in the character of
thetragjectories in the neighborhood of the steady state. For two-component sys-
tems, thefollowing situations deserve special interest. For 4 > 0 and tr = 0, the
eigenvaluesof the Jacobian are pure imaginary, and solution (2.86) of the line-
arized system (2.82) predicts closed tragjectories in the phase space around the
steady-state point, which is called acenter. This correspondsto solutions periodic
in time. The frequency of this oscillation reads, in the linear approximation,

/1 \

f=x 2.102)
2

The transition from a parameter region with tr < 0 to aregion with tr > 0 is
called Hopf bifurcation (Hopf, 1942; cf. Guckenheimer and Holmes, 1983). Tran-
sitions from a parameter domain with A < 0 to adomain with A > 0 generdly
resultsin achangeof the number of stationary states (cf. Section 2.3.3).

For three-variable systems (n = 3), the characteristic equation (2.87) reads
Wlth, as = 1,

B+ al + ad+ay=0, (2.103)

where —a, and —a, denote the determinant and trace of the Jacobian, respec-
tively. For the coefficient a,, one derives

o W KW B KK H W BG40
Tl xsx HEH A BB BB

From the Hurwitz criterion, it followsthat the stationary state of a three-variable
system is asymptoticaly stableif the conditions
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as >0, a, >0, a, >0, aay —ay >0 (2.105)

are fulfilled.

It is worth mentioning that Theorem 2A makes assertions about stability but
not about the shape of the trgjectories of the complete system (2.93) compared
to that of the trajectories of the linearized system (2.94) in the neighborhood of
steady states. It may occur that the complete system predicts an unstablefocus,
whereas the solution of the linearized system represents an unstable node.

If one is interested in the asymptotic stability of a steady state after finite
perturbations (global stability) the analysis may be performed by using so-called
Lyapunovfunctions. These functions, Vi, = Vi(&y,. .., &) with &(f) = AS(D)
= Si(t) — S, arecongtructedin such away that they havethefollowing properties:

1. vi(0,...,0 =0, (2.106a)
2 vy>0 foré&# 0inacertan regionD aound theddionary state,  (2.106b)

3 %<0 forall & # 0inD. (2.106c)

Theorem 2C (Lyapunov's Second Stability Theorem). If there is a Lyapunov
function in a region D, then the steady state S; = S; is globally asymptotically
stablein D.

The proof of this theorem can be found, for example, in the books of Hahn
(1967) and Guckenheimer and Holmes (1983). Note that if relation (2.106¢) does
not hold as a strict inequality, a weaker conclusion concerning stability can be
drawn (Lyapunov's First Stability Theorem).

The time derivative of V; aong the solution curves reads

d_L=z'3_VLd_fi=za_VLﬁ_ (2.107)

In practical applicationsof Theorem 2C difficulties may arise because there
are no general methodsfor finding suitable Lyapunov functions. In mechanical
systems often the energy may play theroleof V.. For theanaysisof steady states
of chemical systems, it may be useful to consider the entropy production.

2,3.3. Multiple Steady States

When the system equations (2.8) are nonlinear with respect to the system
variabless;, the steady-stete sol utions are not always unique. This meansthat for
agiven parameter vector p morethan one vector S fulfillsEqg. (2.9). Furthermore,
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when the kinetic parameters vary, the number of possible steady states may also
change at critical valuesof the parameters. The phenomenon of multistationarity
may be important ﬁ% explaining switching processes between different branches
o metabolic systems.

Scheme4

Multiple steady states may occur even for one-component systems (n = 1).
Let us consider the reaction system depicted in Scheme 4 where the kinetics of
reaction 3 is characterized by cooperativesubstrateinhibition. All three reactions
are assumed to be irreversible. The following kinetic equations are used

v; = const., (2.108a)

Vo = IS, (2.108b)
s

) - (2.108¢)

BT S/K™

(k, and k5: rate constants; K;: inhibition constant of S;; ng: Hill coefficient). The
kinetic equation (2.108c) describes, for example, essentid characteristics of
the phosphofructokinase reactionin glycolysis (EC 2.7.1.11) as afunction of the
concentration of its substrate ATP.

Figure 2.3 shows the reaction rates given in Eq. (2.108) as functions of the
concentration §;. The three different straight lines for v, — v, correspond to
different values of the rate constant k,. In the present case, steady states are
determined by v; — v, = vs, that is, by theintersection points of the curvesfor
V, — v, and v, in Figure 2.3. Three cases are possible. For low and high values
o &y, thereis only one intersection point corresponding to high or low concen-
trations 5}, respectively. In these cases, the steady states are unique. They are
stable, as can be shown by Eq. (2.92). For intermediate values of , three steady
statesare possiblefor one and thesame set of kinetic parameters. The steady state
in the middle is unstable. It can easily be seen in Figure 2.3 that in the stable
steedy statewith low concentration of S,, thisintermediateis mainly metabolized
viareaction 3 (low inhibition), whereasin the stable state with high §,, reaction
2 ismore active than reaction 3.
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Figure2.3 Plot of the difference of reaction rates v, and v, (straight lines) and of thereaction
rate v, for the system shown in Scheme4 as functionsof S;. Parameter values. v, = 0.9, ny = 4, &3
= 04,and K, = 3.

A bifurcation occurs if a an intersection point both curves have the same
tangent, so that the following equations are fulfilled smultaneoudly:

(2.109a)

Vi — V2 = Vs,

o0 —v) _ 3 (2.109b)
as, as;’

These equations allow one to determinedl critical parameter vaues where the
number of steady-state solutions changes. Due to the nonlinearities, it may be
difficult to solve one of the equations([(2.109a) or (2.109b)] to obtain a param-
eter-dependent function for S; which may be used in the other equation to derive
an expression for the critical parameter vaues. However, one easily derives a
"' parametric representation”” of the bifurcation line within the (k,v;)-plane. From
Eqg. (2.109b) one obtains

_ kl(ny — 1)SV/Kp™ — 1]

11
b L+ (SEYP @1102

and from Eq. (2.109a)
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kS,

T eUk (2.110b)

v, = kS, +

o

Equation (2.110a')’may be used to calculatek, for varying S, vaues. Introduc-
ing the resulting function k,(S;) into Eg. (2.110b), one obtains a curve
v1(k(S1),S1), where bifurcations occur. Figure 2.4 shows the bifurcation line o
the reaction system depicted in Scheme4 within the (k,,v,)-plane for fixed values
of the kinetic parameters of reaction 3. For parameters taken from region B, the
steady states are unique, whereasfor parametersof region A, three steady states
are obtained.

The steady-stateconcentration §, as afunction of the first-order rate constant
k, for various values of v, is depicted in Figure 2.5. Solid and broken lines cor-
respond to stable and unstable states, repectively. It is seen that in the vicinity
o bifurcation points, aswitching between two stabl esteady statesmay be brought
about by very small parameter changes. Furthermore, dow variations of the pa-
rameter k, from low vaues to high vaues and backward may lead to a hysteretic
cycle. Crossing the region of multiple stationary states, it depends on the "his-
tory" of the system which stable steady state will be reached.

It follows from the theory of implicit functions that for al one-component
systems described by the parameter-dependent differentia equation ds,/dt =

filSy,p1 5 .+« 5 D), bifurcation pointsfor multiple steady states are determined by
the conditions

fi=0, (2.111a)

o
o =0, 2.111b,
aSl S1=5) ( )

which for the example given above are equivalent to Egs. (2.109a) and (2.109b),
respectively.

For two-component systems thelocation of steady-statepointswithin the phase
planeis determined by intersection pointsdf nullclines, that is, the curvesdefined
in an implicit manner by the equations

filS1,87) = 0, (2.112a)
81,852 = 0. (2.112b)
A bifurcationimplying a changein the number of steady-state solutions, occurs
if in addition to Egs. (2.112a) and (2.112b) the condition that the nullclines are

tangential to each other at the intersection point is fulfilled. By use of implicit
differentiation of Eqs. (2.1123) and (2.112b), this condition can be written as
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Figure2.4 Bifurcation diagram of the reaction system depicted in Scheme4 in the parameter
space(k;,vy). Parameter values. ny = 4, k3 = 0.4, K; = 3. Region A, thres Seady states; region B,
onegeady sate.

af; /a8,

= %5 2.113
af16S,IS — af,/3S5,IS" @.113)
This equation is equivaent to
i dh afz)’
= (=L 22 2z - = 0. 2.114
A (as, aS,  as;05,/18 @14

As follows from the theory of implicit functions the condition A = Det(M)
= Oisnecessary for achangeof the number of steady statesat varying parameter
vaues aso for the general case of n-component systemswith n > 2.

The phenomenon of bistability has been extensively studied for the glycolytic
system. For example, in a mathematical model of erythrocyte glycolysis, three
dationary statesare obtained if the rate constant of ATP-consuming processesis
below a critica value (cf. Section 5.4.4.3, in particular Fig. 5.7). Bistability in
glycolysisresults mainly from the special kinetic properties of phosphofructoki-
nase; in particular, the substrateinhibition by ATP and the activation by AMP.
This has been demonstrated experimentally in open reconstitutedenzymesystems
using a stirred flow-through reactor (Eschrich et al., 1980; Schellenberger ¢ al .,
1988). The system containsthe enzymes phosphofructokinase (EC 2.7.1.11), py-
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S

Figure 2.5 Sationary intermediate concenhation §; for the system shown in Scheme4 as a
function of the rate constant k,. Solid lines: stable seady states broken lines: ungtablesteady states.
Parameter values ny = 4,k = 04, K, = 1, K; = 3.

ruvate kinase (EC 2.7.1.40), adenylate kinase (EC 2.7.4.3), and phosphogluco-
isomerase (EC 5.3.1.9). Depending on the enzyme concentrations which are
adjustable parameters, transitions between dternate stable stationary states
characterized by high or low ATP concentration were observed. Furthermore,
variations of the maximum activity of phosphofructokinase from low to high
vauesand vice versa gaveriseto ahysteretic cycle. Eschrich et al. (1990) studied
experimentally as well as theoretically the dynamics of part of the glycolytic
reactionsequencein cell-free yeast extracts. In additionto theenzymesconverting
glucose-& phosphate to triose phosphates, it contains the enzyme fructose-1,6-
bisphosphatase (EC 3.1.3.11). It has been shown that in a certain domain of
parameter values, two different stable stationary states may coexist. While, at
small perturbations, the system relaxesto the original steady state, suprathreshold
perturbations may drive the system to the alternative steady state. In these exper-
iments, reversible hysteretic effects were observed by varying the influx rate of
glucose-6-phosphate. Schellenberger and Hervagault (1991) analyzed mathemat-
ically the reaction cycle formed by phosphofructokinase and fructose-1,6-
bisphosphatase and drew attention to the fact that the occurrence of bistability
may giverisetoirreversibletranstions. If oneof thetwo bifurcation points, which
separate regions of unique steady states and multiple steady states, are located
outside therange of accessible parameter vaues, theformation of afull hysteretic
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loop (i.e., restoring the origina state after large parameter perturbations) may
become impossible.

24. METABOLIC OSCILLATIONS
24.1. Background

Metabolic systems may exhibit salf-sustained oscillations, that is, the concen- .

trationsand fluxes may be periodicfunctionsof time. In dynamical systemstheory
the occurrenceof stable periodic solutions of nonlinear differentia equation sys-
temsis a well-known phenomenon. Its discovery dates back to the work of Poin-
car6 (1880-1890, 1899) in celestia mechanics, followed mainly by the work of
Andronov and coworkers (Andronov et al., 1966; cf. Minorsky, 1962; Gucken-
heimer and Holmes, 1983). In the space spanned by the system variables (state
space), oscillations represent closed curves. In contrast to oscillations in linear
systems (such as the harmonic pendulum), which are known for a much longer
time, stable oscillations in nonlinear systems may have the property that after
fluctuations of variables, the trgjectory returns to the original orbit. Closed tra-
jectories with thisfeature are called limit cycles. From the thermodynamic point
o view, sdf-sustained oscillations are possible only in open systems far from
equilibrium (Glansdorff and Prigogine, 1971; Feistel and Ebeling, 1989). Oscil-
lationsin biological systems werefirst analyzed mathematically by Lotka (1910)
and Volterra (1931). Interestingly, the differential equation system nowadays re-
ferred to astheLotka—V olterrasystemis conservative(i.e., thesolutions represent
a continuum of oscillations rather than limit cycles). However, Vadlterra (1931)
also considered dissipative (nonconservative) systems (cf. aso May, 1974). The
possihility of oscillationson the genetic level, that is, periodic enzyme synthesis
has been analyzed in early theoretical studies by Goodwin (1963, 1965).
Experimentally, autonomous biochemical oscillations havefirst been observed
in glycolysisin intact yeast cells with typica periods in the order of minutes
(Ghosh and Chance, 1964; Chanceet al., 1964a, 1964b). Thereafter, glycolytic
oscillations have been studied in cell-free extracts (Hess and Boiteux, 1968; Pye,
1969). Furthermore, oscillations have been studied in open reconstituted enzyme
systems using a stirred flow-through reactor (Schellenberger et al., 1988). First

modelsof glycolyticoscillationsare dueto Higgins(1964), Selkov (1968, 1975b),

and Goldbeter and Lefever (1972).

Oscillations have been detected also in other enzymic systems, in particular,
the periodic synthesis of cyclic AMP in the cellular dime mold Dictyostelium
discoideum (Gerisch and Hess, 1974). More recently, the existence of hormone-
induced oscillations in intracellular calcium concentrations has attracted much
attention of experimentalists (Bemdge, 1989) as well as of theoreticians (Gold-
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beter et al,, 1990; Dupont et al., 1991; Somogyi and Stucki, 1991; cf. Section
24.4).

For reviews andagextbooks on the modeding of self-sustained oscillations in
biochemical and chemical systems, see the works of Higgins (1967), Goldbeter
(1990), Winfree (1990). and Gray and Scott (1994).

24.2. Mathematical Conditionsfor Oscillations

Systems of autonomous first-order differential equations may exhibit oscilla-
tionsonly if they involve more than one variable (n > 1). For n = 1, periodic
solutions are excluded because dS/dr = f(S) isauniquefunction of § and, hence,
cannot have oppositesignsfor agiven S a different timest. For two-dimensional
systems (n = 2), there are a number of theorems giving conditions for the oc-
currence of oscillations. The proof to the following two theorems can be found
in Guckenheimer and Holmes (1983).

Theorem 2D (Theorem of Poincaré and Bendixson). If, and only if, a trajectory
remains for f, =< t < o within a jinite region D of the phase plane without
approaching a stationary state this trajectory is a periodic trajectory (closed
cycle) or tends to such a trajectory for t — o,

Theorem 2E (Criterion of Bendixson). If the expression 4£,/aS, + o5,/6S, does
not change sign in a region D of the phase plane then D contains no periodic
trajectory.

Whereas Theorems 2D and 2E apply to any two-dimensional dynamical sys-
temn, the following two theorems concern systems of chemical reactions.

" Theorem 2F. Chemical systemswith two variable compounds cannot exhibit limit

cycles if only monomolecular and bimolecular reactions are involved.

The proof wasgiven by Hanusse(1972) on thebasisof the mass-actionkinetics
(2.10). It follows that for chemical systems with mass-action kinetics to exhibit
stable oscillations (limit cycles), it is necessary that they contain at least trimo-
lecular reactions or involvemore than two variablesubstances (cf. Section 2.4.5).
Note that oscillations of the Lotka-V olterratype (which are not limit cycles) are
not excluded by this theorem.

The following statement is vadid for chemica systemsinvolving any number
o reacting substances.

Theorem 2G. For systems composed only ofjirst-order reactions, the eigenvalues
of the Jacobian are always real and negative, which excludes both damped os-
cillations and limit cycles.

In the proof of this theorem (Hearon, 1953; Bak, 1959) the fact was used that in
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any reaction cycle occurring in the system, Wegschelder's condition must beful-
filled (cf. Section 3.3.1).

For enzymic systems, alarge number of possible regulatory mechanismsexist
(activation or inhibition by internal metabolites) which may providethe necessary
nonlinearitiesin therateequati onsfor generating oscillations. For the special case
n = 2, Higgins (1967) was able to derive several necessary conditions on the
form of the rate equations for the existenceof a Hopf bifurcation.

Joo
Py v 8 Vg ) vy
\oref

Scheme 5

Let us consider, for example, an unbranched pathway involving two interme-
diate compounds and three irreversible reactions (Scheme5). Such a scheme can
be used, for example, for analyzing glycolyticoscillations (cf. Section 2.4.3). We
include the possibility that the activity of the enzyme catalyzing reaction 2 may
be regulated allostericaly by §, and/or S,. Effector actions are designated by
dashed lines, with activationsand inhibitions symbolized by plusand minussigns,
respectively. For the kinetic propertiesd reactions 1 and 3, it is assumed that

v, = const., (2.115a)
oV,
T35, (2.115b)
BSZ
s _ . (2.115¢)
as,

Relation (2.115b) is fulfilled, for example, by a Michaelis—Menten equation for
reaction 3. Equation (2.115¢) meansthat S, is no effector of reaction 3. Thetrace
and determinant of the Jacobian of the system depicted in Scheme5 may then be
expressed as follows:

PR L Ui L (2.116a)
, a5, &5
g D20 (21160)
as, as,

For aHopf bifurcation it is necessary that A > 0 and that tr may become positive
upon a change of the kinetic parameters (see Section 2.3.2). With relation
(2.115b), oneimmediately obtainsfrom Egs. (2.1168) and (2.116b) thefollowing

necessary conditions:
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| 35, >0, (2.117a)
tia
L 0. (2.117b)
as, .

Relation (2.117a) is generally fulfilled without effector regulation. From relation
(2117b) it follows that under the given assumptions, a positive feedback of the
metabolite S, on its own productionis a potential regulatory mechanism for the
generation of oscillations(**back activation oscillator'; cf. Section 2.4.3).

Likewise, relations (2.115) and (2.116) imply that a *'forward inhibition os-
cillator isimpossible under the considered assumptions, as dv,/aS; < Q implies
A < 0 which excludesa Hopf bifurcation. The qualitative effect of other regu-
latory loops (for example, of S, on reaction 3 or of S, on reaction 1) can be
predicted in asimilar way (Higgins, 1967)

24.3. Glycolytic Oscillations

Experimental studies on glycolytic oscillations (Betz and Selkov, 1969) have
clearly shown that thereis a phase angleshift of about 180" in the changes of the
concentrations of fructose-6-phosphate (F6P) and fructose-bisphosphate (FP,).
According to the crossover theorem (Holmes 1959; Higgins, 1965) (see Section
5.10) this indicates that the phosphofructokinase (PFK) reaction may play an
important role in the generation of the oscillations. From that, it was concluded
that a back activation of PFK by FP, provides an explanation for the observed
periodic behavior. Accordingly, Higgins (1964, 1967) proposed the two-compo-
nent model depicted in Scheme 5 with only one regulatory loop, namely an ac-
tivation of reaction 2 by S,. It is governed by the differential equations

as
d—t‘ = v = 1(SpSy), (2.118a)

ds. .
o= VSuS) = vs(S), (2.118b)

where§; = F6Pand S, = FP,. v, and v, represent therates of the hexokinase
and phosphofructokinase reactions, respectively, wheress v, denotes therate of a
reaction degrading FP,. The concentrationsof glucoseas well as of the cofactors
ADP and ATP are considered to be constant whichimpliesv; = const. With the
conditions av,/aS; > 0 and dv,/aS, > 0, which are normaly fulfilled for Mi-
chaelis-Menten kinetics, and the above-mentioned activation of PFK by FP,
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(av,/3S, > 0), this model meets the necessary conditions for generation of oscil-
lations mentioned in Section 2.4.2 [Egs. (2.115) and (2.117)].

First models of glycolytic oscillationswere based on kinetic equations taking
into account saturation of v, and of v; by §,. Later, the following more simple
model had been proposed:

45

=V~ kS, (2.119a)
ds.
d—tz = k,5,5} ~ k;S, (2.119b)

with y > 1 (Selkov, 1968). It has also been shown that back activation of PFK
by FP, is not operative under in vive conditions and that it is more appropriate
to consider aternative models including cooperative back activation of PFK by
ADP or the even more effective AMP activation. Concentration changes of AMP
are linked to those of ADP due the very fast adenylate kinase reaction (Betz and
Sdlkov, 1969, cf. Goldbeter and Caplan, 1976).

Let us consider the model (2.119) in more detail. Despiteits nonlinearity, the
steady-stateconcentrations may be expressed analytically as functions of the ki-
netic parameters:

Sy = —. (2.120)
The trace and determinant of the Jacobian read

¥
tr=( — Dk — b(%) (2.121a)
3

vY
4= k,_kg(k—a) . (2.121b)

It is seen that the determinant is always positive, whereasfor » > 1, the trace
may changeits sign depending on the kinetic parameters. According to the sta-
bility criteria for two-component systems given in Eq. (2.97), the steady state
(2.120) is unstable for

— +1
<@ DB _ e, 2122

W

k,
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that is, the systems exhibits a Hopf bifurcation at k, = k™. Furthermore, one
easly derivesthat within the parameter region defined by

s
""kl+y kl+y
k= ——1; a-P<k< _1; a+ W=k, 2.123)

the periodicity condition z — 44 < 0 isfulfilled, that is, the eigenvalues have
an imaginary part. Consequently, for kinetic parameters which fulfill relations
(2.122) and (2.123), the steady stateis an unstablefocus.

Figure 2.6 shows, withinthe(v,, k,)-plane, thecurvek, = k™ which separates
regions of stableand unstable steady statesas well thecurvesk, = k; andk, =
kS which separate regions of periodic and aperiodic behavior. Limit cycles are
obtained for parameter va ues taken from the region of instability near the bifur-
cation curve k, = k™. Figures2.7A and 2.7B show self-sustained oscill ationsof
the concentrations Sy and S, asfunctionsof timeand in the phase plane, respec-
tively. It is seen that in accordance with the experimental facts, the oscillations
of the concentrations of F6P (S;) and FP, (S,) are out of phase. Increasing the
distancefrom the bifurcation line (e.g. lowering of k,) results in an increase of
the size of the limit cycle. Eventually, the system becomes globally unstable at
very low k, values.

Vi

Figure2.6 Stability diagram of the Higgins-Selkov oscillator. Acrossthe curves. thefollowing
transitions between different types of steady statesoccur: k&5 (vy), transitions from unstable nodes to
ungtablefoci; k5*(v,), Hopf bifurcations; &3 (v;), transtionsfrom stablefoci to stablenodes. Parameter

valuesy = 2,k; = 1.
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Figure2.7 Sdf-sustained oscillationsin theHiggins-Selkov system [Eqs. (2.119) and (2.119b)].
(A) Concentrationss$, and S, versustime. (B) Limit cycle (thick line) and neighboringtrajectoriesin
the phase plane. Parameter values. vy = 0.95,k, = k3 = 1.
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The basic moddsof Higgins (1964) and Selkov (1968) have been modifiedin
different ways. For example, Goldbeter and Lefever (1972) extended the model

by describing the phgsphofructokinase reaction by a rate equation resulting from -

the allosteric model of Monod et al. (1965) [Eq. (2.43)]. In fact, it describes the
kinetic properties of this enzyme rather well in a number of cells (Blangy et al.,
1968; Otto et al., 1974). Furthermore, Goldbeter and Lefever (1972) considered
the coupling of the glycolytic oscillator to diffusion of the metabolites, but ne-
glecting the diffusion of enzymes. In this way, they could show that also in the
caseof glycolysis, reaction-diffusionprocessesmay resultin chemical waves(i.e.,
to dissipative structuresin space and time).

Selkov (1975b) was able to demonstrate that allosteric regulation of phos-
phofructokinase isnot the only possibleexplanationof glycolytic oscillations. He
considered a modd of cellular energy metabolism which includesonly stoichio-
metric couplings but no regulatory interactions by internal modifiers of the en-
zymes. The corresponding reaction scheme is similar to that shown in Scheme
12in Section 5.4.4, whereitsdetailswill be explainedin theframework of control
analysis of glycolysis. In addition to glycolysis, the stoichiomehic oscillation
model involves an dternative source for ATP (e.g., oxidative phosphorylation).
The occurrence of oscillations has been demonstrated only for the case that some
o the reaction rates are described by saturation functions. The corresponding
nonlinearitiesin the rate equationsmake the stability analysis rather cumbersome
despite thefact that other nonlinearitiesresulting from allosteric interactions have
not been included (cf. also Heinrich et al., 1977).

24.4. Moddsof Intracdlular Calcium Oscillations

A wide variety of cells exhibit oscillations of intracellular calcium (Ca?*) in
theform of repetitivespikes. For example, cacium oscillations may bestimulated
by hormones or neurotransmitters in hepatocytes, where the oscillation period
rangesfrom 0.5 to 10 min (Woodset al., 1986,1987). Shorter and longer periods
of calcium oscillationshave been observed depending on thecell type. Generaly,
the period of cal cium oscillations decreaseswith increasing agonist concentration.
Itisgenerally assumed that the Pl signaling pathway [i.e., the receptor-stimulated
hydrolysisof phosphatidylinositol 4,5-bisphosphate (PIP,) to inositol 1,4,5-tris-
phosphate (IP;) and diacylglycerol catalyzed by phospholipase C (PLC, EC
3.1.4.3)] playsacrucid rolein the generation of the calcium oscillations. PIP, is
regenerated from IP; by inositol-1,4,5-trisphosphate S5-phosphatase (EC 3.1.3.56)
and several subsequent enzymes. Concerning,the 0scillatory mechanismit ismost
likely that the "' oscillator"' islocated within the cytoplasmand that its mechanism
is closdly related to the mobilization of calcium from intracellular stores [e.g.,
endoplasmic or sarcoplasmic reticulum (ER, SR) (Berridge, 1989)]. In a model
proposed by Meyer and Stryer (1988), oscillationsresult from a positivefeedback
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loop between cytosolic calcium and the formation of IP; (cf. Fig. 2.8). In partic-
ular, it is assumed that IP; triggers the release of calcium from intracellular stores
(CaZ’,) into the cytosol (CaZt). The cytosolic calcium, in turn, activates IP;
synthesis. The oscillating variables are the concentration of IP; and the concen-
trations of cytosolic and stored calcium [for a more elaborate version of this
model, cf. Meyer and Stryer (1991)].

Other models of hormone-induced calcium oscillations are based on the phe-
nomenon of calcium-induced calcium release (CICR mechanism) as first de-
scribed by Endo et al. (1970) for skeletal muscle cells and later on by Fabiato
and Fabiato (1975) for the sarcoplasmic reticulum in cardiac cells. Let us here
consider the minimal two-variablemode as proposed by Dupont and Goldbeter
(1989) (cf. aso Goldbeter et al, 1990; Somogyi and Stucki, 1991). This model

includes the following processes (see Fig. 2.9):

o Inward and outward transport of cytosolic calcium through the plasma membrane
(rates vy and v,, respectively)

o IP,-activated release of calcium from an IP;-sensitive intracellular store (rate vs)

« Activetransport of cytosolic calcium into an IP;-insensitive store (rate vs)

o Release of calcium from the IPs-insensitive store which is activated by the cytosolic
calcium (CICR mechanism, rate vs)

* Leak flux of calcium from the latter store into the cytosol (rate ve)

The model is based on the following differential equations:

45

=V " +ov, = vt s o, (2.1242)
ds,
_de = vy = vs — Ve, (2.124b)

whereS; and S, denote the concentrationsof the calcium in the cytosol and the
IP;-insensitive stores, respectively. Theinflux ratesv; and v; areconsidered to be
congtant. To justify a constant rate v;, Dupont and Goldbeter (1989) use the
contestable assumption that the IPs-sensitive storeis very fast replenished. For
v, theexpressionv; = %8 isemployed, wherethefactor § represents asaturation
function of therelease of calcium from the IPs-sensitive storewith respect to IPs.
From the mathematical point of view, the constant rates v, and v; may be sub-
sumed into one parameter v, = v, T va.

It is reasonable to assume that the rates v, and v, of the two ATP-dependent
calcium pumps are activated by cytosoliccalcium, whereas they are independent
of the concentration of stored calcium, that is,
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Hormone
]

IP3-phosphatase

Figure 28 Modd for generation of calcium oscillationsby Meyer and Shyer (1988). For sym-
bols see text.

Figure29 Schematicpictureof the processes responsiblefor receptor-induced intracel lular cal-
dum oscillations [adapted from Duport and Goldbeter (1989)). For an explanationdf the various
processes, see the text.




62  Fundamentals of Biochemical Modeling

2250, (2.1252)

vy .

R, (2.125b)
1

Z_;Z -0, (2.125¢)
2

vy

¥ _ o (2.125d)

as,

For theleak rate vs, one may assume

Z_;ﬂ -0, (2.1263)
1

CLCPY (2126b)
as, .

Indeed, the leak is likely to be reversible but the reverse reaction can formally be
included into the rate v,. Using relations (2.125) and (2.126) one derives for the
trace, #r, and the determinant, 4, of the Jacobian the expressions

o (B2 B B ) v (2.1272)
\8s,  as,  as,  aS,  as,
v, (avs avs)
o s (Bvs | 3v) 2.127b
as, \as, | s, @1270)

We are now looking for a Hopf bifurcation, for which 4 > 0 is a necessary
condition. Because we assume inequality (2.1252) to hold, it follows from Eq.
© (2.127b) that

avs Vg
L T659 2.128
35, T 35, @128)

at any Hopf bifurcation. Using thisrelation and inequalities(2.125a) and (2.125b),

it isimmediately seen from Eq. (2.127a) that the trace may only become positive
if

s 0. (2.129)
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This means that under the given assumptions, activation of the calcium release
from the IP,-insensitive store by cytosolic calcium is a necessary condition for a
Hopf bifurcation. Foithe concentration dependent rates we use, in amoredetailed
analysis, theexpressions proposed by Somogyi and Stucki (1991),

V2 = kS, (2.130a)
va = kS, (2.130b)
ksS,STH
) 2.130
Vs TR ( c)
Ve = kSs, (2.130d)

which fulfill conditions (2.125), (2.126), and (2.128), and (2.129). For the acti-
vation of vs by S, a Hill equation is used, where K, 5 and ny; denote the half-
saturation constants and the Hill coefficient, respectively.

The steady-state solution of equation system (2.124) reads

5 =2 ;; Ys - g (2.131a)
G Vok4( ksvg! )_l

S = g+ ——=0__} 2.
=t T G (2.131b)

Using these equations and expressions (2.127), one derivesfor the determinant
and trace of the Jacobian at the steady state

=+
4 = k’z(kﬁ + Vi + (kQKo.s)"H)’ 12
L _ et
r (k'z ket ks gt + (kKo s)™
kyesny(voko Ko 5)™ (2.133)

T B+ (Koo [tks + koW + kellgKos)™T

Whereas the determinant is dways positive, the trace may change its sign de-
pending on the parameter values. The boundary of the region of stability where
Hopf bifurcations occur can be calculated by putting tr = 0. Figure 2.10 shows
regions of stable and unstable behavior within a two-dimensional section of the
parameter space defined by variable vaues of v, (combined calcium input) and
ks (rateconstant of CICR) and fixed vaues of the other parameters.

The existencedf the oscillationsis confirmed by numerical integration of the
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1og v,

-2.0

log ks

Figure 2.10 Stability diagram for the mode of calcium oscillations given by the differential
equations (2.124a) and (2.124b) and ratelaws (2.130a)+2.130d). Parameter values. k, = 1,ky = 2,
ks = 0.01, Kps = 3.1, ny; = 4.

differential equations (2.124) by using parameter values from theregion of insta-
bility. The oscillations shown in Figures2.11A and 2.11B correspond to low and
high values of v, respectively, It isseen that in both cases, the oscillations of the
cytosolic calcium concentration have the form of repetitive spikesin accordance
with experimental data (cf. Cuthbertson, 1989). In contrast, the oscillations of
stored cal cium have a sawtooth appearance [ not shown, see Dupont and Gol dbeter
(1989)]. For high v, values, the oscillation frequency is much higher than for low
vauesof this parameter. On the other hand, theamplitudeof thecytosoliccalcium
oscillations is not as much affected by a change in v, as the frequency. Taking
into account that an increasein v, may be brought about by an increasein the
parameter S, these results may explain the experimental fact that the frequency
of calcium oscillationsincreaseswith the concentration of IP; and in thisway by
the extent of receptor stimulation. The IP, concentration playsin the considered
model therole of a parameter, which can be set to different vaues and thus act
as a switch. Oscillatory behavior occurs even at constant IP; concentration, pro-
vided it has appropriate vaues. In contrast, in the above-mentioned model of
Meyer and Shyer (1988) the IP; concentration is a system variable. The effect of
the parameter # on the period and the amplitude of the oscillations has been
systematically studied by Goldbeter et a. (1990). The results support the hy-
pothesis that the physiological effect of cacium messenger oscillations is
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Figure 2,11 Time course of the cytosolic calcium concentration. §; = CaZ as obtained by
numerical integration of Egs. (2.124a), (2.124b), and (2.130a)—(2.130d). Parameter values: (A) ks =
‘1, vg = 14;(B) ks = 1, v, = 3.0. The cther parameter values are the same as in Figure 2.10.




66 Fundamentals of Biochemical Modeling

brought about by a frequency-encoded mechanism rather than by an amplitude-
dependent mechanism (cf. Section 2.4.6).

Thefact that the rates v; and v; may belumped into one quantity, v, = v, +
¥4, indicates that the effect of Ca?* efflux (v5) from the IP;-sensitive store can be
mimicked by achangeof the Ca?* entry from the extracellular medium into the
cytosol. It seems, therefore, that the assumption of two different calcium stores,
one sengitive to IP; and one insensitive to IP; is not a necessary prerequisite of
calcium oscillations. In fact, Dupont and Goldbeter (1993) have shown that cal-
cium oscillations may also be explained on the basis of a one-pool model where
the same Ca?* channel is assumed to be sensitiveto both IP; and Ca®* behaving
as coagonists.

The processaof Ca?* oscillationsis often accompanied by aspatial propagation
of Ca?* waves. The velocity of the wavesis of the order of 10 um/s in cocytes
(Jaffe, 1991) and of 30 pm/s in hepatocytes (Thomas et al., 1991). In isolated
cardiomyocytes the velocity ranges from 30 to 125 pm/s (Engel et al., 1994).
According to Meyer (1991) and Dupont and Gol dbeter (1992), the calcium waves
may be classified into two main types. For type 1, repetitive Ca?* spikes move
through the cytoplasm, whereas for type 2, the calcium concentration increases
along the entire cell beforeit returnsto its basd level in a nearly homogeneous
manner ("'tide" waves).

Mathematically, calcium waves may be described by adding to thedifferential
equation system (2.124) a diffusion term for the concentration of cytosolic cal-
cium. Modelsfor the propagation of calcium wavesin one or two spatia dimen-
sions have been proposed (Meyer and Stryer, 1991; Thomaset al., 1991; Dupont
and Goldbeter, 1992). In these models it is assumed that the Ca?* pools are
distributed homogeneously within the cell. The influence of the geometric ar-
rangement of discrete pools on the period and the propagation rate of calcium
waves remains to be studied.

245. A Smple Three-VariableMode with Only
Monomolecular and Bimolecular Reactions

According to Theorem 2F given in Section 2.4.2, chemical systems with two
variable compounds cannot exhibit limit cycles if only monomolecular and bi-
molecular reactionsareinvolved. Asa matter of fact, well-known oscillatory two-
component systems as the Brusselator (cf. Nicolis and Prigogine, 1977) or the
system given by Selkov (1968) [cf. Eq. (2.119)] involve himolecular reactions or
contain nonlinearities higher than second order. Elementary chemica reactions
are, in general, monomolecular or bimolecular because simultaneous collisions
of more than two moleculesare extremely improbable. Accordingly, the question
arises of how complex a reaction system analyzed at the level of elementary
reactions must be in order to alow limit cycle behavior. The problem of finding
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the smallest system showing Hopf bifurcations on the basis of the mass-action
kinetics (2.10) was addressed by Wilhelm and Heinrich (1995).

Obvioudly, fémthe solution of this problem it is necessary to give a precise
meaning to the term "smalest."" The following characterization is proposed:
(2) lowest number of variablereactants; (2) lowest number of quadratictermsin
thedifferentia equations; (3) minimal number of reactions, and (4) minimal num-
ber of bimolecular reactions. These four features are listed with descending im-
portance.

Because it has been demonstrated that there exist three-variable mass-action
systems showing Hopf bifurcations (Hanusse, 1973) and due to Theorem 2F, the
smallest system must be searched for within the group of three-component sys-
tems (cf. point 1). For n = 3 loca stability analysis may be performed on the
basis of the characteristicequation (2.103).

A Hopf bifurcation takes place across the surface

aa, —ay =0, aya,a,>0, (2.134)

wherea,, a; and a, denote the coefficientsof the characteristicpolynomial.

Under condition (2.134) the characteristic equation (2.103) has one negative
read eigenvalue (1, < 0) and a pair of pure imaginary eigenvalues (A, = icw,
Ay = —iw).

By analyzing the stability of all three-component systems giving rise to only
one nonlinear term in the differential equations (cf. point 2) it has been shown
that there is exactly one system which followsfrom the given characterization of
the smallest system with Hopf bifurcation (Wilhelm and Heinrich, 1995). Its
mechanism involves five reactions with two of them being bimolecular, as is
depicted in Figure 2.12. Because the scheme encompasses an autocatalyticstep,
it might be of importance in population kinetics also. The dynamic properties of
this system are governed by thefollowing differential equations:

i .
5 = @PL— kS — keSS, (2.1352)
ds .
kS kS (2.135b)
ds,

ﬁ = kS, — ksSs, (2.135¢)

where P, denotes the fixed concentration of the outer reactant P, of the autocat-
alytic reaction.
The system has two steady states:
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Figure2.12 Schemeof asimpleoscillatingreaction system with threespecies, S;, with variable
concentrationsand three external compounds, P;.

§=5=5-=0 (2.136a)

o kP — k) = kPi—k o ka(aPy — kg
_ katkPy = ka) _kPim ko kP Z k) ) 15
5 ok, " 52 K ’ kaks (

The coefficientsof the characteristicpolynomial for the first steady state read:

ay = —ksks(ky Py — ko), (2.1372)
ay = ksks — (iPy — ko)ky + ko), (2.137b)
a, =ky + ky + ks — kyPy. 2.137¢)
Thisgives
@, — ay = (o T k)l T kg — KPYRs T+ ks — KiPY. (2.139)

For the second steady state, one obtains

ap = (kPy — kdksks, (2.1392)
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ay = ksks, (2.139b)
£ a, = ky + ks, ' (2.139¢)

and from that
aya — ag = kskstks + kg + ks — kP)). (2.140)

Using Eqs. (2.137)~(2.140), it followsfrom the Hurwitz criterion (2.105) that the
first steady state is stable within the range 0 =< kP, < k, and the second one
withintherangek, < k.P; < k3 + ky + ks. Figure 2.13 shows the steady-state
concentration §; as afunction of the parameter k,P, at fixed valuesof the other
parameters. Stable and unstable steady states are characterized by solid and bro-
ken lines, respectively.

The system has two bifurcation points: atranscritical bifurcation at k,P; = kg,
and aHopf bifurcationat k,A = k; T &, T k..

Figures2.14A and 2.14B show numerical solutionsof thedifferential equation
system in the state spacefor parameter values k; P; from both sidesof the Hopf
bifurcation point.

=]
ky byt kytks

kA

Figure 2.13 Bifurcation diagram of the steady-state concentration of S, for the system given by
Eqgs. (2.135a)—(2.135¢). Solid and broken linesindicatestableand unstable states, respectively.
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5

5

Figure 214 Numerical solutions o the differential equation system (2.135a)—(2.135¢) in the
state space in the neighborhood of the Hopf bifurcation point. Parameter values: (A) &Py = 29
(stable steady state). (Figure conrinued onfacing page)

Obvioudly, the characterization of the ""smallest system™ given above is not
the only one possible. As an dternative, one could give point 3 (i.e., minimal
number d reactions) a higher priority than point 2 (i.e., lowest number d quad-
ratic terms). Accordingly,other minimal chemical systemswith Hopf bifurcations
might exit. In particular, the analysis does not exclude the possibility of an os-
cillating three-component system with two quadratic terms but less than five re-
actions. Furthermore, it remains an open problem whether the irreversibility of
all reactions depicted in Figure 2.12 is a crucid assumption. For example, if
reaction 1 is considered to be reversible a second quadratic nonlinearity (e« %)
would appear in the differential equation.

It may be interestingto compare the system given by Egs. (2.135a)—(2.135¢)
with other three-variablesystems containing only one quadratic term. It has been
demongtrated, for example, that the system

X_ _y_z 2.1412)
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Figure 2.14 (continued) (B) kP, = 3.1 (stable limit cycle). Other parameter values k, = k;
=k =k=1

—=Xtay, (2.141b)

dZ -_—
S =X —cZ+xz (2.141c)

with positive parameters a, b and ¢ may exhibit not only limit cycles but also

chaotic behavior (Rossler, 1979). However, Egs. (2.141a)-(2.141c) cannot de-
scribe a chemica system, because the trgjectories are not confined to the non-
negative orthant. This may beimmediately seen from Eq. (2.141a) which predicts
dX/dr < 0forX = 0; I'Z > 0. Note that for the generalized mass-action kinetics
(2.15), the trgjectories always remain in the non-negativeorthant.

24.6. PossblePhysiological Significanceof Oscillations

There is ample evidence that oscillations are a ubiquitous phenomenon in
biological systems. Periodic changes in different biological processes are ob-
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servedin all types of organisms, from bacteria to the most complex multicellular
organisms. The periods may range from secondsto years. Besidesthe glycolytic
oscillations and calcium oscillations considered in Sections 2.4.3 and 2.4.4, these
include oscillationsin bacterial protein synthesis, periodic changesin photosyn-
thesis, and periodicities in neural activity as well as in muscular contractions.
Wael known arethe circadian and circannua rhythmsin plantsand the menstrual
cyclesin higher animals. For many biologica processes, .thephysiological role
of oscillationsis obvious. For example, in cardiac cells, biochemical oscillations
are transformed into periodic mechanical movements, whereas in neura cells,
oscillations are used for the transmission of information. It is generally believed
that oscillatory behavior is of functional advantageal so for other processes. First,
oscillations may, in contrast to steady states or transient states, play arolein the
temporal coordination of various cellular processes. In this respect, the phenom-
enon of synchronization and related mechanismsfor the entrainment of oscilla-
tionsare of major importance. Taking into account the close rel ationship between
oscillation and wave phenomena, metabolicoscillators are likely to beimportant
for the spatia organization of cellular processes (cf. Rapp, 1987). Furthermore,
it has been stated that oscillatory processes may be more efficient with respect to
energy conversionin cells (Termonia and Ross, 1981).

It is widdy accepted that the physiological effectof oscillationsis frequency
encoded. This view is supported by thefact that for receptor-stimulated oscilla-
tions, the frequency increases with the concentration of the agonist (see Section
2.4.4 for the effect of the hormone concentration on the frequency of calcium
oscillations). The problem of the parameter dependenceof oscillation frequencies
is generally addressed in Section 5.8.5 using metabolic control analysis. Thereit
is shown that for the glycolytic oscillator defined by Eq. (2.119). the frequency
of the oscillationsincreases proportionally with increasing input rate of glucose,
at least for parameter values near the Hopf bifurcation. Furthermore, there is
strong evidence that frequency-encoded signal transductionis much more stable
against noise than amplitude-dependent mechanisms. Frequency encoding may
be even effectiveif the system enter regimesof chaoticbehavior where after short
times the information encoded in amplitudesis lost. [For more detailed consid-
erations on frequency encoding, cf. theworksof Rappet al. (1981) and Goldbeter
and Li (1989)].

For many biochemical systems, the functional significance of oscillations is
still unknown. This concerns, for example, glycolysis, despite the fact that the
glycolytic oscillator is most successfully investigated, experimentally as well as
theoretically. Because all cells contain this pathway and glycolysis was histori-
cally thefirst way for thesupply of energy in theform of ATP, onehardly believes
that the regulatory couplings which make oscillations in this pathway possible
are of only secondary importance. It has been argued by Selkov (1980) that, at
an early stage of evolution, glycolysis has been responsible for oscillationson a
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circadian time scale. The period of glycolytic oscillations, which is normally in
the order of minutes, may be drastically increased due the "' deposition effect™;
that is, the reversille transformation of the pool of glucose-6-phosphateand fruc-
tose-6-phosphate into polysaccharides. Using a refined model of anaerobic me-
tabolism, Selkov (1980) could show thatincorporation of thesynthesisand bresk-
down of glycogen may increase the oscillation period from T = 3minto T =
25h.

However, it may well be that in many cases oscillations have no physiological
meaning: that is, the occurrence of limit cycles is sometimes unavoidably con-
comitant to thefact that metabolic systemsare highly nonlinear processesworking
under conditionsfar from equilibrium.

Generdly, models of metabolic systems predict oscillations only for certain
ranges of the parameter values and it is not dwaysclear whether these parameter
regions correspond to physiological states. It is also conceivable that cells need
mechanismsto avoid oscillationsin cases where they are not necessary for their
function. One possible way is the optimization of kineticparameters. It has been
realized that great differencesin the magnitudes of rate constants, which is a
typica phenomenonin biochemical systems(cf. Chapter 4), often counteractsthe
generation of oscillations (cf. Savageau, 1975; Heinrich et al., 1977; Dibrov et

al., 1982). Thismay beexemplifiedfor unbranched reaction chains with feedback
inhibition of thefirst reaction by the end product (cf. Scheme 6).

, [c]
¥ hy
P —."1 Sy -_.Vz Sy _.v3 S3 = S,p "y > S"——Vnﬂ Scheme 6

Since the discovery of this type of regulationin the biosynthetic pathways of
amino acids (Umbarger, 1956) it has been emphasized that it is optimal for ho-
meostasis in metabolic pathways (cf. Section 5.4.3.1). However; the detailed
mathematical anadysis of such systems has shown that these systems exhibit os-
cillatory behavior if acritical extent of inhibition is exceeded (Morales and Mc-
Kay, 1967; Hunding, 1974; Othmer, 1976). Furthermore, the tendency toward
instability growswith theincreasing number of reactions. Thefollowing condition
for the emergence of unstable states has been derived:

A crit,
o H (), 2.142)

cos"(; )

where n;; denotes the Hill coefficient characterizing the inhibition of the first
reaction by the endproduct of the pathway. n stands for the number of interme-
diates (so that the number of reactionsisr = n + 1) and A isafactor depending

ng >
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on the steady-state concentration of theend product (Viniegra-Gonzales and Mar-

tinez, 1969). n{* decreases monotonically with increasing chain length. With
A = 1, whichis vdid for high input rates (Hunding, 1974). one derivesfor the
critical valuesof theinhibition constants 4§ = 8 whenn = 3, and»{* = 16

whenn = 10. From theseresults onecould concludethat long synthetic pathways
of amino acids with feedback inhibition would generaly be in the oscillatory
regime. However, Eq. (2.142) has been derivedfor achain whereall thereactions
are described by the same kinetic constants (k; = kfori = 2,...,n + 1). If

the kinetic constants k; differ from each other, more complicated conditions for
unstable steady states and oscillationsarise. For unbranched pathwayswith three
intermediates, the system becomes unstable under the condition

kl k2 k2 k3 kl k3) (2' 143)

ot = e it Bl el el sy
ma > 1 (2+k2+kl+ka PR

(Savageau, 1975). It is seen that #{f* defined in Eq. (2.143) may increase dragti-
caly as differences in the values of the rate constants increase. For example,
ki =1,k = 10and k; = 100 resultsin #ff* = 122.21 (i.e., a Hill coefficient
much higher than those observed in enzymekinetics).

If the rate constants do not differ very much from a common mean value (k)
(e, k = (k) T Ak; with IAKIKk) < 1), one derives by a Taylor expansion of
expression (2.143),

1 3
it = g — %(Ak‘Akz + AkAks + AlpAky) = 8 + —= O (AR, (2.144)

(kY &P j=1 _
where Ak, + Ak, T Ak; = 0 has been taken into account. Equation (2.144)
may be rewritten as

2
P =84 33). 2.145)

wherea? = (k%) — (k)* denotesthe varianceof thekinetic parameters. Equations
(2.143)—(2.145) substantiatethe above assertion that separation of time constants
may be instrumental to protect cells from oscillations if they are of no use for
their functioning.

3

A

Stoichiometric Analysis

Stoichiometry concernsthe proportionsof changesin theconcentrationsof chem-
ically reacting species. These proportions also indicate the topologica structure
of reaction networks, because they involve information about which substances
are linked with each other by reactions. Stoichiometry does not primarily deal
with thevelocitiesof changes, whichis therealm of kinetics. In contrast to kinetic
properties, which can vary in biologica systems quite rapidly due to inhibition
and activation of enzymes, the stoichiometric propertiesarein a sense structural
invariants, unless evolutionary time scales are considered (Aris, 1965; Clarke,
1988; Reder, 1988). Moreover, stoichiometric properties are often better known
than kinetic parameters of reactions. Knowledge of the stoichiometric properties
isaprerequisitefor any smulation of biochemical reaction networks. Importantly,
the stoichiometric properties of amodel do not depend on whether the description
is discrete, continuous, deterministic, or stochastic (cf. Brdi and Téth, 1989).

One can distinguish two different approaches to stoichiometric analysis ac-
cording to whether or not knowledge of the atomic composition of reacting sub-
stances is taken into account. The catalase reaction (2.2) and the hexokinase-
phosphoglucomutase system (2.3) can be taken as examples of the two cases.
(Although the molecular structure of glucose, ATP, and so forth is known, it is
not essential for analyzing the kinetic properties of system (2.3).) In many in-
stances, kinetic modeling in biochemistry does not require knowledge of the
atomic composition of the substances involved. The system equations can be
written down by just usng information about the molecularities with which re-
actants and products enter the reactions.

As explained in Section 2.1, the proportions with which the substancesin a
reaction system are interconverted can be written in the form of a stoichiometry
matrix, N. For illustration,let us consider the reaction scheme of the main pro-
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cesses of energy metabolism in erythrocytes (glycolysis and various membrane
transport processes) depicted in Figure 3.1. This scheme will be studied in more
detail in Section 5.4.4.1.

Using the numbering of reactionsand substances asindicated in thelegend to
Figure 3.1, we can write the stoichiomehy matrix for theinternal metabolitesand
ions as given in Table 3.1. The extemal species are here chosen to comprise al
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Figure3.1 Glycolytic reactions and various membrane transport processes in erythrocytes. Re-
actions: (1) hexokinase (HK), (2) phosphoglucoisomerase (PGI), (3) phosphofructokinase (PFK), (4)
aldolase (Ald), (5) hose-phosphate isomerase(TIM), (6) glyceral dehyde-phosphatedehydrogenase
(GADP), (7) bisphosphoglycerate mutase (P,GM), (8) 23-bi sphosphoglyceratephosphatase (P,Gase),
(9) phosphoglycerate kinase (PGK), (10) phosphoglycerate mutase (PGAM), (11) enolase (Enol),
(12) pyruvate kinase (PK), (13) lactate dehydrogenase (LDH), (14) adenylate kinase(AK), (15) ATP
consumption by membrane phosphorylation, (16) Na/K-ATPase, (17) passive trangport of chloride
ions, (18 and 19) passivetransportof pyruvate and lactate, respectively, (20 and 21) passivetransport
of sodiumand potassium, respectively.

Metabolites and ions: (1) glucose-6-phosphate (G6P), (2) fructose-6-phosphate (F6P), (3) fruc-
tose-1.6-bisphosphate(FP,), (4) glyceraldehyde-3-phosphate (GAP), (5) dihydroxyacetone phosphate
(DHAP), (6) 1,3-bisphosphoglycerate (1,3P,G), (7) 2,3-bisphosphoglycerate (2,3P,G), (8) 3-phos-
phoglycerate (3PG), (9) 2-phosphoglycerate(2PG), (10) phosphoenolpyruvate(PEP), (I 1) intracel-
lular pyruvate (Pyr,,), (12) intracellular lactate (Lac)), (13) AMP, (14) ADP, (15) ATP, (16 and 17)
NAD. NADH, (18, 19, and 20) intracellular potassium (K ), sodium (Nag; } and chloride (Cli; )
respectively, (21) glucose (Gluc), (22 and 23) extracellular pyruvate (Pyr.,) and lactatela;),  re-
spectively, (24, 25, and 26) extracellularpotassum &  sodium(Nag), and chloride(Cl ), respec-
tively, (27) inorganic phosphate (P). Substances21-27 aretaken as extemal species.
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Table31 Stoichiometric Matrix N of Glycolysisfor theInternal Metabolites According
to the Numbering of Reactions and Metabolites Given in the Legend to Figure 31

1 - 100~00O0O0OO0OO0ODOOOOOOOOTO OO
01 - 12000000O0OO0OO0OO0OO0OCOOCOOOOO
001- 100000O0OO0OO0OO0OOCOOOOOOO
00011- 1000000O0O0OO0OO0ODO0ODO0OO0OO0ODO0
0001- 12000000O0OO0OO0OO0ODO0OO0OO0OO0OOTGO
0oo0o0o001- 10- 1000000O0OO0OO0OO0OCO0CO
0000001 - 100000O0OO0OO0OO0ODO0OO0ODO0OTGO
0oo0o0000O0O1I1- 10000O0O0O0OO0OO0OO0ODO
00000O0O0OO0OO0O1- 100000O0OO0OO0OO0ODDO0
00000000001 - 1200000O0OO0OO0OO0
ooo, 000000O0OO0O1I- 120000- 1000PD
000OO0OO0OO0OO0OOO0OODOO1IO0OO0OO0OO0OO0O- 100
0000OO0O0OO0OOO0OO0OO0OO0OO0O- 10000O0O00
10100000- 1200- 1021100000
-10-120000O0O1O0O0 10-1-1-10 0 0 0 O
0000O0- 1000O00O0O1O0OO0OO0OO0ODO0OO0OCO0OTGO
000001 00O0O0OO0OO0- 100000OO0O0OD 0
000O0OO0OO0OOOOOOOOOO20O00O0GS- 1
0ooo0oo0oo0oo0000O0OO0OO0OO0OO0OO0O- 3000- 10
000OO0OO0OOOOOOOOODOOO- 10000

substances outside the cell and glucose, because, in erythrocytes, hexokinase iS
nearly saturated with glucose.

In case the atomic compositionis relevant for the modeling study, one can use
the atomic matrix, A. Itselements, a,, give the number of atomsof the chemical
elementk involved in one moleculeof substance s, (cf. Aris, 1965; Erdi and Téth,
1989). For example, the composition of hydrogen peroxide, water and molecular
oxygen participating in the catalase reaction (2.2), can formally be written as

H,0, 2 2
H,0 =A(g)= 2 1(3). 3.
0, 0 2

Withoutknowledgeof thereacti on mechani sm,thecolumnsof thestoi chiomehy
matrix are indeterminate to the extent of multiplication by arbitrary factors. For
instance, we could write H,0, — H,0 + 10, ingtead of reaction (2.2). This
indeterminacy does not affect the stoichiometric analysis throughout this chapter.
It does, however, matter for the kinetic equations because the stoichiometric co-
efficientsenter, as exponents, the mass-action-typerate laws (cf. Section 2.2.1).
One should then choose such ascaling of stoichiometric coefficientsthat reflects
the number of molecules really colliding to initiateelementary reaction events.
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From knowledgeof the stoichiometric structure of areaction system, interest-
ing conclusions can be derived without using information about the kinetic prop-
erties. This concerns, in particular, conservation relations and dependencies be-
tween steady-statefluxes.

3.1. CONSERVATION RELATIONS

311 Linear Dependencies Between the Rows
of the Stoichiometry Matrix

Freguently, the concentrations of several substances involved in biochemical
reaction systems enter so-called conservation sums, such as

ATP + ADP + AMP = const, 3.2)

which holds, for example, in the system depicted in Figure 3.1. (Note: Italicized
symbols of substances indicate their concentrations). Conservation relations can
involvecoefficientsother than unity. For example, the conservation of phosphate
gives, in the same system, arelationin which ATP occurs with the coefficient 3,
whereas ADP, 1.3P,G and 2.3P,G enter it with the coefficient 2. Negative coef-
ficients attached to some concentrationsmay also occur. For example, in the
reaction$; T S, = S, the consarvation relation S; — S, = const. holds. More
complex, biochemically relevant examples are given in R. Schuster et d. (1988)
and in Section 4.3.
In general terms, conservation relations can be written as

£2'S() = T = const. 3.3)

withg and T denoting avector of constant coefficientsand aconservation quantity,
respectively. TheRoman T standsfor the transpose. Mathematically, conservation
relations cause some rows of the stoichiometry matrix to be linearly dependent.
Thiscan be written as

&N = 0%, (34)

Postmulltiplication of this equation by the rate vector v and integration yield Eq.
(3.3), due to the system equation (2.7). Equation (3.3) means that a linear com-
bination of metabolite concentrationsis conserved in time.

It may occur that there are more than one (linearly independent) vectorsg that
fulfill Eq. (3.4). It follows from linear algebra that the number of independent
conservation vectorsg isgiven by n — rank (N), with » denoting the number of
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rows of the stoichiometry matrix (see Groetsch and King, 1988). Accordingly,
the number of independent conservation quantities, T;, equalsn — rank(N). On
simulating the dy'sgmic behavior of the system, one can therefore eliminate this
number of concentration variables. If N is full rank [i.e., if rank(N) = n], the
system has no conservation relations.

For any given reaction system, a complete set of linearly independent vectors
g can be arranged into a matrix, G, which is called conservation matrix (cf. Park
Jr., 1988) and fulfills the equation

GN = 0. 3.5

This matrix is not uniquely determined becauseeach matrix G = PG with P
being any nonsingular square matrix of appropriate dimension is a conservation
matrix as well (the rows of G then are linear combinations of the rows of G).
Accordingly, the set of all vectorsg resulting from Eq. (3.4) for a given matrix
N congtitutes a vector space of dimension» — rank(N). Independence of con-
servation relations can be defined as linear independence of the corresponding
vectorsg. Note that the scalingindeterminacy of stoichiometriccoefficientsmen-
tioned above does not affect the conservation relations.

An dternative way of representing the linear dependencies between the rows
of the stoichiometry matrix was proposed by Reder (1988). By rearranging the
rows of N so that the upper rank(N) rows are linearly independent, one can
decompose N as

NO
N= (N> (3.6)

where the submatrix N° hasrank (N) rows. As therows of N’ are linearly depen-
dent on the rows of N° we can write

N =LN® = (I )N". (&X))

L iscalled thelink matrix. Therefore, thesystemequationsof thereaction network
assumethe form

dfs) (I
(5 - (Epe ¢

where the vector of concentrationsis splitinto two vectors, S, and S, of dimen-
sions rank (N) and n — rank(N). The metabolites should be renumbered ac-
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cording to the rearrangement of the rows of N. From Eq. (3.8) one derives the
relations

ds, ds
D _ L 3.9
dr L dr’ 39
and from that

S, = L'S, T const, (3.10)

that is, the metabolite concentrations S; with i > rank(N) may be expressed as
linear functions of the concentrations S; with i =< rank(N). Therefore, the system
dynamicsis completely described by the upper part of Eq. (3.8) (i.e., the reduced
system dS,/d¢t = N%).

As the two equations(3.5) and (3.7) express the same fact, it is quite natural
that the matrix G can be written in terms of the matrix L. For example, we can
choose

G=(-L"1I). (3.11)
Together with the non-negativity condition for concentrations,

S =0, 3.12)

the set of al conservation relations (3.3) for a given reaction system determines
aregion to which the concentration vector is confined. Thisregionis a (possibly
unbounded) convex polyhedron (cf. Rockafellar, 1970) and is called invariant
manifold (Gavalas, 1968) or reaction simplex (Hornand Jackson, 1972). Denoting
the differenceof the concentration vectorsfor two different pointsin time, ¢, and
t,, by AS, we obtain, from Eq. (3.3),

GAS = 0. (3.13)

This means that any vector lying in the concentration polyhedron is orthogonal
to all conservation vectors.

3.1.2. Non-negative Conservation Relations

Conservation relations are frequently brought in relation to conservation of
atoms or atom groups (Aris, 1965; Gavalas, 1968; Park, 1974; Cavallotti et al.,
1980; Hofmeyr et al., 1986; Park ., 1988). Consider, for example, the pyruvate
decarboxylase reaction (EC 4.1.1.1),
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CH;COCOO~ + H* —» CH;CHO + CO,. (3.14)

The stoichiometrfignatrix readsN = (-1 -1 1 1)T. A conservation matrix G
can befound by consideration of the conservation conditionsfor the atomic spe-
cies carbon, oxygen, and hydrogen,

). (3.15)

0
0], (3.16)
1

Another feasible conservation matrix is
1
G=|0
1
whose rows correspond to conservation of the CH,CO group, proton, and car-
boxyl group. There are also vectors fulfilling Eq. (3.4) which contain negative
componentsfe.g.,g = (1 —100)"].
A necessary condition for a conservation relation to represent conservation of
chemical unitsis that all coefficientsbe non-negative,

W W W
-0 o
[N
O =

(= ]
Q= -

g=0, (3.17a)
g#0. (3.17b)

Relation (3.17b) excludes the trivia case that dI coefficientsare zero. The case
with only one coefficient being positive occurs if some substance does not par-
ticipate in any reaction, so that it can be canceled from the network. Therefore,
condition (3.17) actualy implies that at least two coefficients are positive. We
shall call vectorssatisfying relations (3.4) and (3.17) non-negative conservation
vectors [in view of condition (3.17b), a more exact term is semipositive conser-
vation vectors (cf. Schuster and Hofer, 1991)].

Attention has to be paid to systems containing electrically charged molecules
or atoms (ions). If these systems are closed, not only some atom groups but also
electricchargeis conserved. An exampleis provided by the superoxide dismutase
reaction (EC 1.15.1.1) proceeding in many living cells,

205 + 2H* > H,0, + O,. (3.18)

The stoichiometry matrix reads N = (-2 —211)%, Becausen — rank(N) = 3
and the number of atomic species is 2, one has to include the conservation of
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electric chargeto obtain a conservation matrix in which dl rows are amenable to
physico-chemical interpretation. An admissibleconservation matrix is

20
G = 01 . (3.19)
-1 1

The elementsof thethird row of G represent electric charge. The corresponding
conservationrelaionis not, however, non-negative. Neverthel ess,onecan aways
express charge conservation as a non-negativevector by consideringall electrons
involved. Asto reaction (3.18), the vector relating to conservationdf electronsis
g = (1701816)7, as neutral hydrogen and oxygen aoms have one and eight
electrons, respectively.

Therearedifferent methodsfor cal cul atingconservation matrices. One method
is by determining a set of basic solutions to the homogeneouslinear equation

O NN
O O N

Ng=0 (3.20)

[which is equivaent to Eq. (3.4)]), using the Gaussian elimination method (cf.
Groetsch and King, 1988). The matrix G thus obtained has the form givenin Eq.
(3.11); that is, it contains an identity matrix as submatrix. A modified method for
calculating G was given by Park J. (1988). It is based on the Gauss-Jordan
inversion (cf. Groetsch and King, 1988). Both of these methods do not, however,
guarantee that G be non-negative. Sauro and Fell (1991) proposed to determine
conservation relations with only non-negativecoefficientsby computing the ma-
trix L several times, with a different order of therowsof the stoichiometry matrix.

For detecting non-negative conservation matrices in a more systematic way,
one can use methods of convex anaysis. In that mathematical theory, it isshown
that the solution sets to linear homogeneous equation systems subject to linear
homogeneous inequality constraints, such as Eq. (3.4) and inequality (3.17), are
unbounded pointed convex polyhedral cones(Rockafellar, 1970). Convex analysis
further saysthat such cones can berepresented as non-negativelinear combination
of generating vectors, which are unique up to scalar multiples; that is, the cone,
X, representingall non-negativeconservationrelationsfor agiven reaction system
can be written as

P
X={gER'g=2 menn=0k=1...,p} (321)
k=1

where ¢, are the generating vectors and p is their number. By definition, a gen-
erating vector of a cone is a vector that belongs to this cone and cannot be
represented as convex linear combination of two different vectors belonging to
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this cone as well. Figure 3.2 shows a schematic representation of a polyhedral
cone. It can be seen that the generating vectors are located on the edges of the
cone. Their numbergpay be greater than the dimension of the cone. This dimen-
sion, in tam, is less than, or equal to, » — rank (N).

The conservation relations corresponding to the generating vectors are to be
caled extreme non-negative conservation relations. In the following, we shdll
imposethe additional condition that for each generating vector, theonly common
divisor of its components be unity, which can easily be fulfilled by appropriate
reduction (rescaling). The vectorsthusobtainedshall becalled reduced generating
vectors.

A completeset of generating vectors can befound by an agorithm devel oped
in convex analysis (NoZitka et al., 1974). A variant of this algorithm specified so
as to be applicable to the problem dealt with in this section was given in S.
Schuster and Hofer (1991). In thismethod, asequenceof matricesisconsecutively
computed, starting from the stoichiometry matrix augmented with then X n
identity matrix. Such sequences of matrices are usualy called tableaux. For il-
lustration, consider reaction (2.2). The stoichiometry matrix reads N =
(=22 DT Theinitia tableau reads

\

-2 E
TO=| ! ) (3.22)
1

One now calculates a new tableau, T, by constructing all possible non-negative
linear combinationsof pairs of rowsof T so that theelementsof thefirst column

O O =
[ =)
= o O

Figure 3.2 Convex polyhedral cone, X, spanned by four generating vectors, e, toe,.
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become zeros. To this end, in Eq. (3.22), we sum up the first and second rows,
and thefirst row with the doubleof the third row,

oo (011 1 0) (3.23)
01 0 2

Non-negative combination of the second and third rows does not lead to a zero.
Therefore, T® has hereless rows than T®. As this special system has only one
reaction, T isthefinal tableau. Theright-hand submatrix contains the generating
vectorse; = (110)T ande, = (10 2)T. Owing to Eqg. (3.3)and relation (3.21),
this means that every non-negativeconservation relation of the catalasereaction
can be written as

MH,0, T H,0) + ny(H,0, T 20 = const, m,7,=0. (3.24)

A graphical representation of the corresponding coneis given in Figure 3.3. The
vectors(1 10)T and (10 2)T span a two-dimensional cone. In the statespace, any
concentration vector lies in a manifold given by the intersection of the conser-
vation relations H,0, + H,0 = T, and H,0, + 20, = T,. The concentration
polyhedron is thereforea straight line. Its direction is given by thefact that it is
orthogond to the cone X [cf. Eqg. (3.13)]. Its location depends on the vaues of
the conservation quantitiesT; and 7.

For systems with several reactions, further tableaux are successively calcul ated
in the algorithm, so that not only thefirst columnof N but aso the others become
null vectors. For constructing T¢* 1 from T, onefirst determines, for each row
of T?, a st I(i) which contains the column indices, h, of al the elements of
theright-hand side part of T® that are zero; that is,

I = (hh>rP=0. (3.25)

Thereafter, one calcul ates the vectors

t(f)

= 01| -8 + [1D] - 12, (3.26)

wheret? and £ are the ith and kth rows of T, respectively. Vectors 6 have to
be computed, by Eq. (3.26), ford| pairsof indicesi and k that fulfill theconditions

Byt <0 (3.27)
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3 0
g_}xre 3.3 Cone X, of conservationvectorsfor the catalase reaction. ¢, = (11 0)T and e =
(10 2)T arethe generating vectorsof cone X. i
and
1) N 1K) ¢ 1) (3.28)

for al row indices, 1, of T® with 15 i k. The tableau TV*? is constructed by
using, as rows, all the vectors 6 calculated by Eq. (3.26) as well as dl rows of
T with £2,, = 0. Note that the number of tableau rows may change in this
procedure. The row vectorsof the right-hand submatrix of thefind tableau, T,
which originate from the identity matrix in T, are the generating vectors of
coneXx.
We now illustratethe algorithm by a more complex stoichiometry matrix,

85
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-1 0 O
0 1 -1
0 1 0
N=
o -1 2 (3.29)
1 -1 0
0 0 -1

which corresponds to a modd of part of erythrocyte metabolism studied by
Schauer and Heinrich (1983). After the second iteration, we obtain the tableau

0 0-1:1 1 0 0 1 0
00 01 01 01 0
™= 0 0 150 1 01 0 0 (3.30)
00 2:0 01 100
0 0-1:0 00 0 0 1

In the third column, condition (3.27) is fulfilled for the index pairs (1,3), (1,4),
(3.5) and (4,5). Rows 1 and 4 must not, however, be combined, because I(1) =
{6,7,9}, I(2) = {5,7,9}, and I(4) = {4.5,8,9}, s0 that theintersection of theindex
setsindicating the location of zerosin thefirst and fourth rowsis a subset of the
index set, I(2), for the second row. Thefinal tableau reads

T.
1

[
A

2
T®= (3.31)
3

o © O O

o © o ©
o O O ©
LR

S

(=
O = O N
-0 = ©
_— e O =
(=
Vo= O O

. P4

If we had combined the first and fourth rows of T, we would have obtained the
row (2211 20), which is no extreme vector becauseiit is the sum of e, and e,.

For closed reaction systems, one can awaysfind n — rank(N) linearly inde-
pendent non-negativeconservation relaions, so that the cone X has dimensionn
— rank(N). The proof of this statement starts from the fact that these systems
fulfill mass conservation, that is,

>, 1S4 = const. (3.32)
i=1

with the z; denoting the molar masses of the substances S;. Equation (3.32) isa
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special case of the conservation relations (3.3). Any conservation relation with
some coefficientsbeing negativecan be replaced by the sum of thisrelation and
relation (3.32) withthe latter multiplied by a sufficiently large positive number.
This linear combination yields, due to z; > 0 for any i, a non-negative conser-
vation relation.

Open reaction systems may have less than n — rank(N) independent non-
negative conservation relations, as exemplified by the system

P,—S, +S,—P, + Py, (3.33)

for which we have S; — §, = const., but no non-negativeconservation relation.

3.1.3. Conserved Moieties

Chemical entities (atoms, ions, assembliesof atomsor ions) participatingin a
reaction systemwithoutloss of integrity and alwaysremainingin the system (even
if itisan open one) arecalled conserved moieties. Becauseany part of aconserved
entity is also conserved, it is often of interest to find maximal conserved moieties
(i.e., the largest molecular assemblies that are conserved in a given reaction
system).

The moiety structure of closed reaction systems can be obtained by factorizing
the atomic matrix (Park Jr., 1986). In many situations, however, thismatrix is not
available. For example, in the association reaction of theaand By subunitsof the
G-protein (cf. Alberts et al., 1983), and in numerous other reactions involving
macromolecul es, the atomic compositionand structureof someor all participating
species are unknown. On the other hand, this information is unnecessary for
detecting how many units of how many different moieties enter the particular
reacting substances. For instance, to derive the Michaelis-Menten .equation for
enzyme kinetics, the atomic structure of the enzyme need not be known and,
moreover, often is not known. Nevertheless, one employsa conservation relation
stating that the sum of free enzyme and enzyme—substratecomplexesis constant.

In the present section, we deal with the Situation that a stoichiometry matrix
is given at the outset and information about the conserved-moiety structure is
sought. We first formalize the concept of conserved moiety from a purely stoi-
chiometric viewpoint, generalizing the analysis of Park J. (1986). We regard
conserved moietiesas some physicochemical entitiesunspecifiedin their concrete
structure. The constitutionof a reaction system by these entities can be written
in terms of vectors, z, whose elements, z;, indicate how many units of a moiety
aecontained in one molecule of the reacting species S;. Obvioudly, every vector
z isagpecial conservation vector, g, which fulfills Eq. (3.4).

For a given reaction system, a vector z with n componentsis called elementary
conserved-moietyvector if, and only if, it has thefollowing four properties:
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(P1) Consavaion propaty:

ZN =0T (3349
(P2) Integer-element property:
z; aeintegersfor dl i (3.35)
(P3)  Nonnegativity:
z=0forayi, z#0 (3.36)

(P4) Nondecomposahility (maxima Szed moiety): For any coupled vectorsz' and
' fulfilling conditions (P1)~(P3), z is o linear combination o these vectors
with integer coefficients greater then, or equal to, 1:

z# 97 + ' #', 0" = 1 integer. (337

Toexplainthemeaningof condition (P4), wehaveto consider two casesaccording
to whether or not z' and z* are identical. If condition (P4) were not fulfilled in
the former case, 7' + #" entities of some moiety could be combined into one
moiety, which would then belarger than theonecorrespondingto z. In thecatalase
reaction given in Eq. (2.2), z = (220)" would correspond to hydrogen atoms.
This vector can, however, be written as two times the vector ' = z% = (110)7,
which correspondsto thelarger H, moiety.

Now consider the case that z' and z” are different. Consider, for example, the
pyruvate decarboxylase reaction given in Eq. (3.14). The second row, (301 2),
of thematrix G indicated in Eqg. (3.15) corresponds to the conservationof oxygen
atoms. It satisfies conditions (P1)-(P3), but not condition (P4), becauseit can be
decomposedas (10 10) + 2(100 1). Thesetwo row vectors, which areinvolved
in the matrix G given in Eqg. (3.16), correspond to the oxygen in the keto group
and the O, in the carboxyl group. They can be combined with other moieties
represented by the same vectors, so that larger moieties obtain (the CH;CO and
carboxyl groups, respectively). A more detailed discussion of thefour properties
(P1)-(P4) can befound in the work of S. Schuster and Hilgetag (1995).

As the example of the pyruvate decarboxylase reaction shows, two moieties
having the same conserved-moiety vector (e.g., O, and C) can be combined into
one moiety, because they are "'inherited" together in the reactions. Such combi-
nation might be questionable when the two moietiesare located at different sites
in the molecule. However, we wish to consider conservationin terms of theem-
pirica formula (i.e., with no referenceto structure). Therefore, there should be
no two vectorsz that are identical. Accordingly, we define a matrix Z with =

ik
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columnsto be a conserved-moiety matrix if, and only if, it contains, as rows, al
transposed vectors fulfilling properties (P1)~(P4) and has the property

®S) Dissimilariy: All row vectorsd Z aredifferent,
7 %z fordliadk (339)

The following example shows that the present analysis also applies to open
systems:

Gluc + ATP- G6P + ADP, (3.39a)
G6P - FeP, (3.39b)
PEP + ADP-Pyr + ATP, (3.39)

where an experimenta setup is considered which guarantees that the concentra-
tionsof glucose (Gluc), fructose-6-phosphate(F6P), phosphoenol pyruvate(PEP),
and pyruvate (Pyr) are fixed, so that these substances are externa. The (here
unique) moiety matrix containsonly onerow, (10 1) with the ones corresponding
to ATP and ADP and the zero to glucose-6-phosphate (G6P). This row actually
reflects conservation of the adenosine group contained in ATP and ADP. The
example shows that open systems may involve substances, here G6p, which do
not contain any conserved moiety, in contrast to closed systems. Note that many
open systems, such as the unbranched reaction chains studied in Section 5.4.3.1,
do not involve any conserved moiety at all.

It is worth noting that in certain reaction systems, the number of chemical
elements is smaller than the number of independent conservation relations, n —
rank(N), as the following example representing the hydrodealkylation of toluene
yielding benzene and methane demonstrates (Bjornbom, 1977; Cavallotti et al.,
1980),

C¢HsCH; + H, - C,H, + CH,. (3.40)

Thissysteminvolvesonly two atomic species, but n — rank(N) = 3. Thesystem
has in fact three maxima conserved moieties, notably the phenyl group, the
methyl group, and the hydrogen atoms initially contained in the H, molecule.
Interestingly, even the number of conserved moieties may be less than n —
rank(N), both in open and in closed reaction systems. Among other examples,
Alberty (1994) andyzed the ATP citrate (pro-S)-lyase reaction (EC 4.1.3.8),

ATP + citrate + CoA — ADP + P; ¥ acetyl — CoA + Oxdoaoatdle.  (341)

This system has six linearly independent conservation relations. On the other
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hand, itinvolvesonly fivemaxima conserved moieties, namely the ADP, P;, CoA,
acetyl, and oxd oacetate groups. This discrepancy is due to the fact that for the
given set of conserved moieties, not all of the possible reactions are redlized. A
second reaction among the given compounds might be, for example,

ATP - ADP + Pj, (342)

which is an example of a dlippage reaction [for the notion of enzyme dlip, cf.
Pietrobon and Caplan (1985)]. If thisreaction isincluded into the system (3.41),
the system has only five linearly independent conservation relations, which we
can choose so as to correspond to maximal conserved moieties.

The abovereasoning on the number of conserved moieties becomes clearer by
an dternative approach, in which the possible reactions among a given set of
compounds are to beidentified. From theset of substances, the conserved-moiety
matrix Z can be derived. Now we are looking for a stoichiometry matrix N that
fulfills the conservation equation ZN = 0. We can conclude that N can have at
most n — rank(Z) linearly independent columns. As for example (3.41), n —
rank(Z) equals 2. Therefore, two independent reactions can proceed with the set
o substances given above (ATP, citrate, etc.); for example, reactions (3.41) and

342).

( Fczr many chemically admissible reactions between macromolecules and/or
metabolites, no enzymeis present to catalyze them, so they do not proceed in
living cells at a measurable rate. Therefore, systemsin which not dl o the ad-
missible reactions take place [incomplete systemsin the terminology of Erdi and
Té6th (1989)] and, hence, additional conservation relations occur, are of specia
importance in biochemistry.

It can easily be seen that for any reaction system, al reduced generating vectors
of cone X fulfill conditions (P1)~(P4) and are, hence, elementary conserved-
moiety vectors. For example, computation of the generating vectorsfor the py-
ruvate decarboxylase reaction (3.14) by the algorithm outlined in Section 3.1.2
yields the threerows of the matrix G given in Eq. (3.16) and, in addition, e, =
(010 1)T, al of them fulfilling conditions (P1)~(P4). The latter vector does not,
however, correspond to a conserved chemica unit, whereas the threeformer vec-
tors do.

Conversdly, there are systems containing maximal conserved moieties that do
not directly correspond to generating vectors of cone X. For the example of the
superoxide dismutase reaction (3.18), the generating vectors are (1020)T,
(1002)7, (01 20)%, and (0 1 0 2)*. Thefirst and third of them correspondto the
extra electron initialy belonging to the superoxide radical and to the proton,
respectively, whereas the second and fourth of them have no immediate physical
meaning. The system has, in addition, a third maximal conserved moiety, namely
the O, moiety, which correspondsto the vector (1 0 1 ). Thisvector alsosatisfies
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conditions (P1)-(P4) although it is not a generating vector. It can be calculated
by taking haf of the sum of thefirst and second generating vectorsgiven above.
In contrast, for mky other systems, such as reaction (3.14), no conserved-moiety
vectors besides those given by the reduced generating vectors of cone X exit.

Recently, an agorithm for computing the compl ete conserved-moiety matrix

based on knowledge of the stoichiometry matrix has been proposed and imple-
mented as a Turbo-Pascal program for the PC (S. Schuster and Hilgetag, 1995).
It is based on the agorithm for determining the extreme vectorsto cone X. To
find possible additional conserved-moiety vectors, additional tableaux are calcu-
lated by linearly combining pairs of extreme vectors and testing whether the
combined vectors can be divided by integers greater than 1 to give additiona
moiety vectors, which, upon calculation of the next tableau, are tried to combine
to give still further moiety vectors.

As there may be more elementary conserved-moiety vectors than conserved
chemical units really occurring, matrix Z containsal | vectors that represent max-
imal conserved moieties and possibly, in addition, other vectors satisfying con-
ditions (P1)—«(P5). Thisisin line with results of Park Jr. (1988) saying that there
may exist more than one moiety structurethat conformswith a particular outward
stoichiometry. Thissituation is somehow similar to the multiplesolutions of poly-
nomia equations, where usualy only some of them are physicaly meaningful.
The four properties (P1)~(P4) are well suited for distinguishing, for any given
stoichiometry matrix, between those conservation relations that can, in principle,
correspond to maximal conserved moieties and those that cannot.

32. ADMISSIBLE STEADY-STATE VECTORS
AND THE NULL-SPACE

321 Linear Dependencies Between the Columns
of the Stoichiometry Matrix

Asstatedin Section 2.3, analysisof stationary states playa an outstanding role
in biological modeling. For metabolic systems, the central equation to describe
Steady statesis Eq. (2.9). For fixed valuesof theparameters, p,, thisisan equation
in the unknownss;. In addition, Eq. (2.9) can also be regarded as an equation in
the unknowns v;, which is of importance when the parametersare incompletely
known or when the assumption that they are constant is no longer fulfilled (e.g.,
in thecaseof activationor inhibition of enzymesor for processeson evol utionary
time scales (see Chapter 6)]. For all admissible parameter vaues, the reaction
rates obey the equation

Ny = 0. (3.43)
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This can now be regarded as an equation system restricting the admissible values
of v, Itisparticularly easy to analyze because of its linearity.

Nontrivid solutionsof Eq. (3.43) for the vector v only exist if thereare linear
dependencies between the columns of N, that is, if therank of N issmaller than
the number of reactions, r. These dependencies can be expressed by a matrix, K,

NK = 0. (3.44)

Ther — rank(N) columns, k;, of K are particular, linearly independent solutions
of Eq. (343). They span the null-space (also called kernel) of matrix N (cf.
Groetsch and King, 1988), that is, the subspace of al vectorssatisfying Eg. (3.43)
within the space of reaction rates. These are the steady-state flux vectors mathe-
matically compatiblewith the stoichiometricstructure of thesystem. Accordingly,
any steady-state flux vector, J, can be written as a linear combination of the
vectorsk;,

J =2 ak;, (3.45)

wherethe sum runsfrom 1 tor — rank(N).

The null-space matrix K is not uniquely determined. It can be postmultiplied
by a nonsingular matrix, Q, of dimension [r — rank(N)] X [r — rank(N)] to
give another admissiblenull-space matrix, K,

K = KQ. (3.46)

Thisfollowsimmediately from Eq. (3.44).

In many applications, for example, in metabolic control analysis (cf. Section
5.3), oneisinterested in finding an appropriate, preferably simplerepresentation
of the null-space matrix. Of specia interest is the representation containing an
identity matrix

KI
K= (1 ) (3.47)

because it contains a large number of zeros. K' has dimensionrank(N) X [r —
rank(N)]. This representation may be obtained by the Gaussan eimination
method.

3.2.2. Block-Diagonalizationof the Null-SpaceMatrix

As stated above, the choice of the null-space matrix is not unique. In severa
instances, it is useful to seek a representation of K that has a block-diagonal
structure,
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K, 0 0

Yo 0 K, -+ 0
K=}f & + " 1] (3.48)

0 0 - K,

0 0 0

where p denotes the maximum number of diagonal blocks in K for the reaction

system under consideration. If p equals unity, K is not block-diagonalizable. If

the stoichiometry matrix contains columns that are linearly independent of all
other columns of N, whereas these other columnsare linearly dependent on each
other, the corresponding componentsin the columnsof any K determined by Eq.
(3.44) are zero. These null rows (if any) have been transferred to the bottom of
K in Eq. (3.48). Thesteady-state flux through the reactions corresponding to such
null rows is aways zero, because of Eg. (3.45) (cf. Section 3.3.2).

The blocksdof K correspond to subsystemsof the reaction network, the fluxes
of which arecompletely independent; that is, the fluxes within onesubsystem can
be changed by appropriate parameter changes without ateration of the fluxesin
other subsystems.

Consider, for example, thereaction system shown in Figure 3.4, which includes
the main reactions of glycolysis (with some of them lumped) and some adjacent
reactions occurring, for example, in liver cells. ATP and ADP are here to be

GIP N

19 ATP' ADP
TP JADP 2ATP

>< F2,6P,

Figure34 Schemed the main reactions of glycolysisand some adjacent reactions. Reactions
1, 4,5, and 8 are asoinvolved in the scheme depictedin Figure 3.1 (with a different numbering).
Numbers 6 and 7 stand for lumped reactions. Additional reactions: 2) 6-phosphofiucto-2-kinme(EC
2.7.1.105); 3) fructose~2,6-bisphosphatase (EC 3.1.3.46); 9) phosphoglucomutase (EC 5.4.2.2). G1P,
glucose-1-phosphate; F2,6P,, fructose-2.6-hisphosphate; TP, pool of triose phosphates.
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considered to be external metabolites with fixed concentrations. For thisexample,
matrix K can be chosen to be

—
[=1]

[= =}

3.49)

[= 2 = B = R - }

[=T =]

\

Because the two bottom rows are null vectors, reactions 8 and 9 catayzed by
adenylate kinase and phosphoglucomutase, respectively, subsist in equilibrium
whenever the system is at steady state. The remaining submatrix consistsof three
diagona blocks. They correspond to the ATPase reaction, the F2,6P, cycle, and
the main glycolytic pathway. The fluxesin any one of these subsystems are in-
dependent of thefluxesin the other subsystems, provided that ATP and ADP are
considered as external metabolites. Note that the adenylate kinase reaction has
zero net flux even if ATP and ADP were treated as internal.

The representation of K as given by Eq. (3.48) is of importancefor detecting
strictly detailed balanced subsystems; that is, subsystems composed of reactions
thefluxes of which are aways zero when thewholesystemis at steady state (see
Section 3.3.2). The representation of K in block-diagonal formis aso of impor-
tancefor metabolic control analysis (see Sections5.11 and 5.13).

For computation of the block-diagonal form of the null-space matrix by com-
puter, it isof importancethat the representation of matrix K asgiven by Eq. (3.48)
obtains, by rearranging rows and columns, from the form given by Eq. (3.47).
The proof to this assertion and a sourcecode of a program performing this com-
putation were given by S. Schuster and R. Schuster (1991).

3.23. Non-negative Flux Vectors

In many situations,all the reaction rates areknown to havefixed signs. Without
loss of generdlity, we can, in this case, prescribe the orientation of reactions so
that their fluxes are non-negative,

v=0. (3.50)

Thisconstraintis of importancein particular when the reaction rates are defined
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as opposite unidirectiona rates rather than as net rates (Clarke, 1981, 1988; Fell
and Small, 1986; Erdi and Téth, 1989). For example, in the description of the
dynamicsof radidastive tracersor nuclear magnetic resonance (NMR) labels, the
forward and backward reaction rates enter the equations separately (Holzhiitter,
1985; R. Schuster et al., 1992). Furthermore, in many biochemical models, even
thenet rates of somereactionsarepracticaly restricted to be non-negative, notably
when they arequasi-irreversible, that is, when theforward reaction is much faster
than the backward reaction (Heinrich et al., 1977; Leiser and Blum, 1987; Joshi
and Palsson, 1989a) or when this is implied by the biologica function of the
pathway (e.g., ATP production by glycolysis).

On calculatingthe null-space matrix K by standard methods of linear algebra
[e.g., according to formula (3.47)], it may occur that some of its elements are
negative athough the corresponding fluxes should be non-negativefor some of
the reasons mentioned above. It is therefore of interest to find a non-negative
representation of K.

Equation (3.43) gives, upon transposition, ¥™N* = 0T, Clearly, this equation
together with theineguality system (3.50) isisomorphicto theequation/inequality
system (3.4) and (3.17a) after replacing N by itstranspose. Therefore, itssolution
set for v can befound by the algorithm givenin Section 3.1.2. Asin the case of
thecone Xgiven in Eq. (3.21), we can writethecone of all non-negativesteady-
state fluxes, 1 ,as non-negativelinear combination of generating vectors,

F=WVERIY = > 4fi i =0). @3.51)
k

The cone 1 is the intersection of the null-space of N and the non-negative
orthant. It can therefore have any dimension from zeroto » — rank (N). Asin
the case of the cone X, the number of generating vectorsof 1 may be greater
than the dimension of the cone (see Fig. 3.2).

If, in addition to the non-negativity condition (3.50), the constraint that some
rates have fixed valuesis imposed, the admissibleregionfor all fluxesis aconvex
polyhedron. This more general situation istreated in R. Schuster and S. Schuster
(1993). Another generalization is by restricting the signs of only some of the
rates, whereasthe others are dlowed to haveany sign. Thissituation will be dealt
with in thefollowing section.

3.24. Elementary Flux Modes

Somereactionsmay proceedin either direction under physiological conditions,
such asthereactionsshared by glycolysisand gluconeogenesisand the reversible
reactions of the pentose phosphate pathway. In the case that some reactions are
reversbleand some areirreversible, we decomposethe flux vector into the sub-
vectors vi™ and v**. Theirreversibility constraint can be written as
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VT = 0, (3.52)

Now, the situationmay occur that depending on thekinetic parametersand the
concentrations of external metabolites, v™' as well as its opposite —v™ are re-
alizable. Accordingly, two classesof generating vectorsare, in generd, needed
to span the cone (which is now to be denoted by C), basis vectors, &, which have
the property that their opposites, — b, are also situated in the cone, and funda-
mental vectorsf , whichdo not havethis property (seeRockafellar, 1970; Nozitka
et al., 1974). We then have

C={(VERW= D fi + 2 Anbm 1 = O, (3.53)
k m .

Consider, for example, the branched reaction system shown in Scheme 7 and
assume here that reaction 1 isirreversiblein thedirection from P; to S,, whereas
reactions 2 and 3 can proceed in any direction.

Py —1 S Scheme 7

Theconed admissiblesteady-statefluxesfor thissystemisahalf-plane, which
is shown in Figure 3.5. This cone has the basis vector (0 — 1 1). Note that mul-
tiplication of thisvector by any real number gives another admissible basis vector
[e.g., (0 1 —1)T). Assoonas theconesdefined by Eq. (3.53) contain basisvectors,
they are not pointed. For nonpointed cones, some of thefundamental vectorslie
in their interior, so that the favorable uniqueness property characteritic for
pointed cones as defined by Eq. (3.51) islost. The set of basis vectorsis not, in
generd, uniqueeither, because any linear combination of these may aso serveas
abasis. For the system in Scheme7, any one vector situated within the half-plane
C could serve as a fundamental vector, for example, the vectorsf; = (110)T or
> = (10 1)T shown in Figure 3.5. The two mentioned vectorscorrespond to the
situations that the entire flux goes from P, to P, or from P, to Ps, respectively.
Another possible choicewould be to select the vector f; = (21 1)T, whichisthe
sum off, and f; and is orthogona to &;. It corresponds to a situation where the
flux coming from P, is equally distributed between branches2 and 3.

Owing to the nonuniquenessof fundamental and basis vectors, it is of interest
to find those vectorsthat can be interpretedin biochemica terms. Guided by the
principleof Ockham's razor, one may seek the simplest biochemically meaningful
flux vectors possible. They should be chosen so that all other admissible flux
patterns are superpositions of these elementary modes.
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Figure3.5 Cone Cof admissible steady-statefluxesfor the system in Scheme7 with reactions
2 and 3 being reversibleand reaction 1 being irreversible. Cis hereahalf-plane.b, = (0 -1 1)T, a
basisvector; f; = (11 0)Tandf, = (10 1T, the fundamental vector sr epresenting lementary modes.
S = (211 isthesum off, and f;.

Leiser and Blum (1987) proposed to identify cyclic and noncyclic fundamental
modes of systems containing substrate cycles, by invoking that any steady-state
flux pattern could be decomposed as a linear superposition of these modes and
that these modes are all thermodynamically redizable, that is, that they comply
with possibly imposed sign constraints for fluxes [relation (3.52)). Fell (1990,
1993) proposed to define fundamental modes as the smplest relevant ways of
connecting the inputs to the outputs of the system and to represent them-by a
proper choice of basis vectors of the null-space. He observed that this method
meetswith the difficultiesthat irreversibility constraints may be violated and that
there may be a greater number of fundamental modes than basis vectors of the
null-space. Some authors (Seressiotis and Bailey, 1988; Mavrovouniotis et al.,
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1990; Mavrovouniotis, 1992) devel oped methodsfor constructing, by computer,
simple metabolic routes leading from a given substrate to a given product.

In what follows, we treat the problem of finding simple flux modes by using
the theory of convex cones as outlined above. This leads to the concept of ee-
mentary modes. To illustratethis concept we again consider the branched system
shown in Scheme7 with reaction 1 being irreversible. The smplest flux patterns
possiblein steady state and qualitatively different from each other can be repre-
sented by the vectors

v = (1107 (3.54a)
vo=(10107, (3.54b)
v=0 -11T, (3.54¢c)
vu=01-D (3.54d)

Although v; and v, belong to the same basis vector, we take them separately
because opposite fluxescorrespond to different biological functions. For example,
the two directions of operation of the H* -ATPase are related to ATP production
and proton transport. On the other hand, flux vectorsdiffering by a positivefactor
are considered to belong to the same flux mode.

We now formalizethe above reasoning by the following definitions.

1 A flux mode, M, is defined as the st
M = {v€R'lv = ", 1> 0}, (355)

where v* is an r-dimensond vector (unegud to the null vector) fulfilling the
fallowing two conditions
(C1) Steady-gtatecondition. v+ satiffies Eq. (3.43).
(C2) Sgn regriction. If the system involves irreversiblereactions, then the cor-
responding subvector, v, o v+ fulfillsinequdity (3.52).
According to this definition, a flux mode is sufficiently characterized by one
representetive d M.
2 Aflux modeM with arepresentative v+ is caled an elementary fiux mode if, and
only if, v+ fulfillsthe condition:
(C3) Smplicity (nondecompasahility). For ay coupled vectorsv' and v* (Un-
egud to the null vector) with the following properties
(i) v ad v doey redrictions(C1) and (C2),
(i) bath v and v’ contain zero dements wherever v+ does o, and they
indude & lesst one edditional zero componant each,
v* is nat a non-negdivelinear combingtiond v and v/,
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ViEAY + A, A, A >0 (3.56)

Condifign (C3, ii) is aformdlization d the concgpt o genetic independence
introduced by Seressiotis and Bailey (1988). This condition says that a decompo-
stion into two other modes should nat involve additiond enzymes.

3 Aflux modeM is caled a reversible flux mode if, and only if, M = {-v v E
M) is aflux mode as wel. Otherwise, M is cdled an irreversible flux mode. The
same digtinction can then be mede for dementary flux modes

For the example depicted in Scheme 7 with reaction 1 being irreversible, the
elementary modes represented by the flux vectors given in Egs. (3.54a) and
(3.54b) are irreversble dementary modes, whereas the vectors given in Egs.
(3.54c¢), and (3.54d) represent reversibleelementary modes.

The reaction system shown in Figure 3.6 containing a cycle of irreversible
reactions, can serve for illustration of the concept of elementary modes. This
scheme was also studied by Leiser and Blum (1987).

It can easily be seen that thefollowing sevenflux vectors represent elementary
flux modes: .

vw=(-11010 O)T, (3.57a)
Py

V1

V3

P, P,

Figure 3.6 Cyclic reaction systém. This scheme can stand, for example, for the pyruvate/oxalo-
acetate/phosphoenolpyruvate cycle and was also studied by Leiser and Blum (1987).
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Bn=0-110107 (3.57b)
vy=(10-10017 (3.57c)
v,=01-11017, . (3.57d)
vs=(=101110) (3.57¢)
vs=(1-10011T (357
»=00011D. (3.57g)

They arerepresented in Figure 3.7. Four modes involve threereactionsand three
modes comprisefour reactions. The modegiven in Eq. (3.57g) representsacycle.
For thermodynamic reasons (cf. Section 3.3), a nonzero cyclic flux is only pos-
sible if externa metabolites participate in the reactions in the cycle. In fact, in
the pyruvate/oxaloacetate/phosphoenolpyruvate cycle, ATPishydrolyzedto ADP
(not shown in Fig. 3.6).

To illustratethe decomposahility condition (C3), consider theflux vector v =
(01 —1212)", which fulfills the steady-statecondition. It is the sum of v, and
v, given in Egs. (3.57d) and (3.57g), both of which have more zeros than v and
do not involve additional reactions. v is therefore not an elementary modein the
senseof definition 2.

When all reactions are irreversible, all elementary modes correspond to gen-
erating vectorsof theflux cone‘F determined by Eq. (3.51) and vice versa. This
can be rationalized by the reasoning that all generating vectors satisfy, by defi-
nition, conditions (C1) to (C3).

It isworth noting that thereare systemsthat haveirreversibleelementary modes
only, athough some reactions of the system are reversible. For the system in
Scheme7 with only onereaction treated reversible, no reversibleelementary mode
oceurs.

An dgorithm for detecting the elementary modes for systems of any com-
plexity was given by S. Schuster and Hilgetag (1994). This algorithm starts from
a tableau containing the transposed stoichiometry matrix and the identity matrix,

T, NLiI ©
T(O)=(T(2)=(N_l;n50 I)' (3.58)

where the decomposition of N into N,,, and Ny, is done according to the decom-
position of v into v** and v*". At the beginning, the hypothetical situation is
considered that all metabolitesare external. In thiscase, every reaction represents
an elementary mode on its own. This is reflected by the submatrices (1 0) (re-
versible modes) and (0 1) (irreversible modes) in theinitial tableau, T. In each
step of theagorithm, preliminary elementary modeshaveto belinearly combined
to give new preliminary elementary modes in the next tableau. The coefficients
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el

Figure 3.7 Elementary modes of the reaction system depicted in Figure 3.6. The thick arrows
indicate the reactionsinvolved in the dementary modes v; given in Eqgs. (3.572)—(3.57g).

of these combinations are chosen so that the columns of the transposed stoichi-
ometry matrix are consecutively transformedinto null columns. Thefind tableau,
T®, contains a submatrix (the columns on the right-hand side) whose rows rep-
resent the elementary modes. Finally, one has to take into account that for all
reversibleelementary modes which are obtained by the algorithm, its negative is
such amode also. A similar agorithm was given by Mavrovouniotis (1992). It
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does not, however, immediately yield dl elementary modes, but only the set of
all routes leading from a specified substrate to a specified metabolic product.

The number of elementary modes may be an important index characterizing
biochemical systems. It indicatestherichnessof the system considered, by show-
ing the variety of its physicaly realizable functions.Which of thesefunctionsare
operative or in what proportions they operate simultaneoudly is determined by
the extent of inhibition and activation of enzymes (i.e., by the actua values of
kinetic parameters).

The present analysis serves to detect essentia structura features of any given
biochemica network not just by inspecting the reaction scheme but by agebrai-
caly analyzing the stoichiometry matrix. This method widens the approach of
cal culating null-space vectors to that matrix.

Although there are many biochemica reactions that can proceed in both di-
rections, it seemsthat in living cells, reversible flux modes rarely occur. Never-
theless, many biochemical transformationscan proceed in opposite direction, but
not on exactly the inverse routes. Atkinson (1986) stressed that metabolism is
organized so that nearly every pathway is paired with an oppositely directed
conversion that involves different reactions and a different overal stoichiometry,
especidly with regard to the coupling agents, ATP/ADP and NAD/NADH. An
exampleis provided by glycolysisand gluconeogenesis, which use phosphofruc-
tokinaseand fructose-1,6-bisphosphatase, respectively. It seemsthat, in biochem-
ical systems, irreversiblereactions are located in sufficient number and a appro-
priate positions to exclude the occurrence of reversibleflux modes.

3.3. THERMODYNAMIC ASPECTS

331 A Genegalized Wegscheider Condition

Although biochemical reaction networksare usually open with respect to flow
of energy and matter, it is useful to study properties of closed systems, asalimit
situation. For example, subsystems of open networks can be approximately con-
sidered as closed in afast time scaleif they are fast compared to the other sub-
systems (cf. Chapter 4). As closed reaction systems have no inputs and outputs,
the only steady state possible is the thermodynamic equilibrium state. Moreover,
certain subnetworks of open systems may subsist in thermodynamic equilibrium
irrespective of the separation of time scales, such as the phosphoglucomutase
reactionin Fig. 34.

A network of biochemical reactionsis called detailed balanced if in every
steady state al net reaction rates are zero (cf. Horn and Jackson, 1972). Closed
reaction systems are always detailed balanced owing to the principle of micro-
reversibility (Lewis, 1925, cf. Wei, 1962), that is, in each steady state,

wS.p) = 0. (3.59)
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For the specid situation of cycles of monomolecular reactions, Wegscheider
(1902) showed that detailed balanceimplies that the product of equilibrium con-
stants around any &cle must be equal to unity (cf. also Hearon, 1953),

1:_[ g =1 (3.60)

Consider, for example, thecyclic reaction system shown in Scheme 8. When this
system does not involveany externa metabolites, it isclosed and, hence, detailed
balanced. For this system, Wegscheider's condition can bewritten &s ¢,4,9; = 1.

Sy
V/ \:’2
, Scheme 8
S3 =——== S,

Vi

Using the thermodynamic definition of the equilibrium constant in terms of
the changein standard Gibbs free energy,

9= 9@(; - (3.61)
Wegscheider's condition (3.60) can be derived from the fact that the changein
free energy that accompanies the turnover of acomplete cycleis zero.

Wegscheider's condition can be generalized for closed systems of any com-

plexity with reversible reactions endowed with the generalized mass-action ki-
netics (2.15), which is equivalent to Eq. (2.17). As, in open systems also, ther-
modynamic equilibria may occur for specia vaues of the external metabolites,
the generdization of Eqg. (3.60) may even comprise open systems (cf. Vol'pert
and Khudyaev, 1975; Feinberg, 1989; S. Schuster and R. Schuster, 1989). We
distinguish two cases according to whether the rank of the stoichiometry matrix
issmallerthan, or equal to, the number of reactions, r. In the latter case, the null-
space of N isvoid, so that v = 6 is the only steady-state solution.

In thecase rank(N) < r, we can constructa null-spacematrix K, which fulfills
Eq. (3.44). We now take into account that the functions G,(S) in Eq. (2.17) are
positive throughout. Strictly speaking, these functions may be equal to zero if
some concentration is zero. Thiscan lead to "'fdseequilibria,' in which rates but
not all affinitiesare zero (cf. Othmer, 1981). We will exclude occurrenceof false
equilibria here. At any proper equilibrium state, the generdized mass-actionrate
law (2.17) implies that all affinitiesare zero. Equation (2.16) then gives
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Ing = >y, (3-_62)
i

This can be written in matrix notation as

mg=NmnmS (363

Premultiplication of thisequation by K* from theleft yields, owing to Eq. (3.44),

KT In q — 0, (3.643)
which can aso be written as
H[j]l‘ﬂ: 1, i=1,...,r — rank(N), (3.64b)
j=1

where k; are the elementsof matrix K. Because Eq. (3.64) results from the as-
sumptionv = 6, it is a necessary condition for an equilibrium state to exist. We
now provethat the condition is also sufficient. As the steady-state flux vector, J,
is situated in the null-space of N, it is alinear combination of the columnsof K
[cf. Eqg. (3.45)]. Equation (3.64) thereforeimplies

In steady state, the generalized mass action kinetics (2.17) can be written as

J = G,.(q,. [Isim - 1). (3.66)

Multiplying this equation by the term J;G;~'@; with

lnqj—zn,-jlnS,-

= —— 3.67)
Q] q]H S,-"'” -1
and summing up over al j gives
S 26 = 2 J,.(ln g—Zmlh S,-). (3.68)
i 1 !
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It can be seen easily that the numerator and denominator in Q; aways have the
same sign. In the case they are both zero, Q has the limit g,] [s7, as can be
derived by l’Hﬁﬁiﬁl’s rule. In any case, Q ispositive. Becausethe termsG; ! are
positivealso, the left-hand side of Eq. (3.68) is a positive-definitefunction of the
fluxes. The right-hand side of this equation vanishes because of Eg. (3.65) and
the steady-state equation NJ = 0. Therefore, condition (3.64) entails that all
fluxes are zero, which completes the proof of the assertion that Eq. (3.64) is
necessary and sufficient for the equivalenceof steady state and thermodynamic
equilibrium.

Equation (3.64) consists of r — rank(N) particular equations. They can be
considered as a generalized Wegscheider condition. Because in closed systems
no external metabolites occur, the apparent equilibrium constants coincide with
the ""real"" equilibrium constants, and condition (3.64) reads

K'ing = 0. (3.69)

Asthe only steady statein closed systemsis thermodynamicequilibrium, the
generdized Wegscheider condition (3.69) is always fulfilled in such systems. In
contrast, for open systems, Eq. (3.64) is only fulfilled for specia vaues of the
externa concentrations.

For the reaction cycle shown in Scheme 8, the null-space matrix reads KT =
(11D Thus, Eq. (3.64) readsIng; T Ing, T In g, = 0, which is equivalent
to Eq. (3.60) for this system.

A more complex example is the reaction system depicted in Figure 2.12. in
the more general situation that all reactions are reversible (cf. Section 2.4). The
null-space matrix can be chosen to contain the vectorsk, = (11000)T and k,
= (1011 1), Thegeneralized Wegscheider condition (3.64) then consists of the
two equations

Pig % =1, (3.70a)
2

Pigy %ws =1 (3.70b)
3

If and only if both of these equations arefulfilled, the considered reaction system
is detailed balanced. For given equilibrium constants, Eqgs. (3.70a) and (3.70b)
represent two equationsfor the three external concentrations. They determinea
one-dimensional manifold in the state space of external concentrations.

In some enzyme-kinetic reaction schemes, theinteresting situation occurs that
the concentrations of external metabolitesdrop out upon multiplication of appar-
ent equilibrium constants around a cycle. An exampleis provided in Figure 3.8.

Py, P,, and P, are considered to be external species, because upon derivation
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Figure3.8 Catalyticscheme of a bi-uni enzyme with random mechanism.

of enzyme-kinetic ratelaws, the substratesand productsare usually trested in this
way. An admissible null-space vector reads k; = (11 —1 —10)~. The corre-
sponding generalized \Wegscheider condition reads

0

1¢72 qulPZqZ (371)

3ds PagaPray

Here, the concentrations P; and P, can be canceled. So we are left with a ratio
of equilibrium constantsthat refersto the cycle containing reactions 1-4. There-
fore, thisequation is awaysfulfilled, irrespective of the vaues of P, and P,.

A second null-space vector readsk, = (110 0 1)™. Equation (3.64) implies

P.
19295 = 919295 1_31%2 =1L (372

Thisequation is only satisfied for special valuesof substrate and product con-
centrations, in contrast to Eq. (3.71). Therefore, the system shown in Figure 3.8
can, in general, reach a steady state with nonzero fluxes.

For further applications of Wegscheider's condition in enzyme kinetics, see
the works of Ricard (1978), Waz and Caplan (1988). and Kuby (1991). This
principle has also to been taken into account in analyzing the effects of metabolic
channeling (Mendes et al., 1992; Cornish-Bowden and Céardenas, 1993).

It can be shown that when the generalized Wegscheider condition is fulfilled
(in particular in closed systems), there is exactly one equilibrium state in the
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interior of each reaction smplex of full dimension. Furthermore, this state is
asymptotically stablewith theinterior of thissimplex being thebasin of attraction.
For the usual mass#action kinetics, the proof to this statement was given by Horn
and Jackson (1972). It makes use of the Lyapunov function

Vi) = 2 S:InS, + aS) + b, (3.73)
i=1

whereq; and b are constants chosen appropriately. This proof can easily be mod-
ified for the case of the generdlized kinetics (2.17) (S. Schuster and R. Schuster,
1989). For reactions with more complex kinetics [e.g., in regular (nondilute) so-
Iutiong], equilibrium states are not, however, awaysglobaly stable (cf. Othmer,
1981).

Checking thestability of equilibriumisimportant for fast subsystems. Provided
that the generalized Wegscheider condition (3.64) isfulfilled by afast subsystem
under consideration, it has a unique, globally asymptotically stable equilibrium
state. Thisis of importance for the applicability of the rapid-equilibrium approx-
imation (cf. Section 4.3.).

Theissueof detailed balancing can also be approached from the viewpoint of
irreversible thermodynamics. Entropy production is defined as

" vA,
i (3.74)

U’=IT

J

with T denoting temperature. Inserting the definitions of apparent equilibrium
constants and affinities[Egs. (2.14) and (2.16), respectively] gives

o= -R2v, 2 n;InS, + R vng (3.75)
J k J

When the system subsists in steady state, the first term on the right-hand side
of Eq. (3.75) equals zero. Inserting the vector J of steady-state fluxes, we obtain

c=RE g =Rl (3.76)
J

Because the vector Jis situated in the null-spacedf the stoichiometry matrix (see
Section 3.2.1), we can expressit as a linear combination of the columns of the
matrix K, asgiven in Eq. (3.45). Thisequation can be written more concisely as

J = Ka 3.77)
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with @ being a vector of dimensionr — rank (N). Equations (3.76) and (3.77)
yidd
2 - K Ing. (3.78)
R
In this equation, the terms are amenableto an interestingnew interpretation. The
vector

A = RT.KT In q (379)

can be regarded as containing the overall affinities of the reaction system (i.e.,
generdized forces). The vector a encompasses the corresponding overal flows

(independent fluxes).
The definition of the affinity [Eq. (2.16)] can be written in matrix notation as

A=RIng— N'InS) (3.80)

Dueto Eq. (3.44), Eq. (3.79) can be written as
A =PA. (3.81)

This equation can be illustrated by the example of a chain of consecutive
monomolecular reactions. The overall &finity is here smply the sum of the par-
ticular reaction affinities, and weindeed have KT = (11... 1). In steady State,
entropy production can therefore be written in terms of a smaller number of
reactionrates thanfor nonstationary dynamics. Thegeneralized Wegscheider con-
dition (3.64) can then be interpreted in that al overall affinitiesin the system
(assumed to be in steady state) are zero. We have shown above that when thisis
the case, all rates are zero. This can be shown using the generdized flows in the
following way.

The generalized mass action kinetics (2.17) can be written as

y = (dgGH(Iing - N*InS) (382

with G' being a vector with the components G;Q;” L. Under steady-state condi-
tions, Egs. (3.77) and (3.82) lead to
(dgGH(ng — NTInS) = Ka. (3-83)

Premultiplying this equation by a"K™(dgG")™", we obtain by consideration of
KN=0
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@K' In § = a'K"(dg G") " 'Ka. (3.84)

When condition €3.64) is fulfilled, the Ieft-hand side of Eq. (3.84) equals zero.
Becauseall G; are positive, theright-hand side of Eq. (3.84) represents apositive-
definite quadratic form in the generalized fluxes, a;. Therefore, all generalized
flows equal zero in steady state when the generalized Wegscheider condition
(3.64) isfulfilled. Consequently, this conditionimplies, for any steady state,

J=Ka=0 (3.85)

3.3.2. Strictly Detailed Balanced Subnetworks

Zero fluxes can be relevant in certain subsystems of open reaction networks.
Consider, for example, the scheme of glycolysisand of some adjacent reactions
shown in Figure 34. It has been shown in Section 3.2.2 that the phosphogluco-
mutase reaction is a dead-end branch so that its net reaction rate aways equals
zero when the considered network has attained a stationary state. Thisfeatureis
independent of the kinetic parameters of al reactionsinvolved and will therefore
be called strict detailed balancing. Other examplesof dead-end branchesare the
reactions leading to the complexesEl and EST in Scheme 3 (Section 2.2.2).

The situation changes when G1P is trested as an external species. The flux
through the phosphoglucomutase reaction can then be zero in an exceptiona
situation only, namely for very specia vaues of the kinetic parameters of those
reactions affecting the concentration of G6P. This reaction is then detailed bal-
anced, but not gtrictly detailed balanced.

Necessary and sufficient conditionsfor strict detailed balancing are given by
thefollowing theorem (the proof wasgiven by S. Schuster and R. Schuster, 1991):

Theorem 3A. A subnetwork, I;, of a given reaction network is strictly detailed
balanced if and only if the following two conditions are fulfilled:
@ The null-space matrix K can be chosen to be block-diagonal, as given in Eq.
(3.48).

@ii) Either the reactionsof T; correspond to some or all rows of the null submarrix
on the bottom of K, or they correspond to a submatrix K@ and the equation

K" mg® =0 (3.86)
isfulfilled where §® isthe vector of apparent equilibrium constantsof T;.

Equation (3.86) can be considered as a generalized Wegscheider condition for
subnetwork T;.

Detection of strictly detailed balanced subnetworks is helpful when steady
states of the whole network areanalyzed. Thisanalysisissimplifiedif all reactions
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that have, at any steady state, zero net reaction rates are detected at the very
beginning. Vay frequently, smulation of reaction systemsis hampered by incom-
pletenessor unsatisfactory accuracy of the known data. However, the effect of
strictly detailed balanced reactionson the concentrations of internal metabolites
isfully determined by their equilibrium constants. Usudly, thermodynamic pa-
rameterscan be measured more accurately than kineticones(e.g., rate constants),
especialy for very fast reactions.

Note that for the system shown in Figure 3.8, the null-space matrix is not
diagondizable. Therefore, no strictly detailed balanced reactions occur, athough
onedf the two generalized Wegscheider conditions involved in Eq. (3.64) isful-
filled.

3.33. Onsager's Reciprocity Reationsfor Coupled
Enzyme Reactions

Theconcept of null-spacecan be used to provetheOnsager reciprocity relation
(2.59) for the case of chemical reaction systems a steady state. This is of im-
portance, in particular, for enzymes coupling endergonic to exergonic processes
(see Section 2.2.3). At steady tate, the flux vector can be written as a linear
combination of thecolumnsof the null-space matrix [cf. Eq. (3.77)]. Becausethe
componentsof the vector a can be considered as containing the overdl reaction
rates(cf. Section 3.3.1), werenameit J . For the enzyme scheme shown in Figure
2.2, for example, admissiblenull-space vectorsarek, = (111111 0% and &,
= (10001117 Accordingly, the velocities of ATP production and reaction
slip can be taken as overal fluxes,J; and J3.

In correspondence to these new rate variables, overall affinitiescan be defined,
which are to be gathered in the vector A" defined in Eq. (3.79). Equation (3.78)
means that entropy production can also be written in termsof theoverdl affinities
and fluxes,

\T 41
o= (J—;A— 3.87)

Equations (2.57) and (3.77) give
A = (dg L) *KJ". (3.88)
Dueto Eq. (3.81), thisleadsto
A’ = K'(dg L)"'KJ'. (3.89)

With the help of Eg. (2.58), we obtain
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J = LKNdg L)~ 'KJ'. (3.90)

BecauseJ can be:ghanged to assumeamanifold of different values, by ateration
of the external metabolite concentrations, Eq. (3.90) can only hold if

L' = [K"dg L)~ 'K] . @3.91)

Thiseguation gives the sought matrix of transformedOnsager coefficients, which
link thevectorsJ and A’. L' isnot normally diagonal. Indeed, therearein general
strong cross-effectsbetween theforces4;, becausethe exergonic and endergonic
processes are coupled to each other by theenzyme.

Using the rule for transposition of matrix products, one obtainsthat [KT (dg
L)' KJ* = KT (dg L)~' K. The latter matrix is therefore symmetric. As the
inverseof asymmetric matrix isalso symmetric, the matrix on theright-hand side
of Eq. (391) and, hence, matrix L' have this property as well. This completes
the proof of Eq. (2.59). whichisaparticularcaseof Onsager's reciprocity relations
(Onsager, 1931; cf. Guggenheim, 1967). They are usually proved in a more com-
plicated way on the basisof the symmetry of time.
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Time Hierarchy in Metabolism

41. TIME CONSTANTSOF METABOLIC PROCESSES

A time constant is a measure of the time span over which significant changes
occur in a given system, generdly during the relaxation after perturbation of a
stable steady state. Basically, one can distinguish between time constants of re-
actions, of substances, and of a whole system. For none of them, however, a
uniquedefinitionin mathematical terms has been agreed upon. For the time con-
stant of (individual) reactions with linear ratelaws, a widely used definitionis

1
Tk + K

T (4.1)

where k. and k_ denote the forward and backward rate constants, respectively.
Thisdefinition results from the solution to the differential equation governing the
relaxation of such reactions, which is proportional to exp(— (k, + k_)?).
Equation (4.1) also appliesto reactionswith Michaelis-Menten kinetics [Eq.
(2.20)] when substrateand product concentrations are low. Under this condition,
that equation can be approximated by the linear rate equation
Vi Va

—Tmg _Img 42
W(S51,52) Kool K2 4.2)

Equation (4.1) then gives

1

—— 43
ViiKoy + VoK “-3)

T
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Following a suggestion by Higgins (1965) one can estimatethe response time
for reactions with nonlinear rate laws as
e
-1

v,
7 = (2(—n(-,-) ;;i) : 4.4)

i

at an operating point under consideration. Thiscan be derived by linearization of
the system equation around this operating point (see Section 2.3.2).

For the reaction A + B« C * D with standard mass-action kinetics, for
example, the response time reads

T=1[k, A+ B+ k_(C+ D). 4.5)

Equation (4.3) can be derived from Eq. (4.4) by applying it to the reversible
Michaelis-Menten kinetics and teking the derivativesat S; = 0 and S, = 0. As
the first derivatives of this kinetics with respect to §; and —S, are monotonic
decreasing functions of S; and S,, respectively, Eq. (4.3) underestimatesthe time
constant as computed by Eq. (4.4). For example, applying Eq. (4.3) to three
glycolyticenzymes in human erythrocytes (using data of several authors cited by
Liao and Lightfoot Jr., 1987) givesNa/K-ATPase (EC 3.6.1.37), r=50 min; 2,3-
bisphosphoglycerate phosphatase (EC 3.1.3.13), 23 min; bisphosphoglycerate
mutase (EC 5.4.2.4), 0.013 s. By this approximation, the relaxation time of 2,3-
bisphosphoglycerate phosphataseis, however, extremely underestimated, because
thisenzyme is nearly saturated with its substrate, 0 that the derivativeentering
Eq. (4.4) is nearly zero. By consideration of the degradation kinetics of 2,3P,G,
an estimateof 7 = 10 h was evaluated for this enzyme (Rapoport et al., 1976).
For bisphosphoglycerate mutase, Heinrich et al. (1977) calculated the relaxation
time of 3.9 s. The difference to the vaue given aboveresults from consideration
of theinhibition by 2,3P,G. For pyruvate kinase (EC 2.7.1.40), hexokinase (EC
2.7.1.1), and phosphofructokinase(EC 2.7.1.11), relaxationtimesof 28 s, 36 min,
and 74 s, respectively, werecal culated. Accordingly, the relaxation time constants
of the glycolytic enzymes in human erythrocytes cover at least a range of four
orders of magnitude, let alone the enzymes so fast as to be near equilibrium, for
which the time constants are very low and difficult to measureor calculate. This
separation of time constants is accompanied by thefact that thefast enzymesare
so efficient that they can catalyzerates much higher than maximum pathway flux
(e.g., 100-fold in glycolysisin muscle, see Betts and Srivastava, 1991). A bio-
chemical reaction is usually said to befastif 7 islessthan1s.

From among the 20 enzymes considered in a model of the tricarboxylic acid
cycle in Dictyostelium discoideum (Wright et al., 1992), two enzyme rates are
described by a reversible uni-uni Michaglis-Menten rate law so that Eq. (4.3) can
be applied. This gives the relaxation times of 1.73 s for succinatedehydrogenase
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(ECL3.99.1) and 0.21 s for fumarase (EC4.2.1.2) (with the above-mentioned
uncertainty due to saturation). Another nine enzymes were modeled by irrevers-
ible, unimolecular mass-action kinetics so that the relaxation times are equa to
thereciprocals of the rate constants, which gives vaues in a range from 0.075 s
to 10 min. Accordingly, the modeled system also exhibits a distinct separation of
time scaes, al the more as it encompasses other enzymes with even shorter
relaxation times, which were not explicitly included in the modd.

Separation of time constants is aso observed for membrane transport pro-
cesses. For the membrane fluxes through the erythrocyte membrane, time con-
gants lie between 1072 s (water exchange) and 10° s (passive Na* and K*
exchange) (Glaser et al, 1983; Brumen and Heinrich, 1984).

The wide separation of time constantsis often caled time hierarchy (Park,
1974; Reich and Selkov, 1975; Heinrich et al., 1977). Hierarchic organizationis
a striking feature of living matter in general. Living organisms are built up of
nested spatial structures (organelles, cells, tissues, organs, etc.). Control and reg-
ulation act at different levels (metabolic regulation, epigenetic regul ation and hor-
mone system, etc.). Evolutionary processes clearly run much dower than pro-
cesses in metabolism. By time hierarchy sensu stricto, however, we mean the
operation on distinct time scal esat one and the same spatia level of organization,
for example, within theliving cell.

The occurrence of time hierarchy has important consequencesfor the mathe-
matical modeling, because the resulting differential equation systems are then
stiff. The usual integration routines, such as the Runge—Kutta procedure, are then
only stable when operating with very small step sizesof the order of magnitude
of the time constants of thefast processes.

To reflect the systemic properties of metabolic pathways, timeconstants which
take into account the interactions within the system rather than relaxation times
of isolated reactions should be used. This can be seen, for example, when cal-
culating the relaxation time of the hexokinase-phosphofructokinase system in
glycolysis(about 1.5 h in human erythrocytes), which exceeds the vauesfor the
particular enzymes given above, due to the glucose-6-phosphate inhibition of
hexokinase (Heinrich et al., 1977).

When small perturbationsof a steady stateare considered (S(f) = S; + BAYE)]
the solutionsfor 8S,(#) may be expressed by the eigenvectorsand theeigenvalues,
1, of the Jacobian (see Section 2.3.2). If Re(4;) < 0, an appropriate measurefor
characterizing relaxation processesis provided by the characteristic times

1 6
T; _IRe(,l,-)I’ i=1...,n (4.6)

For red blood cell glycolysis, for example, characteristictimes were calculated
by Eq. (4.6) to cover arangefrom 0.9 msto 12 h (Liao and Lightfoot ., 1987).
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Note that the above examples of time-scale separation concern systems at the
metabolic level. It is clear that an even more pronounced separation applies to
cellular physiolégy when genetic processes are included also, which normally
have time constants of hours up to years. When interested in characterizing the
long-term behavior of a metabolic system after perturbations, one may use the
largest time constant defined by Eq. (4.6) (cf. Schuster and Heinrich, 1987).

A time constant for concentrations is the turnover time introduced by Reich
and Selkov (1981, Chap. III). To define this quantity, one should split up the
reaction rates into the rates of forward and reversereactions,

v =y - “.7

The system equation (2.8) can now bewritten as
= =3 vt + ngvi — n7vit o~ nivo), (4.8)

wheren; and n; are defined by Egs. (2.11a) and (2.11b). The turnover timeis
to characterizethe time needed to convert the pool of a given substance S; once.
A possible definitionis

R @9)

2 (v + i)

j=1

which includestheeffects of all unidirectional processesutilizing S;. Theoriginal
definitionof Reich and Selkov (1981) was morerestrictivein that only the largest
of the unidirectional rates entered the denominator in Eg. (4.9).

Clearly, the turnover times reflect the level of aggregation used in the model.
When, for example, two metabolitesisomerizinginto each other by afast reaction
are combined into one pool (e.g., the pool comprising glucose-6-phosphateand
fructose-6-phosphate), the latter has a much larger turnover time than either of
the particular metabolites. Aggregate pools can often be defined in a way that
they are produced or consumed only by irreversible reactions, so that the unidi-
rectional rates areequal tothe net rates. Thissimplifiesto cal culateturnover times
because for metabolic systems, unidirectiond rates of reversible reactions are
generaly known to much less an extent then net rates.

To illustrate definition (4.9), we again consider the data on the tricarboxylic
acid cycle in Dictyostelium discoideum given by Wright et al. (1992). For the
reversibleisomerization between the tricarboxylic acids citrate, cis-aconitateand
isocitrate, only the net rate was caculated. Therefore, the turnover times of the
particular acids cannot be determined from this mode, but the turnover time of
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the tricarboxylic acid pool can, because the isocitrate dehydrogenase reaction
(ECL.1.142) isvirtualy irreversible. Its rate (given to be 2 mM/min, whichis at
steedy stateequal to the net rateof isomerization) can be used in the denominator
of definition (4.9). The concentrations of isocitrate and citrate are given to be
0.0099 mM and 0.025 mM, respectively. cis-Aconitate can be neglectedin com-
parison with thesevalues. So weobtain *® = (0.0099 + 0.025)/2 min = 1.047s
for the tricarboxylic acid pool.

Theturnover time ™™ is related to the transition time z; = Sy/J introduced by
Easterby (1973, 1981) [cf. Section 5.8.4, in particular Eq. (5.278)], with thedif-
ferencethat in thelatter definition, the net ratesinstead of unidirectional ratesare
considered. For unbranched reaction chains with the first step being irreversible,
7; characterizes the contribution of S; to the timeneeded to establish all thesteady-
state concentrations after "' switching on™ the reaction chain. A further definition
of atime constant (dow substratetime scale) was given by Segel (1988).

As a quantitative measure of time hierarchy, Heinrich and Sonntag (1982)
proposed the following definition, which takes into account the mean difference,
(At;), between the largest time constant and all the others:

2 (. — @)

by _r T 7 (4.10)

where
T, = max 7;. 4.11)
The mean value of the time constants, {z;), in Eq. (4.10) servesfor normalization.
It is readily verified that H, is bounded by
H =<r (4.12)
and attains thismaximum valueif onereactionisdow and all remainingreactions

are asfagt as possible. Thisisin line with the common idea of a hierarchy that
there are more dominated items (here: reactions) than dominating ones.

42. THE QUAS-STEADY-STATE APPROXIMATION

When analyzing any time-dependent system, one can usualy discern three dif-
ferent classes of processes according to their time constants. The " central"' class
comprises the processes moving in the time scale of interest. A second class
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comprises the processes so slow that they can, in the experiment or theoretical
study, be neglected or the concentrationsof the substancesinvolved can betreated
as parameters(extgrnal metabolites, see Section 2.1). The third class is made up
by the processes which are so fast that they can be considered to have run off in
the time scale of interest. As we will show later in this section, this relaxation
only occurs under some stability conditions. If these conditions are not fulfilled,
thefast processes may oscillateor exhibit an even more complex behavior. They
may then also be eliminated from the analysis by appropriate averaging tech-
niques.
v

P § s, —2a Py Scheme9

The reaction chain depicted in Scheme 9 may serve as an example. Here, we
assumethe three reactions to be irreversibleand endowed with linear kinetics,

Py

v = kPy, (4.132)

v = kSy, (4.13b)

V3 = k3S. (4.13¢c)
Assume that

ky >> k. 4149

After a brief initial relaxation period, the concentration S, will approximately
have the value

ks

S"_’ A

(4.15)

because any deviation from thisvalue will rapidly vanish; that is, S, attainsa state
approximately given by

ds,
3 = kS~ kS = 0. 4.16)

Note that as long as S; does not reach a steady state, S, does not really reach one
either. However, as Segel (1988) put it, S, can "keep up" with the changing
concentration of §,, because Eq. (4.15) couples S, to S,. For such behavior, the
term quasi-steady-stateis used. Figure 4.1 shows atypica phase curve S; versus
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Figure4.1 Phaseplot §; versus S, illustratingthe quasi-steady-stateapproximation for there-
action chain shown in Scheme9 for thecasethat reaction 3isfaster thanreaction 2. Parameter values:
P, =1k, =7,k =1k = 7.Thethick linesrepresent trajectoriesfor different initial conditions.
Thethin sraight lineis the nullcline for S,. § denotes thefinal steady state.

S, computed numerically. It can be seen that any trgjectory goes, in afirst period,
toward the line given by Eq. (4.15). As thisinitia relaxation is very rapid, the
long-term behavior can be described by the differential equation

das;

& = kP — kS 4.17)

together with the algebraic equation (4.15). The number of differential equations
is therefore reduced from two to one.

Such a reduction of the system equationsis the basic idea of the Bodenstein
method or quasi-steady-stateapproximation (QSSA) (Bodenstein, 1913; cf. Hel-
neken et al., 1967; Kondratiev, 1969). This method is widely used in chemical
kinetics for systems that exhibit large differencesin concentrations among the
different substances involved, due to widely separated rate constants. For the
example considered above, S, as given by Eq. (4.15) is, in fact, much smaller
than §;, owing to inequality (4.14).

In a general presentation, the Bodenstein method can be outlined as follows.
Assume that the concentration vector S can be decomposed as
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(1) :
= (fm) (4.18)

\U
with
SO >> 5@ forall i andj. (419

Note that concentrations may be small for two distinct reasons. First, some
conservation quantities such as total enzyme concentrations may be small and,
second, some rate constants may be high (such as &; in the system shown in
Scheme 9), so that the concentrations of the substances utilized by the corre-
sponding fast reactions become very smal after an initia time span. Note that
inequality (4.19) generdly holdsonly after thisinitial transient.

Under condition (4.19), it is reasonable to normalize the concentrations by
some typica vaue of each subvector:

k; Sl')
P =5 k=12 (4.20)

with S >> §@, For the large concentrations, S, the normalizationfactor, $¢,
could be the largest initia vaue, S8,.(0). For the small concentrations, §@, a
similar choice might be problematic becausethe s may be rather largefor t =
0 and relax to small values only after someinitial period. Taking a vaueS® (z)
for some small t > 0 is then more appropriate. Things are easier if theS® are
involved in a conservation relation. Then the respective conservation quantities
can be taken as normalization factors.

Pertitioning the stoichiometry matrix N in accordancewith Eq. (4.18), we can
write the system Eq. (2.8) as

ds® 1
& =50 Ny, (4.21a)
as?® 1
kg = 5o N (4.21b)
with the small parameter
s@
k=S (4.22)

Asyu is asmal parameter, it is sensible to approximate the solutions of the
equation system (4.21) by the solutionsto theal gebro-differential equation system
composed of Eq. (4.21a) and
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N®y(S) = 0. (4.23)

The latter equation is the steady-state condition for the substances with small
concentrations. Assume that this equation can be solved for $@ in terms of S®.
Inserting the corresponding function into Eq. (4.21a) gives adifferential equation
systemfor §® of dimension smaller than that of the original system [(4.21a) and
(4.21b)]. Thisis, therefore, an exampleof asingularly perturbed differential equa-
tion system. A regularly perturbed differential equation system, in contrast, in-
volves small parameters only on the right-hand sides, so that the dimension of
the system (and, hence, the number of initial or boundary conditions necessary
to solve the system) does not decrease as the small parameterstend to zero.

More rigoroudly, the outlined approximation only appliesif some conditions
phrased in a theorem given by Tikhonov (1948; cf. Wasow, 1965; Klonowski,
1983) are satisfied. We now give this theorem in a genera form for any vector,
Y, of state variables.

Consider the ordinary differential equation system

day*
— = FSYY' 4.24
F(@°YY), (4.24a)
u _dd’t = FYys YY), - (4.24b)

where i isasmall parameter and Y has been decomposed into two subvectors,
Y® and Y¥, of dow and fast variables, respectively. L et

Y = oY) (4.25)
denote a solution of the equation system
Fi@Yh =0, . (4.26)

if such a solution exists. For every given vector ¥*, ¢(¥*) is a fixpoint of the so-
caled adjoint system

%f = Fis,YhH, 4.27)

whereY* is considered asavector of parameters. ¢ can beinterpreted asstretched
time, #/.

Theorem 4A (Tikhonov's Theorem). The solution ¥{z) of the equation system
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(4.24) tends to the solution (Y<(t) @[Y*(5)])T of the " degenerate system" (4.24a),
(4.26) aspu tends to zero, if:

(T1) These soltitions exist and are unique, and the right-hand sides of the equation
systems are unique

(T2) A solution ¢(Y*), exists, which correspondsto an isolated, asymptotically stable
Jixpoint of the adjoint system (4.27)

(T3) Theinitial conditions Y%(0) of the adjoint System (4.27)lie in the basin of at-
traction of the solution g(¥*(0)).

The proof of this theorem can be found in the works of Tikhonov (1948) and
Wasow (1965).

Condition (T1) isnormally fulfilledfor biochemical systems because theright-
hand sidespf Eq. (4.21) involve kinetic rate laws, which are continuoudy differ-
entiable at}east once. The stability conditions (T2) and (T3) are not always met
(cf. Sectiol [ 2.3.2). Because usudly only oneor afew metabolites are treated as
quasi-steady-state species, the stability analysis often bears no difficulties. For
example, the fixpoint of Eq. (4.16) is globally asymptotically stable because the
corresponding eigenvalueis negative (— ks).

The uniquenessand stability of quasi-steady-statesis alwaysgranted when the
subsystem consists of reactions with linear kinetics and satisfies Wegscheider's
condition (see Theorem 2G). Accordingly, applying the quasi-steady-state ap-
proximation to such subsystems that have these properties guarantees that the
preconditions of Tikhonov's Theorem arefulfilled.

The quasi-steady-state approximation is of particular importance in the deri-
vation of enzyme-kinetic rate laws. The total concentrationsof enzymes are con-
stant and normally much below substrate concentrations (Albe et al., 1990) so
that one can introduce the small parameter 4 = E./S,. There are, however, a
number of exceptionsto thisrule (cf. Betts and Srivastava, 1991), notably in the
case of ribulose bisphosphate carboxylase (EC 4.1.1.39) (Farquhar, 1979). Con-
sider a simpleenzymic reaction with the catalytic mechanism shown in Scheme
1 (Section 2.2). As outlined above, it is hel pful to use normalized concentrations
[cf. Eq. (4.20)]. For the present example we choose e = E/E;, es = ES/E;, s,
= §,/51(0) and s, = §,/5,(0) with §,(0) denoting theinitial concentration of §,.

The system equations can then be written as

des

B3 = kSO . e — (koy + kpes + k_,5.(0)s, . €, (4.282)
ds;
i —kS1(0)sy - e + k_,es, (4.28b)

with the new time scale tE;/S,(0) — ¢. It is not necessary to write down the
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equationsgoverninge and S,, becausethey result fromthegiven systemequations
by the conservationrelationsE + ES = Erand §; T 8, + ES = const. of the
scheme. For very smallp, Eq. (4.28a) can be approximated by replacing theleft-
hand side by zero, which gives, together with the conservation relation for the
enzyme species, the Michaelis—-Menten equation (2.20) with the phenomenolog-
ical parametersgiven in Egs. (2.21) and (2.22).

The new time scale has been introduced because in thelimit 4 = E;/5;(0) —
0 [which isto be thought of asdiminution of Ey rather than increase of S;(0) (cf.
Battelli and Lazzari, 1985)], the reaction would normally cease to proceed be-
causeof lack of enzyme. This can be compensated for by compressing the time
scaleor by rescaling the rate constants (see, e.g., Heineken et al., 1967; Heinrich
et al., 1977; Battelli and Lazzari, 1985, 1986). In the latter case, any decreasein
Eris then accompanied by an increasein the rate constants.

Stability of the steady state of the adjoint system isawaysgranted in enzyme
kinetics, as long as there is no enzyme—enzyme interaction, because the dow
variables(i.e., the non-enzymatic species) are considered constant in this system
and simple mass-action kinetics applies satisfactorily well, so that the equation
system islinear (cf. Theorem 2G).

It was shown by Segel (1988) and Frenzen and Maini (1988) that thecondition
E;/S,(0) << 1 for applicability of the quasi-steady-state hypothesisin deriving
the Michaglis—-Menten rate law is unnecessarily restrictive. It can be replaced by

Er
— T, 4.29
$i(0) + Ky “2)

providedthat k; >> k_,. Thiscan be understood by thereasoning that the change
in substrate concentration during theinitial transient period should be small com-
pared to its initial vaue. As this changeis approximately equal to the substrate
sequestered in the ES complex, one can invoke that ExS;(0)/[Ky; + 5,(0)] <<
S1(0), which leadsto condition(4.29). Thiscondition can befulfilled, for example,
by an enzyme showing weak binding to the substrate(high K,,,; value) even when
the enzyme concentration is high.

In the case of competitiveinhibition kinetics, the condition must be modified

to

Er

<< 3
S$1(0) + Ky + K0) + Ky ! 30

(Segdl, 1988), with K7, denoting the inhibition constant defined in Eq. (2.31). It
isclear that thehigher theinhibitor concentration, thesmaller will betheeffective
enzyme concentration, so that the limit of validity of the quasi-steady-state hy-
pothesisis shifted to higher total enzymelevels.
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43. THE RAPID-EQUILIBRIUM APPROXIMATION

Consider again th#reaction system shown in Scheme9 (Section 4.2) and assume
now that reaction 2 is reversible. This reaction scheme can then represent, for
example, part of the glycolytic pathway with S; and S, standing for glucose-6-
phosphate (G6P) and fructose-6-phosphate (F6P). For simplicity's sake, we as-
sume therate of reaction 2 to be given by

vy = kS — k_sS,. (4.31)
The system equationsread
% = kP — kS, + k_5,, (4.322)
% = koS, ~ k_3S5 — ksS,. (4.32b)
Assumefurther that
ky ey > k. (4.33)

As can be seen in Figure 4.2, the concentrations S; and S, will reach, after a
short initial time span, such valuesthat the ratio S,/S; approximately equals the
equilibrium constant,

IR

R g

e
2= (4.34)

Thisisbecauseany excess of S, or S, deviating from this ratio will be removed
very rapidly dueto thehigh rateconstantsof reaction 2. Accordingly, thisreaction
can be considered to subsist nearly in equilibrium, although a nonzero flux may
go through it. Ascan be seen from Eq. (4.31) and inequality (4.33), v, may differ
considerably from zero even if the concentration ratio S,/S; satisfies relation
(4.34).

The quasi-equilibrium relation (4.34) entails that the system equation (4.32)
can be simplifiedto a system of dimension one because the two variables are
(approximately) proportional to each other. Summation of Egs. (4.32a) and
(4.32b) gives

(s, + 8

= kP~ kS, (4.35)
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Figure 4.2 Phase plot S, versus S, illugtrating the rapid-equilibrium approximation as applied
to reaction 2 in thereaction chain shown in Scheme9. Parameter values. P, = 1,k = 7, k, = 5,
k_, = 4,k = 1. Thethick Linesrepresenttrajectoriesfor differentinitial conditions. Thethin straight
lineis the nullclinefor S;. The thin broken linesis given by therapid-equilibrium condition (4.34).

Using the rapid-equilibrium relation (4.34), we can rewrite the |eft-hand side of
Eq. (4.35) as(1/q; + 1)dS,/dr. This gives the reduced system equation

45 _ Py — ksS) (4.36)
dr 1+¢q,

The dynamics of the system is approximated by this equation after the initia
relaxation period. It isworth noting that for the considered system, also the quasi-
Steady-state equation can be applied. dS,/dr = 0 gives S, = kSi/(k_, T k). As
can be seen in Figure 4.2, this approximation is even better than the rapid-equi-
librium approximation. However, construction of the quasi-steady-state line re-
quires knowledgeof threekinetic parameters, whereas the rapid-equilibriumline
can be computed by knowledge of the equilibrium constant ¢, only. Parameter
vauesin Figure 4.2 have been chosen so asto clearly show thedifferencebetween
the two lines. Normally, one applies the rapid-equilibrium approximationonly in
case of a more distinct time hierarchy, so that the two lines lie more closely to
each other.

The idea underlying the development of the rapid-equilibrium approximation
dates back at least to the beginning of our century (Wegscheider, 1900). We will
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now outline, in a generd way, the approximation method to treat systemsinvolv-
ing severa fast, reversible reactions (see al so Schauer and Heinrich, 1983; Liao
and Lightfoot, 1988b; and for thecaseof tracer kinetics, R. Schuster et al., 1992).

Reaction velocitiescan be classifiedinto dow rates, v§, and fast rates, v}, ful-
filling the inequality

<<

v vl (4.37)

Fast reactions dre characterized by high rate constants (or analogous kinetic pa-
rametersin the case of rate laws more complicated than simple mass-action ki-
netics, such as maximal activitiesin the caseof Michaelis-Menten rate laws) and
low time constants. Clearly, relation (4.37) cannot befulfilled in the whole con-
centration space because the rates also depend on concentrations. For example,
thereare submanifoldsin the concentration spacewhereoneor morefast reactions
are a equilibrium o = 0). In the largest part of this space, however, high rate
constants do imply high reaction rates, so that inequality (4.37) holds. Accord-
ingly, we can partition the rate vector v as

v

)= (”r) (4.38)

where the components of v* and v correspond to the dow and fast reactions,
respectively. Likewise, we can decompose the stoichiometry matrix as

N = & NY). (4.39)
Nf is then the stoichiometry matrix of thefast subsystem. Due to the decompo-
sition (4.39), rank (N%) is less than, or equal to, the rank of N.
Now we rescale the fast rates by a small parameter, u << 1,

P = ot (4.40)

so that they get the same, or a smaller, order of magnitude as the components of
v*. Inserting Eqgs. (4.38), (4.39), and (4.40) into the system equation (2.8) yields

ﬂs__ Sgy5, 1 faf,
= = NvS) +ﬂNi>(S). (4.41)

Thisis asingularly perturbed differential equation system because, in the limit
4 = 0, thedimension of the system decreases, as will become clear below. The
conditions under which such equation systems can be approximated by consid-
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eration Of thelimit z# — 0 are given in Tikhonov’s Theorem (see Section 4.2). As
far as Eq. (4.41) is concerned, application of this theorem is facilitated by a
variable transformation which generates, out of this equation, some differential
equations (say, a in number) that do not involve the factor 1/u. An example of
such a transformation is the summation of the Egs. (4.32a) and (4.32b). As this
independenceis to hold irrespective of the special vaues of kinetic parameters,
aslong asthey are consistentwith condition (4.37). it must bea property resulting
only from stoichiometry. Accordingly, an n X n transformation matrix T con-
sisting of two submatrices is used,

T= (Tf) (4.42)

0 that one submatrix transformsthe matrix N+ to a null matrix,

T*Nf = 0. (4.43)
We denote the new variable vector by Y,
Y\ _ o (TS
Y= (Y,) — s = (Tfs), 4.44)

with dim (¥*) = aand dim (YY) = » — a. T must be nonsingular in order that
the time course S(¢) of the origina variables can be determined from Y(z). Con-
sequently, both T and Tf have to be full rank.

Equation (4.43) expresses|inear dependenciesamong therows of N'. Asthere
aren - rank (N) such dependencies and T° has full rank,
o = n — rank(N"). _ (445
Under consideration of Egs. (4.43) and (4.44), we transform Eq. (4.41) to

dy® ds

—(; = TSE = TSNSVS, (4463)
1
%f - Tf% = TN + TN (4.46b)

Multiplying Eq. (4.46b) by # and taking the limit z — 0, we obtain

TINS = 0. @47

Equations (4.43) and (4.47) can be combined to
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(,}:)N‘i“ =0 (4.48)

AsT mugt be nonsingular, Eq. (4.48) implies
Nt = 0. (4.49)

Based on Tikhonov’s Theorem (see Section 4.2). the differential equation system
(4.46a) and (4.46b) can, in thelimit x — O, be replaced by the algebro-differential
equation system (4.46a) and (4.49). Equation (4.49) may serveto eliminatethe n
- afast variablesin Eq. (4.46a). At most rank (Nf) variablescan be eliminated,
because this corresponds to the maximum number of independent equations in
Eq. (4.49). Thisimplies

n — a < rank(N?), (4.50)
which together with relation (4.45) gives
o = n — rank(N"), (4.51)

The approximation under consideration can only be applied if condition (T2)
of Theorem 4A is fulfilled. In the framework of linear stability andyss, this
conditionis equivalent to the condition that all eigenvaluesof the Jacobian of the
adjoint system

arf

o = TN (4.52)

have negativered parts at the considered fixpoint. Note that compared with Eq.
(4.46b), the term £ T*N** has been omitted on the right-hand side of Eq, (4.52),
because for sufficiently small 4, it does not have any effect on the signs of the
eigenvalues(cf. Levin and Levinson, 1954).

Usudly, the quasi-steady-state equation (4.49) is solved by concentration val-
ues which even fulfill the more restrictiveequilibrium condition

#(S) = 0. (4.53)

However, such asolution only existsif thefast subsystemgiven by thedifferential
equation dS/dr = NV is detailed balanced. Such a situation occurs when thefast
subsystem is, upon canceling of the dow reactions, decoupled from the inputs
and outputs and becomes closed, which implies detailed balancing. The steady
state of the fast subsystem is then stable (see Section 3.3.1), so that condition
(T2) isfulfilled.

i

il
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According to Eqgs. (4.43) and (4.51). we can choose T° such that it expresses
a complete set of independent conservation relations of the fast subsystem (see
Section 3.1.1). The variables Y} are therefore the conservation quantities of the
fast subsystem. They are often called dow moietiesor pool variables. Note that
all metabolites not participating in any fast reactions represent pool variableson
their own.

Park (1974) advocates to admit only transformation matrices T° with non-
negative, integer entries becausethe pool variablesare to represent concentrations
of real atom groups (Moieties). Integer entriescan always be guaranteed, as long
as the stoichiometry matrix of thefast subsystem only contains integer elements.
Non-negativity can be met if the fast subsystemis a closed system, otherwiseit
is not alwaysfulfilled (see Section 3.1.2). Formally, the two conditions need not
be satisfiedin order that the rapid-equilibrium approximation be applied [cf. the
model of erythrocyte metabolism presented by R. Schuster et al. (1988)], but the
pool variablesare easier to interpret if they arelinear combinationsof concentra-
tions with non-negative, integer coefficients.

As was shown in Section 3.1.1, conservation matrices can aways be chosen
S0 as to contain theidentity matrix,

™= D. (4.54)

The matrix Tf necessary to calculate the fast variables, %, can be chosen arhi-
trarily, only subject to the constraint that T be non-singular.|f T®is chosen asin
Eq. (4.54), afeasiblechoicedf T is

T =1 0). (4.55)

This means that some original variablesS; may be used asfast variables¥?. It can
easily be shown that the vaidity of conditions(T1), (T2), and (T3) isindependent
of the choice of matricesT* and T-.

Theeimination of variablesby rapid-equilibriumapproximationisfeasiblein
two ways according to whether the algebro-differential equation system is ex-
pressed in terms of the origina concentration variables, S;, which directly enter
the rate laws, or the transformed variables, ¥;. When this equation system is to
be written in terms of the origind variables, the set of concentration variables
should be decomposed into subsets of independent and dependent variables (5™
and 5P, respectively). As long as al reactions are reversible (0 < ¢; < =) and
obey thelaw of mass action [Eq. (2.12)], we can write the equilibrium condition
(4.53) in logarithmic form:

MNHTIn S = In §° (4.56)
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[cf. Eq. (3.63)], where §f is the vector of apparent equilibrium constants of the
fast reactions. We now rearrange therows and columnsd Nf so that the submatrix
of dimensionrank(Nf) X rank(N®) on theupper leftof N isnonsingular. Choosing
the concentration variables corresponding to this submatrix as dependent vari-
ables, they can be calculated in terms of theindependent concentrations, by solv-
ing Eq. (4.56) for S4P. This gives

8P = gep(gind), 4.57)

The fact that Eq. (4.56) is linear in the logarithmic concentrationsis in favor
of keeping to the origina variables. In the alternative version, where the algebro-
differential equation system is expressed in terms of the transformed variables,
congtruction of the function ¥* (¥%) would have to be made on the basis of the
conservation equation of the fast subsystem, ¥* = T° §, whichis involved in Eq.
(4.44), and theequilibrium condition (4.56). Becausetheformer equationislinear
inSand the latter equation islinear in [nS, they cannot, in general, be combined
to give an explicit expression ¥f(¥*). Nevertheless, the values of thefast variables
¥f are uniquely determined by the dow variableson the basis of Egs. (4.44) and
(4.56). This is due to the fact that for systems of reactions endowed with the
generalized mass-action kinetics (2.15), the equilibrium concentrations are
uniquely determinedin termsof the conservation quantities and equilibrium con-
stants (Horn and Jackson, 1972; S. Schuster and R. Schuster, 1989). The com-
putation of equilibrium concentrations is the subject of chemical reaction equi-
librium analysis, which provides sophisticated computation algorithms (cf. Smith
and Missen, 1992).

Returning to the original concentration variables, we now outline a method for
treating the a gebro-differential equation system resulting from the rapid-equilib-
rium assumption. Inserting Eq. (4.57) into Eq. (4.46a) gives

dsind
de '
T S = TNSW(S™, §der(sindy)y, 4.58)
a e] dsln
asd dr

Note that the partial derivativedf the vector §9° with respect to the vector ' is
meant to denotethe matrix (357°/asi™). The left-hand side of theequation system
(4.58) is linear in d§™Y/dr and can be solved for these variablesby matrix inver<
sion,

dsind

o = HTTNw(S™, s%2(5™)) (4.59)

with
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1
H=T| jq | (4.59b)

E) sind

Equation (4.59a) is a differential equation system that can be used to describe
the system behavior under the rapid-equilibrium assumption. Numerica integra-
tion of thisdifferential equation system has several advantages, compared to that
of theoriginal system. First, Eq. (4.59a) only hasdimension n-rank(N?). Second,
it is not as Hiff as the original system because the high kinetic constants have
been eliminated. Thefast reactions only affect the system behavior via their equi-
librium constants. Third, for the same reason, knowledgedf thekinetic parameters
o thefast reactionsis no longer necessary.

Let usillustrate this method by way of two examples. First, we again consider
Scheme 9. As stated above, reaction 2 can stand for phosphoglucoisomerase
(PGI). Thisis a quasi-equilibrium enzyme, as was shown by measuring the con-
centration ratio F6P/G6P in vivo, which turned out to be nearly equa to the
equilibrium constant, gpg; = 0.4 (cf. Reich and Selkov, 1981). Thefast subsystem
has the conservation relation §; + §, = const. The pool variable is therefore
n=s5ts, [cf. also E. (4.35)], which can readily be interpreted as pool of
the hexose monophosphatesin glycolysis. Moreformally, this pool variablecan
be deduced from the partitioned stoichiometry matrix

1 0 : -1
(Ns Nf) = (460)
0 -1 : 1

(with the second and third columns interchanged relative to the numbering of
reactions). An admissiblematrix T* fulfillingEq. (4.43) is

T = (1 1) 4.61)

The transformation matrix yielding thefast variablescan be chosen, for example,
as

=@ 0). 462)

$i thus enters both the dow variable and the fast variableY{ = ;. The adjoint
system reads

f
Edl’_l = — (51, 5). (4.63)
x
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The fixpoint of thisequationisgiven by v, = 0. In thisequilibrium state, which
is stable, relation (4.34) holdstrue. Note that the approximationis vaid not only
for the linear kinetics (4.31) but for any ratelaw comprisedin the general mass-
action kinetics. With the help of Eq. (4.34), thefast variablecan be expressed in
terms of the dow variable as

n

Yi=5=—
1 1 l+q2

4.64)
Onecan also usethe origina varigbles S, and S, with, say, S; being the dependent
variable, as we have done above[cf. Eq. (4.36)].

Care must be taken if the whole system involves conservation relations. Be-
cause of the decompositionof N into N°® and N, any conservation relation of the
whole system also holdsin the fast subsystem. For illustration of this case, con-
sider ascheme of threoninesynthesisin E coli (cf. Gottschalk, 1986), as depicted
in Figure4.3. Aspartatesemial dehydedehydrogenaseand homoserinedehydroge-
nase can be considered as quasi-equilibrium enzymes. To explain the method in
a stepwise way, we consider first a fast subsystem which consists only of the
former reaction. Thefast subsystem then has thefollowing conservationrelations:

o
~
=3

[ G

1v 3

Asp AspP ﬁ 7T~HSer 43 HSerP

ATP ADP  NADH NAD NADH NADl ATP ADP

Lys Met

Figure4.3 Schemeof threoninesynthesis. Reactions: (1) aspartokinase |, Il and It (EC 2.7.2.4);
(2) agpartate semialdehyde dehydrogenase (EC .1.2.1.11); (3) homoserine dehydrogenase (EC
1.1.1.3); (4) homoserinekinase (EC 2.7.1.39); (5) threonine synthase (EC 4.2.99.2); (6) threonine
consumption; (7 and 8) branchesleading to lysine and methionine, respectively. M etabolites: Asp,
aspartate; AspP, 4-phospho-aspartate; ASA, aspartatesemialdehyde; HSer, homoserine; HSerP, ho-
moserinephosphate; Thr, threoning Lys, lysine; M et, methionine. Thedashed arrowsindicatenegative
feedback effects of threonine.
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AspP T ASA = T3, (4.652)
AspP + NAD = Y3, (4.65b)
NADH * NAD = Y3, (4.65¢)

in addition to S; = const. for those metabolites only involved in dow reactions.
The conservation relation (4.65¢) holds not only in thefast subsystem but also in
the whole scheme. Note that relation (4.65b) cannot be interpreted in terms of
consarvation of moieties. If such an interpretationis desired, one could replaceit
by the relation NADH + ASA = Y3, which reflects conservation of a hydrogen.
However, the outlined approximation method even works if a relation with a
negative coefficientis used (e.g., AspP — NADH = Y3).

Accordingto theconservationrel ations (4.65a) and (4.65b), weconstruct linear
combinationsof the governing equations,

ay
T AspP T ASA) = v; — v; — vy, (4.662)
9;% = dﬂt (AspP + NAD) = v, T vy, (4.66b)

which do not involve the fast reaction rate 'v,. The equilibrium condition for the
aspartate Semialdehyde dehydrogenase reaction (ASADH) gives

ASA . NAD

NADH = . 4.67
AspP | qasapu (4-67)

With the conservation relation (4.65¢) and Y3 = Nr, thisyields
NAD = Nz~ dasapn * AspP (4.68)

" ASA + gasapu - ASpP’

Substituting this equation into Eq. (4.66b) and puttingit together with Eq. (4.66a),
we obtain by the chain rule of differentiation

dAspP -1
dr _ L ! (Vl V3 — V7)
dasa | 1+ N - gasapi " ASA N - gasapy - AspP vtV
dr o o

(4.69)

with
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Q = ASA * gusapy - AspP. (4.70)

Now we take‘ito account that also homoserinedehydrogenaseisfast. Thefast
subsystem has the stoichiometry matrix

-1 0
1 -1

N = o 1] 4.71)
-1 -1
1 1

according to the following numbering of metabalites: (1) AP, (2) ASA, (3)
HSer, (4) NADH, (5) NAD. To this matrix, the conservation matrix

11 1 00
™=110 -1 -1 0 4.72)
00 0 11

can beattached. Accordingly, thefollowing linear combinationof governingequa
tions does not comprise any fast reaction rates:

d
o (AspP + ASA + HSer) = v — v, — vy, 4.732)
d +

5 (AsPP — HSer — NADH) = v * v, = g, (4.73b)

and an equation saying that the sum of NAD and NADH does not changein time.
Besides the equilibrium condition (4.67), now the relation

HSer - NAD
ASA - NADH ~ Jusow (4.74)
holds true (HSDH stands for homoserine dehydrogenase). They give
ASA” - guspu
HSer = ———===, 4.75
ASPP * qusann ¢ )

Substituting these equilibrium conditions into Egs. (4.73a) and (4.73b), we
obtain a two-dimensional equation system, which can be solved for dAspP/ds and
dASA/ds.

In biochemica and biophysical modeling, the situation may occur that fast

1
I
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processes|ead to side congtraints other than chemical equilibria (e.g., quasi-elec-
troneutrality conditions or osmotic equilibria). It may then occur that the fast
variablescannot be eliminated analytically from theseside constraints. A method
to circumvent this difficulty is by differentiating the side conditions with respect
to time. This gives additional differential equations, which can be integrated to-
gether with the system equations (2.8), by use of appropriate initial conditions
fulfilling the side conditions. These conditions are then automatical ly fulfilled for
any subsequent point in time. This method was used, for example, by Brumen
and Heinrich (1984) to includean osmotic constraintinto amodel of erythrocyte
metabolism.

44, MODAL ANALYSIS

A useful method for analyzing the behavior of cellular biological systemsis pro-
vided by modal analysis. The central idea of this technique is to linearize the
governing differential equations and to perform a linear transformation of the
component variables, so that the equations become uncoupled of each other and
move on separate time scal es (Palsson et d., 1984, 1985; Liao and Lightfoot J.,
1987, 1988a, 1988b). Time constants are hereused in the sense of definition (4.6)
based on the eigenvalues of the Jacobian. The method is based on the normal
mode analysis in classical mechanics.

The first step is to choose a referencestate S, for linearization of the system
equations(2.8). S, may be, for example, a steady state or theinitid state of the
system. For simplicity's sake, wefirst consider the case that S, is a stable steady
state and will discussthe general case at the end of this section. Linearization
then yields Eq. (2.82) with8S = S — S, (cf. Section 23.2). A similarity trans-
formationis now applied to the Jacobian M,

WMW™! = A, 4.76)

with A containing the eigenvauesof M as diagonal elements. In the case that M
has multiple eigenvalues, it may not be diagonalizable. A is then the Jordan
normal form of M (cf. Gantrnacher, 1959). W is called moda matrix and is
congtructed by using the eigenrows of M (i.e., the eigenvectorsaof the transposed
matrix MT). The inverse matrix, W ™!, encompasses the eigenvectors o M as
columns.

W transforms the vector Sinto a vector X,

X = WS, (4.77)
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Provided that M is diagondizable, the solution of Eg. (2.82) can be written,
under consideration of 88 = S — §,, as
e
S(t) = W lexp(AnW(S©0) - Sp) T S, (4.78)

[cf. Eq. (2.84)]. From Egs. (4.77) and (4.78), the solution for the components of
X(#) can be written as

x(0 = (500) — xo)exp(At) + Xo,. (4.79)

Accordingly, each component of the vector X changesin time according to a
""pure’* exponentia function, with the time constant — 1/Re4;. if M is not diag-
onalizable, some functions x#) involve polynomial functions,

P
%) = (5(0) ~ x0,)exp(H) Eo af’f + xp, (4.80)

wherep; are the multiplicities of the eigenvalues,, and af? are constant factors.
Asthelong-term behavior is determined by the exponential part of thisfunction,
one can consider each variable x; to have the time constant — 1/Red;, as in the
case when M is diagonalizable.

The equation S(z) = W~! X(») [cf. Eq. (4.77)] shows that the components of
the vector X are the time-dependent weights of the eigenvectors of M in the
solution S(#). On the other hand, the componentsof the eigenrowsof the Jacobian
M are the weights of the concentrations S; in the "pool” variables x;(), which
move on time scal es corresponding to the eigenvaluesof M. We will therefore
cdl these eigenrows weighting vectors, w,.

The main purpose of modal analysisis to detect the varioustime scalesof the
system. For example, by applying this procedure to red blood cell metabolism,
Liao and Lightfoot Jr. (1987, 1988b) showed that thetimeconstantsof thissystem
cover arangefrom 0.9 msto 12 h. In addition, moda analysis providesweighted
sums (pools) of concentrations which move on the detected time scaes. It is
particularly interesting to evaluate the largest and smallest time scales relevant
for the behavior of each substanceinvolvedin the system under study.

Moda anaysis also provides information about well-separated time scales
(tempora hierarchy). Detecting the fast modes can help to choose and apply
suitableapproximation methods. To this end, onefirst chooses a reference point
So. Thisstep can hardly becircumventedinthecaseof nonlinear systems, because
the classification of dow and fast reactions then depends on the concentration
vaues. However, the approximations based on modal analysis are remarkably
insensitiveto the choiceof thereference state. Next, the Jacobian, itseigenvalues
A;, and eigenrows are caculated. Note that in the case of linear systems, the
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Jacobian does not depend on concentrations. The eigenvaluesare classified ac-
cording to whether or not

1
~Redy < (.81)

wherez, isthe minimum timeconstant of interest for the specific situation under
study (given, for example, by the time resolution of experimental measurement).
When studying the behavior of a metabolic pathway in the time range of, say,
seconds to hours, one should define z,, = 1 s The weighting vectorswy, corre-
sponding to those & fulfilling condition (4.81) can be considered to have relaxed
in a period shorter than thetimescaleof interest. Owing to Eqgs. (4.77) and (4.79),
this leads to the quasi-steady-dtate relation

ds
Wka

=0 (4.82)

for timeslarger than the time constant — 1/Re4, [with k being an index for which
relation (4.81) isfulfilled]. Thisis equivalent to

wN¥(S) = 0. (4.83)

Because condition (4.81) excludes that wy is an eigenrow of the Jacobian M
belonging to the eigenvalue zero, we have

w,N = 0T, (4.84)

Dueto this relation, the algebraic equation (4.83) couples severa concentrations
toeach other, so that the system of governingdifferential equationscan be reduced
indimension. Thisis particularly suitablefor linear systems, in which the Jacobian
and, hence, the modal matrix do not depend on concentrations.

For illustration,consider again the reaction system of Scheme 9 (Section 4.2)
with the parameter vaues

k=157 Ik =100s"", k_,=50s") k=1s"% (489

that is, reaction 2 is assumed to befast. The eigenrows of the modal matrix then
read (—1.99, 1) and (1.007, 1), and the corresponding eigenvalues 4, = — 150
s”land 4, = —0.67 s~ respectively. When 7., is fixed to be, say, 0.1 s, the
first mode can be classified to be fast. Equation (4.83) reads, in this case,
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—1.99(P, — 100S; + 50S,) + 100S, ~ 508, — S, = 0, (4.86)
which gives .,

5 = 299 X 1005, — 199P,
2 2.99 X 50 + 1

=28, @87

Thisis an algebraic relation between §; and S,, which approximately holds true
after an initial time span of about — 1/4, = 6.7 ms. Interestingly, Eq. (4.87) is
approximately equivalent to the quasi-equilibriumrelation (4.34), due to thefact
that k, and k_,, are large.

Obvioudy, there must exist interrelations between the moda analysis and
rapid-equilibrium approximation. Both methods work with linear combinations
of concentrations (pool variables). In afirst attempt to elucidatethisinterrelation,
it was shown that as the reactionsclassified to be fast becomeinfinitely fast, each
modal matrix W tends to an admissible transformation matrix T used in rapid-
equilibrium approximation (Liao and Lightfoot Jr., 1988b; R. Schuster and S.
Schuster, 1991).

Finally, we consider the general case that S, is not necessarily a stable steady
state. The linearized system equation then reads

(8 = S0) = fiS) + M(S - 59 @.88)

and, in the transformed variable vector X,

% = AX T WfS%) - AWS®. (4.89)

The solution isfound to be
X() = exp(AYWMIASY) — $° + S©O)] + WS® ~ M~IAS9).  (4.90)

We see that each pool variablex; is composed of a constant and a term moving
with the time constant — 1/Re(4;). Therefore, moda analysis appliesalso in the
generd case. Clearly, thisanalysisaswell as therapid-equilibrium approximation
do not require that the whole system eventually settles down to be stationary.
Modesareoften difficultto handleand tointerpret, becausethey are, ingenerd,
linear combinations of concentrations with noninteger coefficients. In nonlinear
systems, these coefficients even depend on the chosen referencestate 8°. There-
fore, the approximation based on Eq. (4.83) is often cumbersome to apply. The
question of whether the moda matrix can be simplified to a matrix with easily
interpretable, preferably integer entries deserves to be studied in the future.
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Metabolic Control Analysis

From the biological point of view it is an important task to characterize the role
of the particular reactions proceeding in theliving cell in determining the various
dynamic modes of metabolism. Dueto the high number of variablesand thestrong
stoichiometric as well as regulatory interrelations, it seems to be impossible to
gain such insight by qualitative considerations only. A theoretical framework,
named metabolic control analysis, has been devel oped to elucidatein quantitative
terms to what extent the various reactions of metabolic pathways determine the
fluxes and metabolite concentrations. The theory is based on two types of coef-
ficients, thecontrol coeficients characterizing the systemic responsecf thesystem
variables (fluxes, concentrations,etc.) after parameter perturbationsand the elas-
ticity coefficients which quantify the changes of reaction rates after perturbations
of substrate concentrations or kinetic parametersunder isolated conditions. In the
early papersof metaboliccontrol analysisa partly different terminology has been
used, control strengths(Higgins, 1965; Heinrich and Rapoport, 1973, 1974a) and
sensitivities (Kacser and Burns, 1973) for the systemic coefficientsand effector
strengths (Heinrich and Rapoport, 1974a) for the perturbationsof isolated reac-
tions. In this chapter it will be shown that metabolic control analysis yields a
number of general rules which alow one to understand the systemic behavior of
metabolic networks on the basis of the kinetic properties of their enzymes.

Up to now acomprehensivetheory has only been developed for the control of
stationary states [for recent reviews, see Fell (1992). S. Schuster and Heinrich
(1992), Liao and Delgado(1993) and Cornish-Bowden(1995)]. Thefundamentals
o this theory are outlined in the following sections. There are, however, severa
attemptsto extend metabolic control analysis to time-dependent processes(relax-
ation processes or oscillations; see Sections 5.5, 5.8.4 and 5.85).
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Traditional metabolic control analysisis alinear theory which considers only
the effect of infinitessimally small parameter perturbations in the vicinity of a
reference state-where the systemic behavior isgoverned by linear approximations
of thesystem equations(2.8). Recently, several attemptshavebeen madeto extend
the theory to finite parameter perturbations (see Section 5.9).

It will becomeclear in thefollowing that in the present theory the term control
is used in a very special sense which should be clearly distinguished from the
term regulation. Whereas the former merely points to the effect of a change of
arbitrary parameters on a system variable, the latter is closely related to the bio-
logical function of metabolic pathways. In Section 5.10it is shown, however, that
metabolic control analysis may also be useful for quantifying metabolic regula-
tion.

51. BASIC DEFINITIONS

Criginally, metabolic control anaysis was designed to quantify the concept of
rate limitation in complex enzymic systems. Kacser and Burns (1973) drew at-
tention to thefact that the steady-state fluxes./; in a metabolic system depend on
thevaluesof the total concentrations E;, of the enzymes acting as catalysts of the
individual reactions. Correspondingly, they defined flux control coeficients as
follows

a.

E AJ; E
—"—’) =L G.1)
Y

D= U]
Cg‘ B (JJ AEk AEy—0 BEk'
which relate the fractional changes in the steady-state fluxes to the fractional
changesin the total enzyme concentrations.

Taking into account that kinetic parameters other than enzyme concentrations
may affect reaction rates v, and, therefore, steady-state fluxes, Heinrich and Ra-
poport (1973, 1974a) proposed using the following definition for flux control
coefficients

2

- (ﬁ éﬁ) LY 52
Jj Avk Avi—0 J_, 311,: )

where Av, denotes the changein the activity of a reaction k due to the influence
of a modifier or a change of an enzyme-kinetic parameter, not necessarily the
enzyme concentration, while all other parameters and concentrationsare kept
congtant. This means that Av, refersto achangein theenzymerate under isolated
conditions.




140  Metabolic Control Analysis

Because mathematically thefluxes J; cannot be directly expressed asfunctions
o therates v,, Eq. (5.2) hasto be regarded as an abbreviated notation of

where p, is akinetic parameter which affects only reaction k directly, that is,

a .
Mo, oo forayjeEk 5.4)
i i

In Sections 5.2 and 5.6 it is shown under what conditions the control coeffi-
cientscalculated on the basisof formula(5.3) arefully independent of the special
choice of the parameter p,. The coefficients defined in Eq. (5.3) can then be
interpreted as the extent to which reaction k (rather than some parameter) controls
a given steady-state flux.

The concept of control coefficientshas been extended to quantify the response
of steady-state concentrations(Heinrich and Rapoport, 1973, 1974a) by intro-
ducing concentration control coefficients

St — Yﬁﬁ) = Y 05i/0py 5.5
Cu (S,- Avi/an—o  Si0v/ap, 5:3)

subject to condition (5.4). In Section 5.8 we will show how metabolic control
analysis may be generalized by considering variables other than concentrations

and fluxes.

Concerningdefinitions(5.3) and (5.5), wewill usein thefollowingasomewhat
modified notation which reflects that the control coefficientsmay be considered
aselements of control matrices

C’ = (C). (5.6a)

C* = (CDH (5.6b)
with the first subscript (i or ) and second subscript (k) referring to the rows and
columns, respectively, of the matrices. Note that C}, = Cy, and C = C3L.

Besides the coefficients defined in Egs. (5.3) and (5.5) non-normalized (un-
scaled) expressions have been introduced:

3J;/3p,
J o= —L Tk 5.7a
* 7 v lopy .7)
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s _ 08:/3p,
cs = Tl (5.7b)
@
(see Sections5.2 and 5.7).

The parametersp, can be of different types. Besides enzyme concentration,
which enters definition (5.1), the Michaglis constant, the elementary rate con-
stants, the turnover number, and the concentrations of external metabolites are
admissible. In theframework of metabolic control analysis, those parametersthat
can be changed easily in experiment {e.g., the concentrations of enzyme-specific
inhibitors(Groen et al., 1982)] are of special importance.

52. A SYSTEMATIC APPROACH

Let us consider a reaction network described by a system of ordinary differential
equationsof thetype(2.8). asdiscussed in Section 2.1. Theresponsedf thesteady-
state concentrationsS; and the steady-state fluxes J,, toward small parameter per-
turbations can be systematically analyzed in the following way. The steady-state
equation Nv(S,p) = 0 [cf. Eq. (2.9)] definesin an implicit manner the parameter
dependence of the concentrations and fluxes; that is, the functions

S = S@), (5.8a)
J = Jp) = v(S).p) . (5.8b)

In the neighborhood of a stable reference state with kinetic parametersp =
PP theeffect of parameter perturbationscan beeval uated using aTaylor expansion:

Y
AY =3 ZAp + =3 = Aplpy + 5.9
; opy P 2 1 9P 3p; el e

In this equation, Y represents the variables S; or J,. Ap, = p, — DY denotes the
parameter changes, and AY = Y(p) — ¥Y(»9). Inthefollowing, thefirstand second
partial derivativesof the variables with respect to the kinetic parameters which
enter the right-hand side of Eq. (5.9) are named first-order and second-order
response coefficients, repectively. For metabolic systems, the steady-state equa-
tions (2.9) are generally highly nonlinear in the variablesS and it isimpossible
to express the functions (5.8) in an explicit manner. However, restriction of the
analysis to the linear terms in the Taylor expansion (5.9) enables us to derive
simpleexpressionsfor AS; and AJ; using thefollowing procedure (for the second-
order terms, cf. Section 5.9).
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Implicit differentiation of Eq. (2.9) with respect top yields, under considera-
tion of Eq. (5.8a),
ov oS ov (5.10)

ZZ¥N==0.
Nas ap ap

In the case that the system does not contain conservation quantities and the
steady state is asymptotically stable, the Jacobian M = Néw/aS is nonsingular
(see Section 2.3.2). Therefore, for the first-order response of metaboliteconcen-
trations, one derivesfrom Eg. (5.10)

oS v\ av av
2 _ _(NZ) NZE - _mINZ 5.11
op ( as) op ap G

and for the response of steady-statefluxes, using Egs. (5.8b) and (5.11),

aJ] ov  ovaS [ av( av)" ]av
~=—4+—_—==]1-—N—] N|—. 5.12
dgp dp IS as\ as, ap (512)

It is seen that for the metabolite concentrationsas well as for the fluxes, the
response coefficientscan be split into two terms. The terms

-1
= -(N:—;) N (5.13)
and
o1 ﬂ)_l 1+ 5.14
=1 B—S(Nas N-1+20C (5.14)

depend via the stoichiometric coefficientson the systemic propertiesof the net-
work but are independent of the special choiceof the perturbation parameters. In
contrast, the term dv/dp is independent of the systemic propertiesof the network
and characterizes the effect of parameter changes on the individual reactions at
fixed concentrations of the metabalites. If the parameter perturbationsare infini-
tesmally small (Ap = 8p) one may use linear approximationsfor Ay as well as
for ASand AJ, that is,

() 55 = (@) =5y = (ﬂz)
Ave=dy = (av)SP’ AS = 6§ 3S 5p, A =38) Y} op.  (5.15)

By definition, the elementsof the vector v are the immediate changes of the
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reaction rates after parameter perturbation at t = #, whereas the vectors §S and
&J contain the final changes of the concentrations which are attained after ad-
justment of thetsystem to the parameter perturbationsfor  + «. With (5.15), it
followsfrom Egs. (5.11)~(5.14) that

3§ = Cv, (5.16a)
8 = Cov. (5.16b)
The matrices of control coefficients C$ and €’ transform the vector 8y into the
vectors 88 and 87, respectively. Choosing the perturbation parametersin such a

way that the matrix 9v/dp is nonsingular, the matrices of unscaled control coef-
ficientscan be rewritten as follows:

-1
Cf = a_s(g) , (5.17)
ap\op/ )
aJfov\~!
o= EZ(a_:) - (5.18)

These equations can be used as definitions for control coefficients, which are
more generd than definitions (5.7a) and (5.7b), because the parameters p, need
not be reaction-specific. Using Egs. (5.17) and (5.18), the set of admissible pa-
rameterscan be considerably enlarged. For example, concentrations of enzymes
catalyzingmore than onereaction, concentrationsof unspecificinhibitors, pH, or
temperature can be used.

Some simplificationsresult if there are reaction-specific perturbation param-
etersfulfilling relation (5.4). Then Egs. (5.17) and (5.18) can be specified to give
Eqgs. (5.7b) and (5.7a), respectively.

Thepartid derivativesd reactionrates with respect to substrateconcentrations
or kinetic parameters are called (unscaled) elagticity coefficients. We use the fol-
lowing notation:

.
& = 9_;; e-elasticities, (5.19)
my = =4 x-eladicities. (5.20)
P

Elasticity coefficientscharacterize thekinetic propertiesof theindividua enzymes
in isolation, in a close neighborhood of areferencestate (Bums et ai., 1985).
Reaction system with conservation equations: Formulas (5.13) and (5.14) for
the calculation of control coefficientshave to be modified if metabolic systems
with conservation equations are considered (Reder, 1988). In this case, the stoi-
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chiometric matrix does not have full rank (see Section 3.1) and the Jacobian
M = Novw/aS is, therefore, singular. Implicit differentiation of the steady-state
equation (2.9) with respect to the kinetic parameters yields

v S v S v
i AN L R NG =o. (5.21)
Na>» VEmda @

under consideration of the relation between independent concentrations S, and
dependent concentrations Sy, [cf. Eq. (3.10)). Dueto L’ = a88,/8S, and Eq. (3.7),

v a5 v
NO=L—+N0— =0 22
B o op -22)

with av/aS = (9v/8S,,0v/3Sy,). L standsagain for thelirk matrix. From Eq. (5.22)
one gets

8y _

ad
> (M“)-‘N"é. 5.23)

as ( ’ )

is the Jacobian of the reduced system, in which the dependent concentrations S,
have been eiminated by use of the conservation relations. M? is a nonsingular
matrix because the steady state is assumed to be asymptotically stable. Taking
into account Egs. (3.10) and (5.23) oneobtains

g—s = csgll;, (5.25a)
Cf = —LM%~IN® (5.25b)

for the parameter dependence of the concentrations and

y_ ov

» >’ (5.26a)

c=1- :—;L(M")“N“ (5.26b)

for the parameter dependence of the steady-state fluxes. For systems without
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consarvation equations (L = 1),Egs. (5.25b) and (5.26b) simplify to Egs. (5.13)

and (5.14), respectively.
Using Egs..£5.25b) and (5.26b) and the definition (5.24) of the Jacobian of the

reduced system, one can easily prove the relationships

c’c’ = ¢, (5.27a)
C%CS = -5, (5.27b)

which are vaid for any metabolic system. Relation (5.27a) means that C’ is an
idempotent matrix (Gantmacher, 1959). Obvioudy, this equation implies that the
matrix C- raised to any integer power (greater than zero) equalsthis matrix itself.
For a further discussion of relations (5.27a) and (5.27b), see Sections5.3.4 and
55.

Response coefficients: Using definition (5.20), Egs. (5.25a) and (5.25b) may
be written asfollows:

R.=3 Ciry or RS = C’r, (5.28)
J
and
Ry = EC}’,EL,( or R = Cr, (5.29)

whereRj; and R}, denote response coefficients(Kacser and Burns, 1973; Hofmeyr
et a., 1986). Theserelations show that the effect of a perturbation of a parameter
Pr On astate variable S; or J; may be described as a sum of individual terms

Ry = Cimy, ‘R = Cimy, - (5.30)

which have been called partial response coefficients(Kholodenko, 1990).

With Egs. (5.28) and (5.29) the response of concentrations and fluxes to si-
multaneous perturbations of severd parameters can be written in the following
form:

8S; = X Ridp, or 8S = R%p (5:31)
k
and
5]} = E RijSPk or &J = R"Sp. (5.32)
k
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Normalized coefficients: It is often useful to transformtheunscaled coefficients
into a normalized form. This gives, for the elagticities,

(dg)~! e(dg S) — &, (5.33a)
(dgv) ' ndgp) =, (5.33b)

and for the control coefficients,

(dg §)~* C* (dg )~ C5, (5.34a)
dghH ¢ (g~ C. (5.34b)

The reaction rates (v = J) and substrate concentrations S in the reference state
areused for normalization. (dgY) signifiesadiagonal matrix with the components
o thevector Y standingin its principal diagonal. Note that premultiplication by
adiagond matrix impliesthat all entriesdf one and the samerow of amatrix are
multiplied by the samefactor, whereas postmultiplication has a similar effect on
the columns. Accordingly, the transformation rules (5.34a) and (5.34b) give the
matrices defined earlier in Egs. (5.3), (5.5) and (5.6).
The normalized matrices e and = contain the elements

<l
Blg

(5.352)

B
]

a
Bl
1

, (5.35b)

=3
@ |
g

respectively, whereas the normalized matrices C and C* contain, as elements,
the control coefficientsdefined in Egs. (5.3) and (5.5), respectively.
The normalized coefficients can be written as logarithmic derivatives. This

gives, for the elaticities,

g, = 2Y (5.362)

_ 9y (5.36b)

and for the control coefficients,

Cs = Aln S/0Inp,

5.37
dln v /dInp,’ ©-372)
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dlnJ/o1
CJ = _n.lﬂ (5.37b)

3w /olnp,’

To avoid uhﬁefined vaues of the logarithms, we use the convention that the re-
action rates are counted in such a direction that they are positive. Using normal-
ized coefficients, Egs. (5.13) and (5.14) are replaced by
Cc = —[l‘l(dg.I)SI“[N(dg.l)] (5.38)
and
¢ =11t8&cs (5.39)

respectively.
Response coefficients can also be defined in normalizedform. They fulfill Egs.

) (5.28) and (5.29) with normalized elasticitiesand control coefficients.

Using, for an enzymatic network, the total enzyme concentrations E, as per-
turbation parameters, one obtainsfor the normalized control coefficients

E, @S

S — =k

Cy = _S, _aEk’ (5.40a)
E, oJ;

J = Sk

Ci J; oE, (5.40b)

under the assumption that the reaction rates are linearly dependent on enzyme
concentrations, that is,
E,ov, _dlny,

W E T omE T (5.41)

~ Equation (5.40) is the definition of control coefficients originally proposed by

Kacser and Burns (1973) [cf. Eq. (5.1)]. In deriving Eq. (5.40), a one-to-one
correspondence of enzymes and reactions has been assumed (i.e., 9v;/0E;, = 0
for j#k). When the enzyme concentrationsare not explicitly trested as variables,
they belong to the system parameters. It is then more appropriate to denote the
(normdlized or non-normalized) partia derivatives of the system variables with
respect to the enzyme concentrations as specia response coefficients, Rz, and
R}, rather than to consider them as control coefficients. These response coeffi-
cients are meaningful quantities aso when condition (5.41) is not satisfied.

In the abovecalculations, v normally standsfor therateof theoverall enzyme-
catalyzed reaction. It isimportant to note that the mathematical trestment formally
remains vaid when the system is described at a more detailed level of enzyme
catalysis. In this case, v may play the role of the rates of the elementary steps
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and, accordingly, the calculated control coefficients would refer to the control
exerted by these steps rather than by the whole enzyme (see Sections 5.14 and
5.15). In such a treatment, a number of additional conservation relations arise,
owing to the fixed total enzyme concentrations.

53. THEOREMSOF METABOLIC CONTROL ANALYSS

5.3.1. Summation Theorems

The variouscontrol coefficientsare not fully independent of each other. Two
types of relationships between concentration control coefficientsas well as flux
control coefficients can be derived which are generally vaid irrespective of the
complexity of the considered reaction network. Some of the relationships, called
summation theorems, reflect the structural propertiesd the reaction nenvork and
are independent of the kinetic parameters of theindividual enzymes. In contrast
to that, the connectivity theorems presented in Section 5.3.2 relate the properties
of the single enzymes to the systemic behavior.

Wefirst consider the normalized control coefficientsgivenin Egs. (5.38) and
(5.39). Postmulltiplication of these equations with the r-dimensional vector 1 =
(1,..., )T yields under consideration of the steady-state condition NJ = 0

Cl=0 or 2 C5=0 (542
k=1
and

Cl=1o 2Ci=1 (543)
. k=1

that is, for each metabolic compound, the sum of the concentration control co-
efficientsis equal to zero, whereas the control coefficientsof a given steady-state
flux sum up to unity. Relation (5.42) represents the summeation theorem for the
concentration control coefficients (Heinrich and Rapoport, 1974a), and relation
(5.43) the summation theorem for theflux control coefficients(Kacser and Burns,
1973; Heinrich and Rapoport, 1974a).

It was shown by Reder (1988) that relations (5.42) and (5.43) arespecia cases
of generalized summation theorems. This may be seen best by using the matrices
of unscaled control coefficients C* and ¢’ which fulfill Egs. (5.25b) and (5.26b),
respectively. Postmultiplication of theseequationshby the null-spacematrix K [cf.
Eq. (3.44)] yields

CK =0, (5.44a)
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CK =K. (5.44b)
For the scaled,control coefficients, these relations reed

Cdg) 'K =0, (5.452)
Cldg)" 'K = dgH 'K (5.45b)

The number of generalized summation relationsequals the number of linearly
independent k vectors. In the case that the stoichiometry matrix is of full rank,
this number is equal to r — n. If the metabolic system contains conservation
quantities, thematrix K hasr — rank(N) linearly independent columns. Itisworth
mentioning that the structure of the generalized summation theorems does not
depend on the conservation relations, as can be seen by the fact that the link

- matrix L doesnot enter these theoremsin an explicit manner. Because the vector

o the steady-state fluxesis contained in the null-space of N, Egs. (5.44a) and
(5.44b) are also fulfilled if one uses the vector J instead of K. The resulting
equations

CJ =0, (5.46a)
Ccr=171 (5.46b)

for the unscaled coefficients are equivaent to the special summeation relations
givenin Egs. (5.42) and (5.43) for the normalized coefficients.

As outlined in Section 5.2, the control coefficientsmay be expressed in the
form of partia derivativesof the concentrations or fluxes with respect to the
enzyme concentrations in the case that the latter enter the rate laws in a linear
manner. If this condition is fulfilled, the summation theorems (5.42) and (5.43)
can also be derived on the basis of the following argument (Giersch, 1988). From
Egs. (2.9) and (5.8) it followsthat the steady-state concentrationsand steady-state
fluxes are homogeneousfunctions of the enzyme concentrations of order 0 and
1, respectively, which means

S(AE,, ..., AE) = S(E,, ..., E,) (5.47)
and
JQGEy, ..., AE) = M(Ey, ..., E). C (5.48)

Differentiation of Eqgs. (5.47) and (5.48) with respect to 4 yields
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é a(aSi,‘) =0 (5.492)
=1
and
é Tt = I (5.49b)
k=1

respectively. For A = 1, this gives

L, E, 35,
Sk 90 _ 5.502)
2.5, (
and
X1
&9 (5.50b)
kgl J; OE;

which correspond to Egs. (5.42) and (5.43), respectively.

5.3.2. Connectivity Theorems

Postmultiplication of Egs. (5.25b) and (5.26b) by (3w/aS)L yields, under con-
sideration of Eq. (5.24).

av ’
s 5.51
C aSL L, (5.51a)
c®L=-o (5.51b)
as )

respectively, which are the connectivity theorems of metabolic control anaysis.
With Egs. (5.33) and (5.34) they may be rewritten using normalized control co-
efficientsand elasticity coefficients,
CSe(dg $)"'L = —(dg§)"'L, (5.522)
Cledg Sy 'L = 0. (5.52b)

A physical interpretation of the connectivity theoremsrelated to the relaxation of
fluctuations of system variables will be given in Section 5.10.3.

For systems without conservation equations(L = 1), Egs. (5.52a) and (5.52b)
simplify to therelationshipsoriginaly proposed by Westerhoff and Chen (1984)
and Kacser and Burns (1973), respectively,
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Ce¢ = -1 or E C,?;Ekj = —-5[.]. (5.53a)
k=1

&

Ce=0 or 2 Chen=0. (5.53b)
k=1

IntroducingL = | in Egs. (5.51a) and (5.51b) and comparing the resulting equa-
tionswith Egs. (5.53a) and (5.53b) itisseen that for systemswithout conservation
quantities, theform of the connectivity theoremsisinvariant to scaling of control
coefficientsand elasticity coefficients.

The theoremsderived above are also vaid when the system isdescribed at the
level of elementary enzymic steps, provided the control coefficientsas well asthe
elasticitiesrefer to these steps.

5.3.3. Calculation of Control CoefficientsUsing
the Theorems

In unbranched reaction chains, but not in branched systems, the traditional
summation theorem (5.43) and the connectivity theorem are sufficientin number
for calculatingthe flux control coefficientsin terms of the elasticities(and simi-
larly the concentration control coefficients) (Heinrich and Rapoport, 1975; Sauro
etd., 1987; Westerhoff and Kell, 1987; see Section 5.4.3.1). Attemptsweremade
to complete the set of equations by branch-point relationships (Fell and Sauro,
1985; see Section 5.4.3.2). Later, it becameclear that for arbitrary stoichiometries,
the control coefficientsare completely determined by the theoremsif instead of
the traditional summation relaionships (5.42) and (5.43), the generalized sum-
mation theorems (5.44a) and (5.44b) are taken into account, because the branch-
point relationships are special cases of these,

The summation and connectivity theorems [Eqgs. (5.44) and (5.51), respec-
tively] can be combined into the compact formula

o
(CS) K eL) = (Ig _°L), (5.54)

which is a central equation in metabolic control anaysis. In the following, we
show the equivaenceof this equation with Egs. (5.25b) and (5.26b), which give
explicit expressionsfor C’ and CS. Note that the stoichiometric propertiesof the
metabolic pathway enter Egs. (5.25b) and (5.26b) in theform of the stoichiometry
matrix and Eq. (5.54) via the link matrix and null-space matrix.

We first provethat the matrix
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( A) . ((K’K)“KT(I - sL(M°)“N°)>
A) -

™M)7'N°
istheinverseof the matrix (K EL) entering the left-hand side of Eq. (5.54).
Because K contains linearly independent columns only, the matrix product
(K'K) is nonsingular and, hence, invertible. Moreover, we have

(5.55)

K sL)(‘;) = KKTK)"'KT — eL(M%)~'N% + eLM?)IN®.  (5.56)

Becaused| columnsof K are orthogonal to dl rows of N° a matrix composed
of these two submatrices is nonsingular. Therefore, we can premultiply theright-
hend side of Eq. (5.56) by

(5.57)

I =(i§r())_ | KT)'

This gives, dueto N°K = 0,

. N°
K sL)(‘;) = (112:) (kT(I — LM%~ 'N% + KTeL(M0)~lN°) (5.58)
(e

which completes the proof.
Now we postmultiply Eq. (5.54) by the matrix given in Eq. (5.55) and obtain

O =KA=1I-¢LB =1 - eLM%)™'N° (5.59)

(where the relation KA + ¢LB = | following from Eq. (5.58) has been used)
and

CS = —LMO)™'N. (5.60)

Egs. (5.59) and (5.60) are equivalent to Egs. (5.26b) and (5.25b), respectively.
Thus, the connectivity and generalized summeation theoremscan be used to cal-
culate the flux and concentration control coefficientsin terms of elasticities and
stoichiometry.
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534. Geometrical Interpretation

Mazat et al. (1990) have shown that geometrical considerationsmay leed to a
deeper insigﬁt into the theorems of metabolic control analysis. We will demon-
stratethis by analyzing the special exampleof an unbranched pathway consisting
of only two reactions

v 1 v2

P S Py Scheme 10
with P; and P, being outer metabolites. Reaction scheme 10 is characterized by
the stoichiometric matrix N = (1 —1). The concentration §; which is the only

internal variable affectstherate v, as a product of reaction 1, and therate v, asa
substrate of reaction 2, that is,

v = v(Sy, p1)s (5.61a)
V2 = V(Sy, P2)» (5.61b)

wherep, and p, are kinetic parameters which are assumed to act specificaly on
reactions 1 and 2, respectively. Using Eq. (5.61a) to express Sy as a function of
v, that is, §; = $y(vy, p1), one obtainsfrom Eq. (5.61b)

vy = v(S1(v1, p1)s p2) = vy, Py, P2 (5.62)

which describes, at given vauesof the kinetic parameters, a curve containing al
possible combinations of the reaction rates v, and v, in the space of the reaction
rates (see Figure5.1).

Due to the condition v; = v,, the steady-state reaction rate is determined by
theintersection of the curve (5.62) with the straight line which is located in the
direction of the vector

1
k= 1 (5.63)

—_—

——

k represents the basis for the one-dimensional null-spaceof N = (1 —1). The
tangent to the curve v, = v§(v;) given by Eq. (5.62) at the steady-state point is
given by the direction of the vector

ﬁ I3
35,
t = (5.64)
vy
881/ si=5
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V2“

4

/ k=1, 1T

Figure5.1 Geometrical interpretation of flux-contml control coefficientsfor the reaction system
depicted in Scheme 10.

which contains the unscaled easticity coefficients ¢;; and &,,. §; denotes the
steady-state concentration of §,. The vectorsk and t are not parallel because,
otherwise, the only element of the Jacobian matrix, av,/a8S, — dv,/dS;, would be
zero, so that the condition that the real-parts of all eigenvaluesof this matrix are
negative would not be fulfilled. Therefore, initial perturbationsdv = (8v;,8v,)T
of the reaction rates can be decomposed as a sum of two vectors, 8y, and v,, in
the direction of k and ¢, respectively; that is,

= + = 5+ t
8y = 3y, T Ow, allkl a2ltl (5.65)

with scalar coefficientsa, and a,. Thus, Eq. (5.16b) assumestheform

@:) - @: gZ)(Ec_ll(Il;l) * %@) ' (5.66)
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which gives, under consideration of the summation and connectivity theorems
(5.44b) and (5.51b),
<o

) _ o (ki) _
<BJ;) ~ <k;) = o (5.67)

Accordingly, the perturbation of the steady-statefluxes 6] is the projection of the
initial perturbation 8y on the null-space vector k in the direction of the tangent t
defined by the elasticity coefficients (see Figure 5.1).

From Eq. (5.66), it followsthat C is a projection matrix, which represents the
mapping of theinitial perturbation of reaction ratesinto the null-spaceto give the
fina changein steady-statefluxes. Thedirection of thisprojectionis not normally
orthogonad. This reasoning can be generalized to dimensions larger than 2. The
space of reaction rates can be concelved of as spanned by the column vectors, k;,
of the null-space matrix, K, and the vectors(ey, . . ., &% i = 1,..., rank (N),
o unscaled elasticitieswith respect to the independent metabolites. Any pertur-
bation 6v(8p) can then be decomposed as a linear combination of these r vectors.
The resulting flux change 6 isa projection of dv onto the subspace spanned by
the vectorsk; in thedirection of thesubspace spanned by the vectorsof elasticities
mentioned above. The property of C to be a projection matrix is also reflected
in therelation C’C’ = C [Eq. (5.272)].

54. CONTROL ANALYSSOF VARIOUSSYSTEMS

54.1. General Remarks

In thefollowing paragraphs variousapplications of metabolic control analysis
are presented. We start with the calculation of elagticity coefficientson the basis
of enzyme-kinetic equationsand consider, thereafter, control coefficientsof hy-
pothetical and real metabolic pathways.

When the rate equation of an enzymic reaction is known, the elasticity coef-
ficientswith respect to substrates, products, and effectorsas well as theelasticities
with respect to kinetic parameters can be calculated by differentiation (Section
5.4.2). The calculation of control coefficientsis more difficult. Due to nonlinear-
ities in the steady-state equations, it is in most casesimpossible to deriveexplicit
expressionsfor the parameter dependence of the steady-state concentrationsand
steady-state fluxes. Therefore, the direct application of formulas (5.7) or (5.37)
(i.e., determination of the control coefficientsby explicit differentiation) is not
possible. Different methods may be envisaged. Control coefficients can be cal-
culated by Egs. (5.25b) and (5.26b), which have been derived by implicit differ-
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entiation of the steady-state equations. An aternative, equivaent procedureisthe
caculation of scaled or unscaled control coefficients on the basis of the sum-

mation and connectivity theorems as outlined in Section 5.3.3. It requires the
following information about the system: (1) a complete set of basis vectors of

the null-space of the stoichiometry matrix, (2) conservation relationships as ex-
pressed by the link matrix, and (3) the E-elasticity coefficientsin a reference
steady state. In addition, the calculation of scaled control coefficientsnecessitates
theknowledgeof the quantities used for normalization, that is, the concentrations
and fluxes in the referencesteady state.

Whereas the basis vectors of the null-space and the link matrix may beeasily
obtained by analysis of the stoichiometry matrix, the e-elagticities as well as
concentrations and fluxes in the reference state require experimental determina-
tion or calculation on the basis of a mode for the given metabolic pathway. In
Section 5.4.4, we will study various models of glycolysis, which alow one to
carry out acontrol analysis. Sometimes, conclusions concerning the control prop-
ertiesof metabolic pathwaysmay a so be drawn on thebasisof incompleteknowl-
edge of the stoichiometric structure and the kinetic properties of enzymes (see
Sections5.12 and 5.13). The examplesin thissection are chosen so that analytical
and simple numerical trestment is feasible. For more complex networks, specia
computer programs such as those mentioned in Section 5.17 are necessary.

54.2. Eladticity Coefficientsfor Specific Rate Laws

Let usconsider elasticity coefficientsfor several well-known rate laws used in
enzymekinetics, which were considered in Section 2.2.

(8) Michaelis—Menten equation: From the rate equation (2.24) one derivesfor
the normalized e-elasticity

g = S _ _Kas (5.68)

vaS Kpys + S’

&g decreases monotonically with increasing substrate concentration. For very low
substrate concentrations, where the Michaelis—Menten equation may be approx-
imated by thelinear equation v = (V,,,/K,,,5)S, the E-elasticity tends to unity while
at saturating substrate concentrations, eg becomes vanishingly small. For the =~
elasticity of the Michaglis constant one derives

Kps v Kons ! (5.69)

From the Michaglis-Menten equation (2.20) for reversiblereactionswith S =
S P = S5, Knp = Koy and Kys = Ko, One gets the easticity coefficients
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P
& = (V,: T (Va + V;)) —KS
P mS
(5.70a)

53
s P N P!
1+ —+— v,;;—~v-—)J
[+ i+ s - v
and

N P
(e + S+ va)
EP_<Vm KS(V,,rl Va) .

m,

M P )( M P )]“
1+ =+ — Vi ~ Vo] .
[< KmS KmP " -mS meP

For v > 0, the e-dadticity for the substrate § is positive, and for the product P,

(5.70b)

itis negative.
Rearranging termsin Eq. (5.70a) gives
s s Pyt s S P!
w2
T s\ Ky T "K) K\ K K - OV

Owing to the Haldane relation (2.26) and with the rate of the forward reaction

N

N P\™!
=Vi—(1+—+—
ve=Va KmS< Kos + Kmp) ) (5.72)
Eq. (5.71) can be written as
_ 1 Vr
&g = P - V—n,: (5.73)
gS

The term P/qS characterizes the displacement from equilibrium (cf. Fell, 1992)
and may be written in terms of the reaction afinity, P/gS = exp(—A/RT) [cf. Eq.
(2.16)). The term v/V;} represents the fractional saturation of the enzyme with
substrate.

For a near-equilibrium enzyme, thefirst term on the right-hand side of Egq.
(5.73) is much higher than the second term (which is bounded above by 1). In
this situation, the normalized elasticity only depends on the displacement from
equilibrium,
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gy & —— = 1 =R (5.743)
1 i 1 ex (—i) A
e P\ 7kt
Similarly,
1 1 RT
= = = — —, 5.74b
=TSP 1—ex<i) A (5746)
P\RT,

The approximationson theright-hand sidesof Egs. (5.74a) and (5.74b) have been
obtained by Taylor expansion of the exponentia function up to the linear term.
This approximation is justified because we assumed the enzyme to operate near
equilibrium, so the affinity is small. It can be seen by comparison of Egs. (5.70)
and (5.74) that near equilibrium theel asticitiesbecomeindependent of thekinetic
parameters and only depend on the thermodynamic properties (affinity). Clearly
&g and &p tend to infinity as the reaction reaches equilibrium.

(b) Hill equation: For the rate equation (2.40), the normdized elagticity co-
efficient

g = % (5.75)
1+ (Eg)

obtains, which implies eg = ny for S— 0 and &g — 0 for S— .
(c) Model of Monod, Wyman, and Changeux: With the rate equation (2.43a)
one derives

_ nS\(1 + UK\ s (1 + I/KI)")]_’
= refi Ks)<1 + S/Ks) J i+ Ks)<1 AT, ¢

where the possible effect of activatorsisincluded in the allosteric constant L [cf.
Eq. (2.43b)]. Considering theinhibitor concentration as a parameter of thekinetic
equation, differentiation of Eq. (2.43a) with respect to | gives a n-elagticity

Iav I 1+ I/K[)"[ ( 1+ 1/KI)"]“
=-Z = - 1+ 1L . 5.
mESa (KI + 1)"L<1 ¥ S/Ks 1+ S/Ks 677

Note that theterm in the first parentheses on the right-hand side of Eq. (5.77)
givesthe n-elasticity of an irreversible Michaelis-Menten kinetics with noncom-
petitiveinhibition with respect to the inhibitor concentration.

In Figures 5.2A and 5.2B, & and 7; are plotted as functions of Sand I, re-
spectively, for the rate equation (2.43).
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Figure5.2 Subgrateelasticityed A) and parameter elagticity z; (B) as functionsof the subsrate
and inhibitor concentrationsfor the Monod model according to Eqs.(5.76) and(577). respectively.
Parameter values(A) n = 4, I/k; = 0;B) n = 4,8/Ks = 1.
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(d) Generalized mass-action kinetics: The above calculations can be general-

ized for any type of enzymekinetics, by considering the generalized mass-action
kinetics given in Eq. (2.15). One then obtainsthe following elasticities:

Koy I1 s — i TLsT7
i

S,y S, oF, ;

po= L = I — 5.78

TR PR | G | 5 78
H I

When the enzymeoperatesnear equilibrium, the expressionfor ¢; simplifiescon-
siderably because the denominator of the second term on the right-hand side of
Eq. (5.78) is nearly zero, so that the first term of the sum can be neglected in
comparison with the second term. Furthermore, from Egs. (2.11a) and (2.11b), it
follows that

ng = nf — ny. (5.79)

¥ Y

Therefore, Eq. (5.78) can be smplified to

T o= nt g,
My 1:1 S = nf exp(—4JRD)

& = =TT = exp(—ART)

= - X (580
1 - [1 spig,
H

iIA'

n

.
n

Again, theelasticity becomes, near equilibrium, independent of the kinetic prop-
ertiesof the enzymes, which are expressed by thefunction F«S, p). In Eq. (5.80),
either n; or ny iszero[cf. Egs (2.11a) and (2.11b)]. Note that Eq. (5.74a) isa
special case of Eq. (5.80) with ny; = 1andnf = 0, whereas Eq. (5.74b) is
obtained withn; = 0Oandnj = 1.

54.3. Control Coefficientsfor Smple
Hypothetical Pathways

54.3.1. Unbranched Chains

Many biochemicd pathways (e.g., amino acid synthesis or glycolysis) can be
modeled, in an idealized way, as unbranched reaction chains consisting of mono-
molecular reactions, provided that the concentrations of cofactors are kept con-
stant. Because of their simple structure, these reaction chains, with or without
feedback loops, have often been the subject of mathematical modeling (Kacser
and Bums, 1973; Heinrich and Rapoport, 1974a; Savageau, 1976; Hofmeyr, 1989;
Palsson et al., 1985).

Unbranched reaction chains such as that shown in Scheme 11 are suitable
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systems to which the control anaysis as presented in the preceding sections can
be applied.

P| il §; w2 e S, —tlap, Scheme 11

Sy~ Spi
At steady state, d| reaction rates are equa to the steady-state flux
vy=Jforj=1,.,r=n+1 (5.81)

If thekinetic propertiesof theenzymesare described by theMichaelis-Menten
equation (2.20) for reversible reactions, one may derive from the steady-state
condition (2.9) thefollowing expressionfor the metabolite concentrations:

o A ) LR S EWVF-D
S =P e - L e 5.82
ljl;Il KV +0) 121 Vit =T KR+ D) ©.82)

(Heinrich et al, 1987).K;* andX; denotetheMichaglisconstantsof thesubstrate
and product, respectively,of reactionj. v and V- are the maximal activities of

the forward and backward reactions, respectively. Writing Eq. (5.82) for i =

n * 1, oneobtains, under the assumption that the concentrationsof the pathway
substrate, Py, and of the end product, S,.; = P,, are constant, an expression
which may be rearranged into a polynomial equation of order n * 1 for theflux
J For example, the steady-state flux of a chain with one internal metabolite S,

and two reactionsis determined by the quadratic equation

a?+aJ+a,=0 (5.83a)

with
ay = PK}K; VI Vy — PK; K ViVE, (5.83b)
a, = K[ Kf (P,VT + PV + K5 Vi) + K{ Ky (PVY + PV + KV,  (5.83¢)
a, = K{'K; (P, + K5) — K{K; (P, + k). (5.83d)

The concentration S, is obtained by introducing the solution of Eg. (5.83) into
Eq. (5.82).

Dueto Eq. (5.81), the matrix of flux control coefficientshas the property that
al itsrowsareidentical. Therefore, it can bereduced to a vector with theelements
C/ = Cjforalli=1,...,r.

Unbranched pathways with nonsaturated enzymes: If al| enzymes operateun-
der nonsaturating conditions, that is,

J<< VLV, : (5.84a)
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S, << K, Ki'v 1 (5.84b)

the reaction rates are described by linear equations

S
v = kSioy — kS = k,-(sj_1 - ‘—;) (5.85)
)/
where
Vi A7 Vi K
= ke = 5.86
YTk TR ATV 59

[cf. the Haldane relation (2.26))] denote the first-order rate constants and ther-
modynamic equilibrium constants, respectively. Equation (5.82) smplifiesto

Si=P1H‘Ij_JE"1‘qu- (5.87)
j=1

i=1 kj=1

From this equation one obtains, with S,,.; = P,, an expression for the steady-
state flux

n+l
Py H g — P
J = A= (5.88)
1
2 % H 9
I1=1 & j=1
Because the steady-state flux can bewritten asan analytical function of thesystem
parametersfor the caseof unbranched reaction chainswith linear kinetics, control
coefficientscan be calculated in closed form in terms of these parameters.

Let us use the rate constantsk; as perturbation parametersin such a way that
the equilibrium constants are not changed (i.e., k; and k_; are changed by the
samefractional amount). Thisisrealized, for example, by changesin theenzyme
concentrations. One then obtains, under consideration of dv;/0k; = v;/k;,

oIk ks d)
o =427 _ 5% 5.89
1 Taviak, Tk 659

which with Eq. (5.88) yields
Ol = ez (5.90)

(Heinrich and Rapoport, 1974a). Equation (5.90) implies
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o=cl=1, (5.91a)

- ¢ =1 (591b)

It is worth noting that for unbranched chains, normalization does not change
thevaluesaof theflux control coefficientsbecauseat steady stateall reaction rates
areequd to the steady-state flux.

Equation (5.90) showsthat €/ bearsadirect relation to 1/k;; that is, fast (slow)
reactions generally have low (high) control coefficients. However, the values of
the flux control coefficientsare also strongly dependent on the thermodynamic
equilibrium constants and on the position of the reaction within the chain. This
may best be demonstrated by considering theratio of two flux control coefficients

C_] k. i—-1
dk II;]_:/ q Withi >j. (5.92)

From this equation, one derives, for example, that the flux control coefficient of
areactioni which islocated beyond anirreversiblereactions with g, — ® becomes
vanishingly small for any finite value ;.

One may aso take the &; as perturbation parametersin such a wey that the
backward rate constants, k_;, are not changed. This possibility will be discussed
in more detail in Section 5.6.2.

Using Eqg. (5.88), flux changes may be calculated also for finite parameter
perturbations with all equilibrium constants fixed. With Al = Jk, + Ak,, ...,
kpor T Aky ) = J(ky . . ., kair), ONederives, with the help of Egs. (5.88) and
(5.90),

AJ n+1 ( AVj/Vj )<n+l q[ )—l
7 - A9 Avlv, ,21 1+ Ayt (5:99)

with Ay; = Ak(S;-; — §;/g;) denoting the perturbationsof reaction rates consid-
ered as if the reactions proceeded in isolation. Equation (5.93) means that for
unbranched chains with linear rate laws, flux control by arbitrary rate perturba-
tions Av; can be characterized completely by the flux control coefficientsorigi-
nally defined for infinitesimal perturbations. For very small values of Av;/v;, Eq.
(5.93) and the summation relationship (5.91b) entail the linear approximation

¥

n+l .
Ay,

ATJ =S g (5.94)
1 V;

~
I
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In the case that only one reaction k is perturbed, Eq. (5.93) becomes (cf. Small
and Kacser, 1993; Hofer and Heinrich, 1993)

AJ ClAv, /v, 5
= BV 95
J 1+ (1~ ChAvv 5.95)

This equation has some importancefor the question of whether control coeffi-
cients, which are definedfor infinitesmal parameter changes, are helpful for es-
timating the effect of finitechanges, as will bediscussed in Section 5.9.

General treatment: If the reaction rates of the enzymes are described by non-
linear kinetic equations(e.g., the Michaelis-Menten kinetics), there are generally
no explicit expressionsfor the steady-state flux or for the metabolite concentra-
tions, and the control coefficientscannot be calculated by direct differentiation.
However, muchinsightis gained by application of the summation and connectiv-
ity theorems which alow to expressthe €} and Cj, asfunctions of theelasticities
(see Section 5.3.3).

Let usfirst consider the unbranched two-enzyme system depicted in Scheme
10 (Section 5.3). The summation and connectivity theoremsfor the flux control
coefficientsread

g+c=1, (5.96a)
Cley + Cleay = 0, (5.96b)
which have the solutions
of=—2_ ¢=-—u_, (5.97)
&1 — &1 &1 — &N

For the concentration control coefficients, these theoremsread
cfl +cy, =0, (5.98a)
Chen + Chagar = —1. (5.98b)
From these equations, one obtains

oS = — = —1 (5.99)

&1 ~ En €21 — én

In the typical situation that &; < 0 and &,; > 0 (neither product activation nor
substrate inhibition), Eq. (5.97) requires that both flux control coefficients be
positive. The control coefficient of reaction 1 with respect to the intermediate
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concentration is also positive, whereas the concentration control coefficient of
reaction 2 is negative.

For the cage n > 1, we assume that v; is only affected by the concentrations
of its substrate (S;_,) and of its product (S,). Then the elasticity coefficientsread

& = €4y + Ei4my By yys (5.100)
and the connectivity theorem (5.53b) assumes theform
Cley + Cly&iv1i = 0. (5.101)

We hereassumeadll reactionsto bereversible, so that all ¢; are nonzero. Equation
(5.101) implies

c=cnll (—f’—*ﬂ) (5.102)

for 1 = i = n. The coefficient ¢}, , which enters Eq. (5.102) can be determined
using the summation theorem (5.43). One obtains

(5.103)

asagenera expressionfor theflux control coefficientsin an unbranched enzymic
chain.

Equation (5.101) impliesthat theratio of the control coefficientsof two neigh-
boring reactions equals the negative inverse retio of the elagticitiesof these re-
actions with respect to the intermediate shared by these reactions. Because near-
equilibrium enzymes have high elagticities [cf. Eqgs. (5.74a) and (5.47b)], this
implies that these enzymes exert almost no flux control. Furthermore, when an
enzyme is nearly saturated with its substrate, the elagticity with respect to the
latter is very low. Equation (5.103) then implies, in general, that the control co-
efficient of substrate-saturated enzymes be high. When an enzyme is saturated
with its product, it follows from this equation that the control coefficient of the
subsequent enzymein thechain is, in general, very low.

In the case thet

& <0, &yy,>0 foranyi, (5.104)

it follows from Eq. (5.103) that al flux control coefficients are non-negative.
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Therefore, the summation theoremimplies that they ared | smaller than, or equa
to unity. Using linear kinetics, one can easily transform Eq. (5.103), which ex-
presses the flux control coefficientsin terms of elasticities,into Eq. (5.90), which
expresses them in terms of system parameters.

For the calculation of the concentration control coefficients we use the con-
nectivity theorem (5.53a) which reads, under consideration of Eq. (5.100),

Cey+ Ciorgery = — 5y (5.105)

Applyingthiseguationfor j # i, oneobtai nsthefollowing two recurrent formul as:

= _cfjﬂefe“d' forl=j<i (5.1062)
¢
and
S 1= _cfdaﬂE fori+ 1=j=n. (5.106b)

As the flux control coefficientsare known [cf. Eq. (5.103)] it is appropriate to
‘replace the ratio ¢; ., ;/&; in Egs. (5.106a) and (5.106b) by the ratio — CJ/C.,

[cf. Eq. (5.101)]). The resulting equations may be used to express all coefficients
C‘y withj<iandj>i + 1 asfunctions of C5 and €5, respectively, and of

ﬂux control coefficients,

=G % forlsj<i (5.1072)

and

c = cf,ﬂaq— forit1=sj=nt1 (5.107b)

if
i+1

With Egs. (5.107a) and (5.107b), the summation theorem for the concentration
control coefficientsreads

Gis o, Cu1y oy, (5.108)

This equation and the connectivity theorem (5.105) applied for i = j represent
two linear equationswhich can be solved for €§ and €}, ;. From these, in turn,
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all concentration control coefficients can be calculated using Egs. (5.107a) and
(5.107b). Thefind resultis

C-’ n+1

c = _J_C, > forl=j=i (5.109a)
i+18i+ 1,0 k=i+1
d . .

C‘,§=—1—C, E fori +1=j=<n+1. (5.109b)
lsll k=1

Under the assumption that ¢; < 0 and ¢;..;; > 0 [cf. relation (5.104)] which
implies positiveflux control coefficients, one may derivefrom Egs. (5.109a) and
(5.109b) C} > O for j < i and C§ < O for j > i; that is, activation of an enzyme
leads to a decrease of the concentrations of a1 metabolites which are located
upstream, whereas al metabolite concentrations downstream are increased. This
fact is also expressed by the crossover theorem [see Higgins (1965) and Section
5.10.1].

Further conclusions from Eqg. (5.109) are (a) very fast enzymes which exert
no flux control (Cj’ == () also have vanishing concentration control coefficients;
(b) when al enzymes downstream a metabolite S; or all enzymes upstream this
metabolite are very fast, so that they have very low flux control coefficients, then
al control coefficients with respect to the concentration of this metabolite are
very small. This may be explained by thefact that in these cases d| metabolites
S; are in quasi-equilibrium with the end product or with the initial substrate of
the chain.

Unbranched chain with feedback inhibition: Feedback inhibition is a frequent
phenomenon in biochemical pathways. The physiological roleof such regulatory
loops for homeostasis has intensely been discussed (Umbarger, 1956; Othmer,
1976; Dibrov et al., 1982). The apparatus of metabolic control anaysis can be
used to quantify such homeostatic effects.

Let us consider the reaction chain shown in Scheme 6 (Section 2.4.6) under
the simplifying assumption that all enzymes catalyzeirreversible reactions, that

is,

0 forj=1
U[;éo forj=i- 1 (5.110)

It is further assumed that the feedback is exerted by the metabolite S,, which acts
as an inhibitor of the first reaction, which means

= 5w

= <0. .
&, %, 35, (5.111)
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Let usfirst consider the flux control coefficients. Using Eq. (5.110), it follows
immediately from Eq. (5.101) that

¢/=0 forj=2,...,n (5.112)

and theconnectivity and summation theoremsfor the two remaining coefficients
¢l and G4 read

Clepn + Crug Eatrn =0, (5.113a)
g+Cl =1 (5.113b)
Equation system (5.113) has the solution
= —Satla o fn (5.114)
Entin ~ E1n En+in ~ E1n

In the absence of feedback inhibition (g;,, = 0) only thefirst enzyme exerts
the flux control (¢ = 1, CJ,, = 0). For &, # 0, flux control is shared by two
enzymes: the first enzymeE; and the enzymeE,, ;. ; which degradestheinhibitor
Sp If €41, = 0 (whichisgeneraly fulfilled becauseS isthesubstrate of E, ),
onederivesC{ > 0 and €y, > 0 from Eq. (5.114). Because

Gt fun (5.115)
C{ Entln

theflux control is shifted entirely to the end of the chainiif if the feedback inhi-

bitionis very strong, that is, ley 4| > le, 1.4
In a similar way, the summation and connectivity theorems can be usad to
calculate the concentration control coefficients. One obtains for the coefficients

of thefirst enzyme

C‘is,‘l = 8n+1n,8i+1i = C\1, >0 (5116)

8n+l,n - al,n 8i+1,|'

(i=1,...,n) andof thelast enzyme

_ E1nlei s 1 _ c:+1>0 for i % n
Enttn — &Ln Eitt
Chir = ) (5.117a)
l—; <0 fori=n
Ent1,n — E1n
(5.117b)
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TheenzymesE,, ..., E, which exert no flux control [cf. Eq. (5.112)] generaly
have nonvanishing control coefficientswith respect to the concentrations of their

substrates. @Gne obtains

1
<0 (5.118)

C‘E,-H = -
: it i
(i=2...,n—1).InEgs (5.116)—(5.118), the inequalities refer to the case
&1, > 0, and all coefficientsC;; not listed areequal to zero.

It followsfrom Eq. (5.116) that a very strong feedback inhibition (le; .| >> 1)
resultsin very low concentration control coefficientsof the input reaction with
respect to all metabolites (C§; << 1). Furthermore, Eq. (5.117b) implies that in
thissituation the control of thelast reaction with respect to the last intermediate,
S, isalso very wesk (ICS,,. ;| >> 1). Both facts indicate the homeostatic effect
of the negative feedback loop (see Section 5.10.1).

5.4.3.2. A Branched System

For the reaction system depictedin Scheme 7 (Section 3.2.4) the stoichiometry
matrix readsN = (1 —1 —1). Usng

E=0107 k=101 (5.119)

as basis vectors for the null-space of N (see Section 3.2). the summation and
connectivity relations for theunscaled control coefficientsmay be subsumed into
the following matrix equation:

Ch C; Cls 1 1 ¢ 110
Ch Ch 1 0 e |=1100]. (5.120)
03’1 03’2 c3’3 0 1 & 010

Note that thisequationis aspecial casedf Eq. (5.54). Solving thislinear equation
systemfor the flux control coefficientsleads to

— (&1 +&3y) &1 &1
1 .
S e —& en—ey &y | (5.121)

&1~ &1 &y
—é&3 €31 L% et 821/

For example, in the usual case that ¢,; < 0 (product inhibition) and &,;, &3; >
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0 (substrate activation) one derives immediately from Eq. (5.121) that al flux
control coefficientsC}; are positive except for C5; and C3,, which are negative.

The system represented in Scheme7 may also serveasan exampletoillustrate
that the branch-point relationships introduced by Fell and Sauro (1985) are di-
rectly related to the generalized summation theorem (5.45b). Taking thisrelation
for one column, k, of the null-space matrix gives C'(dg)) ™% = (dg))~ 'k for
thenormalized flux control coefficients. Using for the system depicted in Scheme
7.k = I = (J; J, J5)", onearrivesat summation relationshi psfor thethreefluxes
saying that for a given flux, the sum of al control coefficientsequals unity. The
branch-point relationships are obtained by choosing the k vector in three other
ways. With k = (0 1 — 1) one derivesfrom Eq. (5.45b) that

b Co

= 0. 5.122
7, T, (5.122)

Using the following abbreviationsfor the flux ratios

.’2 -’3 "l - "2
Lo, L_4”%_4_, (5.123)
A

one obtainsthefirst branch-point relation
(1 — @)Cp — aCly = 0. (5.124a)
Similarly, withk = (10 1)", one obtains
A-ac,+tcs=0 (5.124b)
andwithk = (110)F,
ach t ¢ =0 (5.124¢)

Equations (5.124a)—(5.124¢) represent the branch-point relationshipsfor the
reaction system shown in Scheme 7, which together with the three summation
relationshipsand the three connectivity relationshipsaresufficient to calculate the
nine flux-control coefficients as functionsof the elasticities and the flux ratio a.

54.4. Control of Erythrocyte Energy Meaboliam
54.4.1. The Reaction System

We consider glycolysisin erythrocytes to demonstrate how the control prop-
ertiesof area pathway may be derived on the basis of a mathematical model.
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The glycolytic system has attracted much attention of both experimentalistsand
theoreticiansfor many years. This concerns, for example, glycolytic oscillations
(see Section2.4.3). However, in addition to oscillatory modes, steady states are
very frequently observed. Theregulatory principlesof thesestatesare worth being
investigated and till involve many unsolved problems, despite thefact that many
of the glycolytic enzymes have been purified and characterized kinetically and
that reliableflux and concentration data exist for different conditions. One reason
for thedifficultiesencounteredis thefact that in many cellstheglycolytic pathway
is interconnected with other pathwayssuch as respiration, gluconeogenesis, and
the pentose phosphate pathway. In order to study glycolysis per se, the choice of
an appropriate smple biologica system is therefore of great importance. In the
present section we consider mature mammaian erythrocytes where the metabo-
lism is reduced virmally to glycolysis with some contribution of the pentose
phosphate pathway. However, even in the glycolytic system of the erythrocyte, a
rather high number of enzymes participate which are coupled with each other.
For the purpose of deducing the essential relations in metabolism, appropriate
simplifications have to be introduced in setting up a modd. In particular, it is
taken into account that glycolysis, as mogt other biochemical pathways, includes
dow and very fast enzymes. This allows to apply the rapid-eguilibrium approx-
imation which |leadsto areductionof the number of variablesand parameters (See
Section 4.3). Furthermore, the modelsof erythrocytemetabolism presented below
neglect the pentose phosphate pathway becauseits contribution in the consump-
tion of glucoseisonly 10% a pH 7.2.

The reactions taken into account are depicted in Figure 3.1. Theseare (1) the
reactions of the Embden-Meyerhof pathway, (2) the two reactions of the 2,3P,G
bypass, and (3) the nonglycolytic ATP-consuming processes which are partly
coupled to the active transport of sodium and potassium acrossthe cellular mem-
brane. Thefull stoichiometry matrix of this systemis givenin Table 3.1.

In this section we present three different modds of erythrocyte metabolism
characterized by increasing complexity. Each model hasitsown limitsof validity.
Model A (Section 5.4.4.2) neglectsal nonglycolytic processes, in particular the
nonglycolytic ATP-consuming processes. Modd B (Section 5.4.4.3) takes into
account theinterplay between ATP-producingand ATP-consuming processes, and
Model C (Section 5.4.4.4) considersin somedetail theinteraction between energy
metabolismand osmotic propertiesof erythrocytes.

5.4.4.2. Basc Modd
This model of the glycolytic system (Model A) is based on the following

assumptions (see Heinrich and Rapoport, 1973; Rapoport et al., 1974):

1 Among the glycolytic reactions, one may distinguish two different groups of en-
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Table51 Vauesof Parametersand Variablesof Model A (In Vivo Steady State)

Parameter Vaue Variable Vaue
Metabolite Flux Rates
Concentrations
ATP 1.2 mM vukprk (=) 1.25 mM/h
ADP 0.22 mM Vp,GM 0.75 mM/h
Lac 1.4 mM
Pyr 0.08 mM Metabolite
Concentrations
G6P 0.06 mM
Kinetic Constants F6P 0.025 mM
kg 1.94/h FP, 0.007 mM
Fprk 50.8/h GAP 0.006 mM
kpx 125.0/h DHAP 0.13 mM
Kp,om 3.76 X 10°/h 1,3P,G 0.0005 mM
VinPiGase 0.75 mM/h 23 P,G 5.0 mM
3PG 0.069 mM
Equilibrium Constants
2PG 0.12 mM
ot 041 PEP 0.02 mM
Qau 0.102 mM NAD/NADH 2500
v 22.0
qGAPD 0.34 x 1073
1263 7420
gream 0.17
9Enol 1.7
qLpH 4.4 x 10*

zymes. The first group encompasses enzymes which catalyze quasi-irreversible
reactionswith high equilibrium congtantsg, (— AG? >> RT). To thisgroup belong

hexokinase (HK, EC 2.7.1.1), phosphofructokinase(PFK, EC 2.7.1.11), bisphos-

phoglycerate mutase (P,GM, EC 5.4.2.4), 2,3-bisphosphoglycerate phosphatase

(P,Gase, EC 3.1.3.13), and pyruvate kinase (PK, EC 2.7.1.40). Another group of

enzymescatalyzesreversiblereactions, for which themass-action ratiosdiffer little
from theequilibrium constants. To this class bel ong phosphogl ucoi somerasgPGl,

EC 5.3.1.9), fructose-bisphosphate aldolase (Ald, EC 4.1.2.13), triose-phosphate

isomerase (TIM, EC 5.3.1.1), glyceraldehyde-3-phosphate dehydrogenase,
(GAPD, EC 1.2.1.12), phosphoglyceratekinase (PGK, EC 2.7.2.3), phosphogly-

cerate mutase (PGAM, EC 5.4.2.1), enolase, (Enol, EC 4.2.1.11), and lactate de-

hydrogenase (LDH, EC 1.1.1.27). In accordance with experimental data, it is as-

sumed that these enzymes are fast compared to those of the former group. The
rapid-equilibriumapproximation (see Section 4.3) leads to equilibriumconditions
for the corresponding reactions.
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2 Theconcentrationof the adenine nucleotides ADP and ATP are considered to be
fixed; that is, they are parametersof themodel. Their concentrationsaredetermined
not only by glycolysisbut by theinterplay of ATP-producingand ATP-consuming
processes (see Moddl B).

3 Among the many regulatory couplingsrealized by the action of metabolites as
activatorsor inhibitors, only thefeedback inhibitionsof HK by G6P and of P,GM
by 2,3P,G are taken into account.

4. Simplerate laws were used to characterizethe kinetic propertiesof the enzymes
which werebased on alinear rel ationshi pbetween enzymatic activity and substrate
concentrations. The fast enzymes were characterized solely by the equilibrium
constants.

5. The mathematical treatmentis confined to the steady state observed under in vivo
conditions. The model servestwo purposes: (a) calculation of the glycolytic flux
J = Jgay. and of themetaboliteconcentrationsasfunctionsof the model parameters
and comparison of the results with experimental data; (b) characterizationof the
control of the glycolyticflux by evaluatingthe control coefficients ¢} of the gly-
colytic enzymes.

Under steady-state conditions, the reactionrates of theenzymesHK, PFK, and
PK must fulfill the following conditions:

J = vug = Vepxs (5.125a)
2J = vpg, (5.125b)

where J represents the steady-state flux of glycolysis (consumption of glucose).
Thefactor 2 in Eq. (5.125b) indicates that the flux beyond the aldolaseis twice
that through the PFK. By use of the rate equations

: ke ATP
Vax = _HKGF’ Vorx = kppxFGP (5.126)
1+

1,G6P

(K166 inhibition constant of glucose-6-phosphate) and the equilibrium relation

FopP

Gep _ rab> (5.127)

Eq. (5.125a) becomesa quadratic equation for the concentration of F6P,

ATP - kukgroiKy S6P _ (5.128)

(F6PY + gpaiKy,ceeF6P ~ &
) PRK
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Under in vivo conditions the concentration of glucose does not enter the rate
equation of HK [Eq. (5.126a)] because the intracellular concentration of glucose
(Gluc = 5 mM) is much higher than its K, value (K, grue = 40 pM).

Inserting the relevant solution of Eqg. (5.128) into Eq. (5.126b), one gets

-1
1 1 kuxATP
J = kgATP | =+ [+ —/—— (5.129)
Hie (2 4 qPGIkPFKKLGGP)

for the glycolyticflux. Using the linear relation

Vex = kexPEP (5.130)

and taking into account the steady-state condition (5.125b), the concentration of
PEP s determined by

2J
PEP = = (5.131)
kPK

with Jgiven by Eq. (5.129). The concentrations of all other metabolites may be
obtained from PEP by consideration of the equilibrium conditions for the fast
enzymesas well asof thesteady-statecondition of thetwoenzymesdf the2,3P,G-
bypass. As enolase, phosphoglycerate mutase, and phosphoglyceratekinase are
quasi-equilibrium enzymes, we have

PEP 2PG 3PG . ATP = gpox

2pG ~ eov 3pG = 9P0AM T3p G ADP (5.132)

with 2PG and 3PG denoting the concentrations of 2-phosphoglycerate and 3-
phosphoglycerate, respectively. Therefore, with formula (5.131) one gets

2PG = , (5.133a)
kpK gEnol
3PG = —y—, (5.133b)
kpk GEac19pGAM
2J - ATP
1,3P,G = . (5.133¢c)
2 kpx gEnc19pcamrx ADP

The concentration of pyruvate and lactate are maintained in vivo at almost con-
stant levels by theinterplay of varioustissues. Therefore, the concentrations Pyr
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and Lac may be considered as parameters. The NADNADH ratio is, therefore,
fixed by the equilibrium condition for the LDH reaction,

e

NAD Pyr

NADH — qLDHLE (5.134)

The concentrations of GAP, DHAP, and FP, are cdculated on the basis of the
equilibrium conditionsfor the enzymes GAPD, TIM, and aldolasein thefollow-

ing way

1,3P,G - NADH

GAP = , 5.135a,
doar . NAD (5.1352)
DHAP = gqpy - GAP, (5.135b)
GAP. DHAP
Fpy = ——— (5.135¢)
7Nt

with 1,3P,G and NADNADH resulting from Egs. (5.133c) and (5.134), respec-
tively.
Thecalculation of the 2,3P,G concentration requiresthe steady-statecondition

VpiGM = VPiGase (5.136)

Under in vivo conditions theenzymeP,Gase is saturated by its substrate, because
the concentration of 2,3P,G (=5 mM) is about 500 times higher than the corre-
sponding K, value. Considering theinhibition of theP,GM by itsproduct 2,3P,G,
one may use the kinetic equations

_ kszM ° 1,3PZG
VpoM = ( + 23P,6/K1m0) (5.137a)
VesGase = VinpoGase- (5.137b)
With these equations one obtainsfrom Eq. (5.136)
k, - 1,3P,G
23P,G = Km,am(————"zw = - 1) (5.138)
VM.Panse

for the2,3P,G concentration, wherefor 1,3P,G onehastoinsert formula(5.133c).

The vadues of the parametersand variablesof Modedl A arelisted in Table5.1.
Thevaluesapproximate theexperimental data.obtained by kinetic characterization
of theisolated enzymesas well as by determination of the flux rates and metab-
olite concentrations under in vivo conditions.
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Inspection of formula (5.129) shows that under the given model assumptions,
the glycolyticflux is only dependent on the kinetic parameters of the enzymes
HK and PFK and on the equilibrium constant of PGI. It does not depend on the
kinetic properties of the PK and the fast equilibrium enzymes. Therefore, the
summation theorem for the normalized flux control coefficientsassumestheform

Cix + Cex = L. (5.139)

Because the parameterskyyx and kpgy enter theratelawsof HK and PFK, respec-
tively, in a linear manner the coefficients Clx and Chex may be calculated as
follows:

dlnJ dInJ
i = Pk = : 14
G = T e T 9In kpeg (5-140)
By use of Eq. (5.129) one gets
a/2
Clxk =1 -Clx=1- 5.141a
e P art /s + o fild + a G141
with
kg ATP
= 5.141b
kerx drci KiGep ¢ )
One may easily see that
Cix = Chex (5.142)

always, that is, flux control is exerted mainly by the hexokinase, thefirst enzyme
of the glycolytic pathway. Using the parameter values listed in Table 5.1 one
obtainsCYx = 0.69 and Clw = 0.31. The participation of phosphofructokinase
in flux control resultsfrom the feedback inhibition of hexokinase by G6P. An
inhibition of the PFK, for example, would lead to an increase of its substrate F6P
as well as of G6P, which would diminish the glycolytic flux by inhibition of the
hexokinase. Elimination of the feedback inhibition of G6P (Kjgep — ) would
result in Cgx — O [cf. Eq. (5.141)].

Despite the higher control coefficient of the HK, the enzyme PFK may play
an important role in the regulation of glycolysis owing to the high elasticity
coefficientsof agreat number of internal and external effectorsfor this enzyme
(see Otto et al., 1974, 1977).
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5.4.4.3. Interplay of ATP Productionand ATP Consumption

Selkov (1975a, 1975b) proposed a skeleton model of glycolysis which, in
contrast to Mfodel A presented in Section 5.4.4.2, focuseson the production and

degradation of ATP. It is described by the reaction scheme 12,

I
S
Vi V2
Si P, Scheme 12
ATP ADP ADP ATP
N
Vs V4

AMP ADP

P

where P; represents glucose and S; the pool of metabolitesin the middle part of
glycolysis. The ATP-consuming reactions of the upper part and the ATP-produc-
ing reactions of the lower part of glycolysis are lumped into reactions 1 and 2,
respectively. v, represents the velocity of asidereaction without ATP production
(describing, for example, the biosynthetic reactions leading to the synthesis of
serine). v, denotes therate of nonglycolytic ATP-consuming reactions (ATPases)
and vs therate of the adenylatekinase reaction (AK, EC 2.7.4.3). The modd of
Selkov hasbeen modified by Heinrich and Rapoport (1975) by taking into account
special featuresof erythrocyte glycolysis, in particular the 2,3P,G bypass (Model
B, see Figure5.3). The reaction scheme results from that depicted in Figure 3.1

P2OM, 2,3P,G
L3P,G ’ 2\P2Gase

HK-P

R Y
Gluc 1,3P,G /PGK\‘ PEP /P_K\‘ Pyr
2ATP 2ADP ADP  ATP ADP  ATP
AK

ATPase
X

ADP AMP

Figure5.3 Simplified reaction scheme of erythrocyteglycolysis (Mode B). The upper part of
glycolysis (HK, PGI, PFK, Ald, TIM. GAPDH) are lumped into onereaction " HK-PFK." Thelower
part (PGAM, Enal, PK) isrepresented by the PK reaction.
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by some simplifications. Furthermore, the substrate inhibition of phosphofructo-

kinaseby ATP wasincluded. Because theflux through thelower part of glycolysis

is twice the flux through the upper part, 4 moles o ATP are produced at the
reaction steps catalyzed by the enzymes PGK and PK, whereas 2 moles of ATJ?
areconsumed by the HK-PFK system. Accordingly, the degradationof 1 mole of

glucoseleads to the net production of 2 molesof ATP. Theactual ATP production
is decreased depending on the sharedof the2,3P,G bypass which circumventsthe
ATP-producing PGK reaction.

Asin Modd A, very simplerate laws were used for al enzymes. Except for
the HK-PFK system, the activities of all enzymes were characterized by linear or
bilinear relationships (see Table5.2). Furthermore, all reactionsare consideredto
be irreversible except for the adenylate kinase reaction (AK). For the sake of
simplicity, the saturation of the P,Gase by 2,3P,G is neglected.

The factor {ATP) in the expression vk prx (Table 3) describes the substrate
inhibition of PFK by ATJ2 K] 4rp and ny are theinhibition constant and the coop-
erativity coefficient, respectively, of the substrate inhibition by ATJ?

Figure 5.4 shows the rate of the HK-PFK system as a function of ATP ac-
cording to theratelaw listed in Table 5.2. Two cases are considered: ny; = 1 (no
substrate inhibition) and ny = 4 (substrate inhibition). The kinetic constant
kux.prx Was adjusted in such a way that in both cases arate vyg prx = 1.25 mM/
h was obtained for ATP = 1.2 mM (in vivo point Pin Figure 5.4).

Usingtheratelaw givenin Table5.2 onemay cal cul atetheel agticity coefficient
for the HK-PFK system with respect to the ATJ?concentration. One obtains:

_ 31In Vg _ prxc [ 045 (g =1)
K-pFK — 90 VEK-PFK _ H 5.143
ATP 21n ATP 170 (ny = 4). (5.143)

The dynamic properties of the model depicted in Figure 5.3 aregoverned by the
following differentia equations

ivob/‘_n.. —_ — . {8 1440
dt 1,000 = 4VyK - PFK VpoGM VpGK » W.ld4d)
d
d—tZ,3P2G = VpoM — VPsGaser (5.144b)
d
EPEP = Vp,Gase + VPok — Vrk» (5.144¢)
d
;AMP = —Vak» (5.144d)
d
EADP = 2V —prk — VPGK — VpK + VaTPase T 2VAK» (5.144¢)
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Table5.2 Rate Equations of Glycolytic Enzymes
Included in Model B

Viikprx = KuxprxkATP - f(ATP)
ngy—1

fATP) = [1 + (——ATP) ]
K ate

Voom = kp,gm1,3P,G

VpsGase = KpyGase2:3P,G

Vegk = kpgk1,3P,G+ADP

Vpx = kaPEP *ADP

Vax = kAxAMP:ATP — ki (ADPY

VATPase = kATPaseATP

&ATP = —2vpk-prx T YooK + Vpk — VaTPase — VAK- (5.144f)
From Eqs. (5.144d)—(5.144f), it followsthat

d%(AMP + ADP + ATP) = 0, (5.1453)

AMP + ADP + ATP = A = const.; (5.145b)

that is, the sum A of the concentrationsof the adenine nucleotidesis a conserved
quantity. Because adenylate kinase is a very fast enzyme, the rapid-equilibrium
approximation can be applied to Eq. (5.1444d). This leads to the following equi-
librium relation between the concentrations of the adenine nuclectides:

Tap a7 = 9k (5.146)

Note that, when only steady states are considered, the adenylate kinase reaction
could be considered to be at equilibrium even if it were not fast, becauseit rep-
resentsastrictly detailed balanced reactionin theschemegivenin Figure5.3 (see
Section 3.3.2). In system (5.144), the velocity v, ¢ may beeliminated by subtract-
ing Eq. (5.144d) from Eq. (5.1441),

d
3 (ATP — AMP) = ~2us _pac + Yook + Ve ~ Varpaser (5.147)

following the procedure explained in Section 4.3. Equations(5.145b) and (5.146)
represent two algebraic conditions for the concentrationsof the adenine nucleo-
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Table 53 Vduesd Paandgersad Steady-Sate
Values of Vaidlesd Erythrocyte Glycolysis

(Model B)

Parameter Vdue
Kkx.prx 3.20/h
kp,om 1500/
KpyGase 0.15/h
keax 1.57-10%mM h
kpy 559/mM h
kaTpase 1.46/h
ny 40
Kiam 10 mM
qak 20

A 15 mM
Vaiade Vdue
Metabalite Concentrations (mM)
1,3P,G 0.0005
2,3P,G 50
PEP 0.02
AMP 0.076
ADP 0.22
ATP 120
Metabalic Huxes (mM/h)

Vux-prx (=) 125
VeaGM 0.75
VpiGase 0.75
VpGK 175
Vpx 250

Y ATPase 1.75

tides. Accordingly, the concentrations of AMP and ADP may be expressed by
the concentration of ATP.

ADP = A[—K{ + z I I 7P i =a7p\1 = &iATP),  (5.1482)
. = Tax——\l ———
2 A A
AMP = A — g,(ATP) — ATP = g,(ATP). (5.148b)

ThefunctionsADP = g,(ATP) and AMP = g,(ATP) arerepresented graphically
in Figure5.5.
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Figure 5.4 Glycolytic rate vaxprx a5 a function of the ATP concentration accordingto therate
law of the HK-PFK system given in Table 5.2. Parameter values curvea ny = 4, hyprc = 3.20
b5 curveb, ng = 1, kykpex = 2.29/B; P: in vive point; broken line: ATP = A.

Itis seen that the concentration of AM P decreases monotonically with increas-
ing ATP concentration, whereas the function for ADP displays a maximum and
becomes zero for ATP = 0 and ATP = A

Theleft-hand side of Eq. (5.147) may be rewritten as follows

d dAMP\ dATP
—(ATP ~ AMP) = (1 — ——— | ——.
dt( ) ( ) dt

AP (5.149)

From Egs. (5.147) and (5.149), it follows that

Qi

d dAMP\ !
— ATP = (1 - W) (—2Vex _pex + Vpox + Vpk — Vampese):  (5.150)

The differential equation system (5.144) can now be reduced in dimension by
replacement of Egs. (5.144d)~(5.144f) by the algebraic conditions (5.148a) and

(5.148b) and the differential equation (5.150).
Stationary states are defined by vanishing time derivativesof the metabolite
concentrations. One obtains from Egs. (5.144a)~(5.144c) and (5.150)

2Vuk—pex ~ VeioM — Ypox = 0, (5.151a)
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-4 Because under steady-state conditionsthe ATP productionin the PK stepis com-
1.0 £ pensated by the ATPconsumption by the HK-PFK system (2vgk pex = V), EGS.
E (5.152) and (8.153) characterize the balance between ATP-consuming and ATP-
producing processes. For the calculation of the ATP concentration by use of Eq.
(5.153), the concentration of 1,3P,G is eliminated by consideration of EQq.
(5.151a), which reads, in more detail,

038 -
Vi — peATP . FAATP) — kot » 1,3P3G — ke - 1,3P,G . ADP = 0. (5.154)
06 - AMP [ 4 1 Thisentails

{ Db _orxATP - SATP)

1,3P,G = )
2 kpyom + koggADP G155

0.4 -

AMP A, ADP[A

Inserting Eq. (5.155) into Eq. (5.153) yields

ADP[4 oo = 2ty — prckea ADP . ATP . f(ATP)
02 t- \ kp,om + kpoxADP

= kptpase ATP = Vatpesr  (5.156)

N where the concentration of ADP must be considered as a function of ATP[cf.
Eq. (5.148a)].

1 ! 4 ! Figure 5.6 shows the net rate of the glycolytic ATP production (vpgx) and the

02 04 0.6 08 Lo rate of the nonglycolytic ATP consumption (vrp,.) & functions of the ATP

concentration for various values of the rate constant of the ATPase. The vaues

ATP[4 o thekinetic parameters(see Table5.3) arecloseto those found in human eryth-

, i . ' ) ' ; rocytes. Theintersection points of the curves vpx(ATP) and v 41pas(ATP) deter-

G. lilzf’sr:ng'?s.f.?éiﬁri?ffxbfﬁ tirr]leVI(':\(/)(? ;?)?artéllonSOf adenine nucleotides acoording to Eas = mine the steady-state values of the ATP concentration. Evidently, the point ATP

: = O represents atrivial steady statewhichisasolutionof Eq. (5.156) irrespective

v -y =0 (5.151b) ' of the values of the kinetic parameters (state Py). It is further seen that above a

PaGM - PRaGase T critical value, k535, (curve a), only thetrivial steady stateis obtained. For kxpsse

VeaGase + Yok — Vex = 0, (5.151¢) < K, tWO Steadly statesP; and P, arefound, in addition to the trivial steady

(5.151d) : state. A detailed stability analysiswhichis based on alinearization of theequation

system (5.144a)—(5.144c), (5.145), (5.148) and (5.150) and computation of the

eigenvalues of the corresponding Jacobian (see Section 2.3.2), reveals that the

3 stateswith low (nonvanishing) ATP concentration (statesP;) are unstable, whereas

(5.152) the steady states with high ATP concentration (states P,) are stable. One may

E 3 concludethat the steady statefound in vivo correspondsto the stable high-energy

and, by use of the kinetic equations listed in Table 5.2, &  saep,

: The curves depicted in Figure 5.7 show the steady state concentration of ATP

kpoxADP + 1,3P,G = kprpace ATP. (5.153) & as afunction of kxrpase fOr ny = 1 and ny = 4. Stable and unstable states are

0.0

~ 2V —prx T Vpox T Ve — VaTpase = O-
Summation of Egs. (5.151a)—«5.151d) yields

VpGK = VaTPase
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5.0

VpGK> VATPase (mM h-l)

ATP (mM)

Figure5.6 Ratesof theenzymesATPase(solid lines) and PGK (brokenline) as functionsof the
ATP concenuation according to Eq. (5.156). The intersection points Pg, Py, and P, correspond to
deady states. The intersection point P, on curvec is the in vivo point. Parameter values: curve a,
karpase = 5.83/h; curve b, karpae = 4.23/h; curve C, karpye = 1.46/h. The values of the other
parameterscorrepond to those listed in Table5.3.

characterized by solid and broken lines, respectively. It becomes clear that the
critical values k.. represent bifurcation points which separate parameter
regions with different numbers of steady states.

Figure 5.8 shows the steady-state concentration of ATP as a function of the
rate of the ATPasefor various valuesof the cooperativity coefficient (ny) of the
ATP-subgtrateinhibition of the HK-PFK system. The curves for high ry vaues
are characterized by the property that in the neighborhood of the in vivo state,
the ATP concentration is rather insensitive againgt variations of the ATP-con-
sumption rate. The regulatory property of glycolysis which leads to homeostasis
of the ATP concentration in face of variations of the rate of ATP consumption
was extensively studied by Setkov (1975b).

There are two reasons for ATP homeostasis. Firgt, the share of the 2,3P,G
bypass vp,am/2Vak-prx decreaseswith increasing ATP-consumption rate. Accord-
ing to the steady-state equation (5.1514)

Yeok g _ _YeoM (5157
2Vyk - PRK

’
2VK - PR
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ATP (mM)

kATPase (h_l )

Figure5.7 ATP concenuation as a function of therate constant & xqp,. for two different values
of the cooperativity coefficient of the ATP inhibition of PFK (ny = 1and ny; = 4). Solid and broken
linesindicatestable and ungtable seady states, respectively.

a decrease of vp,an/2vuk.prx 1S @ccompanied by an increase of the share of the
ATP-producing PGK reaction which meets the higher demand on ATP. A second
effect contributing even more to homeostasisis the activation of the glycolytic
flux a decreasing ATP concentration, which results from alowering of the ATP
inhibition (Figure 5.9).

In Table 5.4 the control coefficients are listed for the glycolytic flux (J=
Vax.prx) and for the concentrations of the metabolites ATPand 2,3P,G. It isseen
that in contrast to Modd A, not only the HK and PFK but also the enzymes
P,GM, P,Gase and ATPase exhibit nonvanishing flux control coefficients. This
result is due to the circumstance that the upper and lower parts of the glycolytic
system are coupled by the common cofactors ATP and ADP. Neverthelessthe
HK-PFK system is mainly responsiblefor flux control, such asin Modd A. The
cdculations were performed for the in vivo state under the assumption ny = 1
(no substrate inhibition of HK-PFK by ATP) and ny = 4 (substrate inhibition of
HK-PFK by ATP). It isseenthat for ny = 1, theflux control coefficientof ATPase
is negative because the decrease of ATP after activation of ATPese leads to a
diminution of the rate vyg prx. |N the moreredlistic case (ny = 4), a decresse of
ATPwill activateglycolysisso that theflux control coefficientof ATPasebecomes
positive. The control coefficientsfor ATP may be considered as a quantitative
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ATP (mM)

VATPase (mM- h_l)

Figure 5.8 ATP concentrationasafunction of therate Varpue = katpae ATP of ATP-consuming
processes for different values of ny and kyx.prx - Parameter values: kugpex = 2.2%h (ng = 1);
kugprx = 3.20/ (ny = 4); kyxprx = 5.52/h (ny = 8). Broken linesindicate ungtable steady states.

P: in vivo point.

measure for the ATP homeostasis, as aready discussed. The homeostatic effect
of thesubstrate inhibitionis expressed by thefact that for ny = 4 the coefficients
CalFork and C4TF ... are small compared to those obtained for ny; = 1. Itisseen
that the substrateinhibition of HK-PFK by ATPresults not only in a homeostasis
of ATP but also of 2,3P,G.

The flux control coefficientsof the enzymesP,GM and PGK are of opposite
sign. Thenegativevaueof Chsx for ny = 4iseasily understood by consideration
of the fact that activation of PGK resultsin diminution of the2,3P,G bypassand,
in this way, to an increasein ATP concentration.

Under the assumptions of this model, the pyruvate kinase reaction neither
controlstheconcentrationsof ATPand 2,3P,G nor theglycolytic flux. Thisresults
from the simplifying assumption that thePGK reactionisirreversible. Thecontrol
coefficientsfor theglycolyticflux and for the metabolite concentrationslisted in
Table5.4 sum up to unity and zero, respectively,that is, they fulfill thesummation
theorems.

An extension of Model B of glycolysiswas set up to study the influence of
pyruvatekinase deficiency on theenergy metabolismof human erythrocytes(Holz-
hiitter et al, 1985b). A new comprehensivekineticmodel of the pyruvatekinase
of human erythrocytes was included and account was taken of the magnesium-
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VHK-PFK (mM'h"l)

J=

kATPase (h_ 1 )

Figure 5.9 GlycolyticrateJ = vux.prg asafunctionof therate constant kyp,,. for two different
values of ny. Parameter Values: kyg.prx = 229 h™1 (g = 1); kyyprge = 320 4! (my = 4). P:in
Vivo point.

Table54 Control Coefficientsof Enzymesfor the Glycolytic Flux and Metabolite
Concentrations(Model B)

Variable
ik pexc( =J) ATP 2,3P,G

Enzyme ng=1 ny=4 ng=1 ny=4 ngy=1 ng=4

HK-PFK 132 0.52 0.72 0.28 2.74 107

P,GM -0.10 0.14 -0.22 -0.08 0.18 0.68 Ji -
P,Gase 0.00 0.00 0.00 0.00 -1.00 =100
PGK 0.10 -0.14 0.22 0.08 -0.18 -0.68

ATPase -0.32 0.48 -0.72 -0.28 =174 -0.07

E G 1.00 1.00 0.00 0.00 0.00 0.00




188 Metabolic Control Analysis

complex formation of the adenine nucleotides and 2,3-biphosphoglycerate. The
analysis of individual cases with pyruvate kinase mutations permitted estimates
and classification of the degree of disorder of the glycolytic pathway, which were
in accord with clinical and other experimental assessments.

Other extensions consider the coupling of the glycolytic pathway with reac-
tionsresponsiblefor the synthesis and breskdown of adenine nucleotides, in par-
ticular the 5-nucleotidase (EC 3.1.3.5), AMP deaminase (EC 3.5.4.6), adenosine
kinase (EC 2.7.1.20), adenine phosphoribosyltransferase(EC 2.4.2.7) and the
uptake of adenosine across the erythrocyte membrane (Schauer et al. 1981a,
1981b). The main effect of including thesereactionsis that the total sum of the
adenine nucleotidesis no longer a conserved quantity. This model alowsoneto
simulate the breskdown of adenine nucleotides after glucose depletion.

R. Schuster et al. (1988) developed amodel of erythrocyte metabolism which
comprises, in addition to glycolysis, the pentose phosphate pathway. Specia at-
tention is drawn to the fact that in erythrocytes the main function of the pentose
phosphate shunt is to form NADPH. The NADPH produced by the two dehydro-
genases (glucose-6-phosphate dehydrogenase, G6PD, EC 1.1.1.49, and 6-phos-
pogluconatedehydrogenase, 6PGD, 1.1.1.43) ismainly utilized by theglutathione
reductase (EC 1.6.4.2) catalyzing the resction: GSSG + NADPH - 2GSH +
NADP. Furthermore, an NADPH-dependent |actate dehydrogenase ((IRapoport
et al., 1979) wasincluded into themodel. Steady states arecalculated as functions
of the rate constants kxrpese aNd kox representing the energetic load and the oxi-
dativeload, respectively,of thesystem. Thecalculation of flux control coefficients
of the nonequilibrium reactions reveals that most of these coefficients are very
small with the following main exceptions:

(@) NonglycolyticATP-consumingprocesses(ATPases) which affect srongly the gly-

colytic rate, Chrpae = 0.70; S22 Modd B for n = 4 (Teble5.4).

(b) 2,3-Bisphosphoglycerate phogphatase(P,Gase) which controls the glycolytic flux
and the reecions o the2,3P,G bypass Ch,gee = 022, CSM, = 094.

(©) Thereactionsd the oxidativeloed affecting thereections d the oxidative part of
the pentose phosphate pathway, C5™ = €4 = 047. It hes ben conduded
thet in the in vivo dae d erythrocyte glycdlyss, the 2,3P,G bypass ad the
pentose phogphete pethway are dmost independently controlled by the reections
consuming those metabolites which are produced by the corresponding pethways
The modd wes usad for predicting the effect  glucose-6-phosphate dehydrog-
enase defidendes(R. Schuder et al., 1989) and wes recently extended to predict
the metabalic effect d large-scde enzyme adtivity dterations (R. Schuster and
Holzhiitter, 1995).

5.4.4.4. Glycolytic Energy Metabolismand Osmotic States

The theoretical investigation of energy metabolism in erythrocytes has been
extended by inclusion of its interaction with active and passive fluxes of ions
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across the cell membrane (Brumen and Heinrich, 1984; Werner and Heinrich,
1985). Thismodd (Modd C) alows one to evaluate the state of metabolismas
well as osmotic and electric effects. Accordingly, control coefficientsrelated to
the volume can be calculated. (For agenera treatment of the control of variables
other than concentrations and fluxes, see Section 5.8.) Compared with previous
models(e.g., Model B), theset of system parametersisenlarged by the quantities
characterizing the electric charges and osmotic effects of hemoglobin, the per-
meabilitiesof ions, and the cell surface area.

The metabolic part of the " metabolic-osmoticmodd™ is essentially based on
the reduced reaction scheme used for Model B (Figure5.3). Severa assumptions
and simplificationsare used in the modd!:

(a) Thein vivo Sateis characterized by afixed composition d the externd medium.

(b) Theinhibitory actionsd H* ions an the erzymes FFK and P,GM are taken into
acoourt.

(¢) Two nonglycolytic ATP-consuming processesare congdered: the Na/K-ATPase
(EC 3.6.1.37) ad the nor+ion transport ATPagss It hes been proposed thet 25—
70%d the ATP produced by glycolyssis utilized by the Na/K pump (Grimes,
1980). Maretzki et al. (1980) and Reimann et al. (1981) determined a velue o
30%. The norHon transport ATPases are linked to membrane phosphorylation
processes.

(d) Condderationd the transmembranepotertia (A¥) and o thecell water valume
(V) s sydem vaiables necessitates the incorporation d detalled dectric ad
ognatic conditions. It is essumed thet the intracdlular and extracdlular com-
patments are dectricaly neutrd and in camatic equilibrium.

The differential equationsfor the concentrations of the glycolytic metabolites
areeasily derived from the reaction scheme (Figure5.3). As the metabolite con-
centrations may also be changed by variationsof thecell volume (V), one arrives
at thefollowing type of equation:

1 dSW S ny (5.158)

where §; denotes the concentrations of 1,3P,G, 2,3P,G, PEP, and ATP [cf. Egs.
(5.144a)—(5.144c) and (5.150)]. V° represents the cellular volume in a reference
state. For the enzymatic activities v, rate laws are used which approximate the
kinetic properties of the isolated enzymes. They are essentialy the same as used
in Model B. An exception is the rate equation for the Na/K-ATPase,

kg — Apase « ATP . Nagh

VNe/K — ATPase = 1+ ATPIK,, oo , (5.159)




190  Metabolic Control Analysis

in which the fact that the activity of this enzyme is stimulated by intracellular
sodiumis considered. In vivo, thisenzymeis almost saturated by ATP [Kp, arp =
0.04 mM; Cavieres (1977)].

The passivetransportof sodium and potassiumis described by the well-known
Goldman equation (Goldman, 1943). Taking into account that the action of the
Na/K-ATPase |eads to the transport of 3 moles of sodium outward and 2 moles
of potassum inward per 1 mole of ATP degraded, the time-dependent changes
of theintracellular cation concentrations aregoverned by thefollowing differential

equations:

Vioj wat V) A, {/&(r) Py, Nag; 1—_r ;Nai’;) B Ates (5.1608)
pouy @) = AEO p Fa s L) oy e, (5.1606)

with
r= °XP(F$TV) (5.161)

(Pna = 1.3 X 1072 mys, Px = 1.1 X 1072 d's: permeabilitiesof sodium and
potasstum, respectively; A, = 137 um?: cell surface area; . Faraday congtant).

The transmembrane exchange of chlorideis much faster than that of sodium
and potassium. Therefore, the transport equation for chlorideions is substituted
by the equilibriumcondition

ag = Eii . (5.162)

The pH in theintracellular and extracellular medium are related as follows:
PHe = PHy, — logyar. (5.163)

The system equationsare completed by the conditions of asmotic equilibrium
between the intracel lular and extracellular compartments,

RT(K: * Nat + ci; + ADP + ATP + 23P,G + g1, . Hb) = const,,  (5.164)

as well as the condition of electroneutrality,
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K t Naf = Cly + 25 . ATP + 2,0 . (5.165)
ADP + 233p,6 . 23P,G + 75, . Hb = 0

In Eq. (5.164), g, denotes the osmotic coefficient of hemoglobin which is a
function of hemogl obinconcentration (Gary-Boboand Solomon, 1968; Freedman
and Hoffmann, 1979). Only glycolytic metabolites with high concentrations
(ADP, ATP, 2,3P,G) are considered in Egs. (5.164) and (5.165). The coefficients
Zater ZADPy 22,3P2G» aNd zzp, denote the pH-dependent charges of the compounds
indicated. Equations (5.160)—(5.165) constitute a complicated nonlinear system
which consists of differential as well as of algebraic equations (algebro-differ-

O ST S Ut Sy ptemes Splved by umerical procedre
Heinrich, 1984; Werner and Heinrich, 1985).

The model alows oneto calculate the control coefficientsnot only for metab-
olite concentrations and fluxes but also for the cellular volume. This coefficient
can be defined as follows:

v _ d In V/dp,

kT aIw/op,” (5.166)

The various control coefficientsfor the volume are listed in Table 5.5. It is seen
that the control coefficientsfulfill the summation theorem,
>cl=0 (5.167)
k

Table55 Control Coefficientsof Model C for the
Cell Water Volume Under in Vivo Conditions

Parameter c}"

HK:- PFK 0.63
P,GM 0.19
P,Gase -0.39
PGK —-0.19
PK - —-0.01
ATPase —0.06
Na/K-ATPase -0.21
VNa,puss 4.81
vanss -4.83
xq 0.00
J

Source Brumen and Heinrich (1984)
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despitethefact that thereare some coefficientsthat differ considerably from unity.
The high control coefficientsof the passivetransport of Na* and K* reflect the
fact that these cationsare of overwhelmingimportancefor the osmotic properties
of thecell. The control coefficientsCy pass aNd CK pass are of oppositesign. This
issmply explained by thefact that an increase of the permesbility Pk leadsto a
loss of potassum by the cell, whereas an increase of the permeability Py, will
result in an increase of intracellular sodium. The control coefficients of these
transport processes almost compensate each other; that is, a smultaneouschange
of Pgx and Py, by the same factor would have only a negligible effect on the
cellular volume.

The results of Table 5.5 confirm that the sodium-potassium pump plays an
important rolefor the regulation of cell volume. An increaseof the Na/K-ATPase
activity would result in an enhancement of the outflow of sodium, which accord-
ing to the (2:3)-stoichiometry of the pumpis not fully compensated by theinflow
of potassium. The resulting decrease in cell volume corresponds to the negative
control coefficient of this enzyme (see Table 5.5). A positive volume control
coefficientis obtained for the HK-PFK system, which may beexplained primarily
by the increase of 2,3P,G concentration upon activation of the glycolytic flux.

The above-mentioned models were the basis for a more complete mode of
erythrocyte metabolismwhichincludesglycolysis, the2,3P,G bypass, the pentose
phosphate pathway, the adenine nucleotide metabolism, and various transmem-
brane processes, as well as osmotic and electrostaticconditions (Joshi and Pals-
son, 1989a, 1989b, 1990a, 1990b). Thismodel comprises 33 mass balance equa-
tions which contain 41 reaction velocities. Taking into account the constraints
resulting from osmotic balance, electroneutrality, and cofactor preservation, the
complete description encompasses 29 system variables (metabolite concentra-
tions, concentrationsof inorganicions, cell volume, transmembranepotential, and
pH). Despitethefact that a number of relevant processeshave not been considered
(e.g., activeand passivetransport of calcium, interaction of ATP and 2,3P,G with
hemoglobin), the model of Joshi and Palsson (1989a, 1989b, 1990a, 1990b) is up
to now the most comprehensivemodel of erythrocyte metabolismand, apparently,
for an autonomous metabolic systemin general.

5.45. A SimpleModd of Oxidative Phosphorylation

Oxidative phosphorylation(i.e., theformation of ATPfrom ADP and inorganic
phosphate using the energy of oxidizablesubstrates) is a crucia processin bio-
logical energy transduction. We will here consider oxidative phosphorylation as
it occurs at the mitochondrial inner membrane. The energy transformation pro-
ceeding at bacterial plasma membranesis very similar.

According to the chemiosmotic hypothesis of Mitchell (1961), the respiratory
chain uses thefree energy of oxidation to extrude protons out of the mitochon-

Control Analysis of Various System 193

drion and thus generate a proton-motiveforce. This quantity is defined as the
electrochemical potential differenceof protons across the membrane,

H+
Afge = RTIn - 1 FAY, (5.168)

out

where A ¥ is the transmembrane potential. This force servesto produce ATP via
catalysis by the H*-transporting ATP synthase (H*-ATPase, EC 3.6.1.34). The
respiratory chain isasequence of reactionscatalyzed by a multienzyme complex.
In aminimal model, its control properties can be described by treating it as one
overall reaction, as will be justified in the modular approach of control andysis
(Section5.12). That approach alowsnot only for theexistenceof several enzymes
in one complex, but also for more than one independent flux through this multi-
enzyme complex. The respiratory chain actually has at least two linearly inde-
pendent fluxes owing to the dippage between substrate oxidation and proton
transport (see Luvisetto et al., 1987; Westerhoff and Van Dam, 1987). Strictly
speaking, the ATPase reaction exhibits slip also and should be described by two
degreesof freedom.

A more detailed model should aso include the proton leak and the adenine

H* H+

respiratory

SH,+1/20,

ADN translocator

H* ATP ADP

Figure 510 Scheme of the nai n processesin oxidative phosphorylation. Abbreviations: SH,
and S, reduced and oxidized form of substrate, respectively (e.g., lactate and pyruvate); ADN trans
locator, adenine nucleotides translocator.
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nucleotidetrand ocator (see Figure5.10). Although the proton lesk (i.e., the pas-
sive back-flow of protons through the membrane without being used for ATP
synthesis) is not catalyzed by an enzyme, control coefficients can be calculated
on the basis of definitions (5.3) and (5.5). The perturbation parameter can be
chosen to be the concentrationof an uncoupler [e.g., FCCP(Groen et al., 1982)].
Uncouplersincrease the membrane permeability for protons and thus decrease
the coupling between respiration and phosphorylation.

The inorganic phosphate needed for ATP synthesis enters the mitochondrion
via the phosphate carrier, which transportsinorganic phosphate and protons to-
gether at aratio 1:1. When the phosphatecarrier is, for smplicity'ssake, neglected
in the modd, one mugt therefore consider that one extra proton is needed per
produced ATP moleculethan is actually utilized by the ATPase.

To calculate control coefficients, one needs knowledge of the stoichiometric
proportionsin the reactions, that is, the number of protons extruded per oxygen
aom consumed (H*/O ratio) and the number of protons needed to produceone
moleculeof ATP (H*/P ratio). There are dissenting viewsin the literature about
the values of these ratios. Estimates can be derived from the thermodynamic
reasoning that the endergonic process cannot utilize more free energy than is
produced by the exergonic process by which it is driven. Measurements of these
ratios can be carried out by the oxygen pulse method and ATP pulse method
(Mitchell and Moyle, 1965). The modem mainstream view (see Brand, 1994) is
that n3 = H*/0 = 10 (certainly between 9 and 13) for oxidation of matrix
NADH. Succinate oxidation is believed to proceed withng = H*/0 = 6, with
minority viewsthat the valueis 8. A widdly accepted estimateof nf; = H*/P is
4, made up of three H* per ATP on the ATP synthaseand one H* on the phos-
phate carrier (cf. Brand, 1994). This gives P/O ratios of 2.5 for NADH-linked
substrates and 1.5 for succinate oxidation. Fitton et al. (1994) found that the P/O
ratio decreases with increasing respiration rate, from about 2.3 to about 0.9 for
respiration on lactate. In a dynamic model presented by Korzeniewski and Fron-
cisz (1991), thefollowing vaues for oxidation of NADH were used: n = H*/
O = 9,nf = H*/P = 35. Different explanationshave been given for the fact
that theseratiosmay be noninteger. The most logical explanationis that theseare
average stoichiomemes of complex enzymaticreaction cycles, which asoinclude
slip reactions. This view is supported by the fact that some drugs, such as almi-
trine, can increase the H* /P ratio, as reported by Rigoulet et d. (1990) who gave
avdueof 2.7 without the addition of almitrine.

To consider that the intramitochondrial and extramitochondriad volumes are
different is not necessary when the concentrationsin the cytosol are assumed to
be constant, as will be done here. The concentrationsof S, SH,, O, and H,O will
a so be assumed to be constant. Furthermore, thedlip in therespiratory chain and
H*-ATPase will be neglected for simplicity's sake. The system equations can
then be written as
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dH+

o —ndvo + nEVp + v, (5.169)
£

dATP

& T VA (5.170)

dADP

—— = —vVp + V,, (5.171D)

dt
wherevg, vp, v4 and v, Stand for therates of respiration, phosphorylation,adenine

nuclectidetransport, and leak, respectively.
Obvioudy, the system involves one conservetion relation, ADP + ATP =

const. We have
-a9 a1 0
N = , (5.172)

0 1 0 ~1

1 0
L=|0 1]. (5.173)
0 -1

The unscaled easticity matrix can be written as

& 0 0
6H EaP €ADP

€= . (5.174)
&g 0 0

. A
e €A ehpe

Thedasticity,f;, of theadenine nucleotidetrans ocator with respect to proton
concentrationis not normally zero becausethis trandocator is electrogenic. Its
rate therefore depends on the transmembrane potential, A¥. This potentid, in
Nm, islinked to the inside and outside proton concentrations. Approximately,
thisinterrelation can be written as proportionality of ApH and A¥ (Bohnensack,
1985; Hol zhiitter et al., 1985a). A better, quasi-linear approximationwas derived
by S. Schuster and Mazat (1993). In theelasticities s, €f; and &, thedependence
o therespective processes on A¥ should also beincluded.

Using Egs. (5.25) and (5.26), thecontrol coefficientsfor theconsidered model
of oxidative phosphorylation can, in principle, be calculated. This method is,
however, hampered by the problem that the elasticitiesof this system are difficult
to measure, because the concentrationsinside mitochondriaaredifficult to change
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specifically. Another possibility isto calculatecontrol coefficientson the basis of
adynamic model, as was done by Korzeniewski and Froncisz (1991). They mod-
ulated enzyme activities numerically and computed the changein fluxes. Control
coefficientsover respiration rate with respect to substrate dehydrogenation (0.23),
external ATP utilization (0.56), proton leak (0.20), and other reactions were cal-
culated. Only some of these coefficientsare in agreement with experimentally
determined values. The above-mentioned problem of uncertainty in the vaues of
elasticitiescorresponds in kinetic models to uncertainties in the kinetic parame-
ters.

Control coefficientspertaining to oxidative phosphorylationcan be determined
in amoredirect way by inhibitor titration. This hasfrequently been done(Groen
et al., 1982; Brand et al., 1988; Gellerich et al., 1990; Letdlier et al,, 1993). It
wasfound that control coefficientsstrongly depend on cell type and experimental
conditions. For example, the control coefficients over respiration rate may vary
between State4 (no ADP supply) and State 3 (excessof ADP) from0.9 to nearly
0 (control by the proton leak) or from 0 to 0.5 passing at 0.65 (control by phos-
phorylation plus ATP consumption) [see the review by Brown (1992)].

5.4.6. A ThreeStep Modd of Serine Biosynthesis

, The system under study in this section is the pathway leading from 3-phos-
phoglycerate (3PG, derived from glycolysis) to serine via 3-phosphohydroxypy-
ruvate (3PHPA) and phosphoserine (PSer) (see Figure 5.11). A control andysis
of this pathway in mammalian liver (rabbit and rat) was done by Fell and Snell
(1988). They used the method of calculating control coefficientsfrom the elas-
ticities and stoichiometric structure, as described in Sections 5.2 and 5.3.

As the flux of serine biosynthesisis small compared with the fluxes through
the mgjor pathways such as glycolysis, the three enzymes shown in Figure 5.11
have vey little effect on the cellular concentrations of 3-phosphoglycerate,
NAD*, NADH, glutamate, and a-ketoglutarate. Therefore, these substances can
be considered as externa metabolitesfor the considered pathway.

3-Phosphoglycerate dehydrogenase (PGDH) and phosphoserine transaminase

NAD* NADH Glut oKG H0 P

Figure5.11 Reaction schemedf serinebiosynthesis. Abbreviations: PGDH, 3-phosphoglycerate
dehydrogenase (EC 1.1.1.95); PSTA, phosphoserine transaminase (EC 2.6.1.52); PSP, phosphoserine
phosphatase (EC 3.1.3.3);3PG, 3-phosphoglycerate; 3PHPA, 3-phosphohydroxypyruvate; PSer, phos-
phoserine.
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(PSTA) are treated as a ™" grouped reaction (i.e., a modulein the sensedefined in
Section 5.12). As these enzymes operate at quasi-equilibrium, one can use the
approximation fermula (5.74) for the normalized elasticitiesof the module in-
volving the two enzymes,

1
ﬂl +2
G T 1 — PSerl(3PG - qooom - desta)’ (5.175)

el = . (5.176)
1 — 3PG - gpopy * gpsta/PSer’
where the subscript 112 refersto the lumped process consisting o reactions
PGDH and PSTA.

The quantity givenin Eq. (5.175) isan-elagticity because 3-phosphoglycerate
is considered as an external metabolite here. As the average metabolite concen-
trationsin vitro were measured (LaBaume et al., 1987) and the equilibrium con-
stantsare known, the displacement from equilibrium can be caculated (Fell and
Snell, 1988). The elasticities of phosphoserine phosphatase with respect to phos-
phoserine and serine were computed by numerica differentiation of the enzyme
ratelaw

_ Vi . PSer(1 T Ser/k})i(1 + Seriky)
T PSer T Ko(1 T Ser/Kpi1 ¥ Seriky) 177
proposed by Frieden (1964) for single-substrate enzymes in the presence of
mixed-type modifiers. It is assumed that both the enzyme-substrate and enzyme-
substrate-modifiercomplexescan yield the product and that all complex formation
steps are at quasi-equilibrium. Nonlinear parameter fitting gives the parameter
vauesK,, = 0.089 mM, Xy = 0.60 mM, and K = 16.5 mM.

The flux control coefficientscan be obtained by Eq. (5.54), which impliesin
non-normaizedform C ™= (K 0)(K &) "! in thecaseof no conservationrelations.
For the considered system, K = (11)7, sp that

1 o\/1 &2\
C= , (5.178)
1 o/\1 &2

where PSP stands for phosphoserine phosphatase.
The flux-responsecoefficientsto phosphoglycerateand serineare given by

J 7 142 pJ _ ~J  _PSP
Ripg = Ciy2 M3pd, Rier = Cigp 7k - (5.179)
I

Fell and Snell (1988) cal cul ated flux control coefficientsfor serinemetabolism,
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using experimental values reported by LaBaume et a. (1987) for the metabolite
concentrations in rabbit liver in vivo under starvation conditions (24 h-fasted
animals) and 1 h after injection of glucose or ethanol or both. For starvation
conditions, they obtained the normalized coefficientsCy,, = 0.03 and Chsp =

0.97. For the situation after injection of ethanol, these control coefficients were
computedto be ¢} ., = 0.22 and Cgp = 0.78 and for thesituation after injection
of glucoseand ethanol, €Y., = 0.46 and Chgp = 0.54. C{ , , is very small under
starvation conditions, dueto thefact that PGDH and PSTA are quasi-equilibrium
enzymes. The control coefficient of phosphoserine phosphatase is high in the
"standard" situation because its elagticity with respect to its substrate phospho-
serineis small, as this metaboliteis well abovethe X, value[see the discussion
of Eq. (5.101)]. A possible explanation of the values in the situations after the
addition of glucoseand/or ethanol considering thedisplacement fromequilibrium,
redox state, and saturation was given by Fell and Snell (1988).

Although it is a widespread feature in metabolism that the first enzyme of a
biosynthetic pathway exerts most flux control (see Savageau, 1976), the situation
isdifferent in the serine biosynthetic pathway, wherethelast enzymeis most rate-
limiting. The very large control coefficient occurs, however, only under starvation
conditions which are not the normal case.

55. TIME-DEPENDENT CONTROL COEFFICIENTS

In the preceding paragraphs, the time dependence of the system behavior after
parameter perturbationswas not studied. Metabolic control analysis was confined
to steady states. Obvioudly, this restriction can be misleading upon interpretation
of experimental results. In particular, it can be practically impossible to approach
a steady statein reasonabletimes. In the present section, control anaysis is ex-
tended to time-dependent statesin the neighborhood of a stablesteady state. From
generd definitionsof control coefficients, we derive a calculation procedure for
the time-dependent control matrices as functions of the stoichiometry of the net-
work and of the elaticitiesof the reactions.

Suppose that S is a stable steady-statesol ution of equation system (2.8) for a
given parameter vector p° and let us assume that for negativetimesp = p° and
S = S% At time zero, the parameter is perturbed and takes the valuep for all
positivetimes. Forp closeto p° the solution S(¢,p) of Eq. (2.8) can be approxi-
mated by

S@,p) = S0 + %(r,p")@ - (5.180)

The time-dependent flux vector J(¢,p) is defined by
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J@.p) = wS@,p), p). (5.181)

Forp close to 3 thisflux vector can be approximated as

a
Jep) = 2 + 5 62 - ) (5.182)
with J® = w(S%p). It followsfrom Eq, (2.8) that 38/3p is the matrix solution of

i(ﬁ) - (Nﬂ LI 5,183
dr\dp aS/dp ap (-183)

with (3S/8p)(t = 0,p%) = 0. The mafricesav/as and dv/op are calculated in the
reference state (S°,p%. From Eq. (5.181) one derives

y_ s

» Sy (5.184)

Let us first assume that the rows of the stoichiometry matrix N are linearly
independent. Then there are no conservation relationshipsfor the metabolite con-
centrations. Because the referencestateisassumed to be stable, all theeigenvalues
of the Jacobian M = N(9v/aS) have negativered parts, so M isinvertible.

The formd solution of the linear differential equation system (5.183) reads

a8 s Y
E(t,po) = C%) p (5.185)
with

C%(t) = [exp(Mr) — IIM™'N, (5.186)

where | denotes the n X » identity matrix. A possible representation.of the
exponentia function entering this equation is

exp(Mf) = BAB™1, (5.187)

where the elements of the diagonal matrix A depend on the eigenvalues4; of the
Jacobian M as follows:

Ay = exp(tdy). (5.188)

The columns of B are the corresponding eigenvectors.
From Egs. (5.184) and (5.185) one gets
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o = cin 5.189
&{t,po) C (t)g ( )
with
ce=1+ » =1+ » [exp(M# — IIM~'N. (5.190)
as as

In the present case, the control matrices C5(#) and C’(r) areti me-dependent op-
erators which transform theinitial perturbations v of the reaction rates into the
concentration and flux variations8$ and 87 at time¢, that is,

380 = C5()dv, 87 = C(Hdv. (5.191)

The dements Ci(¥) and Cj(») of the matrices C¥(t) and C (t) can be defined
as the unscaled concentration control coefficients and flux control coefficients,
respectively,at timet. They may be used to characterizetheresponseof thesystem
to parameter perturbations during the relaxation process.

Because the eigenvalues of M have negative rea parts, the matrix exp(Mz)
approaches zero when t tends to infinity. Equations (5.186) and (5.190) thenyield

, the usual unscaled time-independent concentration and flux control matrices C5
and C’,

-1
CS=1mC%») = —-M"IN = —(Ng—;> N, (5.192)
. .o, ﬂ( av>~l
= =1 - — =1- —] N 5.193
¢ =1mC( =1 aSM N =1 asNas ( )

t=co

[cf. Egs. (5.13) and (5.14)]. Equations (5.186) and (5.190) show that the time-
dependent control coefficients are fully determined by the stoichiometry of the
reaction network and the el asticity coefficients; that is, theelementsof the matrix
E = 9v/3S calculated at the referencestate.

If p contains parameters p,. acting specifically on individua reactions[cf. Eq.
(5.4)], one derivesfrom Egs. (5.185) and (5.189)

= 3S; o)(a"k>_l
Ci (apk «p° oy (5.194a)
and

Ci® (apk &N - (5.194b)
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Theseformulas are directly related to the usua definitionsof control coefficients
(5.18), with the difference that they are time dependent.

When the network is such that some linear combinations of metabolite con-
centration are conserved, the rowsof the stoichiometry matrix N are not linearly
independent. In this case, one derivesfrom formulas (3.10) and (5.190) that the
time-dependent control matrices may be expressed as

C(t) = LlexpM®%) — I}(M%~ NP, (5.1952)
Cp =1+ g—;L[exp(Mot) — (M%) NE, (5.195b)

with
M = NQ%L, (5.196)

where L and N° are the link matrix and the reduced stoichiometry matrix defined
in Eq. (3.7), respectively.

It follows immediately from Eqgs. (5.195a) and (5.195b) that the matrices of
control coefficientsfulfill the following relationships:

Cle)Cl(t) = Clty + 1) (5.197)
and
C5(1)eCS(t)) + C(ty) + C5(1p) = C5(ty + 1), (5.198)

which generalize Egs. (5.27a) and (5.27b) to the time-dependent case.

Equation (5.197) means that the map of an initial perturbation of fluxesby a
parameter changeonto the flux change after atime ¢; and the consecutivemap of
thisflux change onto theflux change after another timespan ¢,, whichis mediated
by all reactions, is equivalent to the map of theinitial perturbation onto the flux
changeafters, + ¢,. Relationship (5.198) can beinterpretedin thefollowing way.
An initial perturbation dv of reaction rates has a direct effect on the fluxes as
expressed by the identity matrix in Eq. (5.190) and leads, after atime ¢, to a
change of concentrations CS(t,)6v. This change also has an effect on the reaction
rates, as expressed by premultiplicationby & = 3v/aS. During another time span
t,, both of these effects on the reaction rates lead to concentration changes which
may be expressed by premultiplying C(t,). These changes have to be added to
the change C5(¢,)8v aready achieved at time #,.

Summation and connectivity theoremscan also be derived for the time-depen-
dent control coefficients. Under consideration of Eq. (3.44), one can derivefrom
Egs (5.195a) and (5.195b) that
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C(¥K = 0, (5.199a)

C’/PK =K, (5.199b)
where K again denotes the null-space matrix of the stoichiometry matrix. These
equalities are the summation relationshipsfor the time-dependentcontrol matrices
CS(t) and C/(#). As a particular consequence,

eI = 0, (5.200a)

o =1, (5.200b)
because the steady-state flux J satisfies the equality NJ = O.

By multiplying Egs. (5.195a) and (5.195b) by (3v/aS)L, one gets by the defi-
nition of M°

o g_"SL — LiexpM%) - 1], (5201a)
(8{0)) =2y (M) (5.201b)
as T as SRR '

Theseformulas are the connectivity relationshipsfor the time-dependent con-
trol coefficients. Equations (5.199) and (5.201) reveal theinterestingfact that time
entersexplicitly the connectivity theoremsonly. This means that the summation
relationships(5.199), which have the same structure as Egs. (5.44), are satisfied
during the whole relaxation process, athough the control coefficientsmay vary
considerably. Asfor the connectivity theorems, one derivesfrom Eq. (5.201) the
usual theoremsof time-independent control anadysis[cf. Eq. (5.51)] in the limit
of infinitetime. If, however, the steady stateis unstablei.e., if the Jacobian matrix
has at |east one eigenvaluewith a positivered part) theexponentialson the right-
hand side of Egs. (5.201a) and (5.201b) diverge as ¢ tends to infinity. Thus, the
time-independent connectivity theorems [Eq. (5.51)] have no meaning for unsta-
ble steady states, athough the derivation leading to those theoremsin Section
5.3.2 applies dso to such states. A more detailed analysis can be found in the
work of Heinrich and Reder (1991).

It can be proved that, as in the time-independent case, the relations (5.201a)
and (5.201b) are sufficient in number to calculatethe control matrices from the
stoichiometric and el asticity coefficients (see Section 5.3.3).

Example. We consider the branched system depicted in Scheme 7 (Section
3.2.4) with one interna metabolite and three reactions, as described by the stoi-
chiometry matrix N = (1 —1 —1)T. Admissible null-space vectorsarek; and k,
asgivenin Eq. (5.119). The system equation takes the form
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a8,

P Vi — vy — ;. (5.202)

We will calculate the time-dependent control coefficientsCS.(r) and C%(f) by
using the summation and connectivity relationships (5.199) and (5.201), taking
into account L = | (no conservation relationships). The Jacobian M contains
only one element

My =¢y — & — &, (5.203)

The summation relationshipsfor the concentration control coefficientsare

O+ cip=0 cSo+tciom=o0 (5.2042)
and for theflux control coefficients

Ch + Cho =1,
Chi+ =1,
Gl + Gl = 1, (5:204b)
CH® + CoH(H = 0,
Ch® + CL = 0,
Ch® + Cho = 1.

The connectivity relationships read

Ch@en + Ch(®en + Ch®es = explien — &y — &) — 1 (5.205a)
and
Gi®eu + CpDen + Ch(Wes, = gy explley; — & — es)f]  (5.205b)

withj = 1,2,3. Solving these equations, one obtains

= ~Cho = ~Chp =2 —m e~ 1 o0

&1 — &1 T &

and

o 1 —&1 T &y €11 &1
= —éy &~ &3 &1

&1L~ &1 T &y

&3 €31 &1 — &y (5.206b)
3 —-&; -
+ expllen — &y — &) | o1 1 Eut
e, — _ &1 Té&1 ey .
11~ & ~ &3 & _
31 &1 —é&3
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A sengitivity analysisof time-dependent trgjectories of metabolic systems has
also been developed by Kohn et al. (1979) and Kohn and Chiang (1982, 1983).
They studied the response coefficientsto a parameter perturbation and derived
equations similar to Eq. (5.183). However, they did not give genera definitions
of control coefficientsand did not, therefore, obtain results such as the summation
or connectivity theorems.

56. ARE CONTROL COEFFICIENTSALWAYS
PARAMETER INDEPENDENT?

5.6.1. Posngthe Problem

It has been shown in Section 5.2 that concentration control coefficients and
flux control coefficients, defined by egs. (5.25b) and (5.26b), respectively, are
independent of the choice of the perturbation parameter. It has sometimes been
questioned whether this generd conclusion remains vdid if the anaysis of a
metabolic system is based on the rates w of the elementary reactions of enzymes
(instead of theratesv of the overall reactions) because the parameter dependence
of the concentrations of enzymeintermediate complexes must then be taken into
account in addition to that of free metabolites. It has been claimed that this prob-
lem may be of particular importance for systems with conservation equations,
because at the detailed level of description, they generally include aso the con-
centrations of enzyme-intermediate complexes (Reder, 1986; Fell and Sauro,
1990; Kholodenko et al., 1992, 1993b, 1995). Here, it may be expected that
perturbation parameters which affect a certain enzyme specifically but differ in
their effect on the enzyme-intermediate concentrations have effects on the free-
substrate concentrationsor fluxes which cannot be described by oneand the same
control coefficient of the given enzyme. Obvioudy, this situation does not meet
with formal difficultiesif control coefficientsof elementary steps are considered
and the concentrations of free enzymes as well as of enzyme-bound species are
included into the vector S of metabolite concentrations. This follows from the
fact that in the general trestment presented in Section 5.2 the character of the
metabolitesis not specified and that no distinction is made whether the reactions
areelementary or not. However, problemsmay ariseif oneisinterested in control
coefficientsof overall enzymic steps. To clarify this problemin quantitativeterms,
we consider the following examples.

5.6.2. A System Without Conserved Moieties

The system depicted in Scheme 13 consists of two enzymic reactions con-
verting the substrate P, into the product P, via the enzymesubstrate complexes
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E;S; and E,8; and the free intermediate S,. The concentrations P; and P, are
considered to be fixed. The rates of the elementary reactions of the enzymes E;
are denoted by ;. and w;,. In the present case the reaction rates of the isolated
enzymes v, and v, are defined by fixed concentrations §; and by quasi-steady-
state valuesfor E;S; and E,S,.

E .
P ‘gE l :%slgl:‘::;:%l’z Scheme 13

151+

First, we cal cul ate the unscaled parameter elasticities dv;/9p; which enter the
denominator in thedefinition (5.7) of unscaled control coefficients. We denote by
p1 ad p, thekinetic parameters which affect specifically the reactions catalyzed
by thefirst and the second enzyme, respectively. The quasi -steady-stateconditions
for E;S; and E,S| read wy, = wy, and wy, = wy,, respectively.

Taking into account the two conservation relations for the enzyme species

E + ES; = Ey, (5207

( = 1,2), onederivesfor the parameter elasticities

W _ M (0_“’1__ _ "_WL_)@:& (5.208)
w " T \ES o) @

Implicit differentiation of the quasi-steady-state conditionsfor E;S; with respect
to py and p;, respectively, results in expressions for 9E;S,/dp; which may be
introduced into Eq. (5.208), to give

v 1w aw;
—i= by, — ﬁb) 5.209
a4 -b\op T ap Y G209
with
w;. ow; . Wb Wy,
R 5.2
YT %E T oEs’ 7T oE S, G210

For theunscaled substrateelagticitiese;; = 9v,/8S,; and ey, = 9v,/3S,, oneobtains
inasimilar way

G by 0wy
ay — by 35, a, — b, 38,

&y = (5.211)

Now we consider the steady stateof the wholesystem where the concentration
S; may vary depending on the kinetic parameters. This state is characterized by
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the steady-state condition for S, wy, = wy,, in addition to the steady-state con-
ditionsfor E;S,. Implicitdifferentiation of the steady-state conditionswith respect
to p; and p, gives the following expressions for the two concentration control
coefficients

w,
C=-Ch=@ — b)a — bz)[‘as_zla b,b;

Wy, awh) Wy ]—1
+ (W _ Moy M . (5212
(as1 2, ) @b T G5, % (5:212)

It is seen that for the system depicted in Scheme 13 the control coefficientsare
independent of the special choice of the perturbation parameter and, further, that
the summation theorem ¢§; + €%, = 0 isfulfilled. Taking into account relations
(5.211), Eq. (5.212) may be rewritten as

h=-Ch= , (5.213)

which isidentical to expression (5.99) derived for the concentration control co-

_efficients for a two-enzyme system by using steady-state rate equations for the
individual enzymes. This meansthat in the present case the generd conclusions
of metabolic control analysis are not affected by the level of description (i.e.,
whether the system is analyzed using overdl rate equations or on the basis of the
elementary steps).

5.6.3. A System with a Conserved Moiety

The system depicted in Scheme 14 consists of reactions converting the metab-
olites S, and S, in a cyclic manner.

E <\J
S EiS; - /Sz

/ Scheme 14
Va

For smplicity's sakeit isassumed that only reaction 1 is described at the level
of elementary reactions. The corresponding mechanism contains two steps de-
scribed by theratesw, and w, The overall velocity of reaction 2 is described by
v,. In addition to the conservation equation for the enzyme species of reaction 1,
there is another one which involves the concentrations of the free intermediates
and of the enzyme-intermediatecomplex of the first reaction. It reads
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S + 8, + E;S; = const. (5.214)

From the quasi=steady-state conditionw, = w,, for E,S; oneobtains

(5.215)

with @ = w,/0E; — ow,/oE,S) and b = awp/0E; — ow,/9E.S,. In a manner
similar to that in Section 5.6.2, thefollowing expression for the parameter elas-
ticity of the enzymic reaction is derived:

v 1 (E)wb w, )
— = —a ~ —b]. (5.216)
. a—b\ip apy

The steady state of the whole system is characterized by the conditions v, =
w, and v, = w;, and by the conservationrelationships E, + E,S, = Ep, and Eq.
(5.214). Implicit differentiation of the steady-state conditions with respect to p,
resultsin thefollowing expressionsfor the concentration control coefficientswith
respect to reaction 1:

et e e

" avlep, D Jllap\es, S, (5.2173)
aw,,( v, )](aw., w, )—1}
- — —al|\ e -0
apy\3S, p, p
85,/9p, (a - b) {[awb(avz w, )
¢g, = Bl _ (o= B)f[owyi _wy
v /op, D dpy\aS, S, (5.217b)
aw,,(avz )](aw,, aw, )"1}
e SR (ol PR PY
ap;\3S, ap ap
with
v, vy - Iw, v, v, | ow,
D=a(—2-—-—+ +bg'T-——,+—*l
a5, s, @S a &5 (5:217¢)

Swadwy, W, dv, w3y

35 4s, 854S, oS, as,

Analogoudly,for theconcentration control coefficientsof reaction 2, implicit dif-
ferentiation of the steady-state conditions with respect top, yields
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AlY o fn 1 AY
- Sl Low, ) 52188
2= 5,/ep,  D\aS, “ (52182)
and
cs = 83y _ L fowy ) (5218b)
27 Sulap, D\ ]

It is seen that the control coefficients of reaction 2 are independent of the
special choiceof the perturbation parameter which is in accord with the general
statementsmade in Section 5.2. The situation is different for the control coeffi-
cients of reaction 1. Here, only thefactor (a — b)/D isindependent of the choice
of the perturbation parameter p,, whereas, in the remaining terms, the derivatives
of w, and w,, with respect top, cannot, in general, be canceled. \We may conclude,
therefore, that thecontrol coefficientsaf enzymes with enzyme-boundmetabolites
involved in conserved moieties are parameter dependent. However, it isseen from
Egs. (5.217) and (5.218) that when p, affectsw, specificaly (dwy/dp, = 0), the
term gw, /ap, cancelsin the expression of €$, and C3;. In this case, the concen-
tration control coefficients becomeindependent of what parameter of reaction w;
1s changed (e.g., k, or k_, if the expression w, = k,S;* E; —k_,E;S; is used).
Similarly, if p, affects w, specifically, the coefficientsCs; andC5; do not contain
derivatives with respect to p, either, but they have, in general, different values
from C§, and C3; in theformer case.

Moreover, a description of enzyme systems at the level of elementary rates
may lead to thefact that the summation theoremsare viol ated. For example, from
Egs. (5.217a) and (5.218a) one obtains

ow, ow aw, aw, \]7* v ow
¢+ ¢ = ( : —b)[D(—ba - —°b)] ((a - b= - a—"), (5.219)
" 12 ap; py ap, apy iAYS AYS

which is generally nonzero, in contrast to the summation theorem for metabolite
concentrahons. As a specia case, one may deal with a parameter p; whose
changes affect the rate constants of the elementary reactions by the samefactor.
Then one obtains p,-dw,/dp, = w, and p,-dw,p/dp; = wy,. Thisimplies, due to
the steady-state conditionw, = wy, that the summation theoremsarefulfilled.
Now we use the additional assumption that the total enzyme concentrationis
negligibly small compared to the steady-state concentrations S, and S5, that is,

Ep, < 5, 5, (5.220)

Using therate lavsw, = k.S, E, — k_, E\S; andwy, = k&E1S1 — k_y Sy-Ey,
the solutions §, and S, resulting from the steady-state equations
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v, W, 0, dS vy + 0,
-, = T Wy TV, -, =~ W, = U,
2 de L (5.221)
dES, dE
—d;—l=wa w, = 0, j=—w,+wb=o
aeinvariant with respect to the transformation
] *a ’ k:b ’
k=75 ke ="3% ES) =pES, B =pE (5222)
with a scaling factor p. Thistransformationimplies
f a ! b
a== b= (5.223)
14 14

whereasall other quantities which enter Egs. (5.217) and (5.218) remain unchan-
ged. In thelimit p — O, one obtains the control coefficients

= S, = =S, = S = (a - by P2, M
c o Ch=Ch=(@ b){a(asl 35, + 6S2) (5.224)

av. v aw\]™!
o
as, 35, a8

which no longer contain any derivative with respect to parameters. Thus, the
concentration control coefficients become independent of the choice of the per-
turbation parameter in the case of very low enzyme concentrations. Moreover, it
is seen from Eq. (5.224) that for p — 0 the summation theorem for concentration
control coefficientsis fulfilled.

The general conclusionsderived in the present section remain vdid if thetotal
enzyme concentrations act as perturbation parameters(Er,; = p). For thesystem
depicted in Scheme 14, for example, the quasi-steady-state condition for E,S,
reads

Wu(S1, E1S1, E(E\S(, Er, 1)) = Wy(Sy, E Sy, Ey(E\Sy, Er))) (5.225)

with E(E,S,, Er,) = Er, — E,S,. Takingthederivativewith respect to Ey, yields

—aElSl = ——1 (% — a_wE> 5 226

Er, a—b\OE, 9E (5.226)
and

__3\'1 = 1 (% a— % ) 5.227

OEr; a — b\3E o, (5:227)
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These equations correspond to Egs. (5.215) and (5.216), respectively, with the
concentration E; of the free enzyme formaly playing, on the right-hand sides of
theeguations, therole of the parameter. For the concentration control coefficients
resulting from variations in total enzyme concentrations, one again obtains ex-
pressions (5.217a) and (5.217b), where p; must be replaced by E; on their right-
hand sides.

The present resultsshow that in systems wherethetotal enzymeconcentrations
are comparable to the substrate concentrations and conservationrel ationsinvolv-
ing both substratesand enzyme-substrate complexes are present, both the indi-
vidual control coefficients and their sum may depend on the specific way of
perturbation (cf. Kholodenko et al., 1995).

Theanaysisin this section is closely related to the modular approach to met-
abolic control analysis (Section 5.12) where the subdivision of metabolic net-
worksinto functional unitsis studied. Accordingly, similar conclusions concern-
ing theroleof conservation relationsfor thecontrol coefficientsare drawn in both
approaches.

5.6.4. A System Including Dynamic Channdling

In Figure 2.1, a pathway is shown in which the conversion of a substrate P,

to a product P, proceeds both via a free intermediate, S,, and a complex E;S;E,
‘involving thetwo sequential enzymes. The schemeinvolves six elementary steps
with net velocitiesw; ,, w;p, and w; . (See Fig. 2.1). Thissystem is an example of
adynamically channeled pathway. The phenomenon of metabolicchannelingwill

be commented on in more detail in Section 5.15.

\Wenow wish to show that the concentrationcontrol coefficientsof theenzymes
depend on the choiceof the perturbation parameter, by choosing enzyme 1 asan
example. For smplicity's sake, assume the elementary step 1b in the considered
pathway to be irreversible (k_,, = 0). First, we consider a perturbation of the
reaction rate, v, of enzymek; in isolation, with thecomplex E,S; being at quasi-
steady-state. Differentiation of the Michaelis—Menten equation (2.20) yields

W _ PiEriki (k_1a + kip)
akla (klaPI +k_ la + klh)z'

v, P\Er ki.kip

-y, CaPr ¥ kg + kol

(5.228)

(5.229)

Now we study perturbations of the steady state of the whole system and, in
particular, effects on the concentration S;. Let w and S be the vectors of the six
elementary reaction rates and of the six variable concentrations in the scheme.
The responseof steady-stateconcentrations to parameter changes can be written
S
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oS ow _\"1 ow
- —(N" %S L) N°5 (5.230)

Y

[cf. Eq. (5.23)]..‘NO and L are the reduced stoichiometry matrix and link matrix,
respectively, of the detailed scheme consisting of elementary steps. Choosing a
perturbation parameter specific to reaction 1, Eq. (5.230) implies

a8, w,
— =1 5.231
ap, op, ¢ )

because all other componentsof aw/dp are zero. A is acommon factor resulting
from Egs. (5.230) and (5.231). Using w, = kP, E, — k_,E;S,;, oneobtains
from Eq. (5.231), with &;, or k_,, as perturbation parameters,

a8, a8,
= AP, +E R
dkya P ek,

= —1-ES,. (5.232)

One can caculate the non-normalized control coefficient of reaction 1 over the
concentration S, dternatively as

_3Sfok, P -E

. = -
N A

(5.233a)

or as

a8, /ok._ ES
==l _ =l (5.233b)

c_, =
Lotn ™ oy fok_ 1 ki

withy = AGkP; T k_ 1y T kuy)?/(ky,PoEx.). Thesetwo coefficientsareidentical
if, and only if,

kyy* Py Ey — (kg + k) - EiS, = 0. (5.234)

Theleft-handside of thisequation equalsdE,S,/dt + w.. ASE,S; isassumed
to be at steady state, Eq. (5.234) holdstrueonly if wy, = 0 (i.e., if nochanneling
occurs). Consequently, if the channel is operative, the vaue of the concentration
control coefficient of reaction 1 depends on which perturbation parameter has
been chosen. Thisis becausechanging the distribution of E, among its subforms
by atering a kinetic parameter influences the distribution of E, among its sub-
forms, through the complex E;E,S,. This effect is taken into account in the nu-
meratorsof the control coefficientsas given in Eg. (5.233). but not in the denom-
inators, because the derivativesav,/ok,, and av,/8k_,, are taken for the enzyme

-considered in isolation. As the flux control coefficients can be calculated from
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the concentration control coefficients, as given in Eq. (5.14), they are not inde-
pendent of the perturbation parameter in the case of channeling (cf. Kholodenko
et al., 1995). Note that unlikein the situation of moiety conservation considered

in Section 5.6.3, in the situation of channeling even parameters of one and the

same step givedifferent results.

57. NORMALIZED VERSUS NON-NORMALIZED
COEFFICIENTS

Upon derivation of the basic equationsof metabolic control analysisin Sections
5.2 and 5.3, we have mainly used non-normalized control and elagticity coeffi-
cients, athough control analysiswas originally developed in termsof normalized
coefficients. Generally speaking, mathematical operations with control coeffi-
cientsareeasier if unscaled derivativesare used (see Mazat et al., 1990; Heinrich
and Reder, 1991), whereas scaled coefficients are better suited for biochemical
interpretation. Because the measured values of fluxes through different metabolic
pathwaysand concentrationsof different intermediatesgenerally differ by several

orders of magnitude, a quantitative measure of control should be given in terms

of fractional changes. To some extent, however, it is gtill a matter of persona
preference which type of coefficient is used. In what follows, we will discuss
some advantages and drawbacks of the two methods of definitionin more detail
(see also Reder, 1988; Fell, 1992; S. Schuster and Heinrich, 1992). Asin the
present context theclear distinction between non-normalizedand normalized con-
trol coefficientsis essential, we denotethe latter onesby Cpom-

Rescdling d variables and parameters: In biochemistry, the term "flux" is
mostly used in the senseof steady-statevelocity of theformation (or degradation)
of aspecified metabolite. However, this interpretation may be ambiguousin sys-
temsincluding reactionsof higher molecularity. For example, the flux of glycol-
ysiscan be measured as the consumption rate of glucoseor as the productionrate
of lactate (which differ by the factor 2) and the flux of Na*/K*-ATPase can be
measured in terms of the Na™* transport, K* transport or ATP consumption, all
of them differingfrom each other. In contrast to non-normalized control coeffi-
cients, the normalized coefficients have the favorable property of being invariant
with respect to rescaling of fluxes. This can be shown in the following way, for
systemsaof any complexity. Rescaling of reaction ratescan be expressed by means
of adiagona matrix (dgA) constructed from an arbitrary vector A not containing
azero,

*y = (dgA)v. (5.235)

Similar transformation rules apply to steady-statefluxes and the derivativesdf
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reaction rates with respect to parameters. Note the difference between rescaling
o reaction rates and normalization of control coefficients. The former is related
to the way thegates areregistered, with those variablesremaining having physical
units, whereas the latter is a nondimensionalization.

Equation (5.235) implies that the transformed matrix of non-normalized con-
trol coefficientsobtains as

' "¢ = (dgA)Cldg4)L (5.236)
The normalization of *C’ hasto be done by use of the transformed fluxes,
*Crom = (dg TN"! TCdg ). (5.237)
From these equations one obtains
*Clom = Coome (5.238)

This identity implies, for example, that the control on the glycolyticflux isin-
dependent of whether thisflux isidentified with the consumption rate of glucose
or with the production rate of lactate, provided that normalized coefficients are
used.

It isreasonableto postulate that the control coefficientsshould beinvariant to
changes of the units of fluxes and concentrations. A change of the flux unit is
expressed by Eq. (5.235) with &l the components of the vector A being equal to
each other. A similar equation can be written to expressarescaling of concentra-
tions. It iseasy to see that the normalized control coefficientshave thefavorable
property to beindependent of such rescaling. However, it followsfrom Eq. (5.236)
that a changeof flux units(i.e., al thecomponentsof the vector A areidentical)
does not affect the non-normalized flux control coefficientseither Ge., *C/ =
). Unscaled concentration control coefficientshavethe samedimensionastime.
So they areindependent of the choiceof the concentration unit. Yet, they are not
invariant to a different rescaling of the particular reaction rates.

Similar considerationsapply if knowledgeof the exact reaction mechanism of

some of the reactions isincomplete, in that only theratiosof the stoichiometric

coefficientsare known. Any rescaling of thecolumnsof the stoichiometry matrix
must be accompanied with a reciprocal rescaling of the fluxes, asis seen from
the steady-state equation (2.9). Because this rescaling of fluxesis expressed by
Eq. (5.235), weagain obtain Eq. (5.238) and a similar equation for concentration
control coefficients. Thus, the normalized control coefficients are invariant to
rescaling of the stoichiometric coefficientsof the particular reactions.

Note that rescaling the perturbation parameters has neither an effect on the
normalized nor on the non-normalized control coefficients, because these param-
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eters enter both the numerator and denominator in the definition equation. x-
Elasticities are invariant to rescaling of parametersin their scaled form, but in
their unscaled form, they are not.

Extentd necessary knowledge: Asfor elagticities,it is worth mentioning that
normalized coefficients are sometimes available even if the non-normalized co-
efficientsare not. Thisis, in particular, the caseif the substrate concentrationis
well below the Michadlis constant. In this situation, the normalized elagticity &g
is virtually equal to unity [cf. Eq. (5.68)]. Similar considerations apply for the
parameter eladticities. For example, the normalized elasticity coefficient of the
enzyme concentration (g = 8lnv/8InE) is alwaysunity provided that the reaction
rate v depends linearly on E. Furthermore, in contrastto their unscaled counter-
parts, normalizedel asticitieshave thefavorable property of becomingindependent
of the kinetic parametersin the case of near-equilibrium reactions (see Section
54.1).

Interpretation: Another advantageof normalization arisesfrom theobservation
that many substratesand inhibitorshave in vivo concentrations comparable with
the corresponding Michaelis constants respectively inhibition constants [Lowry
and Passonneau (1964); for theoretical explanations by evolutionary arguments
cf. Section 6.1 as well as theworksof Crowley (1975), Cornish-Bowden(1976a),
and Wilhelm et al. (1994)]. On the basis of Michaelis—Menten kinetics, small
changes in substrate concentrationsand in enzyme activities are approximately

related as

Ay 1__AS (5.239)

v 1+ S/Keg S

Under the assumption that a certain ratio S/Kp,s is typical for most enzymes,
knowledge of the relative concentration change (which may result from the nor-
malized concentration control coefficients) allows conclusions about the relative
changes of reaction rates. In contrast, knowledge of the absolute concentration
changes (which may result from the non-normalized coefficients) only allows
conclusions concerning the absolute change of the reaction rate if, in addition,
the reference state as well as the enzyme parameters K,s and V, are known.
Similar conclusions can be drawn for the action of inhibitors or activatorsas far
asthehalf-saturationconstantsfor inhibition and activation, respectively,arecom-
parable to the corresponding in vivo concentrationsof effectors. One may argue,
in a sense, that usage of the scaled coefficients reflects biochemical redlity better
than unscaled coefficientsin that the evolutionary matching of average in vivo
concentrations and the corresponding half-saturation constants are taken into ac-
count.

Singularities: As every relative quantity, the normalized control and elasticity
coefficientshave thedrawback of having singularitiesif the quantity entering the
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definition in the denominator equals zero. As for flux control coefficients, one
can distinguish the two following cases: (a) someflux iszero, but it issusceptible
to control by some other reaction; (b) some flux is zero and remains zero when
any parameter specific to any other reactionis changed.

An examplefor case (a) is provided by Scheme 7 (Section 3.2.4), for which
there are special kinetic parameter valuesso that the steady-stateflux through one
reactionis zero (for example, J;). As soon as some kinetic parameter of reaction
1or 2isdightly changed, J5 is no longer zero, so that both the reactions 1 and
2 afect the flux through the third reaction. Wheress the corresponding unscaed
flux control coefficientshavefinite values, thenormalized ones areinfinitely large
dueto division by J;. So one may conclude that in the neighborhood of singu-
larities, the normalized control coefficientscan be very largeevenif the absolute
flux and concentration changes are small.

An examplefor case(b) obtainsif in Scheme7, oneof theexterna metabolites
(e.g., Py), isreplaced by aninfernal metabolite, that is, by asubstancewith variable
concentration. Reaction 3 is then detailed balanced in every steady state of the
system and its flux cannot, therefore, be influenced by any reaction. The non-
normalized flux control coefficientsexpressing the control exerted by reactions 1
or 2, which are not detailed balanced, on flux J; are zero, whereas the correspond-
ing logarithmic coefficientsare indeterminate.

Asfor concentration control coefficients, singularities need not be considered
because for thermodynamic reasons, no substance participating in & least one
reaction can be zero in steady states.

There may arise the mideading situation that a quantity entering the definition
of some normalized coefficientin thenumerator iszero, so that anonzero unscaled
coefficient can have a zero normalized counterpart. This difficulty arises, for ex-
ample, for response coefficientsand el asticitieswhen artificial inhibitors with zero
reference concentration are employed in experiment.

It is interesting that severa favorable properties of normalized flux control
coefficientsare retained if normalizationsother than that given by Eq. (5.34b) are
used. Using, instead of the flux vector J, any arbitrary vector k from the null-
space, one can define the matrix

Clom = (dgk)-'C(dgk). (5.240)

Whereastheflux vector Joftenisnot known, avectork can easily becomputed
from the stoichiometry matrix. Due to the generdized summation theorem
(5.44b), the coefficientsdefined by Eq. (5.240) satisfy the traditional summation
theorem (5.43). Furthermore, these coefficients have, like the coefficients nor-
malized by the flux vector, the property of being invariant to a different scaling
of the columns of the stoichiometry matrix, as thisis accompanied with arecip-
rocal rescaling of the components of any vector k. Normalization according to
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eters enter both the numerator and denominator in the definition equation. -
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their unscaled form, they are not.

Extentd necessary knowledge: Asfor elagticities, it is worth mentioning that
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efficientsare not. Thisis, in particular, the case if the substrate concentration is
well below the Michadlis constant. In this situation, the normalized elagticity &g
is virtually equal to unity [cf. Eq. (5.68)]. Similar considerations apply for the
parameter elagticities. For example, the normalized elasticity coefficient of the
enzymeconcentration (mg = dlnv/dlnE) isawaysunity provided that thereaction
rate v dependslinearly on E. Furthermore, in contrast to their unscaled counter-
parts, normalizedel asticitieshave thefavorabl e property of becomingindependent
of the kinetic parameters in the case of near-equilibrium reactions (see Section
54.1).

Interpretation: Another advantage of normalizationarisesfromtheobservation
that many substrates and inhibitorshave in vivo concentrations comparable with
the corresponding Michaelis constants respectively inhibition constants [Lowry
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Av 1 AS
Av_ 1 A5 5.239
v 1+ S/Kps S ( )

Under the assumption that a certain ratio S/Ks is typical for most enzymes,
knowledge of the relative concentration change (which may result from the nor-
malized concentration control coefficients) allows conclusions about the relative
changes of reaction rates. In contrast, knowledge of the absolute concentration
changes (which may result from the non-normalized coefficients) only allows
conclusions concerning the absolute change of the reaction rate if, in addition,
the reference state as well as the enzyme parameters K5 and V,, are known.
Similar conclusions can be drawn for the action of inhibitors or activatorsas far
asthehalf-saturation constantsfor inhibition and activation, respectively,arecom-
parable to the corresponding in vivo concentrationsof effectors. One may argue,
in asense, that usage of the scaled coefficients reflectsbiochemical redlity better
than unscaled coefficientsin that the evolutionary matching of average in vivo
concentrations and the corresponding half-saturation constants are taken into ac-
count.

Singularities: Asevery relative quantity, the normalized control and elagticity
coefficientshave the drawback of having singularitiesif the quantity entering the
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definition in the denominator equals zero. As for flux control coefficients, one
can distinguish thetwo following cases: (a) someflux iszero, but it issusceptible
to control by some ather reaction; (b) some flux is zero and remains zero when
any parameter specific to any other reaction is changed.

An examplefor case (a) is provided by Scheme 7 (Section 3.2.4), for which
thereare special kinetic parameter valuesso that the steady-stateflux through one
reaction is zero (for example, J3). As soon as somekinetic parameter of reaction
1lor 2isdightly changed, J, is no longer zero, so that both the reactions 1 and
2 affect the flux through the thud reaction. Wheress the corresponding unscaled
flux control coefficientshavefinitevalues, the normalizedonesareinfinitely large
due to division by J;. So one may conclude that in the neighborhood of singu-
larities, the normalized control coefficientscan be very large even if the absolute
flux and concentration changes are small.

An examplefor case (b) obtainsif in Scheme7, oned theexternal metabolites
(e.g., P3), is replaced by an internal metabolite, that is, by asubstancewith variable
concentration. Reaction 3 is then detailed balanced in every steady state of the
system and its flux cannot, therefore, be influenced by any reaction. The non-
normalized flux control coefficientsexpressing the control exerted by reactions 1
or 2, whichare not detailed balanced, on flux J; are zero, whereasthe correspond-
ing logarithmiccoefficientsare indeterminate.

Asfor concentration control coefficients, singularities need not be considered
because for thermodynamic reasons, no substance participating in at least one
reaction can be zero in steady states.

Theremay arisethe mideading situationthat a quantity entering the definition
of some normalized coefficientin the numeratoriszero, so that anonzero unscaled
coefficient can have a zero normalized counterpart. This difficulty arises, for ex-
ample, for response coefficientsand eladticitieswhen artificia inhibitorswith zero
reference concentration are employed in experiment.

It is interesting that severa favorable properties of normalized flux control
coefficientsare retained if normalizationsother than that given by Eq. (5.34b) are
used. Using, instead of the flux vector J, any arbitrary vector k from the null-
space, one can define the matrix

Clom = (dgB)™'Cdg k). (5.240)

Whereasthe flux vector Joften is not known, avectork can easily be computed
from the stoichiometry matrix. Due to the generalized summation theorem
(5.44b), the coefficientsdefined by Eq. (5.240) satisfy the traditiona summation
theorem (5.43). Furthermore, these coefficients have, like the coefficients nor-
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Eq. (5.240) may be of interest in situations where the usud normalization by
steady-state fluxes entails singul arities.

58. ANALYSSIN TERMSOF VARIABLESOTHER
THAN CONCENTRATIONSAND FLUXES

581 General Analysis

Control coefficientshad originally been defined to quantify the rate limitation
and concentration control a steady state. Later on, the concept was extended to
thecontrol of other quantities such as transition times, cell volume, and the trans-
membrane potential. Sometimes concentrations and fluxes are not the only im-
portant variablesfor describing a biochemical system. For example, models of
oxidative phosphorylation in mitochondria (Westerhoff and Van Dam, 1987,
Brand et al., 1988; Hafner et al., 1990) often include the proton-motiveforce,
Ay +, rather than the proton concentrationsin the cytosol and the mitochondrial
matrix, as state variables. Sometimes, concentration ratios such as ATP/ADP
(Westerhoff and Van Dam, 1987) or acetyl-CoA/CoA (Quant, 1993) are consid-
ered.

'In theanalysis presented in Sections 5.1-5.4, atacit distinction has been made
between variables which describethe state of the metabolic network and a set of
variablesof which the response to parameter perturbations has been studied. The
former have been the set of concentrations,S, and the latter the sets of concen-
trations and fluxes, Sand J. In a general treatment, a vector, X, of generdized
state variables, and a vector, Y, of generdized response variablescan be defined.
Both sets may include concentrations, concentration ratios, reaction affinities,
energy charge, proton-motiveforce, transmembrane potential, and so on. In con-
trast, steady-state fluxesand transient times characterizing the time necessary to
reach asteady state can be taken as response variables, but not as state variables,
because they depend on system parameters. As the name suggests, statevariables
characterize the state of the system, which need not be a sationary state. They
do not directly depend on any parameters. The response variables[output vari-

ablesin theterminology of Cornish-Bowdenand Cérdenas (1993)] can bewritten ¢ 1

asfunctions of the state variables and the system parameters:

Y = YX,p). (5.241)

\We denote the numbersof componentsof X by &. For thisanalysis, we assume
that the reaction rates can be written as functions of X andp [i.e.,v = v(X,p)].
The state variables may be subject to m independent side constraints,
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aX, ... X) =0, i=1...,m (5.242)

Examples of such side congtraints are the conservation relations (3.3) and Eq.
(5.168), which links the proton-motiveforce to the inner and outer proton con-
centrations and the transmembrane potential.

Provided that the vector X contains sufficient information so that v can be
expressedin terms of X and p, the steady-state equation (2.9) for the concentra-
tions requires, as only rank(N) eguations in this matrix equation are linearly in-

dependent,
N%X,p) = 0. (5.243)

Becausethis equation together with the side congtraints (5.242) determinesthe
vaues of the state variables X at steady state, we can conclude that m = & —
rank(N), which means that introducing an extra state variable implies imposing
an extrasideconstraint. Tota differentiationof Eq. (5.243) with respect to vector
p vields

NOZ—" +e2&_, (5.244)

p &ap

Due to the side congtraints (5.242), the vector X can be partitioned into a
subvector X, of independent variablesand a subvector X, of dependent variables,
similar to the vector Sin Eq, (3.8). Thesesubvectorsinvolverank(N) components
and ¢ — rank(N) components, respectively. Note that the dependencies between
these variables need not be linear, at variance with the dependencies between S,
and 8, in conservation relations.

Equation (5.242) can be rewritten in vector form,

X, X)) = 0. (5.245)
Totd differentiation of Eq. (5.245) with respect to X, gives

% , %8 Xy _
X, + 3X, X, 0. (5.246)

The matrix ag/6X;, is square becausethe number of dependent variablesequals
the number of constraints. Moreover, this matrix is nonsingular because the con-
straints are assumed to be independent. Therefore, Eq. (5.246) yields
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=1
Xy _ _(3_5’) % (5.247)
X, X,/ oX,
So we obtain
' I
ax
ﬁ“(_(a_g)_la_g)' (5.248) ,
oX,/ X,
Equahon (5.244) reads, in more detail,
NS + podr Hax o (5.249)
ap dX aX, dp
which gives
& _ _ a_ﬂ) o
» (N X 9X, Noap (5.250)

with 4X/3X, given by Eq. (5.248). The derivativesav/oX play therole of elastic-
ities.
One can now definea matrix of unscaled coefficientsexpressing the control

on the variables ¥;:
=1
dp\op

wherep isan r-dimensional subvector of the parameter vector used 1n Eqg. (5.243)
for which (3v/ap) is nonsingular. Here, the total differentiation sign d/dp is used
because not only the direct effect of p on Y but also theindirect effect viaX must
be taken into account. In the definition of the flux control coefficients, the dis-
tinction between partial and total derivativeis not necessary because different
symbolsfor isolated rates, v = ¥(S,p), and steady-statefluxes, J = J(p) are used
[cf. Eq. (5.8b)).
From Egs. (5.241) and (5.250), one derives

(5.251)

aY oX a0 OV
aanaM‘) Noap’

dy oY

o o

oY oX oX, oY

= 252
oX aX, dp ap 6252

where
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av X
Mg = N0 222
X X 0X,

(5.253)
is the Jacobian matrix of the vector function on the left-hand side of Eq. (5.243).
Substitution of Eq. (5.252) into Eq. (5.251) gives

a¥fov\™! Y ax
Y — or _ o2 o4 -1
¢ 5(@) X X, ML)TIN®.

(5.254)
Some particular cases deserve special mention. When interested in the control on
the state variables X, one can smplify Eq. (5.254) to

_ %X -1
Ccx = X, M%) ~INS, (5.255)

as X does not depend on p directly. Often, Y can be written as a function of X
and the reaction rates v,
Y = Y(X,v(X,p)). (5.256)

An exampleis provided by the transient times defined by Easterby (1981), which
will be dealt with in Section 5.8.4. From Eqg. (5.256), we obtain

= +
dp dvap

dY aYov (aY )
wvoxX  aX|

aX 98X,
v) B_Xn 5 , (5.257)
where the symbol | means that the derivativeis taken at constant v. This gives,
due to Egs. (5.250), (5.251), and (5.253),

oA (y )X
v av aX + oXl, aX,M") N°. (5:258)
In particular, if Y equalsthe flux vectorJ, we have
L), P I
C=1 X aXaMx) NC, (5.259)

If, in addition, X = S, Eq. (5.259) coincides with Eq. (5.26b).

Note that if theresponsevariablesY depend only on the state variables, X, or
on the reaction rates, v, the control matrix C" does not depend on the special
choice of the parameter vectorp [cf. Egs. (5.255) and (5.258)]. In contrast, if Y
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additionally depends on p directly, the control coefficients do depend on this
choice,

Unified summationand connectivity theorems. Postmultiplying Eq. (5.254) by
the null-space matrix K, we obtain, due to Eq. (3.44),

-1

cg =2 (ﬂ) ‘K. (5.260)
op \p

Thisequationcan beregarded as a unified summation theorem. Postmultiplication

of Eq. (5.254) by (aw/aX)(9X/8X,,) gives, owing to Eq. (5.253),

(5.261)

X [BY(Q)“Q aY] X
ap

aX axX, p) oX aXlox.'
which is a unified connectivity theorem. The notion "unified" refers to the fact
that both for the summation theorem and the connectivity theorem, only one
equation need be written instead of separate equationsfor concentration control,
flux control, and possible other quantities.

If Y = X, Eq. (5.260) smplifiesto

CK = 0. (5:262)

Thisequation is a generalization of the summation theorem (5.44a) for any gen-
eralized state variable.

When Y depends on p only via, asindicated in Eqg. (5.256), we have

Y Y av

Pl 5 s (5.263a)
Y oY Y dv

x ﬂJ, 7 X' (5.263b)

Note that the derivativeon the left-hand side of Eq. (5.263b) is taken at constant
p. Therefore, Eq. (5.260) yields

g =X
CK=—K (5.264)
Moreover, Eq. (5.261) gives
ay| aX
¥ a _ (5.265)

xax, A

Analysisin Termsdf VariablesOther Than Concentrationsand Fluxes 221

Equations (5.264) and (5.265) are generalizations of the summationand connec-
tivity theorems, respectively, for any response variablethat depends on v and X
only [cf. Eq. (5.256)], In particular, the summation and connectivity theoremsfor
concentration control coefficients and flux control coefficients result from the
above equationsby obvious substitutions.

5.8.2. Concentration Ratiosand Free-Ener gy Differences
as State Variables

This section is devoted to further illustration of the general analysis presented
in the previous section. Consider first the situation that in a given system two
concentrationsenter aconsarvation relation of theform §; + S, = const. §; and
§, may stand, for example, for NAD and NADH, respectively. In this situation, it
isusua practicein biochemistry to interpret experimental resultsin terms of the
concentrationratio X; = §,/5; (see Hofmeyr et al., 1986; Quant, 1993). Itisthen
possibleto replace the concentration vector S by a vector

S T
X= (—l, Sy + 85 8.0, S,,) . (5.266)

S

Theelasticityov,/aX; = av,/8(S,/S,) istakenat constant §; + S, andtheelasticity
v JoX, = av/a(S, T ;) a constant ratio S,/S,.
The unified connectivity theorem (5.265) implies, with Y = J,

dv, X
pads =0
2,‘ 79X, 8(8,/S2)

for the flux control coefficients. The right-hand side is zero because the partial
derivativeof J with respect to X vanishes. Equation (5.267) can be simplified to

So—%__g (5.268)

T % aS)/Sy)

Thisconnectivity theorem has also been given by Hofmeyr et al. (1986). Equation
(5.268) holds true only if the elasticitieswith respect to the concentration ratio
are determined with the sum of the two concentrations kept constant. It also
applies when X; is defined as In(S,/S,), which isrelevant for an interpretationin
terms of free energy (see below).

The above calculationsare of particular importance for reaction systemsin-
volving cofactor pairs such as ATP/ADP or NAD(P)/NAD(P)H. In the case that
S; = NAD and S, = NADH, it is easy to see that Eq. (5.268) implies, for the
normalized coefficients, the following connectivity relation:
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> Ck Supman = 0, (5.269)
k

where e, pnany 15 the elasticity of reaction k with respect to the NADNADH
ratio. To calculate this elagticity, one can represent NAD and NADH in terms of
the NADNADH ratio and the conservation sum, NAD + NADH. One obtains

&ap - NADH — &,y - NAD

5.270
NAD T NADH ¢ )

ell:lAD/NADH =

A similar elasticity can be calculated with respect to the acetyl-CoA/CoA ratio
(Quant, 1993).

Related elasticities were defined with respect to molar free-energy differences
of reactions (Westerhoff et al., 1983; Westerhoff and Van Dam, 1987),

= 4G
b =%, 386, (5.271)
A relevantexampleisthee ectrochemical potential differencefor protons(proton-
motiveforce), Ay, across mitochondrial or other membranes[cf. Eq. (5.168)1.
Such elasticitieshave been used in various studies (Brand ¢ al., 1988; Hafner et
al., 1990; S. Schuster & al., 1993a).

In a mathematically rigorous notation, one should indicate what quantities
remain constant when the derivativedv, /dAG; is cal culated. Thisdependson what
variablesother than AG, are included in the vector X. The difficulty arisesfrom
thefact that reaction rates cannot, in general, be written as functions of the free-
energy differencesonly (see Section 2.2.3). For example, elasticitieswith respect
to Afzy depend on what other variables are kept constant (5, Hi:, AY).

5.8.3. Entropy Productionas a Response Variable

A thermodynamically relevant responsevariableis thetotal entropy production
of metabolic pathways, o, defined by Eq. (3.74). In analogy to Eq. (5.16) one
may define unscaed control coefficients for the entropy production rate as
follows:

da = C%3v, (5.272)
where the vector C? containsthe elements
d0/3
= /a‘; :. (5.273)
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According to Eq. (3.76), the entropy productionrateis a linear function of the
steady-state fluxes J; becausefor given externa conditions, the coefficientsIn(g;)
are fixed. This entails a direct relation between the flux control coefficientsand
the control coefficientsfor entropy productionrate. For the unscaled coefficients,
one obtains

cr =R 21 ClIn(g). (5.214)
F=
Thisequation may be rewritten as follows:
o= Rln( I (q,.)cfr>. (5.275)
j=1

It shows that control of entropy production is closely related to control of all
independent fluxes. Although our aimis here primarily to givean exampleof the
generd trestment presented in Section 5.8.1, we note that Eq. (5.275) may bea
starting point for optimization analysis concerning thermodynamic efficiencies
(Kedem and Caplan, 1965; Stucki & d., 1983).

From Egs. (3.76) and (5.44b) it followsthat the control coefficientsfor entropy
productionfulfill the generalized summation theorem

S Cfky = RS kyn(g) = Rln( I1 qfﬂ), (5.276)
1=1 Jj=1 Jj=1

where the k; denote the elements of the null-space matrix K. Note that the term
in parenthesesin Eq. (5.276) also enters the generalized Wegscheider condition
(3.64b).

5.84. Control of Transent Times

Asoutlined in Section 4.1, an agreed definitionfor transient timesonly exists
for isolated reactions obeying first-order kinetics [Eq. (4.1)]. Another definition,
which takesinto account the systemic interactions, is based on the eigenvalues of
the Jacobian matrix [cf. Eq. (4.6)]. Thereare several approachesto defineaverage
relaxation times. However, all of these definitionsare applicable only under very
special conditions. For control analysistwo different definitionsof transient times
have been used primarily.

1. Eaderby consdered an unbranched reaction sequence (see Scheme 11, Section
5.4.3.1) wherethe input and output reactions are assumed to be irreversible (Eas-
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terby, 1981). Initiatingthereactionsat ¢ = 0 with initial metaboliteconcentrations
S0y = 0 and P,0) = 0, the condition of mass conservation leads to

wt =Py + 3 50 (5.277)
i=1

whereit isassumed that theratev, = kP, of theinput reaction isconstant. Because
theoutput reactionisirreversible,theconcentrationssS; may attainastationary state
for ¢t — w, With§; = const. Eq. (5.277) definesin a(z,P,) diagrama straight line
which intersectsthe timeaxisat z = 7 with

n n
2 =2 (5.278)
i= i=1

(.1I'-4

z iscalled the"overal transient time"* of the pathway. In Eq. (5.278), J = v; has
been taken into account. Accordingto definition(5.278), ¢ characterizesthe time
needed to generate the steady-stateconcentrations. z; = §;/J is the transient time
of intermediates,. A generalizationof this definition for the case of unbranched
reaction chains with some steps having non-unitary stoichiometrieswas given by
Meléndez-Hevia et al. (1990). In eq. (5.278). the sum of concentrationshas then
to be replaced by a linear combination with the coefficients being products of
stoichiometric coefficients.

A more general definitionof the averagetransient timefor a metaboliteS; is

o

j tAS(Hdt
N M & (5279)
L= = 4 V.417)
[ AS (Hdt
J
0
with
AS(Dl,=o = AS?, lim AS(r) = 0 (5.280)

(Heinrichand Rapoport, 1975). If the perturbationsare sufficiently small, thefunc-
tions AS(z) = 8S#) are determined by the linear approximations (2.82) of the
system equations (2.8). An advantageof expression (5.279) compared with defi-
nition (5.278) isthat it applies not only to unbranched chains with aconstantinput
but to the intermediateconcentrationsof any reaction network. It has been applied
also in the theory of tracer kinetics (Gitterman and Weiss, 1994). in the analysis
of metabolic channeling (Heinrich and S. Schuster, 1991) and in other fields of
mathematical modelling of biological systems (Overholser ez al., 1994). Note that

!
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Eq. (5.279) resultsin Eq. (4.1) when applied to a single monomolecular reaction,
because the relaxation process may then be described by only one exponential
function, -,

For the case that the system involves conservationrelations, definition (5.279)
only appliesif the perturbationsdo not violate these relations.

For the calculation of the transent times r = (z, . . .,z,)T defined in Eq.
(5.279), the following general procedure may be applied. With §§ =
(8Sy....,88,)", integration of Eq. (2.82) yields

T dbs T
[ 250 4 = m [ 550 (5.281a)
J J
0 1]
and under consideration of Eq. (5.280),
—88° = M4, (5.281b)

where the integrals on the right-hand side of Eq. (5.281a) constitute the vector A
= (A;,..., A"
Partial integration on the left-hand side of the equation

° s w
f d_ = Mi' t88(2) dr (5.282a)
yields, duetolim [tS(] = 0
10
- A= MB, (5.282b)

where the integTrals on the right-hand side of Eq. (5.282a) constitute the vector B
= (B, ...,B)"
From Eqs (5.281b) and (5.282b) the vectors A and B and, therefore, the vector

of the transient t|m67 = (By/Ay,. ..,B,/A)T can becaculated from theinitial
perturbations 8S° and the Jacobi matrix M without explicit knowledge of the
relaxation function 8S;(H). With M = N w/a8, one obtains

-1

4= _(N Z_;) 85 (5.2832)
F] -2

5= (N é) 85" (5.283b)

These equations have been derived for the case of no conservation relations. If
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the system does involve such relations, Egs. (5.283a) and (5.283b) include the

link matrix L.
Using definitions (5.278) or (5.279), control coefficientsfor the transient time

7; of ametabolite S; may be calculated in the following way:

T = ﬁmsa_hi (5.284)
T v Jip, dlny

where p, denotes any reaction-specific perturbation parameter. The control co-
efficients Cf of the"overdl transent time" are defined smilarly.
Using definition (5.278) the problem of transient-timecontrol isclosely related

to that of fluxes and metabolite concentrations(seeMeléndez-Hevia et al., 1990).
With z; = S;/J, one obtains

9% _ 197 (5.285)

Thiseguationimplies, under consideration of Egs. (5.37a), (5.37b) and (5.284),
% = Ci — Ci, (5.286)

where C}, denotes the normalized transient-timecontrol coefficientsof metabolite
S;. Analogoudly, one getsfor the control coefficientsof the overall transient time

2 5C
CI:=‘ 1

= -cl (5.287)
> S '
i=1

Substitution of Egs. (5.278) and (5.284) into expression (5.287) gives

P=2 -Z- Cs. (5.288)
i=1

On the basis of definition (5.279) the normalized control coefficientsfor the
transient time of a metabolite S; is given by the expression

alnB,/dp, _ alnA,/dp,
aln~ ~ 1 a plrv/op,” (5:289)

Ci =

Summation theorems. From Egs. (5.286) and (5.287), which are derived from
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Easterby's definition of transient times, one gets under, consideration of sum-
mation theoremsfor concentrations and fluxes [cf. Egs. (5.42) and (5.43)],

A

> cr= -1, (5.290a)
> = -1, (5.290b)

which are the summation theoremsfor the transient times of individual metabo-
litesand for theoverall transient time, respectively (Heinrich and Rapoport, 1975).
These theorems, which can aso be derived from the unified summation theorem
(5.260), express thefact that an activation of al enzymes by the samefractional
amount (which is equivalent to adivision of thetimescaleby thisfactor) reduces
all transient times by this factor. This fact holds true for al time-independent
variableswith dimension of time (Acerenzaand Kacser, 1990).

Now it is shown that the control coefficientsderived from the alternative def-
inition (5.279) of transient times aso fulfill the summeation theorem (5.290) as
long as the perturbation parameters are reaction-specificand enter the rate equa-

tion »(S,p) as multipliers, that is,

v,
D B, (5.291)

. *

Differentiation of Eq. (5.281b) with respect to the perturbation parametersyields,
with the Jacobian M = N(av/3S),

&% ( av>aA
N A+ |[N=]==0 .
235 Nas » 0 (5.292)

In this equation, mixed second derivatives of the reaction rates with respect to
metabolite concentrationsand kinetic parameters appear (cf. the second-order
approachto metaboliccontrol analysisin Section5.9). However,from Eq. (5.291),
thefollowing simplification results:

g (5.293)
P95 peos,

One getsfrom Eq. (5.292)
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v 3A
-1 4 i (5.294)
N(dg( ))(dg p) N $ P 0.

Postmultiplication of this equation by the parameter vectorp yields

GA
— At = 5.295)
N2 3 N sl =7 ¢

and becauseM = N av/aS is assumed to be invertible,

%p= A o oA _ (5.296)

p =| 9 lnpk
In asimilar way, one derives, by differentiation of Eq. (5.282b)

4 NT et N2E, (5.297)
9 &b

and with Eq. (5.296),

-8, , B _ _, (5.298)
op k=10Inp,

Together with Eq. (5.289), Egs. (5.296) and (5.298) | ead directly to thesummation
theorem (5.290).

Connectivity theorems: Using Eq. (5.287), the connectivity theoremsfor the
fluxes and metabolite concentrations imply connectivity relationships for the
trans ent-time control coefficientswhich read, for unbranched chains,

E 8y (5.299a)
r n -1 .

> Ciey = —S,-(E S.-) (5.299b)

k=1 i=1

(Melkndez-Heviaet al., 1990).

We will now show that the connectivity theoremsfor the transient times are
specia cases of the unified connectivity theorem derived in Section 5.8.1. Ac-
cording to Eq. (5.278), theoverall transient timeis expressed as afunction of the
metabolite concentrations and theflux in a reference steady state. As thekinetic
parameters do not enter expression (5.278) in an explicit manner, the unified
connectivity theorem assumes the form given in Eq. (5.265) with Y = 7 and X
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=85=(,...,5)% From Egs. (5.265) and (5.278), oneobtains, for theunscaled
coefficients,

&

o1

r 1 a
g . _s s 7 (5.300)
Introducing normalized coefficients(i.e., Ci v,/ — C%) and by taking into account
the steady-state condition v, = J, relation (5.300) can easily be transformed into
theconnectivity theorem (5.299b). In asimilar way, Eq. (5.299a) for the transient-
time control coefficientsof individual metabolite concentrations can be derived
from the unified connectivity theorem (5.265).

For unbranched reaction chains with no allosteric regulations, Eq. (5.299b)
smplifiesto

n -1
Cigy + Clergrey, = —S(E ) (5.301)

because therate of any reaction depends on its substrate and product only. With
& <0, &1, > 0 [cf. assumption (5.104)], it follows immediately from Eq.
(5.301) that:

@ if C;>0,then
G>o0fori<j (5.302a)
(b) if Cf <0, then
Cf <Ofori>j (5.302b)
This result and the summation theorem (5.290b) imply that the transient-time
control coefficient of the last enzyme will always be negative (Melkndez-Hevia
et al., 1990).
Let us consider the most simple case that in Scheme 11 (Section 5.4.3.1) all

reactions are irreversible and may be described by first-order kinetic equations.
Then, the steady-state concentrationsand the steady-state flux are determined by

; .
S§; = T J=hb (5.303)
i+ 1

and the concentration control coefficientsand flu control coefficients turn out
to be
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_ 1 forj =1

Cl = [—SMJ. forj = 2, (.3042)
_J1 forj=1

G = [o forj = 2. (5.304b)

Introducing this into Eq. (5.287) yields
Cci=0, (= —,,Hl/k' forj = 2. (5.305)
> (Uky)
i=2

A comparison of Egs. (5.304b) and (5.305) shows that reactions which have
alow or even vanishinginfluence on steady-statefluxesmay exert a strong control
on transent times and vice versa. Furthermore, it is easily verified that the co-
efficientsgiven in Eg. (5.305) fulfill the summation relationship (5.290b).

585 Control of Oscillations

The possibility of periodic time-dependent changes of enzymic systems has
always been a centra point in the mathematical anaysis of metabolic processes
(see dso Section 2.4). Despitethe fact that for many systems the physiological
roleof the observed oscillationsis still unclear, it has sometimes been argued that
the cellular response toward oscillationsis governed by their frequencies rather
than by their amplitudesor by the mean levelsof oscillatingconcentrations (Rapp
et al., 1981; Rapp, 1987; Bemdge, 1989; Goldbeter and Li, 1989; Goldbeter et
al., 1990).

It seems to be worth generalizingthe concept of control coefficientsto oscil-
lating systems in order to characterize, for example, the role of the individua
reactionsin determining the frequency of the observed oscillations. Such a gen-
eralization, however, meets with severd difficulties, outlined below. The theory
of control of oscillations, in the sense of metabolic control analysis, is far from
being elaborate, and we will give some basic ideas only.

As afirst step toward a control analysisof oscillating processes, one might,
therefore, define control coefficients characterizing the effect of changesin en-
zyme activitieson the frequencyf or the period T of oscillations. A direct appli-
cation of the usual definitions (5.3) or (5.5) of control coefficientsis hindered by
the problem that there is no well-defined time-independent reference statefor the
activity v; of step j which entersthe denominatorsof theseequations. In contrast,
this problem does not arise for response coefficientswhich may be defined in the
following way:

p; 0T
Rf =+ —, 5.306a;
. (5.3062)
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- _pr=2%
R = -R] o . (5.306b)
(Markus and Hess, 1990; Baconnier et al., 1993; Westerhoff et al., 1996), where
p, denotes a parameter, for example the enzyme concentration of reaction j. In
principle, it is also possible to defineresponse coefficientsfor the amplitudesA,
of oscillating variables, notably concentrations Si(f), in the following way (Ba-

connier et al, 1993):

@
S

R = (5.307)

L}

> |33

»
#|

In the case that the kinetic parameters p; enter the rate equations in a linear
manner, the normalized response coefficients for oscillations fulfill summation
relationships which may be rationalized as follows. Let us compare the time-
dependent changes of two oscillating systems A and B starting with the same
initial conditions. Concerning the kinetic parameters, we assume thatpf = At
forj = 1,..., r. Becausethe system equationsdepend in alinear manner on the
ratesy; [cf. Eq. (2.8)], achange of the parametersp; by acommon factor 4 results
merely in a change of the time scale. In system B, the same motions take place
asin system A but faster @ > 1) or dower @ < 1). In particular, one obtains,
for the frequency,

fGpy, ... Ap) = Apy, ..., p) (5.308)
and for the amplitudes of oscillating concentrations,
Apy, ..., Ap)) = APy, ..., P)- (5.309)

Differentiation of these equations with respect to A yields, for 4 = 1,

S dlnf d
= Rf =1, 5.310a)
fé:l dlnp; f§1 4 ¢
S dlnd;, <
- SRi=0 (5.310b)
,Z dlnp; ,gl Y

[see Acerenzaet al., 1989; Acerencaand Kacser, 1990) as well as the derivation
of the relationships (5.50a) and (5.50b) in Section 5.3.1].

As an example we consider the two-component model which has been pro-
posed by Higgins (1964) and Selkov (1968) for the explanation of glycolytic
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M W ow

dvy = kP the system equatlons
tion 2.4.2). Withy = 2 and V1
oscillations (see Sec e Torm
(2.1192) and (2.119%) assume
ek~ eSS (53112)
‘f:s,’ =~ R2$15% — kaSa (5.3110)
with S, = const. The only steady state obtains as
i AP,
8 = —2 = 54
T kP 5 & (5.312)
Equation (2.122) implies that this stateis unstablefor
s " 5313
b < g = 4 (5:313)
1471

Let us consider oscillationsobtained for parameter vaues at k, = K™ (i.e.,
near the Hopf bifurcation). There, one obtains with Eqg. (2.121) the following
estimatefor the oscillation frequency

4
fg%; - k;_fz’l\/% G319
3

whereas the amplitudes A; of the oscillating concentrations S; are vanishingly
small. From Eq. (5.314), onederives, for the normalized response coefficientsof

the frequency,

dlnf _ alnf 21 alnf _ -1 (5.315)
ahk . dlnk, 2 adlnk 2'

which means that a stimulation of reactions 1 or 2 will result in an increase, and
a gtimulation of reaction 3 in a decrease of oscillation frequency. It is seen that
the response coefficientsfulfill the summation relationship (5.310a). According
to Eq. (5.306b), the response coefficients of the period T sum up to —1, which
isin accord with the summation relationship for the control coefficientsof tran-
sient times given in Eq. (5.290).

In a more genera treatment, one may consider the frequencies of oscillations
in unbranched two-component systems described by the differentia equations

as: (5.316)
_—-l = V] - v25

dt
d

s

(5.317)

The determinant 4 and, ther

efo:
scaled elasticities in the followiny the frequency f ma

owing way:

4 =

with g; = 9v,;/3S;. For the system depicted in Scheme 5 (Section 2.4.2). one has
&1 = &3 = & = 0 and Eq. (5.318) simplifiesto

4 = g3 = ;_;%- (5.319)
1 952

Taking into account that the el asti citiesare dependent on the steady-state con-
centrationsof §; and S,, onederivesfor theresponsecoefficientsfor thefrequency

onf_ (P Puis, o )

alnk,  26,,\08, 3k,  ast ok, S, S, ok, (5.320)

K ( Py P 35 4 P38,
2630\3S, 0k; 85,05, k; 453 Ok

From thisequation,one may concludethat the response coefficientsof frequencies
for oscillations observed near aHopf bifurcation may be expressed by coefficients
characterizing the control of steady states; that is, first-order and second-order
eladticity coefficientsav,/as;, a%,;/05:38,, and av,/3S,9k; as well as thefirst-order
response coefficientsfor steady-stateconcentrations (3S;/3k;). For more details
concerning the second-order el agticities see Section 5.9.

For parameter combinations within the interior of the instability region oscil-
lations with finiteamplitudes for the concentrations S; may be obtained. There,
explicit solutions cannot be obtained for the frequency nor for the amplitudes, so
that response coefficientsshould be calculated numerically.

59. A SECOND-ORDER APPROACH

Owing to definition (5.16), control coefficientsdescribe theresponse of thesystem
variablestoinfinitesimally small rate perturbations. In thissense, they characterize
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Y be expressed by the un-

&11&: — &y5E& - & E21 & E22€:
22 12 &32 F E£1583; + 3
21 11632 12831 21832 1 (5.318)
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oscillations (see Section 2.4.2). Withy = 2 and vy = &Py, the system equations
(2.119a) and (2.119b) assume the form

a8 _ Py —~ k855 (5.311a)
dt
% = 05,52 — kS, (5.311b)

with §; = const. The only steady state obtainsas

k% klPl
-k Lty (5312)
STy 2Tk

Equation (2.122) implies that this stateis unstablefor

B _ 5.313
kz<k%P%—k;n’ (5.313)

Let us consider oscillationsobtained for parameter values at &, = K" Ge.,
near the Hopf bifurcation). There, one obtains with Eq. (2.121) the following
estimatefor the oscillation frequency

f= E - ’f_lﬂ\/é, (5.314)

whereas the amplitudes A; of the oscillating concentrations S; are vanishingly
small. From Eq. (5.314), onederives, for the normalized response coefficientsof
thefrequency,

alnf _ L dinf _ dlmf 1 (5.315)
dlnk;

1
alnk, 2° dlnks 2’

which means that a stimulation of reactions1 or 2 will result in an increase, and
a stimulation of reaction 3 in a decrease of oscillation frequency. It is seen that
the response coefficients fulfill the summation relationship (5.310a). According
to Eg. (5.306b), the response coefficientsof the period T sum up to — 1, which
isin accord with the summation relationship for the control coefficientsof tran-
sient times given in Eq. (5.290).

In a more genera treatment, one may consider the frequencies of oscillations
in unbranched two-component systems described by the differential equations
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ds
5 S (5.316)
= ds

d—: = - (5317

The determinant A and, therefore, the frequencyf may be expressed by the un-
scaled el asticitiesin the following way:

4 = ey — Ex8y — Enay T EnEa + Exdxn — Ex8y (5.318)

with &; = 8v;/aS;. For the system depicted in Scheme 5 (Section 2.4.2), one has
&1 = &3 = &, = 0 and Eq, (5.318) smplifiesto

2

_ oy

A= eyesn = as (5.319)

O

S,

Taking into account that the el asticitiesaredependent on the steady-statecon-
centrationsaof S, and S,, onederivesfor theresponse coefficientsfor thefrequency

Alnf _ k[ v +,12_ugas,+_azu,_as,)
alnk  26,\aS, 3k aS 8k  as,as, ah

L &vy + v a5,
From this equation, one may concludethat theresponsecoefficientsof frequencies
for oscillationsobserved near aHopf bifurcationmay beexpressed by coefficients
characterizing the control of steady states; that is, first-order and second-order
elasticity coefficientsdv;/as,, 9%v,/388S,, and 9%v;/aS,3k; as well as the first-order
response coefficients for steady-state concentrations (35,/0k;). For more details
concerning the second-order elasticities see Section 5.9.

For parameter combinations within theinterior of the instability region oscil-
lations with finite amplitudesfor the concentrations S; may be obtained. There,
explicit solutions cannot be obtained for thefrequency nor for theamplitudes, so
that response coefficientsshould be calculated numericaly.

5.9. A SECOND-ORDER APPROACH

Owingto definition(5.16), control coefficientsdescribetheresponsedt thesystem
varigblestoinfinitesmally small rate perturbations. In thissense, they characterize

T e
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local systemic properties of a biochemica network in the vicinity of a stable
steady state. Elasticitiesare al so sometimesreferred to aslocal properties, because
they characterize single enzymes rather than the whole system. To avoid confu-
sion, one should prefer the term component property in the context of elagticities
(cf. Liao and Delgado, 1993).

Asregulation of enzymes by effectors can cause substantial changes of their
activities, it may be questioned to what extent the effects of rdevant parameter
perturbations can be described by the linear approximation (5.15). Apart from
haing of theoretical interest this problem is related to practical applications such
as genetic engineeringin biotechnology for which metaboliccontrol analysis has
been suggested as a useful tool (Westerhoff and Kdl, 1987; Galazzo and Bailey,
1990; Fell, 1992).

Thequestion of to what extent an enzymecontrolsaflux may also be analyzed
in the way that one asks what happens when the enzymeis completely inhibited.
Whether or not the flux under consideration is then still present can be decided
by analyzing the zero and nonzero entries in the null-space matrix. It may occur
that an enzyme has a high flux control coefficient,although it is not necessary
for that flux becausea parallel routebypassing theenzymeexists. Such ananalysis
can, however, only provide qudlitative assertions.

In the present section we wish to analyze how metabolic control anaysis can
b extended to give more accurate predictions for the changes of the system
variablesthan the smplelinear approximation for finite parameter perturbations.
The gtarting point is the power series expansion (5.9). We now focus on the
quadratic approximationwhich takesinto account the second-order derivativesof
thesystem variableswith respect to thekinetic parameters. The concentration and
flux changes after perturbations of the parameter vector is approximated by

as 1 028
_9% +23 22 0)ApAps (5.321a)
ap ®)ap 2 g’ 9p.Opg ©)pLs

1

2-;

Apg. (5.321b)

It has been shown in Section 5.2 that thefirst-order terms 8S/8p and 8J/dp can
be obtained by implicit differentiation of the steady-state equation (2.9) with
resultsgiven in Egs. (5.11) and (5.12). In a similar way, the second-order terms
are obtained by differentiating Eqgs. (2.9) and (5.8) twice with respect to the
parameters. By consideration of Egs. (5.13) and (5.14), this results, after some
algebra, in the following expressions:
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&s, S % 2y,
2 _ 2 2 C‘j- aV, Cs;cs. aV,aV

apaapﬂ ilm=1 jk=1 ' als:, aSk 4 apa apﬂ
= O e 3, v v, v, .
cERaliign. Pign)
i.k2=1 ,2’1 "'(aS,- apg *dp,  8S;3p. " apy (5:322)
2
4 C‘.f,- v,
i=1  9p,dpg
and
&7, . “ 8%, av, v,
—r - ¢l i s s ViOVn
p, 0pp i.l?n':=117k?='1 %3585, ™ ap, apg
S ox &%, Y &%, av
+ C’,( Lo =t + —Lc ") 5.323
P> 1,’2 35095 ap, * 3S3p. P aps (5:323)
r 62 .
+ 3
i=1  9p.Opg
fora=1...,nandb=1...,r

If only reaction-specific parameters are considered, certain sums in Egs.
(5.322) and (5.323) can be reduced to oneterm by taking into account av,/dp, =
0 for i # a The second-order terms can be written in the following compact
notation:

88 = (&% + 28%v + 52w, (5.324a)
8 = CU8%w + 255w + ), " (5.324b)

where the vectors §28, 827, 83w, 82,v and 82,v have the following components:

82
8%, = ApAps, 521- 2o
a Eﬂ ap ap \PoAPg b ;ﬁ a ap ApaApﬂ'
&gy, = 3538, =
iov ,2;’ as ask 55, 82,v; EJ‘, as ap,, 85,Ap,. (5.325)
2y =3 #, ApA
2ty P
with
s Vi
E Ciy [App (5.326)

being the concentration change in the linear approximation.
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In addition to the quantitiesof the linear theory, the second-order response
coefficients (5.322) and (5.323) contain the following second derivativesof the
individud rates:

2

& =3 S 8 Sk : second-order e-elasticities, (5.327a)
Mg = &% second-order x-elasticities, (5.327b)
0pa 9pp
and
2,
(- Mya = a; ;p : mixed second-order ¢ — x-elasticities.  (5.327¢)
i Oa

Hence, thelocal characterization of theindividual rates has to be extended to the
second-order el asticity coefficientsin order to determine the responseof the sys-
tem variablesto parameter perturbationsin the quadratic approximation. Because
of the occurrence of mixed derivativesof the reaction rates with respect to me-
tabolite concentrations, a general definition of parameter-independent second-
order control coefficientsisimpossible. In particular, the parameter perturbations
cannot be replaced by the rate perturbations as independent variables in Egs.
(5.321a) and (5.321b). Therefore, the perturbation parametersdo not merely play
a technical role as in the linear theory (see Section 5.2). Another interesting
feature of the second-order terms is that they contain, besides derivativeschar-
acterizing the influence of a single reaction on a steady-state variable, mixed
derivativesalso (e.g., 3°S,/6p,ps Where p, and pg may belong to different rate
equations). The effects of sSimultaneous perturbations of several rates are thus not
simply approximated as the sum of the individual effects as in the case of the
linear theory. In this sense the nonlinear terms in the expansions (5.321a) and
(5.321b) reflect a fundamental characteristic of the underlying expressionsfor $
and J; namely they are nonlinear functions of the kinetic parameterseven in the
simplest case of linear rate laws. [See also Eq. (5.88) for the steady-state flux of
an unbranched chain under nonsaturating conditions.]

A first discussion of Egs. (5.322) and (5.323) becomeseasier when reaction-
specific perturbation parametersare considered, which enter theratelawslinearly,

v = py(s). (5.328)

It turns out that, under this condition, one can introduce the rate perturbations
instead of the parameter perturbationsasindependent variables. For example, with
Egs. (5.327) and (5.328), the second-order response coefficientsfor theflux sim-
plify to
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&,
9padps

2

ClepnChCip = fa %
‘ " PaPp (5.329)

M-
.TM=

1.
+ —[ WCia — Bl + CL(Cly — 829v5).
Thefollowing definition of second-order flux control coefficientsis appropriate:
1 87, (ov, 9y
D, — ( “—-‘3) . 5.330
" 28p.pp \dp. s (5:330)
With 6v,/dp, = v,/p, onederivesfrom Eq. (5.329)

l r n
ng = 5[;5_25 h MCSC#
=1ik=t (5.331)

1 1 Cla , Cis
+v—ch a,,+—c,-,’ﬂc,,,—5aﬂ( )]
a %

Similar equations are obtained for the second-order concentration control coef-
ficients. The coefficients (5.331) are independent of the special choice of the
(linear) perturbation parameter. Hence, Egs. (5.321a) and (5.321b) can be written
in theform

As; = 21 + 2,1 %50V Avg, (5.3320)
a= a,
2 Chav, + EDaﬂAv Avg, (5.332b)

where thechanges of the steady-state variables are related to perturbationsof the
individual reaction rates rather than of parameters.

For the second-order control coefficients, summation theoremsexist similar to
those of the linear theory. Denoting by &, and k; two vectorsin the null-space
matrix, one obtains from Eq. (5.331)

3, Dl = 3 cheu( S, it )(3, i)

a=1 \F=1
r CZ
+ gl—(E (€l - saﬂ)kﬂa) (5.333)
+§r:g£(§r:(cl—5a)k )k )
= vy \2 T OpeXar i
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With the summation theorems of the linear theory [Egs. (5.44a) and (5.44b)], it
followsimmediately that

> Diygkakes = 0. (5.334)
af

Extending the analysis to second-order perturbations of the metabolite concen-
trations, one can show that

% DS ghagkss = 0 (5.335)
Py

(Hofer and Heinrich, 1993). The summation relationships for the second-order -

control coefficientsfor-metabolite concentrations and fluxes thus have the same
form, in contrast to the coefficientsof the linear theory.

Example. We investigate the second-order approximation for flux control for
the unbranched metabolic chain, which has been analyzed using the linear theory
in Section 5.4.3.1. With the rate equations (5.85) the second-order elaticity co-
efficientse;; vanish and expression (5.331) simplifiesto

I J ]
b=l S B g
2L v, vy Vi X

Theindex i in Eq. (5.336) may be omitted, because in the present case thereis
only one steady-state flux (J= v; = vy). Furthermore, for an unbranched chain,
normalized and non-normalized control coefficients are equal (see Sections
54.3.1 and 5.7) and Eq. (5.336) turs into

D} = c’(cf - 8. (5.337)

Asthefirst-order flux control coefficientsare confined to the range between zero
and unity, the second-order coefficientsfulfill the relations

=0 ifj=k
Df"{z 0 ifj#k (5339

For an unbranched chain with linear rate equations the flux change dl resulting
from a perturbation of a reaction may be fully expressed by the first-order flux
control coefficients[cf. Eq. (5.95)]. In the present caseit is therefore easily pos-
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sibleto compare theaccuracy of thelinear and quadrati capproximationusing the
formula

X

_ AJa prox AJaxacl

Ul A , (5.339)

where 7 denotes the relative error of the approximations. With the linear ap-
proximation

ALy, = ClAW, (5.340)

and the second-order approximation
c
A = ClAv, + T(Ck - DAV, (5.341)

one gets with Egs. (5.95) and (5.339)

(v = (1 — )ﬁ (5.342)
MeclAvp) = ~(1 — c;’f(%"—") =0Q. (5.343)
k

A largelinear flux control coefficient of the perturbed reaction implies small
relative errors of both approximations. [Note that in thelimiting casec] — 1,
Eq. (5.95) predictsthat AJ = CJAv, becomes exact for any finite perturbatlon
Av;] Far ¢ < 1, in acertain range of rate perturbations the quadratic approxi-
mati onis more accuratethan thelinear one, whereas the opposite holdsfor large
rate changes (due to the rapid divergence of the quadratic terms for large Avy).
According to Egs. (5.342) and (5.343), rate perturbations which lead to a given
(permissible) error 7 are related asfollows:

Vi /sec ﬁ Vi /in ’

This equation shows that the second-order approximation is more accurate up to
an error of 100%. The treatment has been applied also to metabolic chains with
saturationkineticsas well asto amodel of glycolysis (Hofer and Heinrich, 1993).
Dedling with the effects of large changes in enzyme activities on the fluxes
Small and Kacser (1993) introduced a deviation index in the following way:
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pi = A (5.345)

T Ay’

where Av, = v(p? + Ap) — vpd) represents the effect of afinite parameter
perturbation on the activity of an isolated reaction, and A Jthe resulting change
of the steady-stateactivity. For normalization the enzyme activity v, and the flux
Jfor the new parameter valuep + Ap, are used.

Asshown above, in thecaseof unbranchedreaction chainswith linear kinetics,
the effect of parameter perturbations may be evaluated andyticaly for arbitrary
rate perturbations. Applying the concept of deviationindex to such systems, one
obtains, with formulas (5.95) and (5.345),

Dl =ci. (5.346)

This equation means that for this special case, the deviation index equals the
control coefficient at the referencestate for any parameter perturbation. Further-
more, with formula(5.95), one may calculatethe ratio of the steady-statefluxes
for the perturbed state and the reference state. If it is assumed that therate of
reaction k is changed by afactor i [i.e., Av; = (u — 1)v], oneobtains, for the
amplificationfactor;

1

A — 5.347
=% T (5.347)
: I

whereJ? denotestheflux at the referencestate. The results expressed by formulas
(5.346) and (5.347) underline the general conclusion madein Section 5.4.3.1 that
the steady-state properties of an unbranched chain with linear kinetics are char-
acterized completely by the first-order control coefficientsin a reference state.
Obvioudly, a similar conclusion cannot be drawn for systems with nonlinear ki-
netic equations. Here, the effect of finite parameter changes has to be calculated
using akinetic model. The second-order approach presented above may be useful
if the finite changes are not too large.

5.10. METABOLIC REGULATION FROM THE
VIEWPOINT OF CONTROL ANALYSS

5.10.1. Coresponse Coefficients

In theintroduction to Chapter 5 it has been discussed that, in the framework
of metabolic control analysis, the term control is used merely in its descriptive
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sense, which means that control coefficients describe the effect of a parameter
perturbation on metabolite concentrationsor fluxes, irrespectiveof whether or not
this parameter actuglly changes under physiological conditions. The question of

whether metabolic control analysis may providequantities specifically character-
izing the regulation of metabolic systems arises. It has often been stressed that
regulationis related to the teleonomic response of biological systems to externa
and interna signals. Therefore, a regulation analysis must take into account the
biologica function of a given metabolic pathway (e.g., the synthesis of ATPin
glycolysis or oxidative phosphorylation, the synthesis of amino acidsin the cor-
responding pathways, etc.). Furthermore, it seems to be necessary to quantify
certain regul ative properties of metabolic systemssuch as homeostasis.

A clueto the quantification of regulation may be the distinction between the
effect of parameterson steady-state variablesand the correl ation between changes
of two steady-statevariables (Hofmeyr et al., 1993).

Concerning the action of external signals, the problem can be tackled within
the framework of traditional metabolic control analysis. The effect of external
inhibitors or activators or the effect of changed enzyme concentrations may be
quantified by response coefficients[cf. Egs. (5.28) and (5.29)}. The problem of
whether it is possible to characterize in an adequate way the effect of internal
regulators, such as substances which exert feedback inhibitions arises (Hofmeyr
and Cornish-Bowden, 1991,1993; Kahn and Westerhoff, 1993a, 1993b; Hofmeyr
et al., 1993). Using metabolic control analysis, oneis confronted with the con-
ceptua difficulty that after perturbation of concentrationsof internal metabolites

S@ =S fore<0, S@®=5"185¢ forr=0, &50) =385 (5.348)

the system will generaly relax to the origina steady state, which means that
eventualy the total effects of the perturbation on the system variables vanish as
long as the considered reference steady state is asymptoticaly stable. We will
show below that some problemsof regulation (in particular, thd quantification of
theeffect of internal regulators) may be tackled within theframework of metabolic
control analysis.

To arrive at a more complete description of the response of internal variables
after perturbations of parameters, Hofmeyr et al. (1993) introduced normalized
coresponsecoefficientsin the following way:

R? 2 C‘is‘mArcmk
kofs = —'i‘ =S (5.349)
i jmTomk

3

which characterize the concomitant changein two steady-state concentrations ;
and §; resulting from a perturbation of a parameter p,. Analogously, coresponse
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coefficientscan be defined for two fluxes or for one concentration and one flux
or for two other steady-state variables. Experimentally, coresponse coefficients
may be calculated from thelopes of thetangentsin aplot of oneinternal variable
versus another variable, obtained by variation of a parameter.

If reaction-specific perturbation parameters are considered, Eq. (5.349) sm-
plifiesto

Ci

k0SS =
O"J‘ - CS ?
jk

(5.350)

where the left-hand superscript k denotes the number of the perturbed reaction.
Similarly, non-normalized coresponsecoefficients may be defined by replacing,
in Egs. (5.349) and (5.350), the normalized x-elasticitiesand the control coeffi-
cients by their non-normalized counterparts.

Concerning the homeostatic property observed in many metabolic pathways,
asystemmay be considered to be effectively regulated if strong changesof fluxes
are accompanied by low variationsof the metabolite concentrations, that is, if the
coresponsecoefficients*0% of areaction k whosereaction rate may changeunder
physiological conditions have small absolute values (Hofmeyr and Cornish-
Bowden, 1991).

Example. In Section 5.4.3.1. it has been shown that for the unbranched chain
with feedback inhibition (Scheme 6) the effect of perturbationsof the consump-
tion ratev, ., on the steady-stateflux J and the end-product concentration S, may
be characterized by the following control coefficients:

Clyy= ——2m (5.351a)

’
En+1,n ~ ELn

1
Cipyr = —————— (5.351b)

,
En+1n €1

where the elasticity ¢, ,, describes the strength of the feedback inhibition. From
this, one obtainsfor the coresponsecoefficient of the end-product concentration
and the steady-state flux at perturbations of reactionn + 1,

s
n+10Sn) = Cant1 = 1 < 0. (5.352)

n+1 El.n

As expected an effective regulation, 1051 << 1, results when the feedback
inhibition is strong, le; | >> 1.

It is worth mentioning that coresponse coefficients of metabolite concentra
tions are related to the " crossover theorem" which dates back to the very begin-
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ning of the mathematical analysis of metabolic networks (Chance et al., 1955,
1958; Holmes, 1959; Higgins, 1965) and which has been used to identify inter-
action sites with ouger effectors. In its smplest form, this theorem can be stated
in the following way: The variations of the concentrations of the metabolites
upstream and downstream an enzyme which is influenced by an effector have
different signs. Accordingly, when in an unbranched sequence, areactionk isthe
target of an effector and the corresponding coresponse coefficient is negative,

cs
kofs = —% <, (5.353)
Gk

then thisreaction islocated in between the metabolitess; and S; [cf. Eq. (5.109)].
It should be noted, however, that there are severe limitations to the crossover
theorem if it is applied to more complex pathways. It has been shown that in
systems with conserved quantities and in other more complex situations, thein-
teraction with an external effector does not always produce a crossover at the
affected enzyme and that " pseudo-crossovers™ may aso occur at unaffected en-
zymes (Heinrich and Rapoport, 1974b).

5.10.2. Fluctuationsof Internal VariablesVersus
Parameter Perturbations

Perturbationsof interna variablesgenerally have anonvanishingeffect at finite
times. We now show that the time-dependent responses 38 (¢) for 0 = t < o after
perturbations defined by Eq. (234) can be mimicked by responses taking place
after parameter perturbations (see Kahn and Westerhoff, 1993a).

Perturbations of concentrations: After small perturbations 8S° in the neigh-
borhood of asteady state, thedynamicsof thesystemisgovernedby thelinearized
equations

d@s)
==

av
(N E)SS = M3S. (5.354)
With theinitial conditions given in Eq. (5.348), this has the solution
38(H = exp(Mn)3S°. (5.355)

[For the definition of the exponential function for matrices, cf. Egs. (2.85) and
(5.187).] To characterizethe time-dependenteffect of fluctuationsof internd var-
iables, Kahn and Westerhoff (1993a) introduced the response function
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352 = §S() — 65° = [exp(My) — 1}3S° (5.356)

with
857, = 0, (5.3572)
5§, = —8&S°. (5.357b)

For the time-dependent flux response 8J() after sd| perturbationsof metab-
olite concentrations, one obtainswith J = v(S(),p) in the linear approximation

v av
resp(py _ o = = 5.358
ST™P(1) = % EY6) Echp(Mt)SSO, ¢ )
whereEq. (5.355) has been taken into account. In particular,
v 9
I, _y = 8J° = 65 (5.359a)
&™), = 0. (5.359b)

Parameter perturbations: According to Eqgs. (5.185) and (5.186), perturbations
o parameterswill result in changes in the metabolite concentrations described

by the functions

35() = [exp(M1) — 1]M~1N§§5p. : (5.360)
The corresponding flux changes are
i Y
8 = (I + s [expMf) — IIM N) » op (5.361)

[cf. Egs. (5.189) and (5.190)]. Now we choose specia parameter perturbations
which cause the same immediatechanges in the reaction ratesfor ¢+ = 0 as the
perturbations 85° considered in Eq. (5.355).
o_ve _ AV
6v’ = P Sp = % 58°. (5.362)
Choosing the set of parametersin such a way that the matrix aw/p isinvertible,
oneobtains

= ﬂ —l(ﬂ) 0 5 363)
&p = (ap) 3s 65°. (5.363)
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Introducing this into Egs. (5.360) and (5.361) gives, by considerationof M =
N(av/aS),

-

88(H = [exp(Mp — I155° (5.364a)

8J() = g—; exp(M1)3S°. (5.364b)

Comparisondf Egs. (5.364a) and (5.364b) with Egs. (5.356) and (5.358), respec-
tively, shows that 8S(#) and §J(¢) brought about by parameter perturbations equal

88™P(¢) and SJP(t), respectively, resulting from a perturbation of the internal
variables.

5.10.3. Internal Response Coefficients

A further quantity which may characterizemetabolicregulationis the internal
response coefficientintroduced by Hofmeyr and Cornish-Bowden (1993) as well
as Kahn and Westerhoff (1993a):

_ r . r av
B=Y=2 Cey= > cs,a—S" (5.365a)
k=1 k=1 =1 'j
and
. r ~ r r av
R = kE = Chey= 2 C‘]"a_sk (5.365b)
=1 k=1 k=1 ]

The individua terns of the sumsin Eq. (5.365) have a structure which is very
similar to that of the terms which enter the response coefficientsfor parameter
perturbations[Egs. (5.28) and (5.29)]. Both are products of control coefficients
and elasticity coefficients. However, in definitions (5.365a) and (5.365b) of the
internal responsecoefficients, the parameter el agticitiesare replaced by elasticities
with respect to concentrations of internal metabolites. Therefore, it seemsappro-
priate to assume that 1?,5 and 1?‘; are related to the effect of a perturbation of a
concentration §; on ametaboliteconcentration S; and aflux J;, respectively. More-
over, the individual terms “&§ and % may be considered as partial internal
response coefficients(Kholodenko, 1990) quantifying the contributionsof differ-
ent regul atory routesto thetotal response. Previoudy, theseterns havebeen called
regulatory strengths (Kahn and Westerhoff, 1993a, 1993b; Hofmeyr and Cornish-

In analogy to Egs. (5.31) and (5.32), which are vaid for parameter perturba-
tions, one'obtains with Egs. (5.365) and (5.357b)

887 = R5GS® = C%e88° = —3s° (5.366)
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for the response after perturbations of metabolite concentrations, and with Eq.
(5.359D),

SJ=° = R’5S° = C'edS® = 0, (5.367)
where the matrices RS and R’ contain the internal response coefficients defined
in Eq. (5.365) as dements. Applying Eqs. (5.366) and (5.367) to perturbations
389 # 0,857 = 0 (i #)) leadsto therelations

-.-,- = 2 kR'-; = (,‘fkg,d = =8 (5.368)
k=1 k=1
and
1'(5. = 2 k',.j = C;-’,‘s,,j =0, (5.369)
k=1 k=1

which are identical to the connectivity theorems given in Eqgs. (5.51a) and (5.51b)
for systems without conserved quantities (L = I). One may conclude, therefore,
that the connectivity theorems may be physically interpreted by consideration of
the response of @ metabolic system toward perturbations of internal variables(see
Westerhoff and Chen, 1984). In the case that the system involves conserved quan-
tities, @ Smilar reasoning applies, provided that the perturbationsdo not violate

the conservation relationships.

For a further discussion of Eq. (5.368) we consider first the casei # j. A
vanishing response of a metabolite S; after a perturbation SS}’ means that within
the sum (5.368) the individual terms “RS which characterize the response via

- different reactions k cancel each other.

It is worth distinguishing a situation where the sum of al positive partia
response coefficients R, is high from that where this sum is low. Grouping to-
gether positiveand negativepartial response coefficients, respectively,Eq. (5.368)
may be rewritten as follows:

positive

For Pj the name regulatory potential of the concentration response has been
proposed (Hofmeyr and Cornish-Bowden, 1993). An anaogous equation is ob-
tained for the regulatory potential of the flux responseif in Eq. (5.370) the su-
perscript S is replaced by J.

Fori = j, oneaobtainsfrom Eq. (5.368)
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g‘l *REBSY = — &SP, (5371)

The nonvanishing response of §; after perturbations§s? may be considered as a
resultof the homeostaticeffect of regulatory loopsin such away that s, eventually
reaches the same concentration as before the perturbation. From Eq. (5.371) fol-
lows )

(5.372)

The term *H; may serveas a quantitativemeasureof theextent to which acertain
reection k counteracts theinitial perturbation3s?. Correspondingly, %A, has been
caled homeostatic strength (Kahn and Westerhoff, 1993a).

5.104. Rephrasingthe Basic Equationsof Metabolic
Control Analysisin Termsof Coresponse
Cofficientsand Internal Response Coefficients

It has been shown by Hofmeyr et al. (1993) that the basic equations of met-

abolic control may be rewritten in terms of coresponse coefficientsand internal
response coefficients.As outlined in Section 5.3.3, the summation and connec-

tivity relationships (5.44) and (5.51 be used to calculate all the control
coefficientsin terpr?ls( of el) asticiti(es [c%. rIT51§1‘?/(5.54)].

Let usdefinean Sr X r) diagonal matrix A; whoseelementsare nonzerocontrol
coefficients.Possiblerepr ationsfor A, are

A; = dg(C)),
A; = dg(CP).

(5.373a)
(5.373b)

wherethe elements of the vectors€/ and ¢ arether flux control coefficientsof

J; and the r concentration control coefficientsof §,, respectively. Another possi-
bility would be that A; consists of a mixture of j flux contro coefficients and

r — j concentration control coefficients.

Because the number of columnsof thefirst matrix and the number of rows of
the second matrix on the left-hand side of Eq. (5.54) equals the number r of
reactions of the given metabolic system, this equation may be rewritten in the

following way
CAT!
i (X o
(CSA,-“)(A'K Ag) = (0 —1) (5.374)
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under the simplification that the system has po conserved quantities. It iseasy to
see that the elements of the matrices C’A; and C®A;* are coresponse coeffi-

cients, whereasthe matrix A;g contains the internal response coefficients.

Example. For the reaction system depicted in Scheme 10 (Section 5.3.4) one
obtains, with A, consisting of flux control coefficients,

ch i

Ci Ca 11

! = 375
C]A“_l—_—o’h,: C] CI —-(1 1>v (53 a)

G Gz

ch Ch

whereit has been taken into account that C; = CJ; for the unbranched reaction
chain depicted in Scheme 10. Furthermore,

ki C{z)
1 _ oS = (S =12 (5.375b)
CSA7'=0 ( A

l‘-.
Ae Coenr) _ R'J’)‘ (5.375¢)
l Cien Ry

trix A; contains concentration control coefficients

and

Likewise, if the diagonal ma

i Ch

CA7' =0 = % C , (5.3763)
G, Ch

CAT' = 1, (5.376b)

and

|5
wo o () () (53769
' Chen R

introduction of coresponsecoefficients as new Yariables may
simply combined of existing quantities
al variables, However, it has l?een ob-
e to a modujation of a

this reaction (Cornish-

At first glance,
seem to be questionable because they' ar e
and represent a large number of additional Ve
served that the ratio of control coefficients In respons
specific reaction is often independent of the choice of
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Bowden and Hofmeyr, 1994). Therefore, the set of coresponse coefficients dif-
ferent from each other can considerably be reduced.

Traditionally, controt coefficientshave been determined in two different ways.
One possibility is based on Egs. (5.25b) and (5.26b) or on the summation and
connectivity theorems and requires knowledge of the elasticities. The second
method startsfrom the definitionsof control coefficientsand requires experimen-
tal determination of thedependenceof steady-statevariablesand isolated reaction
rates on a chosen parameter. In experimental practice, it is sometimesdifficult to
measure these dependencesor theelagticities. Coresponse analysis paves the way
to a third possibility of determining control coefficients, based on Eq. (5.374),
which is equivalent to

oA\
(AK Ag) = (CSA-I) (‘g _OI). (5377

When K is chosen as indicated in Eq. (3.47), it contains the identity matrix.
Therefore, a submatrix of the left-hand side of Eq. (5.377) consists of explicit
control coefficients. They can be computed if the right-hand side of Eq. (5.377)
isknown. Thisrequiresdeterminationof coresponsecoefficients, whichisfeasible
in experiment without measuring the fractional changein the perturbation param-
eter (e.g., enzyme activity). All that is required is to be able to modulate each
enzyme activity around its normal value and measure the steady-state flux and
concentration changes; knowledge of actua enzyme activities is unnecessary.
With inhibitor studies, it is only necessary to know that theinhibitor acts on one
particular enzyme, rather than to know the type of inhibitor or its concentration.
Coresponse coefficients are obtained by plotting appropriate combinations of
fluxesand concentrations against one another and, from that, control coefficients
and response coefficients (and hence, also elasticities) can be calculated by use
of Eq. (5.377). This procedureis presented in more detail in Cornish-Bowdenand

Hofmeyr (1994).

311  CONTROL WITHIN AND BETWEEN SUBSYSTEMS

It is frequently appropriate to group the body of enzyme data into classes corre-
sponding to subsystems of the biochemical network. This is particularly useful
when the network consistsof several partsthat interactin arestricted way, in that
many elasticitiesare zero or that there is no mass flow between these parts. Ex-
amplesare provided by cascadesinvolving hierarchiesof regulatory proteinsmod-
ifying each other [e.g., the glutamine synthetase cascade (cf. Chock et 47, 1980)]
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and by the well-known hierarchic organization of genetic and metabolic processes
in the living cell (cf. Scheme 15).

DNA --s--e-> MRNA > enzymes -------» metabolites Sche

Kahn and Westerhoff (1991) presented an approach to cope with the control
of regulatory cascades. The basic ideais to calculate control coefficientsfor the
particular levels of the hierarchy in terms of the elagticities within thelevelsand
then to determine the control coefficientsof the whole system from theintrinsic
control coefficientsof the subsystemsand the éasticitiesdescribing theregul atory
interactions between these.

We start from a decomposition of the reaction system into subsystems, which
is represented by a partitioning of the stoichiometry matrix into blocks,

Ny N - Ny
N=| N; Ny N,, (5.378)
Ny Np oo N,

with N;; being the stoichiometry matrix of the ith subsystem and N (i # j)
reflecting the involvement of the reactions belonging to subsystem j in the pro-
duction or degradation of the species in subsystem i. p denotes the number of
subsystems. Note that the number of rows in the arrangement of submatrices in
Eq. (5.378) equal sthe number of columns because, for any given decomposition,
each substance and each reaction uniquely belong to one subsystem.

Consider, for example, the reaction system shown in Figure 5.12A. It repre-
sents two pathwaysinterconnected by acycleinvolving the substancesS; and S;.
For example, S; might bean enzyme. In that case, it would be sensibleto simplify
the schemeas shown in Figure 5.12B, where the broken arrow signifies the cat-
alytic effect on the production of S,. Identifying the two pathways with two
subsystems, we can partition the complete stoichiometry matrix as

1 -1 -1 1 0
N= 0 0 : 0 1 -1l (5.379)
0 0 1 =1 0

A necessary condition for the present approach is that there be no net mass
flow between the subsystems in steady state. Thisis, for example, the case for
the levels of mRNA and enzymes in Scheme 15. This condition can be written
as ablock-diagonalizationof the null-spacematrix K, as expressed by Eq. (3.48).
For example, for the scheme shown in Figure 5.12 A, the corresponding null-
space matrix can be partitioned as

b
i
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Figure 5.12 Simpleexampleof a two-level system. (A) detailed scheme, (B) smplified repre-
sentation.

0
0
k=0 0 - (0} I (5.380)
o i
o i

A second condition for the present approach is that the link matrix L be de-

-, composableinto diagonal blocks, possibly after rearrangement of its rows,

L 0 0
L={0 L, — o] (5.381)
0 0 - L

n

This meansthat each subsystem has separateconservation relations; that is, there
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are no conservationrelations linking different subsystems. With this structure of
L, theequation N = LN°[Eq. (3.7)] implies the equations

Ny =LN, i=1....p (5.382)

Note that for a given reaction system, there may be different ways of decom-
position into subsystems that fulfill the two conditions (3.48) and (5.381). in
particular if there are no conservationrelations (ie., L = 1).One should pref-
erably choosesuch a decompositionthat the subsystems can be investigatedsep-
arately in experiment. For the exemplifying schemein Figure 5.12A, condition
(5.381) is trividly fulfilled because it does not involve any conservationrelations.
Another decompositionis obtained by including S5 into subsystem 1 instead of
subsystem 2.

Theelagticity matrix € can be partitioned into blocks according to the decom-

positionof the system:
€y &2 ¢ Eyy
e=|{: @ il (5.383)
Eut &z v By

Oneassumesthat each subsystemreachesan asymptotically stablesteady state
when al concentrationsin the other subsystems are clamped. For such steady
states, one can defineintrinsic control coefficientsof subsystemi and can assem-
ble them into matrices C§9 and €™, Their eements reflect the control be-
havior of subsystem i when the state of the other systems is kept constant. The
corresponding stoichiometry matrix is N

The decompositions(3.48) and (5.381) imply Egq. (5.382) and

NK; = 0. (5.384)

Therefore, the summation and connectivity theoremsfor theintrinsic coefficients
can, in analogy to Eq. (5.54), bewritten as

i .K 0
|1 00 ( K, -L,.)' (5.385)

The X; and L; are the null-space matrices and link matrices, respectively, of the
subsystems, which areidentical to the diagonal blocksin Egs. (3.48) and (5.381).
Thisleadsto

i

Contro! Within and Between Subsystems 253

C-_’(inl.r)
i K,' 0 )
<C._S(intr)) = < 0 - L‘.)(Ki 0 PR (5.386)

From Egs. (5.382) and (5.384). it follows that N3K; = 0. Therefore, one can
show by asimilar reasoning as used in Section 5.3.3 that

& L)' =
(N%e, L)~ NS

Substitution of Eq. (5.387) into Eq. (5.386) yidds

(KK) K@ - &L, N%e,L) "N
(5.387)

G = —LNje,Ly) ~ING
Cio = [ + g,C5.

(5.3883)
(5.388b)

Now we consider the situation that no subsystems are clamped; that is, all
concentrationsin the network are alowed to attain a new steady state after pa
rameter perturbation. Instead of the intrinsic control coefficients, we should now
usethecontrol matricesof the whole system, which can, according to the decom-
position of the system, be partitioned as

o (C.% v O
Cil Cﬁp

Ccl - C{p
=i - i1,
C;l C;/,

Dueto thedecompositions(3.48) and (5.381), the summation and connectivity
relationships(5.44) and (5.51) imply the block summation theorems

(5.3894)

(5.389b)

CK =0, (5.390a)
0 ifisj
C{-,-K,={Kj i (5.390b)
and the block connectivity theorems
Cle L, = { 0 ifij
; i = {2 (5.391a)

7
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S Chedy =0, (5.391b)
k

withi,j = 1,...,p.

It is of interest to inquire what information can be derived from the stoichi-
ometry matricesof the subsystems, N;, only (i.e., by neglecting thestoichiometric
interactions between the subsystems). This question arises because it has been
invoked that there be no mass flow between different blocks at steady state. Let
us definea stoichiometry matrix, N, of a stoichiometrically disconnected system

by

Np 0 -« 0
R=] o0 Ny - 0 (5.392)
0 0 NPP

(ie, Ny = Nyand R = 0 for any i #j). Similar relations then hold among the
reduced matricesN® and N°. Note that the elasticity matrix is to remain thesame
upon replacement of N by N. Applying Egs. (5.25b) and (5.26b) gives the control
coefficientsof the stoichiometrically disconnected reaction system

&5 = —L@%L)~ N, (5.393a)
& = I — eL(W%EL)™'N°. (5.393b)

In theseequations, thelink matrix L of theoriginal system can be used, because
thenew matrix N has thesamelink matrix L dueto the decomposability condition
(5.381). Because the same null-space matrix K asfor the original system can be
chosen [due to condition (3.48)], Egs. (5.393a) and (5.393b) lead, by postmulti-
plication by K and EL to the same block summation and connectivity theorems
as belonging to the original system [Egs. (5.390) and (5.391)]. As wasshownin
Section 5.3.3, the control coefficients are uniquely determined by the theorems.
Consequently, we have

S=c, &U=c. (5.394)

Thus, we have arrived at the interestingresult that under the decomposability
conditions(3.48) and (5.381). the control coefficientsof the origina systemand
the stoichiometrically disconnected system are the same.

Note that Egs. (5.388a), (5.388b) and (5.393a), (5.393b) differ in that the
former only contain asubsetof the el asticities,namely thoseexpressing theeffects
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within the subsystems (g;;), whereas thelatter also contain the el asticitiesexpress-
ing the cross-effects between subsystems (g, for i # ).

Kahn and Westerhoff (1991) treated the control analysis of subsystems by
considering, from the very beginning, stoichiometrically disconnected systems,
that is, stoichiometry matrices of the form (5.392). Because of Eq. (5.394), al
results derived by Kahn and Westerhoff (1991) for systems satisfying condition
(5.392) are thus valid aso for systems fulfilling conditions (3.48) and (5.381).
They are weaker than Eq. (5.392) because when K and L are block-diagonaliz-
able, N need not be.

One of ther resultsis the ""Block Composition Theorem," consisting of the
following relationships:

¢ - ol + 3 wc), (5395
kvti

c = ( L+ 3>¢C g.,.\CS(im (5.395b)

Y \u ’;; xr'lq/ /] ’ Al Sy

Cj = C!““"’(I.-,- + 3 amci,-), (5.396a)
kb

G = LG + X ClgyCo. (5.396b)

kstj

Theseequationsrelate the control coefficientsof the wholesystem to theintrinsic
control coefficientsof the subsystems. In thecasei = j, Egs. (5.395) and (5.396)
express the fact that the control exerted by the reactions of a subsystem on this
subsystem itself is composed in an additive way of the intrinsic control within
this subsystem and the indirect effects via al other subsystems. If i = j, Egs.
(5.395) and (5.396) state that the control by some subsystem on ancther isagain
thesum of al theeffects viaall subsystems.

Note the difference between Egs. (5.395a) and (5.395b) and likewise between
Eqgs. (5.396a) and (5.396b). It appears that the multiplication of control coeffi-
cients and intrinsic control coefficients shows certain commutativity properties,
which are probably linked with the property of control matrices to be projection
matrices (cf. Section 5.3.4).

As mentioned earlier, thegoal of the gpproach dealt with in this section is to
determine the control propertiesof a metabolic system from theintrinsic control
coefficientsand the el asticities describing the regul atoryinteractions between sub-
systems. This has been achieved until now only for systems with certain archi-
tecturesin terms of their subsystems, whereas Egs. (5.395) and (5.396) hold for
systems of any structure. For example, generalized cascades (convergent, diver-
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gent, or nested) can be treated. These cascades have the property that their sub-
systems can be numbered in such a way that the concentrations of subsystem j
only affect reactionsin subsystemsi with i = j fi.e., &; = 0 for any k < j (no
feedback)]. For systemsof this property, the control matricescan be computed as

Cl = Crow, (5397
Ci=0 fori<j, (3.398)

¢ = oo 3 oy gy - C‘;““"’smf)‘—‘f“"“) fori>j,  (5399)
L)

where the sum runsover all regulatory loops, L(i j).connecting modulej to mod-
ulei, and Y standsfor either S or J. The proof of this Generalized Cascade Control
Theorem was given by Kahn and Westerhoff (1991).

Equation (5.397) means that in the absence of feedback, the internal control
behavior of each subsystem is unaffected by externa regulatory interactions.
Equation (5.398) expresses the fact that no reaction is able to control any con-
centration or flux in asubsystem upstream in the hierarchy. Control in the down-
stream direction proceeds via all routes of regulatory effects [Eq. (5.399)}

Moreover, Kahn and Westerhoff (1991) derived formulas analogous to Eqs.
(5.397)—(5.399) for linear cascades in which one subsystem may regulate a sub-
system higher in the hierarchy by feedback.

5.12. MODULAR APPROACH
5.12.1. Overall Elasticities

One usually discerns functional unitsin cell metabolism, such as amino acid
synthesis, protein synthesis, and protein degradation, or cytosol and mitochon-
drion. Accordingly, it is desirableto carry out metabolic control analysisin terms
o control featuresof these functional subunits (i.e., a a higher level of organi-
zation), rather than to discuss control only in terms of kinetic properties of the
individual enzymes. For example, one could try to explain the control of the
intracellular glucose concentration as being theresult of theelasticitiesof glucose
uptake and glycolysis (and possibly gluconeogenesis) versus glucose, instead of
discussing such control in terms of dl the contributionsof dl enzymesinvolved.
Moreover, it should be acknowledged that for large biochemical networks, the
structural and kinetic data characterizing the interior of the functiona units rep-
resent a huge amount of information, which often is not readily measurable or
even if so, isdifficult to handle.

Modular Approach 257

In thissection, an approachis outlined in which metabolic systems are decom-
posed into subsystems, some of which areincompletely observablein the sense
that the stoichiometric structure within these subsystemsis not fully known and/
or not all of the elagticities are measurable. This approach differsfrom the de-
composition method set out in Section 5.11, where all subsystems are assumed
to be completely observable.

A situation where a decomposition into functional subunitsis sensibleis mi-
tochondrial oxidative phosphorylation. For this system, a solution was devised
which groups dl the reactions involved into three parts: those connected with
respiration and generating proton-motiveforce (Agy + ), those connected with syn-
thesisof extramitochondrial ATP using the forceAgy +, and the proton leak (Wes-
terhoff et al., 1983). The control of mitochondrial respiration was described as
divided over these three units. In this way, control of oxidative phosphorylation
could be understood in terms of regulatory interactions between three modules,
theinterna regulations of which were not completely known. Note that also in
Section 5.4.5, we used a similar approach by grouping &l the enzymes of the
respiratory chain into one unit.

Control coefficientsof enzyme sequences had been defined already by Hein-
rich and Rapoport (1973, 1974a) and later by Fell and Snell (1988); Kacser (1983)
elaborated theideafor branched metabolic pathways. Morerecently, theapproach
has been extended and renamed the top-down approach (Brown et al., 1990;
Hafner et al., 1990; Quant, 1993). All of these approachesarelimited to casesin
which any two subunits into which one divides metabolism are linked by only
one flux. This drawback was eliminated in a recent further development of the
modular approach (S. Schuster et al., 1993a), whichis outlined in the following.

In view of the above-mentionedfact that the elagticities of many enzymes are
not available, the first step in the modular approach is the decomposition of the
metabolic network under study into modules of two types. Modules of type |
(black boxes) are subsystemsfor which we areonly able to observethereactions
that link those subsystems with their surroundings but not internal reactions and
metabolites. Type-II modules are subsystems subject to explicit observation. The
modular partitioning may or may not correspond to a spatia decompositioninto
compartments. The question of under what conditions we are able to determine
the control properties of modules| and II arises.

To begin with, we consider a decomposition of a network into one module of
typel and one module of type II (Figure 5.13).

Thereactions can be classifiedinto three types: reactions proceeding inside of
modulel, reactionsbridging the two modules, and reactionsinternal to subsystem
. Reactions connecting module | with the surroundingsof the whole system can
formally beincluded in the set of bridging reactions (cf. Figure 5.13). According
to this decomposition, the stoichiometry matrix can be partitioned as
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Figure5.13 Schematic representation of a modular decomposition of a metabolicnetwork. Re-
actionswithinmodule| (dotted arrows) are not necessarily observable, wher easr eactionsin module
11 and-ther eactionsbridging the two modules (index B) are.

_ (Nux Nis 0.]) 5.400
N‘(o Np» Npg)’ (5.400)

and, accordingly, the concentration vector § = (SSp)™ and rate vector v =
(¥»Ys,¥) . The matrix of non-normalized el asticitiescan be decomposed as

&1 &
€= |81 &pm]|- (5.401)

€n1 &nn

The following calculationswill show that one can determine certain control
properties without knowledge of the internal details of module I, that is, the
elasticity submatrices g3, &1, &p1, ad &g and the stoichiometry matrices Nyx
and N;g. These quantities will not enter the final results concerning the overall
control coefficients. In contrast, the bridging reactions are assumed to be observ-
able, in the sensethat their responseto changesin Sy can be measured. Thisflux
responseis meant toimply that the black-box modulecan attain anew steady state
while the concentrations in the observable module are clamped. The respective
elasticitiesare to be called overdl elasticitiesand to be gathered in a matrix
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. 6'VB)
€gn = |——]. 5.402
8,11 ( 3, ( )

<

The asterisk superscript refersto the situation in which the black-box moduleis
allowed to attain a steady state on its own. It is important to distinguish the
definition of overall elasticitiesfrom that of intrinsic control coefficients (see
Section 5.11). Indeed, in both cases the surroundings of the subsystem are
clamped, but in the former case, an activity of an internal reaction is changed,
whereasin the latter case, a concentration outside of the subsystemis altered.

Consider, by way of example, the mitochondriaand cytosol of a cell as mod-
ules| and TI, respectively. The response coefficientss  can then be measured
experimentally by resuspendingthemitochondriain asufficiently largeincubation
medium, where the substances of interest thus have concentrations independent
of the reactions within the black-box module. By changing experimentally these
concentrations and measuring concomitantly the fluxes linking the mitochondria
with their surroundings (e.g. the rate of oxygen consumption) gives the above-
mentioned overall elagticities.

Another relevant situation is when the black-box moduleis afast subsystem,
thatis, if it gainssteady state much faster than theentiresystem. In this situation,
*gp 1 EXpresses the response of the black-box moduletoward changesin Sy, with
theresponse measured in atime scalelong enough to alow the black-box module
to reach a new stationary state but short enough so that Sy; has not yet relaxed to
the origina values.

Because at the steady state of the black-box module, input and output fluxes
of this subsystem must balanceeach other, the bridging fluxes are usudly linearly
interdependent. This dependence can be expressed by a matrix Q, such that

Vg = Qvg, (5.403)

where *vg isa vector of linearly independent bridging fluxes. The matrix Q can,
in principle, be obtained by a null-space analysis of the submatrix (N;; Nyp 0)
corresponding to module |. As this information may not, however, be available,
it is assumed that Q can be determined by observationfrom the outside (e.g., by
determining the balance of aom groups entering and leaving module ).
Consider, for example, a branched reaction scheme as shown in Figure 5.14A.
Let S; beidentified as the black-box module, and the three adjacent reactions as
bridging reactions. Because a the steady state of the black-box module, the flux
J; is the sum of J, and Js, only two of these fluxes are linearly independent. So
it makes sense to redraw the scheme as depicted in Figure 5.14B.
- We may take *v, and *v; as independent fluxes, so that Eq. (5.403) reads
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A)
module I module II
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Figure 5.14 Lumping of bridging fluxes in a simple branched reaction chain. (A) Complete
scheme; (B) smplified scheme. The arrows crossing module | in scheme B correspond to the null-
space vectors(1 1 0)T and(1 0 1)T [cf. Egs. (5.119) and (5.404)] and signify degreesof freedom in
flux of modulel.

[y \ /1 1\, .

*3 o,
ryp = (*Vz) = Qny = ktl) (1))(*%). (5.404)

*V3

The lumped bridging fluxes as well as the fluxesin the observablemodule are
functionsof p, S;and S.  The assumption that the black-box module subsists in
asteady state on its own implies that Sy is afunction of Sy, so that the observable
fluxescan bewrittenas

*VR = *VR(p, S[[) = vR(pa SI(SII' P), S]I) ' (5405)
*yg = *vy(p, Sp) = va(@, 5w p). So) - (5.406)

The functions *vg = *yx(Sy.p) represent overall rate laws of modulel. An ex-
ampleis provided by the overall ratelaw of the hexokinase-phosphofructokinase
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system derived by Heinrich et al. (1977). The reaction rates *vy can be regarded
from two different viewpoints. They play therole of "'isolated" reaction rates, in
the sense that the black-box module may be looked upon as a superreaction
embedded in a larger metabolic system. If, on the other hand, the black-box
module is regarded as a system on its own (with Sy clamped), *v playstherole
of asteady-state flux vector.

Differentiation of Eq. (5.406) with respect to Sy yields

* = ﬁ) - 8y
&nn = (BSH = g 38, + & (5.407)

As substances in the black-box module are not converted by reactions in the
observable module (N = 0), the elasticities ey; are made up o effector influ-
ences of S; on vy.

Because of Eq. (5.403), the matrix of overal elasticities, *eg , pertaining to
the reduced bridging fluxes, is linked with *gg ; by

g1 = Qer (5.408)

As the matrix Q and the elasticities *ey ; are assumed to be known, the same
holds for *gg .

512.2. Overall Control Coefficients

Let py bea vector of parametersfor which the matrix avy/dpy; is a nonsingular
square matrix. The matricesof non-normalized control coefficientsexpressing the
control exerted by the processesin the observable module can be defined as

aSy\/ovg\ ™"

s _ o n

Cin <—Bpn)(3_pn) , (5.409a)
PAYCAN

Chp = (—")(—”) , 5.4090

I dpn/\dpn ¢ )
o\ ovy) !

Chig = (—“)(—“) . 5.409¢)

LI 3pa)\apy ( c)

In a straightforward anaogy, coefficientsexpressing the control exerted by the
lumped bridging reactions can be defined as,

. 385\/9 *vg) !
Cir = (E,H{X_ap?) . (5.410a)
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)
G = <6pn apr/
)
Cﬁ'R - (31’}1 apr ’

The asterisk superscriptin Egs. (5.410a)—(5.410c¢) refers to the fact that we deal
with overall control coefficients. Here, the components of *wvg play the role of
"isolated" reaction rates corresponding to the different degrees of freedom of
modulel. pr denotes a vector of parameters affecting the reduced bridging fluxes
only. Importantly, when there are effector influencesfrom within the black-box
moduleacting on the observable module, changes in the parameters pertaining to
module | generaly affect, via S;, the rates *vy, even if Sy is clamped. Thus, it
may occur that no parameter vectorp, can befound that affects*vg but not *vy.
This would make it difficult to employ definition (5.410). One way of coping
with this problemis by choosing the parameter vectorp, in such a way that any
changesin this vector do not ater S;. In thisway, however, the favorable property
of control coefficientsto be independent of the specid choice of the perturbation
parameter could not be guaranteed (seeSections5.2 and 5.6). Therefore, we prefer
to impose the condition that the black-box module does not exert effector influ-
ences on moduleII,

(5.410b)

(5.410¢)

p— (5.411)

If, in a given scheme, such influences occur, one can often draw a more explicit
reaction scheme in which the effector influences are represented as bridging re-
actions, so that condition (5.411) isfulfilled.

It is worth noting that at variance with the widely used definitionsof control
coefficients (5.3) and (5.5). the matricesin the denominatorsin Eq. (5.410) are
not normally diagonal, because for a given parametrizationit is not, in general,
possible to find parametersinfluencing the components of *wg specificaly. This
fact does not, however, restrict the applicability of these definitions, aslong as
the matricesin question are nonsingular (see Reder, 1988).

Theoverall control propertiesof a metabolic systemcan becalculated in terms
of the overal elasticity propertiesof its modules. Dueto Eq. (5.403), the steady-
state condition for the observable module reads

NpsQ've T Nyn'vg = 0. (5.412)

Differentiationof thisequation with respect to any parameter vectorp yields, due
to Egs. (5.407) and (5.411),
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e | W Sy 3"y . a8,
N_EBQ<_31, S+ Tern 3;) + Nnn(f + “egp f) =0 (5.413)

The asterisk for the term *g5; ; can be dropped because of Eq. (5.407) and con-
dition (5.411).

In order to solve Eq. (5.413) for aSy/dp, one has to reduce the matrix
NppQ*exn + Non*eny = 0 to anonsingular square matrix. Thisis achieved
by considering the conservation relations imposed on the concentrations Sy. In
andogy to Eq. (3.7), we reduce the stoichiometry matrix of module II [cf. Eq.
(5.400)] to itslinearly independent rows,

(0 Ny Npp) = (L; H)(o N3 Nom). (5.414)
In what follows, we show that there must be no conservation relations linking
concentrations inside the black-box module with concentrations inside the ob-
servablemodulein order that "' parameter-independent™* overal control coefficients
can be defined.

Let §; and {y denote respectively the ranks of the submatrices(N;; Ny 0) and
(0 Ngp Npp) [cf. Eq. (5.400)]. After a straightforward decomposition of the
concentration vectorsinto independent variabl es, the conservationrelations of the
black-box module | and module II taken separately can be written as

(—Li; I)@:-:) = const.,

(5.4152)
/ Sua) _
(—Lig I)(S::b) = const, (5.415b)
The steady-state equation for the black-box module reads
(S, Sm, p) | _
o MG )~ 0 (.416)

The assumption that the black-box module can attain a stable steady state on its
own implies not only that Eq. (5.416) has a solution for §;, but also that the real
parts of all eigenvaluesof the Jacobian matrix (N{; Nis 0)(@waS,)L,; be negative.
So this matrix must haveful rank, ;. This ensures that Eq. (5.416) (which en-
compasses {; independent equations) and Eq. (5.415a) are, in general, sufficient
toexpressthesteady-stateconcentrationss; and, hence, thefluxes *vg asfunctions
o Sy andp.

The number of independent equations contained in Eq. (5.412) equals .
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Together with thedim(Sy) — ¢y independent conservation relations contained in
Eq. (5.415b), Eq. (5.412) determines the stationary concentrations Sy.

Connecting the two modul esdoes not changethe conservationrel ations within
the modules but may add conservation relations involving both modules. In al-
gebraic terms, the linear dependencies between the rows of submatrices remain
vaid if the submatrices are combined. Linear dependencies between the rows of
the whole matrix may arise in addition. Hence,

& + Cp = rank(N). (5.417)

In the case that relation (5.417) is fulfilled as a strict inequdlity, the equation
system (5.412), (5.415), and (5.416) is overdetermined and has, in general, no
solution for S; and Sy;. From this reasoning, we conclude that we should impose
the condition

— (Lax 0)- 5418
L= Log)’ G4

that is, thereshould be no conservation relations linking the two modules. Equa-
tions (5.413), (5.414), and (5.418) can be combined to obtain

ad .VR a3 ‘VH - Bsn a
NisQ P + Nin » + M » g (¢ )
with
‘M = (N 5Q "ern + NinnoLlnn (5420

The matrix *M is the Jacobian matrix of the observable module taking into ac-
count that the black-box module attains a new steady state after a change of a
concentration in the former module.

Specifying p, consecutively, to be a vector of parameters only affecting the
bridging reactions and a vector of parameters only acting on reactions in the
observable module, we can derive the concentration control coefficientsdefined
in egs (5.409a) and (5.410a) from Eq. (5.419),

Cip = —Loo(M)™'Nip, (5.421a)
Cir = _Ln.n(‘M)—lNon,BQ- (5.421b)

To obtain the flux control coefficients, we differentiate the equations Jr@) =
*p(p.Sw) and Jp(p) = *vu(p,Sy) with respect top. By Eq. (5.419), one obtains
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Chu = "ernCin (5.4222)

Chr =1+ “&r nCHi rs . (5.422b)
-

Cho =1+ egaCip (5.4232)

*Clir = egn Chg- (5.423b)

The normalized overall control coefficientsare obtained in a straightforward
way,

(dgJr) ! ‘Ci;,n(dg Jo) ‘Ci,z,m (5424

and similarly for the other overall coefficients.

Now we have derived expressionsfor control coefficientsin termsof quantities
assumed to be known. Theseresults show that oneis able to determine aconsid-
erable number of control properties even without knowing the interna details of
the black-box module. These control properties include the control coefficients
related to the observablemodul eand the overall coefficientsexpressing thecontrol
exerted by the degrees of freedom of the black-box module on the fluxes of the
bridging reactionsand on the variablesof theobservablemodule. Theinformation
of theinsideof the black-box modulethat is relevant for determining thesecontrol
propertiesisfully represented by the overall elasticity coefficients*gg ;; and ma-
trix Q, which expresses the linear dependencies between the bridging fluxes.

It is worth noting that, because formulas (5.421b), (5.422b), and (5.423b) do
not contain theparameters py used in thedefinitionsof overall control coefficients,
these coefficients have the favorable property of not depending on the choice of
the perturbation parameter. Thisis, however, only true under conditions (5.411)
and (5.418).

Overdl control coefficientsfulfill summation and connectivity theoremssim-
ilar to the theorems presented in Section 5.3. For example, Egs. (5.421a) and
(5.421b) imply the summation theorem

"CinJr + ChnJdu = 0. (5.425)
A connectivity relationship reads
“Cir "trolon + Cig tnlon = —Lun. (5.426)

A comparison of these theorems with those of traditional metabolic control
analysis[Egs. (5.42), (5.43) and (5.51)] shows that there exist relations among
overall control coefficientsand the usual control coefficientspertaining to module
I. When module is, for example, an unbranched pathway, its overall control
coefficient with respect to any concentration or flux is smply the sum of the
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respective particular control coefficients of the reactions inside module | (cf.
Brown et al., 1990).

A frequently occurring situation is when thefluxesthrough al | lumped bridging
reactions are changed by the same fractiond amount, a (e.g., by changing the
number of mitochondriain a suspension):

tiln"vg, =a forayk (5427)

In that situation, the control exerted by the black-box module as awholecan, due
to Eq. (5.424), be expressed as the sum of all normalized overal control coeffi-
cients belonging to this module:

dnJg, = a2 *Ci, (5.4282)
k

SlnJy; = a3 "Cl, . (5.428b)
k

wherethe sum runs over all the degrees of freedom of modulel.

In the above trestment, we assumed that the system under study only involves
one black-box module. The approach can readily be generdized to cases with
severd black-box modules. Then the problem arises that the modular approach
requires that on determining the overall elagticities of some black-box module,
the metabolites in al other black-box units have to attain steady state as well.
This might be difficult to achieve in experiment. This problem can be circum-
vented by confining the black-box modules so that there are no effector interac-
tionsbetween them. A moredetailed analysisisgivenin S. Schusteret 2/, (1993a).

Examples of overall control coefficients have, in fact, been given in some of
the previous sections, in particular the control coefficientspertaining to the HK-
PFK system (Section 5.4.4) and to the subsystem consisting of 3-phosphoglycer-
ate dehydrogenase and phosphoserine transaminase (Section 5.4.6).

Enzymic reactions as composed of elementary steps can often be treated as
steady-state modules in the sense defined above, as was done in Section 5.6.
Therefore, the modular approach may be considered as a generalization of the
control analysisset out in Sections5.1-5.3. Conventiona control coefficientsare
then identical to the overall control coefficientspertaining to the catalytic cycle
of an enzyme.

Application of the modular approach to single enzymesis particularly useful
when applying it to slipping enzymes (i.e., enzymes that catalyse distinct pro-
cesses which are incompletely coupled). Examples are provided by the various
H*-ATPases and Na/K-ATPases and the enzymes involved in the respiratory
chain. When treating a dlipping enzymeas a black box, the coupled portion (such
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as ATJ?synthesis) and uncoupled portion (dlip) can be taken as reduced bridging
fluxes, and appropriateoverall control coefficientscan be calculated.

-

513. FLUX CONTROL INSUSCEPTIBILITY

As pointed out in the sections on stoichiometricanalysis (Chapter 3), an important
step in metabolic modeling is to determine invariant properties by only using
those parameters that are relatively constant and are known to a satisfactory ac-
curacy. Thisinformation may concern stoichiometry, separation of timeconstants,
thermodynamic properties, and patterns of nonstoichiometric effector interac-
tions, and is, in most cases, easier to obtain than the exact values of eadticities.
Asfor control andlysis, thisimplies that the values of control coefficients some-
times cannot be cal culated. One may, however, attempt to make qualitative state-
ments about the control structure on the basis of incompleteknowledgeabout the
eladticities. For example, one may analyze which fluxes areinsusceptible to con-
trol by which reactions, that is, which flux control coefficientsare always zero,
irrespective of the specia valuesof kinetic parameters.

Knowledgeof the effector interactions together with information about what
substrates and products of reactions enter the kinetic equations can be compiled
in a qualitative elasticity matrix, the elements of which are defined by

u 0 if 8v;/8S; = 0 for ay admissble Seady-Satevector S
= {0 G O = (6429

. & is used as a mathematical symbol which stands for a variable that can adopt

different values rather than to be awaysequd to zero. Equation (5.429) means
that the qualitative elasticityg#* is zero if, and only if, S; does not enter the rate
law v«(8). This condition can befulfilled in one of the following cases:

(a) ThemetabolitesS; does nat participatein reectionR; (i.e., n; = 0)
() The respectiveenzymeis saturated with S;
(c) The reectionisirreversblein the direction d formationd s,

In al three cases, §; must not influencereaction R; as a catalyst or effector, that
is, in a way that is not reflected in the stoichiometry matrix.

The matrix £ js an example of what is called in mathematics a structured
matrix, which has fixed zerosin certain locations and arbitrary elementsin the
remaining |l ocations(see Wonham, 1974; Shieldsand Pearson, 1976). In the anal -
ysisof structured matrices, the concept of rank has to be generdized. One defines
the generic rank of £% as themaximumrank which can be achieved as afunction
of the variable lements in an (ordinary) matrix ¢ that has zeros @ the same
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locations as e3", The generic rank of any structured matrix can be determined
by an algorithm given by Shieldsand Pearson (1976).

Theincomplete knowledge of kinetic parameterscan be taken into account by
considering classesof reaction systems, E(N,£*), having the same stoichiometry
matrix N and the same qualitative elasticity matrix e2°%, Let T denote the set of
al reactions, R; G = 1,... ,r) of any system belonging to =.

Recent resultsconcerning zero flux control can be phrasedin varioustheorems.
The proofs weregiven in S. Schuster and R. Schuster (1992) on the basis of the
generdized mass-action kinetics (2.15).

Theorem 5A. If one flux control coefficient is zero for all reaction systems be-
longing to a given class E(N,e®®), then each reaction network belonging to $
can be subdivided into two subsystemsI'; and I, in sucha way that the subsystem
T, of reactionsis not controlled by the reactions belonging to the subsystem I,

Cj=0 forallR,€T,R €Ty, (5.4302)
TLuUrL, =T, (5.430b)
NI, = 2. (5.430c)

For systems of more than two reactions, this implies that when one reaction
R; isinsusceptibleto flux control by another reaction R;, which is to say that the
control coefficient Cf; iszeroirrespectiveof the valuesof kinetic parameters, then
more flux control coefficientsthan just Cj; are zero.

Now we decompose v, N and N°® according to a given partition of T,

y= M) (5431a)
YA )
N = (N, No), (5.431b)
N° = (N? N). (5.431c)
Let
¢ = rankNp), i=1,2. (5.432)

Note that the decomposition into subsystems differsfrom that usedin Sections
5.11 and 5.12 in that here the set of reactions is subdivided into two classes,
whereas no grouping of the substancesis made.

Theorem 5B. For a given class E(N,e%), a necessaryand sufficient condition
for a subsystemI; not to be susceptible fo flux control by the remaining subsystem
is
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rank(ef™ L) = rank(N) — {,. (5.433)

Note that upon myltiplication of a structured matrix and an ordinary matrix,
as carried out in Eq. (5.433), astructured matrix arises.

Theorem 5C. For a given class E(N,e®™) with all reactionsbeing reversible, a
necessary condition for a subsystem I'; not to be susceptible to fiux control by
the remaining subsystemis: The null-space matrix K can be chosen to be block-
diagonal, with the diagonal blocks corresponding to the subsystems I, and T',.

As the fluxes in strictly detailed balanced subnetworks are dways zero when
the whole system is at steady state (see Section 3.3), it is clear that these subnet-
worksare not susceptibleto flux control. Thisassertion can be proved by Theorem
5B.

Now we assumethat dl strictly detailed bal anced reactions have been detected

and excluded from the further analysis.

Theorem 5D. In the absence of srictly detailed balanced reactions, some sub-
system T, is insusceptibleto flux control by the reactions of the subsystem I,
with T'y and T, fulfilling Eqs. (5.430a)-(5.430¢) if, and only if, the following
conditionsare satisfied:

(1) The same conditionas in Theoremsc.
(D2) Thelink matrix L can be rearranged to give

L0
L‘(o Lz)

with L, being the matrix expressing the conservationrdations of T'y.

(5.434)

m3) §4=0 (5.435)

forany ij with R, & I'; and | > a, where a isthe number of rows o L,.

Condition (D2) excludes any influence of subnetwork T, on I'; via conser-
vation relations which involve metabolites of both the subnetworks. Condition
(D3) guarantees that changesin kinetic parametersof subsystemI', do not influ-
encethe fluxesin I'y by effector influences.

The above results enable us to decide, for reaction systemsof any complexity,
what fluxes cannot be controlled by what reactions. After having constructed, by
the algorithm given in S. Schuster and R. Schuster (1991), the representation of
K with the maximum number of diagonal blocks, one cancelsali rows of K that
correspond to strictly detailed balanced reactions. Now all combinations of the
remaining diagona blocksinto two submatrices have to be examined as for con-
ditions (D2) and (D3).
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Decomposahility of the null-space matrix applies, in particular, to hierarchic
reaction systems characteristicto living cells. An example is provided by the
system shown in Scheme 15 (Section 5.11) representing the hierarchic organi-
zation of cellular processes. To demongtrate the applicability o the method to
hierarchical systems, we again consider the smple two-level system shown in
Figure 5.12B. S, and S; may stand, for instance, for an mRNA species and a
protein, respectively. The dashed arrow signifiesa catalytic influence. Conditions
(D1) and (D2) are fulfilled with I'; and T, corresponding to the upper and lower
level in the scheme of Figure 5.12, respectively. If, and only if, S, does not
influence the reactions involving S; nonstoichiometrically (e.g., if there is no
feedback from the protein to gene expression), then condition @3) is fulfilled
and thereis no upstream control in the hierarchy (seeal so Westerhoff et al., 1990;
Kahn and Westerhoff, 1991).

It is an intriguing question whether Theorem 5D «till applies if hierarchic
systems are studied at a more detailed level, by including some or all o the
elementary reactions of enzyme action. By way of example, we consider the
system shown in Figure 5.12A. The stoichiometry matrix of this more detailed
scheme, which is given in Eq. (5.379), is not block-diagonal. However, both
matricesK and L (the latter being the 3 X 3 identity matrix) can be chosen to be
block-diagonal [cf. Eq. (5.380)]. Thus, conditions (D1) and (D2) are fulfilled
irrespectiveof theway of description of such atyped hierarchic system.

Another classof hierarchic schemes are the interconvertible enzyme cascades
(seeChock et al ., 1980; Goldbeter and Koshland ., 1984; C4rdenas and Cornish-
Bowden, 1989). A bicyclic systemis presented schematicaly in Figure 5.15A.
S, and S, stand for two formsof a protein catalyzing the transformation (e.g., by

A) B)
m m
SJ\/SZ Si\_,/sz
2 i 2
; S5 3a{(3b S
S3 S
4 4 55
1 44

Figure5.15 Exampledf a bicyclic system. (A) Simplified scheme; (B) detailed scheme.
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phosphorylation and dephosphorylation) of another protein, with the forms S,
and S4-

Thisscheme may zepresent the glutamine synthetase cascadein E. coli (Chock
et al., 1980) or any two cycles within the glycogen phosphorylase-glycogensyn-
thase system. In thelatter instance, only one activatory loop is operative.

The stoichiometry matrix corresponding to Figure 5.15A is block-diagonal.
According to whether or not S is an effector of reaction R,, the qualitativeelas-
ticity matrix reads

€ E o 0
e =008 0 0 (5.4360)
E O E E
or
€ E o0
gt = [008 @ 0) (5.436b)
06 o E &

respectively. If the bottom cycle is chosen as subsystem I, both of the matrices
given in Egs. (5.436) fulfill condition (D3). Therefore,

Cly, Cly €l Co = 0 (5.437)

for any set of kinetic parameter values. This reaction schemeis an exampleof a
cascade without feedback, as studied in Section 5.11. Therefore, Eq. (5.437) aso
follows from Eqg. (5.398). On the other hand, Eq. (5.398) can be derived from
Theorem 5D.

When reaction 3 in the enzyme cascadeis split up into two elementary steps,
& shown in Figure 5.15B, the null-space matrix can be chosen to be block-
diagond but thelink matrix cannot. One may concludethat for hierarchic systems
wherethe different levels are formed by moiety-conservedcycles (e.g. in thecase
of enzyme cascades), the vaues of control coefficients depend on the way of
description (see also Fell and Sauro, 1990; Kholodenko et al., 1993b).

Consider asimplified schemeof threonine synthesisin E coli (see Gottschalk,
1986), as depicted in Figure 4.3. Aspartate, ATP, ADP, lysine, methionine, and
the nicotinamide cofactors are treated as external metabolites. The reaction in
which aspartateis phosphorylated is catalyzed by three enzymes: aspartokinase
|, O, and III, This reaction and the homoserinekinase reaction are known to be
practically irreversible. The aspartokinase | and homoserine dehydrogenase ac-
tivitiesarecarried in E. coli by a bifunctional protein. Both of theseactivitiesare
in most strainsinhibited by threonine (Pette et al., 1966). Furthermore, threonine
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inhibits homoserine kinase (Théze et al, 1974). Neglecting further regulatory
loops, we can write the qualitative el asticity matrix as

00 o0 o &
EE OO0
0 ¢ ¢ 0 ¢
gl = g g 3 2 2 , (5.438)
0 0 0 0 ¢
0O E 0O o/
0 0 E 0 O

\ v

where reactions are numbered as indicated in the legend to Figure 4.3, and the
internal metabolites are numbered as follows: AspP, 1; ASA, 2; HSer, 3; HSerP,
4; Thr, 5. We take the aspartate semialdehyde dehydrogenase reaction (R,) as
subsystem T,. Because the whole network does not involve any conservation
relations, the link matrix is an identity matrix. The generic rank of the matrix
product £*® L equals4, whereasrank(N) = 5 and {; = 1. Therefore, condition
(5.433) isfulfilled. Similarly, this condition is satisfied for a decomposition with
thethreoninesynthasereaction constitutingsubsystem I',. Consequently, theflux
of threonine synthesis is insusceptibleto flux control by aspartate semialdehyde
dehydrogenase and threonine synthase, i, = 0 (k # 2) and Cls = 0 (k # 5),
dueto Theorem 5B. Moreover, it can be concluded, with the help of theequation
NC’ = 0, which follows from Eq. (5.26b), that these reactions do not control
their own steady-dtate fluxes either (CJ, = 0 and C; = 0). Thisis in accord
with simulations by Rais et d. (1993).

Consider the hypothetical situation (which might occur in mutant strains) that
there are no side pathways leading to lysine and methionine and no feedback
exerted by threonine. By determining the matrix e L for this case, onederives
that al flux control coefficientswith respect to reactions behind the aspartokinase
reaction are zero. Thisisin line with the resultsfor unbranched chains involving
irreversible reactions (Section 5.4.3.1).

Suppose now that thefeedback loops are operative. Then al reactions between
aspartate 4-phosphateand threonineexhibit zero flux control coefficients. Includ-
ing now the branches leading to lysine and methionine, we arrive a our above
result, which can be generalized in that all reactions between an irreversiblestep
and a metabolite acting as a feedback inhibitor, except those situated behind
branching points, are not able to control any flux (cf. Eq. (5.112)).

An analysis of the structure of control insusceptibility of the reaction scheme
o glycolysis including the phosphoglucomutase reaction and fructose-bisphos-
phate cycle can befound in the work of S. Schuster and R. Schuster (1992).

The above results on flux control insusceptibility are valid not only for infin-
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itesmally small parameter perturbations but also for large changes. In fact, inte-
gration of Eq, (5.16b) gives zeroif €’ isalwayszeroirrespectiveof the parameter
values.

In the Situation that some enzymeE, is saturated with its substrate [case (b) in
the above classification], the reactions upstream this enzyme usualy have very
low flux control coefficients. When they are inhibited to a large extent, the point
will eventually be reached where the substrate of E, drops below the Michaelis
congtant of E,, so that the control coefficientsbecome nonzero. Thisgivesrise to
athreshold phenomenonin theeffect of inhibitionon aflux (Letellier et al., 1994).

A frequent situation in biochemical systems is that some reactions are very
fast, so that they subsist at quasi-equilibrium. As was pointed out for unbranched
chainsin Section 5.4.3.1, quasi-equilibriumreactionsexert very weak flux control .
This statement can be generalized for systems of any complexity, by again using
the connectivity theorem (5.51b). Another substantiation might be based on The-
orem 5B and a rescaling of dadticities. In the limit of infinitely fast reactions,
such rescaling brings about that someelementsof €, tend to zero, which changes
the generic rank of P L.

514. CONTROL EXERTED BY ELEMENTARY STEPS
IN ENZYME CATALYSS

In the modular approach, metabolic control analysis was generdized by consid-
ering functiond units containing several enzymes. Another generalization may
be achieved by going further into the details of the particular enzymic reactions.
Elementary stepsof enzymecatalysis (such as substrate-enzymebinding or isom-
erization of enzyme—substrate complexes) rather than overall enzymaticreactions
arethen the basic entities. Such an approach may answer the question of whether
a particular step of an enzyme can be rate-limiting to the rate of that enzyme
(Ray, 1983; Brown and Cooper, 1993; Kholodenko et al., 1994).

The flux control coefficients pertaining to elementary steps in an enzyme
scheme can be defined by

_ Wy _ w dvidp;

, 5.439
v ow; v ow;/op; - ( )

7
where w; stands for the rate of the jth elementary step. When the enzyme is
embedded in a reaction network and the control over steady-state fluxesis con-
sidered, v has to be replaced in Eq. (5.439) by J,. Analogously, concentration
control coefficientsare defined. They can be given not only for the free metab-
olites but also for enzyme intermediates. The parameter p;, which enters Eq.
(5.439) will usually be a rate constant of an elementary step, k.. or k_;.

An dternative definition of control coefficients pertaining to single enzymes
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refersto particular rateconstantsrather than to particul ar elementary steps (Brown
and Cooper, 1993; Kholodenko et al., 1994). In our terminology, these quantities
are response coefficients,

" K+ OV
R, = Tja_k:, (5.440)

because they belong to the class defined by Egs. (5.11) and (5.12).

As pointed out in Section 5.6.2, the control coefficientsC; have the property
of being independent of the choice of the perturbation parameter. This will now
be illustrated for the catalytic Scheme 1 (Section 2.2.2), with the substrate con-
centration S, = S and product concentration S, = P.

For the net rates of the two steps, we have

(5.441a)
(5.441b)

w, = kS - E - k_,ES,
wy=ky ES —k_g P-E.

For the quasi-steady-stateof the enzyme (w; =wy), with the conservation re-
lation E *+ ES = E;, one derives

Epk_, + k)

= 5.442
kS +k Ptk thy (54422

E

_ Er(yS + k_oP)
T kS kP kot hy

ES (5.442b)

For the enzyme rate, one obtains the reversible Michaelis—-Menten kinetics in
terms of elementary rate constants,

v = %T(kllols — k_k_,P), (5.4433)

D=kS+k P+ ,+k (5.443b)
[cf. Eq. (2.20)). Theunscaled flux control coefficientof thefirst step, for example,
can be calculated as

_ [ 9viok,

_ (5.444a)
1 <3W1/ak1>k_1 = const.

or
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aviok_,

1T (Bw,/ak_1>,q=wm' (5.444b)
Straightforward differentiation of Eqgs. (5.441) and (5.443) yields
ow, e S Er
57| =S§-E=—p=l +k) (5.445)
A4 E--§
el . 44
e, = 2 RSP k) (5.446)
This leads to
o=tk (5.447)
D
Using k., as a perturbation parameter, we have
26, 5 s + kP 5.448)
T—llkl_—Es_—B(l + kP, G
i =—E—T(k P + k)k,S + k_,P) (5.449)
3k _ylx Dp? 7 1 -2f) . .

So we obtain the same expression for C} asin Eq. (5.447).
In asimilar way, by using either of the perturbation parameters k, and «_,
one obtainsfor the control coefficient of the second step,

c = ﬁs;—k“. (5.450)

Note that the response coefficientsdefined in Eq. (5.440), which may easily
be calculated for the considered example from Egs. (5.446) and (5.449), do not
have the property of being independent of the choice of perturbation parameter.

The elementary rate constants are linked with the equilibrium constant, g, of
the overall reaction by the Haldane relation [cf. Eq. (2.26) and the relations be-
tween phenomenological and elementary parameters given in Egs. (2.21) and
(2.22)]. For the enzyme depicted in Scheme 1, this relation reads

ki
— = q. 5451
P q (: )

Because the equilibrium constant is independent of the catalytic properti esof the
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enzyme, one may argue that only those perturbations are alowed for which the
equilibrium constant remains constant. This may be taken into account by the
condition that changesin &, are always accompanied with opposite changes in
k_,. Wethen have

dwif E—T(kaS + ’_‘:Z_P) , (5.452)
Okyigy D qQ1

av E; ( k_zP)

—| =-=5Gk_P + S - —). 5.453)
i D2( 2 k)| ka 0 (

Equations (5.453) and (5.452) yield the same expression for €7 a&s given in Eq.
(5.447). Accordingly, the Haldane relation need not be considered when control
coefficientsare calculated. This point is of practical relevance because changes
of the equilibrium constant can actualy occur in practice, owing to changesin
temperature, for example.

Response coefficients with respect to temperature can be written as

RE =3 Cluyy, (5.454)

where CY are the control coefficientsof the elementary steps with respect to any
Steady-state variable Y and 7,1 are the scaled elasticities of the elementary steps
with respect to temperature. Moreover, the rate constants k+; may incorporate
concentrations of external metabolites or ions such as #*. Changesin pH then
change the (apparent) equilibrium constant.

Because the calculationsin Section 5.3 also apply to the control coefficients
pertaining to eementary steps, theflux control coefficientsof these stepssum up
to unity and the concentration control coefficientssum up to zero. For example,
the sum of the flux control coefficients caculated in Egs. (5.447) and (5.450)
equals unity. As the velocitiesof elementary steps are usually linear functions of
the rate constants, the response coefficientsRY,, also satisfy summation thwrems
very similar to the thwrems derived in Section 5.3,

DR+ 2R, =0, (5.4553)
SR+ 2R =1, (5.455b)
as can be proven as follows. For any elementary step i, the reaction velocity can

be written as w; = w/' — w;, where the two terms are proportiona to the
corresponding elementary rate constants. Thus, we have

Control Exerted by Elementary Steps in Enzyme Catalysis 277
Tigws + Mgy = —— = == 1. (5.456)

-
The response coefficients can be expressed as

RY, = Clmpun . (5.4572)
R, = Clmy_,. (5.457b)

Equations (5.456) and (5.457) and the summation theorems for control coeffi-
cientsof elementary steps imply relations (5.455a) and (5.455b).

Responsecoefficientscan also bedefined to refer to particul ar elementary steps
rather than to particular rate constants, by keeping constant the equilibrium con-
stantsof theelementary steps upon differentiation(Ray, 1983; Brown and Cooper,
1994; Kholodenko et al., 1994). Becausethereaction rates are then proportional
to the perturbation parameters, the response coefficientsso defined and thecontrol
coefficientsof elementary steps areidentical.

Brown and Cooper (1993) aso defined coefficients expressing the effect of
changesin elementary rate constants on the maximal activity, Vi, and Michadlis
constant, X, However, these are no control coefficientsin the senseof metabolic
control analysis, because V,,, and K, are no steady-state variables.

Computation of control coefficientsfor elementary steps of triose phosphate
isomerase (EC5.3.1.1), carbarnatekinase (EC 2.7.2.2) and | actatedehydrogenase
(EC1.1.1.27) from literature vaues of therateconstants showsthat theseenzymes
do not have unique rate-limiting steps, but flux control is shared by severd steps
and varies with substrate, product, and effector concentrations (Brown and
Cooper, 1993).

As the rates of elementary steps are linear functions of enzyme intermediate
levelsand rate constants, thereare numerous simplerel ations between these quan-
titiesand thecontrol coefficientswith respect to rateconstantsor elementary steps
(Brown and Cooper, 1994). These relations can be used to determine control
coefficientsfrom measurement of enzyme intermediates rather than of rate con-
stants.

To illustratean interrelation between the concentrations of enzyme forms and
the response coefficientsreferring to rate constants, one may calcul ate the coef-
ficientsR}_, and Ry, for Scheme 1 (Section 2.2.2), by differentiating Eq. (5.443).
Thisgives, for the sum of these coefficients,

kS + k_,P

D (5.458)

R +R,=

Comparison with Eq. (5.442) shows that
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ES
R, +R,= —. (5.459)

£r

Thisis a special case of a general relation found and proven by Kholodeuko et
al. (1994), which states that the sum of the control coefficients referring to the
rate constantsof the processes leading away from (consuming) any enzyme sub-
form is equal to the concentration of that subform divided by the total enzyme

concentration,

E
SR =2 (5.460)
i T

where the sum runs over all dlementary rates flowing avay from E,. The basic
ideaof the proof isto consider a hypothetical increaseof theconcentration E, by
afactor 1.and a simultaneous decrease of all the rate constantspertaining to the
unidirectional rates utilizing the intermediateE; by the same factor, A (Kholo-
denko et al., 1994). Then all theratesof the elementary steps remain unchanged,
and so does the overal enzymerate. Thus, we have

Adv E,
22 _SRr +-%=0, (5.461)
Lx 2 L

N

from which Eq. (5.460) followsimmediately.

515, CONTROL ANALYSSOF
METABOLIC CHANNELING

Besides homologous enzyme-enzymeinteractions (monomer—oligomer associa-
tions), heterologous enzyme complexes (i.e., associations of different enzymes)
have frequently been detected, in particular in tissues with very high enzyme
concentrations (Srivastavaand Bernhard, 1986; Srere, 1987). Variousexperimen-
tal data make it very likely that metabolic intermediates are directly transferred
between theenzymesin theseheterol ogous complexes. Thisphenomenoniscalled
metabolic channeling (for a review, see Ovadi, 1991). However, whether this
mechanism actually occurs and how important it is still remainsin dispute (Gut-
freund and Chock, 1991; Wu et al., 1991; Giersch, 1991).

Theassembly of enzymescan be transient (reversible, dynamic) or permanent
(irreversible, static). In static complexes, the catalytic units may be linked non-
covaently (multienzymeaggregates) or covalently (multifunctional proteins). Ex-
amples are fatty acid synthase (see Wakil et al., 1983) and the aspartokinase
I/homoserine dehydrogenase complex in E. coli (see Gottschalk, 1986), respec-
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tively. The latter protein is interesting in that it does not catalyze sequential,
neighboring reactionsas is normaly the casein static enzymecomplexes, but the
first and third reactions of the threonine pathway. There is no sharp conceptual
distinction between the phenomenaof static channeling and microcompartmen-
tation. The latter term is often used when multienzyme complexes or enzyme
arrays attached to membranesor to the cytoskeleton constitute a microenviron-
ment reducing diffusionlengths (see Friedrich, 1984; Welch et al., 1988; Gellerich
etal., 1994).

In dynamic channels, the enzymes consecutively associate and dissociatein a
way that the metabolic intermediates are " handed over" without the necessity of
being released into the aqueous medium. An example of a two-enzyme system
with dynamic channeling is shown in Figure 2.1. It is generally accepted that
most metabolic channels are not perfect, that is, the individual, nonassociated
enzymes are also catalyticaly active, so that unbound intermediates occur (S, in
Figure 2.1). It has also been suggested that channels might be lesky (i.e., inter-
mediates may escapeinto the agueous medium). In theexampleshown, leakiness
would imply an additional dissociation step from the complex E;S;E, to EE,
and S;.

From the viewpoint of metabolic control anaysis, a static enzyme complex
catalyzing severad sequential reactions can be treated by consideringit as one
enzyme catalyzing one overall reaction. Elagticities, control coefficients, and re-
sponse coefficients for the complex as a whole can be determined. However,
things become difficult if the channel is not perfect. As soon as (catalytically
active) free enzymes are present in the bulk phase, the pathway flux isa compli-
cated superposition of direct transfer and reactionsin the bulk phase. Elasticities
of the direct-transfer reaction are then difficult to measure because both the en-
zyme complex and the free enzymes are present, whereas el asticities are defined
for the situationin which the considered reaction proceedsin isolation. The same
problem arises for dynamic channels. Therefore, the conceptua distinction be-
tween an isolated enzymeand the sameenzyme embedded in a pathway takes on
anew aspect when channeling is operdtive. The fact that a system is more than
the sum of its constituentsis even more relevant here than for unchanneled path-
ways.

Clearly, in channeled metabolic systems, thereis no longer a one-to-one cor-
respondencebetween enzymesand reactions. Therefore, aclear distinction should
be made between control coefficientsof reactions and response coefficients with
respect to enzyme concentrations. As was shown in Section 5.6.4, the control
coefficientsof reactionsarenot uniquein thecasedf dynamicchanneling, because
they depend on thechoice of the perturbation parameter. In contrast, the response
coefficients with respect to enzyme concentrations are uniquely defined. There-
fore, the attempt made by Sauro and Kacser (1990) to apply the general response
equation (5.28) to heterologous enzyme-enzymeinteractionsis contestable.
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It has been shown that the sum of response coefficientsfor pathway flux with
respect to enzyme concentrationsexceeds unity when dynamic channeling occurs
(Kholodenko and Westerhoff, 1993; Sauro, 1994). It may thereforebe sensibleto
definethe responsecoefficientpertaining to thechannel as unity minusthis sum.

A possibleway of anayzing thecontrol of channeled systemsisby considering
the lementary steps of enzymecatalysis, extending the analysis of Section 5.14
(Kholodenko and Westerhoff, 1993). Total enzyme concentrations, Er, cannot be
used as perturbation parameters for defining control coefficientsat this detailed
level of description. This follows from the fact that they are conservation quan-
tities influencing several dementary steps. Furthermore, the rate of an isolated
elementary step, w, cannot be expressed as a unique function of tota enzyme
concentration, becausew depends on the distribution of E among the particular
enzyme intermediates.

As was explained in Sections 5.2 and 5.14, the general definitions (5.3) and
(5.5) of control coefficientscan also be usad for elementary steps. These coeffi-
cientsper se are not of much practical use though, because particular elementary
steps are hardly accessibleexperimentally. To express the overall control exerted
by an enzyme, E,, Kholodenko and Westerhoff (1993) introduced the impact-
control coefficient as the sum of the control coefficientsof all elementary steps
that aredirectly affected by enzymeE,

meCy, = k%‘_ . (5.462)
€

where R; is the set of all E;-dependent processes. This coefficient, in a sense,
evaluatesthe tota impact enzymeE; hason thesteady-statevariableY. A process
is called E;-dependent if its rate depends on the concentrations of the free form
of the enzymeE; or of a complex that involvesE;. In mathematically rigorous
terms, a process k is E; dependent if thereis an enzyme subform E°* such that

ow, oEr;
3 Es,’;b #0, ET'—" #0, (5.463)

where Ey; is the total concentration of enzymeE;.

Another important quantity expressing the effect of an enzymeE; is clearly
the response coefficient R,,, which refersto changesin the total concentration
Er;. Kholodenko et al. (1993b) showed that the impact-control coefficient
imp Y can be expressed as the sum of the response coefficient RE,, and terms
referring to channeling and conservation rel ationsinvol ving both enzymic species
and free intermediates. For proving this relation, they considered a hypothetical
perturbation of a given steady state so that
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(i) Every concentrationinvolved in the catalytic cycle of a given enzyme E; is in-
creased by afactor 4, whichimpliesthat the concentr ationsof all enzymesforming
complexeswith E, arealso increased

@ii) Therate congtantsof all E-~dependent processesaredecreased by the samefactor:

A. By these changes, the total concentration of E; attainsa new value,

Er b = wT.i . (5.464)

Thenew total concentrationsof all enzymesthat form complexeswith E; amounts
to

ErfA) = Ep; + (A — DET™, j#i, (5.465)

where ;™ is the total concentration of all complexesinvolving both E; and E;
before the perturbation. Equation (5.465) isonly vaid under the assumption that
every enzyme may occur in any complex no more than once (i.e., homologous
complexes are excluded).

The considered perturbation also changes conservation sums, T, that include
not only enzymic species E%” involving E; but also free metabolites, S,, if such
conservation cycles exist. These conservation sums can be decomposed into a
part, 7i™, containing free metabolites and a part, 73*®, involving enzyme sub-
forms. The perturbed conservation sums can then be written as

Ti(A) = T + ATy, (5.466)

To find, in an algebraic way, those conservation quantities 7, affected by
changesin the subforms of E;, stoichiometric analysiscan be helpful; for example,
by block-diagonalizing thelink matrix L.

All of the rates w, of E,-dependent processes are homogeneousfunctions of
first order of the concentrations of subforms of enzyme E,, because we exclude
diierization and oligomerization of E,. They are aso homogeneousfunctions of
the rate constantsat fixed equilibrium constants of the elementary steps. There-
fore, al the rates remain unchanged after the above-mentioned increasein the
concentrations of the subforms of enzyme E, and decrease in the corresponding
rate constants(i.e., 8734 = 0).

Because the steady-statefluxes arefunctions of thekinetic parametersand the
conservation quantities, one can write, by using the chain rule of differentiation,

dln T,
7 I .
+ S Rh =0, (5.467)

, 0ln(k.,/A)

dlnEr;
%C:k dlnAd

dln A

+ 2 RL
i
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wherethe index k refersto all the elementary steps belonging to enzymeE; (k €
R)). Taking the derivativesat A = 1, we have, for the rate constants,

3ln (keptl) {—1 ifk € R;
dlmi 0 otherwise, (5.468)
and for the conservation relations, due to Egs. (5.465) and (5.466),

dlnEr, EP™

ikt 1Y S/ | 5
ami B’ (5.469%)
aln7, T
T T (5.469b)

Because of Eq. (5.468), thefirst sum on the left-hand side of Eq. (5.467) equals,
apart from itssign, the sum of the CY, of all E.-dependent processes. By definition
(5.462). this sum equalsthe impact-control coefficient of enzyme E;. Therefore,
Eqgs. (5.467)—(5469) give

) Egomp TsubRJ
. mpcl = R + X E— 4+ ¥ L0, (5.470)
j=i Er; =1 T

Kholodenko et al. (1993a, 1993b) drew the conclusion that channeled path-
ways can be more sensitive to regulatory signalsthan "ided"" ones, because the
impact-control coefficientisincreased by the two sums on the right-hand side of
Eq. (5.470). Indeed, the sum over j refers to enzyme-enzymeinteractions as is
typical for channdling, but the Rf, and the sum over 1 in Eq. (5.470) for the
channeled pathway generally are not the same as those for a comparable non-
channeled pathway. Importantly, the impact-control coefficient coincides with the
response coefficient of enzyme E; if this enzyme is not involved in channeling,
nor in moiety-conserved cycles of metabolites.

It remains questionable, though, whether the concept of impact-control coef-
ficient isappropriateto describe the control exerted by an enzymein thesituation
of metabolic channeling. Changingall E-dependent processes by the same frac-
tional amount seems to be impossible in experiment. The evaluation of the sums
on theright-hand side of Eq. (5.470) is also problematic. Going down to thelevel
of elementary steps bearsthedifficulty that theexact number and interconnections
of these steps are often unknown.

Whét is desirableis to define and cal culate control coefficientsof biochemi-
cally meaningful and accessibleprocesses, such as achanneled route asa whole.
For example, in Figure 2.1, it would be interesting to have separate control co-
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efficients pertaining to the reactions catalyzed by E,, E,, and the E,E, complex.
This is, however, difficult because the denominator in the definitionsof control
coefficients(3.3) and_(3.5) refers to isolated reactions, whereas the reaction cat-
alyzed by the E, E, complex cannot be studied in isolation in thecase of imperfect
channels. It would be a challengefor the modular approach to metabolic control
analysis (see Section 5.12) to cope with metabolic channeling.

516. COMPARISON OF METABOLIC CONTROL
ANALYS SAND POWER-LAW FORMALISM

Metabolic control anaysisisakind of sensitivity analysisdealing with the effect
of perturbations of reaction rates on steady-state variables. Another type of sen-
sitivity analysis based on the power-law approach (cf. Section 2.2.4) was pre-
sented by Savageau (1976; see also Savageau et al., 1987b) and applied recently
toamodel of thetricarboxylicacid cycle (Shiraishi and Savageau, 1993). It makes
use of thefavorablefeaturethat the power-law rate laws may be transformed into
linear equationsin thelogarithmic concentration space[cf. Egs. (2.75) and (2.76)].
On the systemic level, however, one arrives at linear equation systems only if a
method called aggregation of flux is employed (Savageau et al., 1987a). In that
method, ratelaws for those processes tending to producea given substanceS; are
first combined to give an aggregaterate, v,y,.;. Similarly, thekinetic functionsof
those processes that consume a given substance are summed to give a separate
aggregaterate, v, (SeeFigure5.16). Instead of the balance equations (2.7), the
equations

n n

4 _ - =qIlsp-gIlsH i=1,....n (5470)

+ -
d Vaggr,i ~ Vaggr.i
7 j=1 j=1

is then used as basisfor the system description. The power-law expressions for
theaggregaterates are obtained in asimilar way aswasexplainedin Section 2.2.4
for isolated reactions. Accordingly, each of the kinetic constants a; and §; as well
as each of the kinetic orders g;; and k; now represents the properties of several,
aggregated enzymic reactions rather than of only one reaction. At steady state,
all time derivativesof concentrations are zero, so that Eq. (5.471) can be trans-
formed to

‘Ing + X gylnS=Ipf+ X ks, i=1...,n (5.472)
Jj J

Thiscan be written in matrix notation as
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AlnS = b, (5.473)
wherethe matrix A and the vector b contain the following elements:

a; = gy — hy, (5.474a)
b;y=Inp — Inag;. (5.474b)

Asthe equation system (5.473) is linear in the logarithmic concentrations, it can
be treated analytically. However, a number of drawbacksof applying the power-
law approach combined with the flux aggregation method should be mentioned.
The method of flux aggregation generatesa reaction schemeto which no mean-
ingful stoichiometry matrix can be attached (cf. Figure 5.16).
If the rank of matrix A equalsn, the solution to the equation system (5.473)

A)

B)

1+2 S, 3+4+5 ;

— 5, —5»

4+6+7 s S3 8

Fig5.16 Schemeof areaction system illuswatingthe method of flux aggregation.(A) Original
scheme; (B) " aggregate” scheme. The sums indicate which reactions of the original scheme have
been lumped to give the aggregatereactions (thick arrows in B). Note that the aggregate scheme
cannot be interpreted as a coherent pathway because the rate of degradation of any metabolitedoes
not occur as therate of production of another compound and vice versa.
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is unique. Otherwise, this equation system is solvableif therank of the matrix A
equals the rank of the augmented matrix (a;, b;) (cf. Moms, 1992). One then
obtains a continuousmanifold of solutions. Therefore, the occurrenceof isolated
multiple steady states with nonzero concentrations cannot be described by the
power-law approximation and aggregation of flux, whereas other nonlinear ap-
proaches can cope with multistationarity (cf. Section 2.3.3). Asthis phenomenon
plays an important role in biology, the advantage of andytica solvability of the
steady-stateequations appears not to be very vauable.

Another problem arises when conservation relations or other side constraints
are present. As was shown in Section 3.3, the steady state(s) then cannot be
calculatedfrom the ratelaws alone, but the conservation quantities must be used
in the calculation aso. To make the power-law approach uniform, Savageau et
al. (1987a) proposed writing constraints among concentrations in the form of
power functionsas well.

For example, the conservation relation ADP + ATP = A = const. would be
written in the power-law approximation as

ADPY'( ATP\?
ey -
where
ADP® ATP®
h= 2 f= 2 (5.476)

The superscript O refers to the reference state of the approximation. Equation
(5.475) can be derived by expanding the equation InATP = In(4 — ADP) =
In(A — exp(InADP)) into a Taylor series and only considering the terms Linear
in (InADP — IMP").

In the case that congtraints are linear conservation relations (as for the above
example concerning the conservation of adenine nucleotides), this approach
makes things unnecessarily complicated. More importantly, mass conservationis
only fulfilled in the reference state, whereas for sensitivity analysis, deviations
from the reference state must be studied. Furthermore, whereas conservation re-
lations are a direct consequence of the linear dependenciesamong baance equa-
tions, the side constraints approximated by power laws are not, in general, con-
sistent with the approximate system equations (5.471).

Another drawback is that the method of aggregation of flux entails a ques-
tionable reduction in the number of degrees of freedom of the system at steady
state, because the stoi chiometric rel ationshipsare no longer reflectedin thesystem
equations (5.471). This concerns, for example, the different possibilities of dis-
tribution of flux over the branches in the system (cf. Chapter 3). It is worth
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mentioning that the aggregation method used in the modular approach of meta-
bolic control analysis (Section 5.12) differs from that underlying Eq. (5.471)
becausein the former, the number of degrees of freedom in flux and the stoichi-
ometric mass balances are maintained.

It has often been claimed that the kinetic orders g; and h; [cf. Egs. (2.74a,b)]
be equivalent to the elasticitiesdefined in Eq. (5.36a) (Savageau et al., 1987b;
Cascante et al., 1989a; Sombas and Savageau, 1989b). Indeed, we have

+ .
g = Mzw, (5.477a)
v olns;

B, = U0 Vaggni (5.477b)

Y ams;

but v;;m and v, have different meaningsthan v; in Eq. (5.36a). Becauseof the
method of aggregation of fluxes, they represent aggregate rates of formation and
degradation of a substance §;, whereas v; in metabolic control analysis denotes
the net velocity of some reaction, which combines forward and reverse rates of
onereaction. Each elaticity ¢ corresponds to one enzymic reaction, whereaseach
of the coefficients g;; and h; generally corresponds to several reactions, which
have been aggregated.

Furthermore, taking logarithmicderivativesin Eq. (5.477a) and (5.477b) isa
necessary consequence of the power-law formadism, in which rate laws are ap-
proximated ad hoc by power functions. In contrast, metabolic control analysisis
not necessarily based on logarithmic derivatives. One can also use direct deriva
tives, asin Eq. (5.19). Whether or not normalized quantities areemployedis only
aquestion of interpretation (cf. Section 5.7).

Under the condition that matrix A is nonsingular, Eq. (5.473) can be solved
for 1nS to give

InS = A~'p. (5.478)

Thisequation alows one to calculate sensitivities of concentrations with respect
to rate constants,

alns, __as,

(S, 0) = (5.479)

dlng,  ob
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dlns; dlns;
Sof) = —% = i
oSl almg b

(5.480)

-

Here we have replaced the symbol S(+) used for sensitivitiesin the origina work
(Savageau, 1976; Savageau et al., 1987b) by &(-), in order to avoid confusion
with the symbol for concentrations. By Eq. (5.478), one obtains

a(S:8) = —o(S,a) = ATYy. (5.481)

Thesesensitivities bear a certain ana ogy to the normalized concentration con-

trol coefficientsdefined in Eq. (5.5). However, thetwo quantitiesare not identical, -

becausethe sengitivitiese refer to perturbationsof the rate constants of aggregate
fluxes, whereas control coefficientsin metabolic control analysis usually char-
acterize the effect of perturbations of individua enzymes.

The differences between the sensitivities & and control coefficients become
even more obvious by considering the summation theorem derived by Savageau
etal. (1987b):

,2’1 [0(S. ) + a(Swapl = 0. (5.482)

This theorem is not equivalent to the summation theorem (5.42), because each
term o(S;,5) + 6(S,a) is zeroon its own, so that this equation does not properly
reflect the contribution of all reactionsin the control of the concentration S;. This
is because the particular equations congtituting Eq. (5.471) are not coupled with
each other via the rate constants a; and f;. Therefore, an equal fractiond increase
of only one pair of rate congtants, ¢; and f;, leaves the steady state of all S;
unchanged. In contrast, the summation theorem (5.42) is related to the situation
that all rate constants of the system are changed by the same fractional amount.
This discrepancy is due to the flux aggregation method, which decouples the
'metabolites. It is no longer considered that consumption of some substance co-
incides with formation of another (see Figure 5.16). It is an oversmplificationto
treat therateconstantse; and §; (and likewisethekinetic orders) to beindependent
of the other rate constants ¢, and f;. This was acknowledged by Sombas and
Savageau (1989a) but was not taken into account in their general formalism.
Senditivities of rates with respect to rate constants have also been defined.

Because at steady statethe totdl flux feeding into a substance equal sthe total flux
consuming this substance, such sensitivitiesare, in theflux aggregation approach,
only meaningful when defined for unidirectional rates. From Eq. (5.471), one
obtains
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o(vE,na) = 3ln vy _ oy + }n: 8u0(Si> 0y) (5483)
fggnt "y d1n g; vooa T
aln vige” — S £,0(S,8) (5.484)

c(v:-gg\‘.i’ﬂj) = a]Ilﬂ

and similar equiati onNSfOr §(Vaggr.:»B;)- Summeation of Egs. (5.483) and (5.485) over
jyields

-E, [0V grin @) + OWiginB)] = 1, (5.485)
=

because of Eq. (5.481). At variance with the summation theorem (5.43) of met-
abolic control analysis, exactly one term of the sum (5.485) equal s unity, and all
othersare zero.

Starting from the equation

AT'A =1 (5.486)

and using Eqgs. (5.474), (5.479), and (5.480), the relation

E [U(Siyaj)gjk + U(S.'nBj)hjk] = =& (5.487)

J

can be derived. For the sensitivitiesof rates, one can deduce

J

> [u(v,*,a,-)g,-k + a(v.-+,/3,->h,-k] =0 (5.488)

Although Egs. (5.487) and (5.488) exhibit a certain formal analogy to the con-
nectivity theorems (5.53a) and (5.53b), respectively, they are not identical to the
latter, nor generalized versions, as the coefficientshave a meaning different from
the coefficientsin metabolic control analysis. For afurther discussionon therole
of the theoremsin both approaches, seethe work of Cornish-Bowden (1989).
Power-law approacheshave been used not only for sensitivity analysisbut also
for smulation of biochemica systemsfar from achosen referencestate (Shiraishi
and Savageau, 1993; Torres, 1994). The criticism put forward above concerning
small deviationsfrom thereferencestateisall themorevalidfor such smulations.

517. COMPUTATIONAL ASPECTS

It is an important achievement of metabolic control analysis to have provided a
means to quantify the control properties of enzymic reactions embedded in ar-
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bitrarily complex metabolic networks. In the previous sections on applications,
we selected simpleexamplesand concentrated on analytical solutionsfor didactic
reasons. For compiex metabolic networks, the trestment by *pencil and paper"
soon becomesimpossible, athough the basic equationsof metaboliccontrol anal-
ysisarelinear.

A number of powerful computer programs performing calculations in meta-
bolic control analysis on |BM-PC compatibles and to someextent also on UNIX
computers have been developed (Hofmeyr and Van der Merwe, 1986; Cornish-
Bowden and Hofmeyr, 1991; Letelier et al., 1991; Sauro and Fell, 1991; Sauro,
1993; Mendes, 1993; Thomas and Fell, 1993; Ehlde and Zacchi, 1993).

The program CONTROL developed by Letellier et d. (1991) uses the matrix
formalism of metabolic control analysis asintroduced by Reder (1988). The pro-
gram is written in Turbo-Pascal and offers two submenus. The first serves to
calculatethevauesof all (normalized or non-normatized) flux control coefficients
and concentration control coefficientsof a metabolic network from the elasticity
coefficients, the values of which must be put in together with the stoichiometry
matrix of the network. Information about the ratelaws thusentersthe computation
only viathe elasticities. In the second submenu, the link matrix and null-space
meatrix are calculated in theform given in egs. (3.7) and (3.47), respectively. The
generdized summation theorems (5.44) and connectivity theorems(5.51) aredis-
played in aform with these matrices specified but the control and elasticity co-
efficients unspecified (given as symbals).

The program package SCAMP (Sauro and Fell, 1991; Sauro, 1993) running
under MS-DOS and on the Atari is acontrol anadysis program and, moreover, a
genera metabolic smulator. It can be used to make time-dependent simulations
by numericaly integrating systems of ordinary differential equations. SCAMP
also has options to detect and analyze steady states. It makes the conservation
relations and all the coefficients defined in metabolic control analysisavailable.
Rate laws can be defined by the user or chosen from a database. The program
works by reading an ASCII file of ingtructions (a command file) detailing the
model in a specific command language. The structure of the metabolic network
must be given in the form of reaction equations (such as $glucose—S1 for the
transformation of glucosetrested as an externa metaboliteinto an internal me-
taboliteS;). SCAMP then trand ates the command file into an intermediatecode
that is executed by arun-timeinterpreter. It is able to generate the stoichiometry
matrix and the governing differential equations from the reaction equations and
rate laws. The user can select to have some or all control coefficients calculated
by numerical modulation or by the matrix method outlined in Section 5.2, and to
haveelasticitiescal culated by modulationor by symbolic differentiation. For both
simulations and steady-state analysis, additional quantities can be monitored, for
example the sum of some control coefficients, or other user-defined quantities or
functions. Predefined changes to parameters, for example, after acertain timeof
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simulation, can be made by if/then functions. A routine for graphica output is
included.

The program MetaModel (Cornish-Bowden and Hofmeyr, 1991) running on
IBM-PC compatibles serves similar purposes as the package SCAMP, but it is
menu-operated and thereforemore user-friendly. The user is not obliged to learn
a specific command language. However, it does not include as many facilitiesto
calculate arbitrary quantities as SCAMP. All rate laws except for a predefined,
"mini n@l " Michaelis—-Menten kinetics must be defined by the user. For steady-
state cal culations, conservation equations have also to be indicated by the user so
that the input is somewhat redundant.

Theprogram GEPASI (Mendes, 1993) isal so menu-operated, taking advantage
of thefront-end facilitiesof MS-Windows, such as menus, dialogue boxes, push
buttons, and the help engine. The reactions can be endowed with rate laws chosen
from a menu or defined by the user. Theinput of the valuesof kinetic parameters
is donein a window separate from that for the input of structural data because
one is likely to input many different sets of parameters for the same reaction
scheme. As in SCAMP, the algorithm used for the integration of the ordinary
differential equationsisthe LSODA (Petzold, 1983), which automatically detects
whether or not the system is stiff and uses an appropriate method accordingly.
Concentrations, fluxes, elasticities, control coefficients, and response coefficients
can be calculated. They can conveniently be plotted versus time or in a two- or
three-dimensional phase space, whereby the program GNUPLOT is used. Results
can aso be written in an output file.

Thomasand Fell (1993) presented the C program MetaCon (under MS-DOS),
which is, in essence, an automation of a matrix method developed by Fell and
coworkers (Fell and Sauro, 1985; Sauro et al., 1987; Small and Fell, 1989). In
the present book, we review that matrix method only in part (on discussing the
branch-point relationships in Section 5.4.3.2), because it is equivaent to the
method developed by Reder (1988) (cf. Section 5.2) This equivalence was dem-
onstrated by Thomas and Fell (1993) themselves.

Theinput of the reaction schemein MetaCon proceedsin asimilar way asin
SCAMP, by parsing (reading) an input file and creating the corresponding stoi-
chiometry matrix. Theelasticitiesare writtenin theinput fileas vauesor symbolic
expressions. MetaCon alows a combination of symbolic (algebraic) and numeric
information in a much more extended way than other programs. Depending on
the amount of data that can be provided as input, the (normalized) control coef-
ficients can evaluate to a number or can be expressed as algebraic expressions
containing enzyme-kinetic constants, equilibrium constants, fluxes, and so forth.
A uniquefeature of MetaCon is a routine to cal cul atethe sensitivities of control
coefficients with respect to all elasticities, fluxes, and metabolite concentrations
when they appear in the expressions for the control coefficients. In addition, if
the elasticitiesare, in turn, defined in terms of kinetic constants and metabolite
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concentrations, the sensitivities of the control coefficients to these can also be
determined. Knowledgeabout the effect of deviationsin the vauesof thesequan-
tities on control coefficientsis particularly valuable when they are inaccurately
known. The program uses formul as derived by Small and Fell (1990) and Thomas
and Fell (1994) to calcul atethese sensitivities. MetaCon includes some testsfor
model validity and integrity. For example, it alows one to check whether al
columns of the stoichiometry matrix contain at least one nonzero entry, and to
check whether the rank of N is smaller than the number of reactions, which isa
necessary condition for a nontrivial steady state to exist. The program also pro-
duces a message if the null-space matrix contains a row of zeros, which would
then correspond to a strictly detailed balanced reaction (see Section 3.3.2).

All programsmentioned in thissection arein the public domain. The packages
SCAMP, MetaModel, GEPASI, and MetaCon are continuoudly updated and are
availableat an ftp server on the Internet (address 161.73.104.10, directory pub/
software).

It is worth noting that the approaches presented in Sections5.8-5.15 are also
amenabl eto automation on computer, which opensinteresting programming tasks
in thefuture.




6

Application of Optimization
Methods and the Interreation
with Evolution

In the preceding sections, our interest was focused on the mathematical descrip-
tion of the behavior of variables of metabolic systems, that is, concentrations of
pathway intermediates and fluxes, either in stationary states or in time-dependent
states. Other quantities such as the kinetic constants of enzymesor the stoichio-
metric coefficientswhich define the topology of enzymic networksare considered
as given parameters (i.e., they areinputs of the models). Any explanationfor the
observed vaues was not attempted. For traditiona simulation models as well as
in the context of metabolic control anaysis, this distinction between variables
and parametersis reasonable. Variations in the concentrations or fluxes may be
experimentally observed in short time intervals, whereas the topology of the net-
works and the kinetic properties may changeonly very dowly or are even fixed
during the life span of an organism.

In the present chapter we draw attention to thefact that, in contrast to chemical
systems of an inanimate nature, biochemical systems of living cells are the out-
come of evolution. In the light of the Darwinian theory one may state for bio-
chemical systems that during evolution (i) new types of reactions were recruited
by the cells leading to an increase in the complexity of biologica organization
and (ii) existing enzymic systemshave adapted to environmental conditions. Both
processeshave been driven by mutation and natural selection. It seems, therefore,
plausibleto assume that contemporary metabolic systems have devel oped by step-
wiseimprovement of their functioning.

Obvioudy, it would be a formidabletask to follow in detail the origination
and further development of metabolism during billions of years where living
conditions have permanently changed and from which only few traces exist. On
the other hand, it may be worth trying to explain the structural features of con-
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temporary enzymic reaction systems on the basis of optimization principles. Cer-
tainly, evolutiondid not lead to a" global optimal gae' but it is an experimental
fact that mutations er other changes in the structure of present-day metabolism
lead in most cases to a worse functioning of the cells (cf. Belfiore, 1980). The
concept of optimization is aso relevant in the design and improvement of bio-
reactors.

A crucid point is to formul ateappropriate performancefunctions whose max-
imum (or minimum) values might correspond to the outcome of the evolution of
cellular metabolism. In the literature, the following optimization principles are
considered: (a) maximization of reaction rates and steady-state fluxes, (b) mini-
mization of the concentrations of metabolic intermediates, (¢) minimization of
transient times (for areview, cf. Heinrich et al., 1991). Investigationsconcerning
optimal stoichiometries(Meléndez-Hevia and | sidoro, 1985; Meléndez-Hevia and
Torres, 1988; Meléndez-Hevia et al., 1994) and maximization of thermodynamic
efficiencies(Stucki, 1980) have also been implemented. Becalise many properties
o cellular reaction systems may influencethefitness of the whole organism, the
optimization problem may be considered as a multiobjectiveone.

In the following quantitative treatments we assume that during evolution of
cellular metabolism, some state function & was maximized by variationsof the
system parameters,

®(p) = max. (6la)

~ Minimization problems may be transformed into such a maximization principle

by considering — ¢ = max. The parameters may enter the performancefunction
@ directly or via parameter-dependent concentrationsor fluxes so that Eq. (6.1a)
may be written in more detail as

&(S(p), J(p), p) = max. (6.1b)

In optimization studies concerning metabolic systems, one has to take into
account certain constraints which may be o different type. First, there are a
number of physical constraints limiting the range of variationsof kinetic param-
eters, for example, for thefollowing reasons: (a) any parameter configuration has
to meet the thermodynamic equilibrium condition which is independent of the
propertiesof the catalyst, (b) there are upper limits for the elementary rate con-
stants due to physico-chemica congtraints, for example, diffusiona limitations,
and (c) the stoichiometry of metabolic systems has to fulfill certain physical re-
quirements such as mass conservation. Second, there are biological constraints
which are often called costfunctions (Reich, 1983; Rosen, 1986) and which are
more difficult to express in clear-cut mathematical terms. Various cost functions
possibly relevant for the evolutionary optimization of metabolism have been pro-
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posed: (@) the total enzyme content of acell or a given pathway and (b) the total
energy utilization (Reich, 1983; Stucki, 1980; Heinrich et al., 1987). Mathemat-
ically, these types of constraints may often be taken into account by the use of
the method of Lagrange multipliers, that is, by considering the extremum prop-
ertiesof thefunction

P =0 -3 hiu- 1 (6.2)
& .

where 4, are the Lagrange multipliers and x, = xu(p) denote the parameter-
dependent cost functions, the values of which are prescribed to be .

Studies have been made on the optimum properties of singleenzymesas well
as on themutud interdependence of theenzymes within metabolic pathways. The
inclusion of systemic properties into optimization analysis may lead to consid-
erablemathematical difficultiesarising from the nonlinearitiesin the system equa-
tionsfor metabolic networks.

Taking into account not only one but several optimization principles leads to
amulticriteria optimization problem

@ =max, j=1...,m, (63)

where the various performance functions may be gathered in a vector @ =
(Dy, ..., P,). Obvioudy, the situation may occur that the principles contradict
each other, which means that the optima state is characterized by a trade-off
between different performancefunctions. The role of trade-offsin the evolution-
ary adaptation of biochemica networks has been stressed also by severa other
authors(Majewski and Domach, 1985, 1990a; Liljenstrém and Blomberg, 1987).

Multicriteriaoptimization is related to the concept of semiordered sets. Tra-
ditiona optimization approachesin biology start from the assumption that bio-
logical systems could be compared according to a total ordering, that is, for any
two systems X and Y, exactly oneof therelations' greater than," "'lessthan," and
"equd to'" holds true. Here, "greater than™ means that X is better fit than Y so
that X will survive when competing with Y. However, there are many instances
where biological systems cannot be compared in this way, in particular, if two
systemsunder study do not interfereat all with each other. Moreover, two systems
cannot be compared when the ranking in fitness varies with circumstances.

It appears that four different relations should be distinguished,

X>Y, Y >X, X=Y, X?Y, 6.4)

wherethelatter relation signifiesthat X cannot be compared with Y. Upon inclu-
sion of the plausible axiom of transitivity,
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X>Y,Y>Z)=X>2, (6.5)

relations (6.4) giveriseto a semiordering structure (cf. Rédei, 1967).

The possible relevanceof multicriteriaoptimization principlesin biology also
followsfrom thefact that they often giveriseto connected or disconnected man-
ifolds of solutions. Thesecould account for the rather large variation of biochem-
ical datafound in organisms of different species and even of one and the same
species. Disconnected solution sets show a conspicuous correspondence with the
fact that two given biological species are not generally connected by a continuous
line of intermediary forms.

The adequacy of optimization approaches depends essentially on the formu-
lation of appropriate objectivefunctionsused to evaluatethefitness of abiological
system. Generally, it seems to be difficult to derive the objectivefunctions from
more fundamental principles, such as the laws of physics. Accordingly, it is ap-
propriate to derive them from heuristic arguments, and their validity should be
judged by comparing theoretically predicted optimum properties with those of
real systems. For the optimization of metabolic conversionsin bioreactors, the
proper choice of the objective functions is less problematic, because they are
related to the specificgoal of the biotechnological process.

6.1. OPTIMIZATIONOF THE CATALYTIC PROPERTIES
OF SINGLE ENZYMES

6.1.1. Basic Assumptions

It has often been stressed that evolutionary pressure on the enzyme function
was mainly directed toward maximization of catalyticactivity,

V = max (6.6)

(Fersht, 1974; Crowley, 1975; Albery and Knowles, 1976a, 1976b; Comish-
Bowden, 1976a; Brocklehurst, 1977; Heinrich and Hoffmann, 1991; Pettersson,
1992). This hypothesisis strongly supported by the fact that the rates of enzy-
matically catalyzed reactionsare typically 105-10'2-fold higher then those of the
corresponding uncatalyzed reactions (cf. Voet and Voet, 1990). Obviously, such
high reaction rates may only beachieved if the kinetic propertiesof the enzymes
fulfill certain requirements. It has been stated, for example, that enzymes with
optimal catalytic activity are characterized by Michaglis constants close to the
concentrations of their substratesin vive (Hochachka and Somero, 1973; Comish-
Bowden, 1976a). Other authors came to the conclusion that the X, vaues tend
to belargerelativeto therespectivesubstrateconcentrations(e.g., Crowley, 1975).
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Theseearly studies were mainly based on the most simple enzyme mechanism
depictedin Scheme1 (Section2.2.2), with the special assumptionthat therelease
of product from the enzyme-intermediate complex (step 2) isirreversible.

In the following, we consider an enzymatic reaction which involves two re-
versible binding processesof the substrateS and product P to the enzyme E and
areversible transformation of two enzyme-intermediatecomplexes (Scheme2 in
Section 2.2.2; in the present chapter, the substrate and product are denoted as S
and P, respectively). The kinetic properties of the enzyme may be described on
the basis of Eq. (2.20) which involvesthe phenomenological parametersK.,; and
K., (heredenoted by K5 and Kp), Vi and Vi . Evolutionary variationsof these
parameters are interrelated due to their dependence on the rate constants & ; of
the elementary steps [Egs. (2.27a)~(2.27d)] and, in particular, due to the Haldane
relation Vi K. p/VmKns = q = const. [Eq. (2.26)]. Therefore, the analysis of
evolutionary optimization of the catalytic properties of enzymes on the basis of
the principle (6.6) should focusfirst on variations of the k..; vaues. Theresfter,
conclusions concerning optimal vaues of K, and V,, may be derived.

The steady-statereaction ratefor the enzymatic process depicted in Scheme2
may be expressed as

IS-q— P, (6.7a)

Vv =

o5

with the thermodynamic equilibrium constant

- bk (6.7b)
k_ik_ok_s
and the denominator
1 ks koks ( ky kykp kyky )
=— + + + + + s
b ks kogk_s  k_jk_gk_y  \k_jk_a  k_ik_ok_s  k_jk_gk_3
ky 1 1 )
— + —|P.

* (k_lk_z YT, 6.7¢)

We areinterested in those values of the elementary rate constants maximizingthe
absolutevauelvl of the reaction rate under the constraints of fixed values of the
concentrations of the reactants and of the equilibrium constant g. Without |oss of
generdity, it is assumed that g = 1. For q < 1, the optimal rate constants may
be obtained from the solution derived for q > 1 by the transformationsv = —v
and g~ 1/¢, and by interchanging the meaning of the symbolsk, and k_, k_1
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and ks, k, and k_,, aswdll as of Sand P. Accordingto Eq. (6.7) the reaction rate
v isa homogeneousfunction of first degree of the elementary rate constants k..,
that is <

v(ak, ak_) = av(k,k_;) 6.8)

with an arbitrary valueof a > 0. For that reason, therate v could be increasedin
an unlimited way when no congtraints for the rate constants of the elementary
reactions are imposed. According to quantum-mechanical and diffusiona con-
straints, it is reasonable to take into account upper bounds on the individual rate
constantsupon optimizing the reaction rate, that is,

ki—i = kti,mnx' (69)

Dueto Eqg. (6.8) and condition (6.9), states of maximal activity have the property
that one or more kinetic constants assume their maximal values. Because for q
= const., the numerator in Eq. (6.7a) isindependent of therateconstants, optimal
states are characterized by those vaues of the rate constants minimizing the de-
nominator D.

For the mechanism depicted in Scheme 2, three groups of kinetic constants
may be distinguished: (a) the second-order rate constants &, and k_5 character-
izing the binding of the substrate and product, respectively, to the enzyme, (b)
thefirst-order rate constants k, and k_, characterizing theisomerization step, and
(c) the first-order rate constants k_, and k; characterizing the dissociation of
reactants from enzyme-intermediate complexes. Accordingly, we consider three
different upper limitsfor the rate constants

kpk_sy =< ky, (6.10a)
kykoy = ke, 61®
k_ i ky < k. (6.10c)

These conditions indicate that no distinction is made for the allowed ranges of
the rate constantsbelonging to the same group.

In dl what follows, dimensionless vaues for the rate constants k.. ;, the con-
centrations Sand P as well asfor the enzymic activity v will be used. In order to
avoid new symbols we simply redefine the previoudy used quantities,

k.
_Ji_,k, 2o )
X 7] kr ky (6113)

(a=1,-3,=2,—-2,andy = —1,3)and
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kS &P v
2, Bap —ow (6.11b)
ke ke kEr

Using normalized rate constants, condition (6.9) assumes theform
kok_; =<1 6.12)

To smplify the mathematica treatment, we confine ourselves to the special
casek/k, = 1; that is, no digtinction is made between the upper boundsfor the
two different types of first-order rate constants. Then, by using the normalized
quantities, the rate equation keeps the form (6.7) except that the factor E; is
omitted (for a more general trestment, cf. Heinrich and Hoffmann, 1991).

6.1.2. Optimal Vauesof Elementary Rate Congtants

Examination of Eq. (2.28), of which Eq. (6.7) is a specid casefor r = 3,

shows that theforward rate constants k; enter the denominator only together with
k_;andk_q_yy intheform k;/(k_ k. 1y), whereasall k_; enter the denominator
also in the form 1/k_; (note the cyclic notation k_; = k_g). This gives rise to
thefollowing.

Theorem 6A. For ordered enzymereaction mechanisms,a statewith nonmaximal
values of k; and k_; or k; and k_¢_, cannot be optimal.

This theorem follows from the fact that such a state can be improved by in-
creasingk, and k-, ork,and k_;_ yy by thesamefactor. Thischangeaffectsneither
the equilibrium constant nor theterns k;/(k_;k_;_yy) but decreasestheterns 1/
k_; in the denominator of Eq. (2.28). For three-step mechanisms, 10 different
optimal solutions L; are therefore possible for a given valueof g = 1

(@ Threesolutionswith asubmaximd vaued one backward rate congart,
Lpk <1, Lpk,<1; Lygk,<l1 (6.13a)

() Threesolutionswith submaxima vauesd two bedkwerd rate condants,
Lok pks<1; Lgk . k,<li Lok nks<l  (613b)

) Three solutions with submaximal velues d one beckward rate congtant and one
forward rate congtartt,

Likpk, <1 Lokk,<1l Lokk <1 (6.13¢c)

(d) Onesolution with al beckwerd rete congtants baing submaxim,
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Ligk_ kg k_y<1 (6.13d)
The denominators D; in Eq. (6.7) for the varioussolutions I; may be expressed

in terms of S, P, g, and the respective submaximal rate constants given in Egs.
(6.13a)—(6.13d). For example,

Dy =2+ q+3¢S+(1 + 2P, (6.142)
k=g, (6.14b)
25 + P
D9=1+q+qs+P+k3+—(k—), (6.153)
—1
k. (6.15b)
k_y

D—(L+1+ 1)+(1+ 2)S.
7 Nk kogk_y | k_jk_gk_s k_k_y  k_jk_gk_, 6.163)

Kok gk_y = g~ (6.16b)

All kinetic constants which, for given D;, do not enter relations (6.13)—(6.16)
assumetheir maximal valuesfor the indicated solutions; that is, their normalized
vauesareequal to unity.

Under consideration of theinterrel ationsamong kinetic parametersdue to the
fixed equilibrium constant [e.g., Egs. (6.15b) and (6.16b)], it is seen that the
denominators D, to D, may attain local minima with respect to variationsof the
kinetic parameters involved. For example, after elimination of %5 in Eq. (6.15a)
by Eq. (6.15b), Dy becomes minimum for values of £_; that fulfill the condition

Dy AS+P)
ik Al e 0. 6.17)

From this equation, one derives
K, = \/@ k = J2qS + P). (6.18)

In a similar way, one may determine the kinetic constants which nhni nhze the
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denominators Dy, . .. Dg. The results are listed in Table 6.1 where the rows L;
contain the parameters which minimize D,. The local minimum of Dy, is deter-
mined by the conditions

Dy P ( 1 )
+ - L
g, = kg - (1+5) =0 6w
Dy _ _ ( L) -
=kt aS g1+ —) =0 (6.19b)

These equations may be transformed into the equation system
k4.1+k3,-'—q———‘—=0, (6.20a)
(6.20b)

After solving the fourth-order equation (6.20a), the rate constants k_, and k_5
can be obtained from Eq. (6.20b) and the equation k_5 = (gk_k_,) 1.

As is seen from Table 6.1, the optimal solutions L; (j = 4) depend on the
concentrations S and P. Therefore, conditions (6.12) impose various constraints
on the allowed (S,P) values, depending on the type of the solution. For example,
solution Ly, given in Eq. (6.18) only existsif

1
S+ P=—, 3

2 (6.21a)
§=0, P=0, (6.21b)

and solution L,, determined by Eg. (6.20) only existsif

2q
= =
s > 1, (6.22a)
P
S=-, (6.22b)
q
S = P(gP* + qP — 1). (6.22¢)

Inequalities (6.21) and (6.22) and analogous relations for the solutions L, . . .,
L define, within the space of reactant concentrations, different subregionswhere
the solutions L, (4 = j = 10) lead to rate constants fulfilling condition (6.12).
The solutions L,, L,, and L, are independent of S and P and are, therefore,
possiblefor al reactant concentrations. Someof theseregionswill overlap. There-
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Table61l Optima Solutionsfor the Rate Constants for the Enzymic Reaction
Depicted in Scheme 2 as Functions of the Concentration of the Productforg = 1

solution k; ks k k_, ks k_s
L, 1 1 1 1 1 1
q
L, 1 1 1 l 1 1
q
1 1

Ls 1 S+P 1 f[1+pP 1
g1 + P) qS + P)

| ma— < | Pa—

2r 1 1+8
‘/q(1+S) \/2Pq
L, 2q(1 + P) 1 1 21+ P) 1 1

N Sq '
Lg 1 1 241 +58) 1 1 (1 + 8)
P N Pg
Lo 1 s+p 1 1 PgS +P) 1
q

=k =k=L1K +8, ——7——-—=0,k_z— k==

—
—

L6 1

LlO

fore, to make the solutions L; uniquefunctions of thereactant concentrations, one
has to determine for given (S P) vaues that solution which gives the highest
enzymic activity. Thismay be achieved by introducing the optimd rate constants
for L; (Table 6.1) into the corresponding expressions D; and by comparing the
reﬂjltlng minimal denommatorsD For j = 9 the minimal denominators D; are
listed in Table6.2. The daermlnatl on of B, requires numerical solution of Eq.

(6.20).

In this way one arrivesat a unique subdivision of the (S, P)-plane into sub-
regions R; such that within region R, solution L; applies. In Figure 6.1 these
subregions are depicted for g = 2. From the resultstisted in Table 6.1 one may
derive that the optimal values of the rate constants change continuoudly as the
vaues of § and P vary even if a boundary between neighboring regions R, is
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Table62 DenominatorsD of the Kinetic Equation (6.7) Correspondingto the
Optimd SolutionsL, forj =1,...,9

Solution D(S, P)

L Di=2+qg+3¢5+ Q1+ 2P

L, D=0+ 290 + 8+ P

L, D;=3g+4qS+ P

L, De=q+3¢S+P=4JgP

Ls Ds=1+g+28+ qP +2/gS + PY1 + P)
Lg Ds=2q(1 + S + P+ 2/2qP(0 + 5)

L Dy=1+2S+ P +2/2451 + P)

L Dy = g1 + §) + 2P + 2,2gP(1 + 5)

L Do=1+qg+aqS+P+2295+P)

crossed. From Table 6.1 and Figure 6.1, thefollowing properties of the optimal
solutions may be derived:

(a) At very low substrate and product concentrations, optimal enzymic activity is
achieved by improving the binding of S and P to the enzyme (solution Ly: high
(S, P)-affinity solution).

(b) When the substrateis present at a high concentration, it is weakly bound to the
enzymein the optimal state (solution L,: low S-affinity solution). An analogous
statement appliesto the product (solution Lg: low P-affinity solution).

(C) K, is dways maximum, except for region Ry where the reaction proceeds back-
ward.

(d) At variance with previous assumptions(e.g., Albery and Knowles, 1976a, 1976b)
optimal enzymic activity is not compulsorily achieved by maximal values of the
second-order rate constants. As for k, thisis the casefor L, and as for k_; for
14! Ldv Lﬁv st and LIO'

) Independent of the equilibrium constant q of the overall reaction, the internal
equilibrium constant g, = ka/k—, equals unity for solutionsL, L, Ly, and L.
gin = lisvalid for al near-equilibrium enzymes.

Theoptimal valuesfor the elementary rate constants are not only functions of
§ and P but they also depend on the equilibrium constant g. For g = 1, solutions
L,, L,, and L; becomeidentical, whereastheregionsRy, Rs, Rs, and Ry disappear.

Optimizationd the Catalytic Propertiesd SingleEnzymes 303

Figure6.1 Subdivisonof the(S, P)-planeinto subregionsRr,; correspondingto the 10 solutions
for optimal rate constants of thereversble threestep kinetic mechanism depicted in Scheme?2 for g
= 2. The vertices Py, P,, and P of the central region R, have the coordinates(l/¢2, 11q), (2¢ — 1,
1), and (1, g), respectively. Along the dotted line, ¢S = P holds.

Therefore, thecaseq = 1isfully characterized by solutionL, (k.; = 1) and the
solutions L,, Lg, and Ly (cf. Figure 6.2). Region R,,, Which is determined by
conditions (6.22a)—(6.22c¢), increases strongly in size with increasing values of
the equilibrium constant g. One may conclude that for irreversiblereactions (g —*
o) solution L4 becomesvalid for all positivevadues of S and P. According to the
central location of region R, within the space of reactant concentrations, the
corresponding solution L, has been called the central solution (Wilhelm et al.,
1994).

For the reactant concentrations § = P = 1 which always belong to region
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Figure 6.2 Subdivision of the (S, P)-plane into subregions R; corresponding to the optimal
solutions for therate constantsof the rever siblethr ee-stepkinetic mechanism depicted in Scheme2
for g = 1. SubregionsRy, Rs, and R degenerate to thebroken lines, whereP = 1,§ = 1, and 1 +
§ = 2P, respectively. Ryo degener atesto the point § = P = 1. Theoptimal solutionsfor regionsR,,
R,, and R; (combined to region Ry) are identical.

Ry, thefourth-order equation (6.20a) can be solved andlyticaly. One obtains the

two red solutionsk_; = 3/1/g and k_; = —1, and the two complex solutions
ko =(-12 % /5‘/_2)3 1/4. As only the positivered solution is relevant, we

conclude, with the help of Egs. (6.16b) and (6.20b),
k_, =k_2=k_3=§/—1;, k=h=k=1 (6.23)

This solution shows some correspondence to that proposed by Stackhouse et al.
(1985). In their descending staircase moddl, it was suggested that in the optimal
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stateeach of the three catalytic steps contributesequally to the equilibrium con-
gant g.

It isimportant tg note that the existence of 10 different solutionsL; is a direct
consequence of the fact that upper limits are not only introduced for the second-
order rate constants but alsofor thefirst-order rateconstants[cf. Eq. (6.10)]. This
may be seen asfollows. In thelimit k, = k&, = o, for finite values of the second-
order rate constant &, one gets infinitesmally small vaues of the normalized
reactant concentrations (cf. Eq. (6.11b)). Accordingly,only one solution, namely
L,, appliesas § + P< 129 [cf. Eq. (6.21a)]. In terms of non-normalized quan-
tities, solution Ly reads

ky=koy =k (6.24a)
by =k_3 = ky, (6.24b)

k_y = /%(S + P), (6.24c)

by = gk (S + P). (6.24d)

From these equations, it follows that for fixed non-normalized reactant concen-
tretions the limit k, = &, — o will lead to infinite values of the first-order rate
constantsk_ ¢, ks and k,, k_,, whereasthe second-order rate constants k; and £ _
remain finite. Taking into account the rate equation (6.7) for solution L, [Eq.
(6.18)], one obtains, with D, from Table 6.2, in thelimitk, = k, — =,

e & L (6.25)

Thisexpression is identical with the formula proposed by Albery and Knowles

(1976a, 1976b) and Pettersson (1989) for the rate equation of a perfect catalyst.

However, in addition to solution L, we havederived another ninesol utions which

areto beconsidered as not less " perfect" if the normalizedreactant concentrations
S and P are not small compared to 1/29.

The procedurefor caculating kinetic parametersin states of maxima activity
outlined above may be generalized to enzymic reactionsinvolving arbitrary num-
bers of dementary steps (Wilhem et al., 1994). For example, using the rate
equation (2.28) one obtains for an ordered uni-uni reaction with » elementary
stepsthe following high-affinity solution

e =D+ P _ Jgn = 1S + P)
k= e e k= [F—— (6.26)
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ky=k_p,=kie;=11=2,...,n— 1)whichisageneraization of solution
L, obtained for n = 3. The general solutionfor S = P = 1reads

k_,-=n/i k=1, i=1...,n (6.27)

Vg

Other generalizationsconcern enzymic reactions with more than one substrate or
product (Wilhelm et al., 1994). For example, for a bi-uni reaction where the
enzymecatalyzes theinterconversionof two substratesS; and S, into one product
P by an ordered four-step mechanism, optimization of the elementary rate con-
stants results, according to Theorem 6A, in 31 different solutions. Most remark-
ably, one obtains also in this case a central solution characterized by maximal
valuesfor al forward rate constantsand submaximal valuesfor al backwardrate
congtants. In the space of the reactant concentrations S, §,, and P, this central
solution for bi-uni reactions appliesin a three-dimensional central region which
has the topology of a tetrahedron and which increases in size with increasing
va uesof thethermodynamicequilibrium constant q (cf. the property of thecentral
region Ry, for the three-step mechanism of uni-uni reactions).

Example. Let us consider the hydrolls's of pyrophosphateto inorganic phos-
phate, that is, the reaction PP, = P; T P, which is catdyzed by the enzyme
inorganic pyrophosphatase (EC 3.6.1.1). The detailed cataytic mechanism with
four reaction steps and the participation of magnesiumis depicted in Figure 6.3.

The following first-order and second-order rate constants of the elementary
steps have been reported (Baykov et af., 1990, 1993):

k= 14 X 10'Ms, ky = 400/s, ks = 390/s, k, = 600/s, (6.28a)

kl . Mgzppi
Mg.E - (Mg,E) Mg,PP;
1
ky k—4 : MgPt k—2 kz
k_3 . MgP,
(Mg4E) MgP; Mg.E (MgPi)2
3

Figure6.3 Reaction scheme of inorganic pyrophosphatase.
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k., = 12fs, k_, = 8l/s, (6.28b)
ks =13 X 10°Ms, k_, =20 X 10°Ms.

The equilibrium constant corresponding to these data reads

kykpksks
= B o5y 85M. 6.29
= Wk sk, ©29)

Let us assume, for simplicity's sake, that the highest value in the group of the
first-order rate constants (k,ks,ks,k — 1,k —2) and the highest valuein the group of
the second-order rate constants (&% _ 3,k ;) approximately represent in each case
the upper bound for the rate constants (i.e., kmosomot = k4 and knimet = k).
Normalization of the data given in Eqgs. (6.28a) and (6.28b) leads to

k=1 k=067, k=065 k=1, (6.30a)
koy =002, k_,=0135 k5 =00009, k_,=0014, (630b)

with a normalized equilibrium constant g = 1.28 x 10, For such a high equi-
librium constant, the model predicts optima elementary rate constants which
belong to the central solution for the four-step mechanismwhere all forward rate
constants are maximal, and all backward rate constants assume submaximal va-
ues. Because in Egs. (6.30a) and (6.30b) all normdized forward rate constants
are close to unity and al normalized backward rate constantsare much smaller,
thedatagivenin Egs. (6.30a) and (6.30b) correspond rather well to the theoretical
expectations. Furthermore, theinterna rateconstantsof thecatalyticstep amounts
10 gine = kpfk_, = 4.94 which is much smaller than the normalized thermody-
namic equilibrium constant q (gy,/g = 3.86 X 10~7). Thissupports the hypoth-
esisthat theinterna equilibrium constantsof enzymecatalyzed reactionsareclose
to unity [see above and the works of Burbaum et al. (1989), Pettersson (1991),
and Wilhelm et al. (1994)]. One may conclude, therefore, that the kineticdesign
of pyrophosphatase has been selected with respect to flux maximization.

6.1.3. Optimal MichadisCongtants

Thekinetic equation (6.7) may be rewrittenin theform of the reversible Mi-
chaelis-Menten equation given in Eqg. (2.20). The relations (2.27¢) and (2.27d)
for the Michaelisconstantsremain valid using normalized quantitiesif these con-
stantsare scaled in the same way as the reactant concentrations [cf. Eq. (6.11b)].
Optimal vauesfor these phenomenological parametersare obtained by introduc-
ing k..; fromTable6.1 into expressions(2.27¢) and (2.27d). For simplicity's sake
we consider only the Michaelis constants for two specia cases:




308

(CY

b)

Application of Optimization Methods and the Interrelation with Evolution

Case § = P = 1 For these values of the normalized reactant concentrations,
solution L,, applies and from expressions(2.27¢) and (2.27d) one obtains with
Eq. (6.23)

1+ ¢+ 4
Kos = W, (6.312)
1+ g + ¢*3
Kop = ———2 1 qm (6.31b)
and from that
s - g, (6.322)
dq
% > 0. (6.32b)
dq

From theserelationsit follows that for solution L,, higher equilibrium constants
imply lower K, and higher K,p values. Using § = P = 1, one deriveswith Egs.
(6.31a) and (6.31b)

g=1:
%ns =1, (6.332)
EE; =1, (6.33b)
g>=>1:
Kims =2, (6.33¢0)
é =gq-1A (6.33d)

Relations(6.33a) and (6.33c) bear the interesting fact that the optimal Michaelis
constant X5 of the substrateis of the same order of magnitudeas the substrate
concentrationS, irrespectiveof theequilibriumconstant g. Thisis not the casefor
the relation between K, and P, at least for the considered solution (L,g).

Caseq = 1: Asoutlined above, thiscase is fully characterized by solutionsL,,
Lgand Ly aswdl asL, = L, = L. Using the expressionslisted in Table 6.1
one gets with Egs. (2.27¢) and (2.27d)

L(=<6,j=10)
Kop = 1, (6.34)
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L,
/ S
b Kus = 21 + Py’ Kop =1 6.35)
Lg:
KmS = 11 KmP = P (636)
V21 + 8
Ly

Kps = Kop = J2(S + P) 6.37)

Equations (6.34)—(6.37) give a strong support of the hypothesis that higher re-
actant concentrationsimply higher Michaglis constants. Let us first consider so-
lution Ly whichfor g = | appliesfor 2(S + P) <'I. In thisconcentration range,
Kqs and K p are monotonic increasing functions of the reactant concentrations.
In particular, in thelimiting caseS,P = 0 one obtains K us,Kmp = 0. On the other
hand, solutions L, and Ly which are applicablefor high substrate concentrations
and high product concentrations, respectively, have high K,s and K,p values|cf.
Egs. (6.35) and (6.36)]. For all solutions the following relations hold:

a
Eys 5o, Kmoy, (6.38)

as aP

The results given in Egs. (6.34)—(6.37) may be visudized in a space with the
Michaglis constants as coordinates (Figure6.4).

ThesolutionsL; (f = 6, j = 10) are represented by the point (Kns = 1, Kup
= 1), whereas solutions L,, Lg, and L, are represented by lines. It is seen that
solution Ly which is valid for low concentrations of S and P is characterized by
low values of both K, and K SolutionsL, and Ly applicablefor hi gh con-
centrations of S and P are characterized by high valuesof Ki,s and Kp, respec-
tively.

6.2. OPTIMIZATION OF MULTIENZYME SYSTEMS
6.2.1. Maximization of Steady-State Flux

The maximization of catalytic efficienciesas studied for single enzymes re-
mainsrelevant also in the context of enzymic networks. Here, thedifficulty arises
that the concentrations of the intermediates (i.e., the substratesand products of
the participating enzymes) are not fixed but depend on the kinetic parameters,
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Figure 6.4 Michaelis constants K,s and Knp in optimal states of the three-step mechanism
depicted in Scheme2for ¢ = 1 accordingto Eqgs. (6.34)-(6.37).The point Kys = Kgp = 1 char-
acterizesthe solutionsL; to Lg and Lyo.

which have changed during biological evolution. Moreover, due to the nonline-
arity of most rate equations, the mathematical treatment is hampered by the fact
that there are generally no explicit expressionsfor the parameter dependence o’
the performancefunction @. Thisholds trueeven for unbranched chains (Scheme
11, Section 5.4.3.1), if they includesaturableenzymes. The calculation of kinetic
parametersin states of maximal steady-state activity (/' = max) could be based
on Eq. (5.82). With S,,., = P, = const. one arrives a an implicit nonlinear
equation, which cannot, in general, be solved for J [see commentson Egs. (5.82)
and (5.83)]. For smplicity's sake we here consider only the case of nonsaturated
enzymes where J may be expressed analytically as a function of the first-order
rate constants k. ; and k_; of the participating reactions [cf. Egs. (5.85) and
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(5.88)1. If each reaction is described by a three-step mechanism as depicted in
Scheme 2 (Section 2.2.2), one obtains with Egs. (2.27a)—(2.27d)

v ky jka ks E;

PR/ , (6.39)
TR kst koygkey + koggkog;
PR/ korkozk-3,5; (6.39b)

kpjksy + koyiksy + koyykogy’

where E; denotes the concentration of the enzyme catalyzing reaction j. k.;; are
the rate congtants of the elementary reactions of enzyme E;. As is often done
(Albery and Knowles, 1976a, 1976b), we introduce apparent second-order rate
constants x; and x _;, so that Eqgs. (6.39a) and (6.39b) can be written as

b =rwE, k;=x_E. (6.40)
To distinguish between the contributionsof the enzyme concentration and the
(intrinsic) second-order rate constants to the catalytic efficiency of the particular

enzymes, wefirst consider a reference state wheredl enzyme concentrations are
equal, E; = E. For this state, the characteristic timesread [cf. Eq. (4.1)]

foo— 1
il eyt (6.41)

In other states, with the enzyme concentrations E;, the characteristic times are
E
== 4
T, E, (6.42)
With the equilibrium constants

g = ;kl- =L (6.43)

K,
,
j K-y

it followsfrom Egs. (6.40)—~(6.43) that

9E -5

b= 1+ gE "1l + g 644)

Equation (5.88) for the steady-state flux may be rewritten in terms of the
relaxation times, with the help of Eq. (6.44),
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r r Z r -1
J = (pl Mg - P2)<E" Sm1+gqy I q,.) (6.45)
j=1 m=1 Em j=m+1

In thefollowing, weareinterestedin those enzyme concentrationsmaximizing
the steady-stateflux J under the constraint

2 E<Eg, (6.46)

which expressesthefact that the total enzyme concentrationfor ametabolic path-
way is limited by the capacity of the living cell to synthesize proteins (Wdey,
1964). Because expression (6.45) is a homogeneous function of first degree of
the enzyme concentrations, their total must equal E,,, in optimal states. Using the
method of Lagrange multipliers, the spectrum of optimal enzyme concentrations
is determined by the condition

: [ r ):' -
- B, — Eo)| = 2= - A=0. (6.47)
aEJ E 'm tot oE. X ;

J

P |

Introducing expression (6.45) into Eq. (6.47) yields

E T+ q) 15 , .
o AR UASSLEE. /3 with k > j. (6.48)
E Vil +q) Lo ]

For the specid case of three enzymes, a similar equation had been derived by
Wadey (1964). Equation (6.48) leads to the conclusion that the concentrations of
dow enzymes (i.e., of enzymes with long characteristic times# in the reference
state) are in states of maximal steady-state activity generally higher than those of
fast enzymes. In other words, poor cataysts should be present in high concentra-
tions. However, the optimal distribution of enzyme concentrations aso depends
on the equilibrium constants. In the special case that all the enzymes have the
same catalytic efficiency (i.e., ; = ), Eq. (6.48) predictsfor dl ¢; > 1 amon-
otonic decrease of the enzyme concentrations from the beginning toward the end

of the chain. If @l the enzymes have the same intrinsic properties(f; = , ¢; =
q), one derivesfrom Eq. (6.48) the relation

E = EJgi . (6.49)

Introducing this relation into the condition of fixed total enzyme concentration,
with the formula of geometric progressions one obtains
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Eulg™ = D"~ "
E = %—. (6.50)

In Figure 6.5 the‘:)ptima.l enzyme concentrations are depicted as functions of
the positions j and the equilibrium constant q according to formula (6.50). It is
clearly seen that for g > 1 the enzyme concentrations decrease monotonically
toward theend of the chain. This decrease is the stronger the higher the equilib-
rium congtant is. In the limiting case q = 1, Eq. (6.50) describes a uniform
digtribution E; = E,/r.

Inserting the distribution (6.48) into Eq. (6.45), one arrives at an expression
for the optimd flux which reads (also in the generd case that the equilibrium
constants are not equal to each other)

r r r 271
I= Ew,<P, 1'[l 4 - Pz)[é<_21 [50 + ¢ I 1 q,,,) ] . (6.51)
J= J= m=j+

From this equetion, in the limits ¢; - « and ¢; - 1 one derives

Figure 65 Optimal enzyme concentrations E;/E,, for an unbranched reaction chain with r =
n * 1= 10in statesof maximal steady-gtate flux as functionsof the equilibrium constantsfor the

caseq; = ¢, T, = ), accordingto Eq. (6.50)
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Eo Py
E t for q; >
J= (6.52)
Ew (P  ~ P 2) forg;— L.
@?

E

In Figure 6.6, the optimal flux is represented as a function of the equilibrium
constant and the chain length. From Eq. (6.51) for the special caseg; = q and
Eq. (6.52), one may conclude that for 1 = q < e theoptimal flux decreaseswith
increasing chain length (cf. Figure 6.6). This decrease is the stronger the lower
the equilibrium congtant is, aslong asq > 1.

In the present case, where the reactions are described by linear rate equations,
the optimal distribution of enzyme concentrations is independent of concentra-
tions P, and P, of theinitial substrate and the end product, respectively, of the
pathway. Thisisnolonger thecaseif saturation kineticsof theindividua enzymes
is taken into account (cf. Heinrich et al., 1987; Heinrich and Hoffmann, 1991).

It is worth mentioning that optimization of the steady-state flux (J = max)

Figure6.6 Optimal steady-stateflux of an unbranched reaction chain as a function of thechain
length and the equilibrium constantq, = q of the participatingreactionsfor thecaset; = £, P, =
0 according to Eq. (6.51). Thefi gure shows the normalized optimal flux Jyom = J « E#/E.0, Py
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under the constraint of fixed total enzyme concentration (E,,; = const.) is math-
ematically equivalent to the problem of minimizing the total enzyme concentra-
tion at fixed steady=state flux (Heinrich et al,, 1987; Brown, 1991). In the latter
case, the method of Lagrange multipliersleads to the variational equation

aE(ZE—ﬂ.(J ﬁ))—l—z'aE 0, (6.53)

m=]

which may be transformed into Eq. (6.47) by choosing1® = 111 Therefore, the
solution of Eq. (6.53) leads to the enzyme distribution of optimal enzyme con-
centrationsas given in Eq. (6.48).

Now we show that thereis acloserelation between flux maximization and the
extremal properties of other quantities.

Maximization of total entropy production: For the unbranched chain, the en-
tropy production reads

)

S VA
i
> %3~ IR ln(_” Pz) (6.54)

1 =1

where A; denotes the affinity of reaction j [cf. Eq. (2.16)]. As P, and P, as well

- asall g; are considered to be constant, the principlesJ = max and ¢ = max are,

for unbranched chains, equivalent to each other. The principle of maximal entropy
production (i.e., theestablishment of system statesfar from thermodynamicequi-
librium) was suggested to play an important rolein the evolution of biochemical
systems (Nicolis and Prigogine, 1977, pp. 442—445).

Maximization of growth rate: The cellular growth rate can be expressed as

d
- (6.55)

-1

T vd’
where V denotes the cellular volume (Kacser and Beeby, 1984). To apply the
principle G = max, one may again consider the unbranched chain depicted in
Scheme11 (Section5.4.3.1) by taking into account that enzymesare not only the
catalystsof metabolic systems but also some of their net products. In a simple
model, one may assume a proportionality between therate of enzyme production
and the steady-stateflux J, that is, dE,,/dt o J. Neglecting the synthesis of struc-
tural proteins and using the assumption that the cell volumeis proportional to the
protein content of the cell, the growth rate may be expressed as

GE,... . E) = —1—. (6.56)

j=1
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The effect of changesin the profile of enzyme concentrations along the pathway
on the growth rate is described by the variational equation

S A (6.57)

The optimal distribution of the enzyme concentrations is determined by 3G/dE;
= 0, thatis, by

J
E B (6.58)

As thiscondition is equivalent to Eq. (6.47), the enzyme distribution maximizing
the exponential growth rate and that maximizing the steady-state flux under the
constraintdf fixed total enzymeconcentration are the same (see dso Reich, 1983,
1985).

The problem of identifying optimal enzyme concentrations bears some rela-
tionship to metabolic control analysis which may be seen as follows. From Eq.
(6.47) one derives

. _EBY¥ _E
q = JBE,-—AJ’ (6.59)
which implies
E;
J = =L
o =g (6.60)

due to the summation theorem of flux control coefficients[cf. Eq. (5.43)]. This
relation meansthat in states of maximal steady-state activity the normalized con-
trol coefficients C/ and the optimal enzyme concentrations in unbranched path-
waysshow the samedistribution(seeal so Heinrich and Holzhiitter,1985; Brown,

1991).

6.2.2. Influence of Osmotic Constraintsand Minimization
of Intermediate Concentrations

In the context of evolutionary optimization of metabolic pathwaysconsidera-
tions about the limited solvent capacity and the osmotic balance of living cells
may play an important role (Atkinson, 1969; Savageau, 1976; Heinrich et al.,
1987; S. Schuster and Heinrich, 1991). Because most moleculesin theliving cell
contain polar groupsor are electrically charged, they fix cell water by hydration.
In view of the huge number of different substancesin thecell, it wasar gued that
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the total solute concentration should be low enough in order to alow sufficiently
fast diffusion. For al cells having no cell wall, an additiona constraint for con-
centrations results from the fact that these cells must be in osmotic equilibrium
with the extracellular medium. This constraint could not be fulfilled if the nu-
merousintracellular substances had too large concentrations. Thefact that enzyme
concentrationsare usually very low in comparisonwith their substratesmight also
be rationalized by solvation and osmotic pressure arguments, athough the met-
abolic effort needed for enzyme synthesis is probably the limiting factor (cf.
Brown, 1991).

Let usagain consider the unbranched pathway depicted in Scheme11 (Section
54.3.1). Itiseasy to seethat these osmotic conditionsare not awaysfulfilled for
adistribution of enzyme concentrations as given in Eq. (6.48). If al equilibrium
congtants are greater than unity and all #; are of thesame order of magnitude, the
decreaseof the optima enzyme concentrations toward the end of the chain will
result in a strong accumulation of intermediate concentrations. In particular, one
derivesfrom Eq. (6.48) that in the limit ¢; — % oneobtains E; = E,, and E;
0 for j = 2, whichimpliesinfinitesteady-stateconcentrationss;. Besidesan upper
limit for thetotal enzymeconcentration, one may, therefore, take into account an
upper limit for the total concentration of intermediates, that is,

2= 5= 6.61)

£ represents the total osmolarity of the pathway under the assumption that all
osmotic coefficients are equal to unity. Using this condition in the form of an
equality constraint the variationd equation for the determination of optimal en-
Zymeconcentrations reads

_a‘[-’ -4 (”.E E, - E(ot) - 3/2(2 S - 90)] =0 '(6.62)
an =1 i=1

with the Lagrange multipliers A; and 4,. Although solutions of this equation can
generally befound only numerically (Heinrich et al., 1987), treatment of thelimit
g; = o israther easy. In this case, Eq. (6.44) implies

Ll
'I.EE]

k_;j=0. (6.63)

4 =J

k=

. Therefore, the steady-state flux and the sum of the steady-state concentrations

may be expressed as
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E,P,
J=-=1 6.64a
#E ; (6.642)
0=p 3 a0k (6.64b)
i=1 T1Ei+1

respectively. The optimal enzymeconcentrationsare determined by thefollowing
variational equation:

Al

L “) =0, (6.65)
AE\TIE i1

which contains only the Lagrange multiplier for the osmotic constraint because
the condition of fixed total enzyme concentration may be taken into account by
therelation

Ei=Egq— > En. (6.66)

m=2

From these equations, one derivesfor j = 2

—-P—‘Xl— £S f““)+ PEE_ 6.67
( #E & i=21Ei+l & # E ) 667
This equation implies that

E=aff forj=2 (6.68)

Once again one may concludethat poor catalysts with long characteristic times
£ should be present in high concentrations[cf. Eq. (6.48)]. After determining the
common factor a as well as E; by the two constraints, one arrives eventually at
thefollowing optimal distribution for the enzyme concentrations:

E 2%,

- —Zwdh (6.69)
D0 + Pu(fEy
EoPi(JENE,
E = B forj=2, (6.69b)

Q% + P2
with

o = %jgl N (6.69¢)
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Equations (6.69a) and (6.69b) may be considerably smplified when all the en-
zymes have the sameintrinsic properties(; = 7). Then, one obtains

Q°E,,

E = m, (6.70a)
— npP lE(ot P
E=gpinp /2% (6.70b)

Equations (6.69) and (6.70) indicatethat osmotic constraints may have a strong
influence on the optimal distribution of enzyme concentrations. In the caseg; —
@, for example, vanishing enzyme concentrations are excluded for finite vaues
of £2°. Neverthdess, the former result for the case without osmotic constraints
(E; = Een £~ 0, j = 2) may be derived from Eq. (6.69) in the limit 2° — =,
Furthermore, in the present case the optimal enzyme concentrations depend on
the concentration P; of the pathway substrate. From Egs. (6.692) and (6.69b), it
is easy to see that for

QO
< {l, e, (6.71)

the concentrations E; with j = 2 become even higher than the concentration of
thefirst enzyme.

The solution of the variational equation (6.62) for the optimal distribution of
enzyme concentration is identical to that obtained from

—6-[2 S — ;-1(2 E, — Elol) - ]9'_(] - jo)] =0, 6.72)
9E; Li=1 m=1

which results from the extremum principle 2 = min under the congtraints E,,
= const. and J = J® = const.

Let us now consider the principle 2 = min in a more qualitative way and
without the constraint E,,, = const. For a given metabolic pathway it isrelatively
easy to distinguish between biologically important substances which must be
present in certain amounts (e.g., storage metabolites and structural components)
and metaboliteswhich serveonly as reactionintermediates. Evolutionary pressure
is likely to diminish only the levels of these intermediates (see Srivastava and
Bernhard, 1986; Ov4di, 199]1; Mendes et gl,, 1992). Thisleads to the extremum
principle

Q=73 g5 = min, (6.73)
i=1
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where, in an extension of Eq. (6.61), arbitrary osmotic coefficientsg; are consid-
ered, which are positivefunctions of the metaboliteconcentrations. Thefollowing
assumptions are made:

3@iS) , o, (6.742)
g%; =0 forji. (6.74b)

Condition (6.74a) is obvioudly satisfied for ideal solutions, whereg; = 1 It is
generdly alsofulfilledfor dilute, nonideal solutions (cf. Moelwyn-Hughes, 1964).
The reaction system should be delimited in such a way that all "biologicaly
important™ substances are external metabolites, so that they do not enter the sum
in relation (6.73).

We again restrict the analysis to steady states, so that J = J® = const. is
included as a sidecondition to the minimization problem (6.73). Further plausible
side conditions are to fix the concentrationsdf externa metabolitesand the equi-
librium constantsof reactions. The rate laws are supposed to be comprisedin the
generaized mass-action kinetics(2.15).

Let us again consider unbranched reaction chains as represented in Scheme
11 (Section 5.4.3.1). Without loss of generality, we can assume that the external
pools and equilibrium constants have such values that the steady-dtate flux is
positive. With the help of the generalized rate equation (2.15), the steady-state
flux can be written as

= ='F,-(k+,-5}-—1—k—j5})’ j=L...,r=n+1 (6.75)

(So = Py and S,.; = P,). In order that this flux is positive, the following in-
equalities have to befulfilled:

= (5. -%)>0 (6762

Thisimplies the condition

Sy =3, (6.76b)

Thecasethat theconcentration valueslie on the boundary of theadmissibleregion
[i.e., that equality in one of the relations(6.76b) applies], occursif, and only if,
areaction jisin quasi-equilibrium, that is, if 1J/F;k . | << 1. Consideringinequal-
ities (6.76a) consecutively for j = r backward up to j = 1, one derives that all
S; are simultaneoudly minimized if dl reactions but thefirst are very fast. In this
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state, the sum given in relation (6.73) is minimized also because this quantity is
a monotonic increasing function of all concentrations S;, due to relation (6.74a).
Therefore, the solution of the optimization problem reads

r -17-1
Fik, = J°[Pl - Pz( I1 q,-) ] . Flgow,j=z2, 6.77)
j=1

where only the kinetic parameters of the first enzyme depend on the concentra-
tions of the external parameters. This result shows some correspondence to the
result expressed in relation (6.69) which states that for very low °, the concen-
tration E; of thefirst enzyme becomeslower than the concentrations of all other
enzymesE; (j = 2). Furthermore, it isin agreement with the frequently observed
feature that the first step of a pathway is a nonequilibrium reaction (Savageau,
1976; Easterby, 1981; Dibrov et al., 1982).

Alsofor branched pathways of monomolecular reactions, the solutions to the
minimization problem under study have the property generally not to depend on
thedetailsof thefunctions g«S;), provided that condition (6.74) is satisfied. They
depend, however, on the concentrationsof external metabolites. The solutionsare
characterized by the fact that all reactions attain quasi-equilibrium except for
reactions behind initiad substrates of the system and one reaction behind each
ramification point (see Heinrich et al., 1991).

Theextremum principle(6.73) can berephrased asamulticriteriaminimization
problem,

S;=min, i=1,...,n (6.78)

whichisavector-optimization problembecausethe S; can be gathered in a vector,
S. For the concepts and methods of multicriteria optimization, the reader is re-
ferred to the works of Zeleny (1974) and Sawaragi et al. (1985). For the present
case a nondominated solution (also called a compromise solution), S*, to the
problem (6.78) has the property that there is no other concentration vector for
which no concentration is higher and at least one concentrationis smaller thenin

S*. It can be shown that the set of all nondominated solutions to the multicriteria
minimization problem (6.78) coincides with the set of solutions to the minimi-
zation problem (6.73) for dl positivefunctions g,(S;) fulfilling condition (6.74a)

(S. Schuster and Heinrich, 1991). The most important conclusion one can draw

from this optimization study is which reactionsare a quasi-equilibrium. Because
for reasons of monotonicity the solution is aways situated on the boundary of

the admissible region for concentrations, where some reactionsareinfinitely fast,

the optimal stateis dways characterized by a distinct decomposition of the net-

work into near-equilibriumand nonequilibrium reactions.

The outlined treatment was aso applied to systems of more complex stoichi-
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ometry, including a model of glycolysis, the pentose monophosphateshunt, and
the glutathione system in human erythrocytes (S. Schuster et al, 1991). The
solution set is then composed of four facesof the concentration polyhedron. All
of these faces have in common that the enzymes hexokinase and 2,3-bisphos-
phoglycerate phosphatase are dow, which isin accordance with redlity.

6.2.3. Minimization of Transent Times

A necessary condition for the occurrence of steady tates is their stahility.
However, this property may not sufficefor the maintenanceof such states under
the influence of permanent larger fluctuations. In addition to stahility, rapid re-
laxation toward the origina steady state after fluctuationsor to new steady states
after changes in the environmenta conditionsis thus of importancefor the bio-
logical function of a metabolic pathway (Rosen, 1967; Majewski and Domach,
1985). Accordingly, the minimization of transient times can be postulated as an
optimality criterion relevant in biological evolution.

Using definition (5.278) for transient times, Cleland (1979) studied the mini-
mization principle

T = min 6.79

subject to the condition that the total mass concentration, M, of the pathway
enzymes is bounded above,

M = E wE; = M° = const. (6.80)
7

with u; denoting the molar mass of the jth enzyme. The side condition (6.80)
proposedal so by Kuchel (1985) may be morerealistic than relation (6.46) because
it takes into account that the metabolic effort necessary for the synthesis of a
protein is more closely related to its mass concentration than to its molar con-
centration. It would be straightforward to replace, in the maximization of flux
(Section 6.2.1), side condition (6.46) by relation (6.80).

\We now consider the optimization principle(6.79) for an unbranched reaction
chain and assume that the reactions areirreversible and that the enzymesoperate
in the linear region. Furthermore, the turnover numbersk,,, are considered to be
al equal, so that V;*/Vj* = EJE;. Dueto ] = S;_,V;'/K", Eq. (5.278) then
smplifiesto
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~

1 K
=2 =1 6.81
kcatj 2 EJ ( )

Note that the sum in Eq. (6.81) runsfrom2tor = n + 1, because the first
enzyme does not affect the total transient time when the concentration of the
pathway substrate is constant. Accordingly, the first enzyme may be omitted in
the cost function (6.80). Equation (6.81) showsthat the transient timeis a mon-
otonic decreasing function of al enzyme concentrations. Therefore, in the side
condition (6.80), the equality sign appliesfor optimal states. The optimal param-
eter distribution can be found by the equation

aEi kcal j=2 E/

where A denotes a Lagrangian multiplier. This gives

E Ky
= = . 6.83
= VKR ©83)

Taking into account the side condition (6.80), one obtains
M VK Iy
_Ez Ny
i=

This result shows that enzymes with high molar masses should have small con-
centrations, with the relationship E; = /1/u;. Moreover, poorly binding enzymes
must be present in high amountsto achievea short transient time of the pathway.
Equation (6.84) wasfirst derived by Cleland (1979), who dealt with the question
of under what conditions coupled enzyme assays attain the steady state very
rapidly and only require small amounts of enzymes.

The optimization principle (6.79) subject to the constraint (6.80) isequivalent
to the principleof minimizing the total mass concentration of the enzymes, M,
with the side condition + = 1° = const. (Kuchel, 1985). The solution of that
problem again leads to Eq. (6.83), while instead of Eq. (6.84), the following
formulais obtained:

(6.84)

1 K & .
E=— [ /Ky (6.85)

Thea V i =2

In the minimization of transient times, it isalso sensible to compare systems with
the same steady-stateflux. Thisleadstothe sideconditionJ = const. It pertains

i[_l_ é K _ 1(12’2 WE - MO))J =0, (6.82) |
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to situations where the flux is determined by the biological function the reaction
chain fulfills. The minimization problem (6.79) can then even be solved in the
case that all reactions but the first are reversible. Owing to the equation T = £/
J [Eq. (5.278)], the extremum principle (6.79) is then equivalent to the nini n-
zation of intermediate concentrations. Conversdly, with the side condition 2 =
const., it gives the same solutions as the maximization of flux under that side
condition (cf. Section 6.2.2).

States of minimd transient timesfor unbranched reaction chains with revers-
ible reactions have also been calculated on the basis of definition (5.279) instead
of definition (5.278) (S. Schuster and Heinrich, 1987). Applying Eqgs. (5.283a)
and (5.283b), one derives, after some algebra, for the transient time of the last
intermediate, S, in unbranched chains after perturbation of the concentration S,,

L j-1 i Jj—1 -1
W= 2 - [(1 + 3 11 q,)(H 41) ] . (6.86)

j=a+1Kj i=21=2 i=2 .
whereit is assumed that thefirst reaction isirreversible. The quantity t® may be
regarded as the propagation time of a perturbation of the ath intermediate to the
end of the chain. The minimization principle

. ® = min 6.87)

was investigated under the constraint of constant flux. Asit was assumed that the
first reaction wereirreversible, the steady-stateflux reads J = k;P,;. One obtains
thesolution k, = P /J, k; — o for al i > a, and arbitrary rate constants for the
reactionswith 1 < j < a. If, in addition,thesidecondition {2 = const. isimposed,
asimilar solution obtains, where the rate constants for the reactionsfrom 1 to a
have to be chosen so as to satisfy the condition of fixed total osmolarity (see S.
Schuster and Heinrich, 1987).

Asoutlined in Section 4.1, an aternative approach to comprehend relaxation
processesis on the basis of the eigenvaluesof the Jacobian. When the system is
stable, al eigenvaues have negative red parts, and the long-term behavior is
determined by that eigenvalue the real part of which has the smallest absolute
value. Denoting this eigenvalue by A*, we can consider [—Re(1*)] ! as achar-
acteristic time of the pathway. It is therefore sensible to study the extremum
principle

= Re(A*) = max. (6.83)

For nonlinear systems, A isacomplicated function of thekinetic parameters,
which cannot normally be given in closed form. Qudlitative assertions about the
solutions can neverthelessbe madeif only the side condition that all fluxesin the
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system arefixed isincluded, so that the steady-state condition is satisfied. Re(A*)
can then tend to minusinfinity, namely in all situations where rank(N) reactions
reach quasi-equilibrium, whereasthe remainingr — rank(N) reactionshave such
parameters that the independent fluxes attain the prescribed values. In such situ-
ations, any intermediateis connected by achain of fast reactionswith an external
metabolite, so that fluctuationscan be propagated very fast to the outside of the
system (S. Schuster, 1989). For example, in unbranched reactions chains, all re-
actions but one have to be at quasi-equilibriumin order to maximize —~Re(1*),
so that r different solution arise. If, in addition, the side condition of fixed total
osmolarity isincluded, optimal solutionscan only be calculated numerically.One
obtains optimd states where two adjacent reactions are dow and the others are
very fast (S. Schuster and Heinrich, 1987).

Summarizing the above results, we can state that minimization of transient
times without side conditions limiting the enzyme concentrationsgenerally gives
rise to pronounced time hierarchy (i.e., to a distinct separation of dow and fast
reactions). Some reactions remain dow to meet the constraint of fixed fluxes.
Time hierarchy is actually a ubiquitous phenomenon in living cells (cf. Chapter
4). Accordingly, the extremum principles studied above may be wellsuited to
account for this phenomenon.

6.3. OPTIMAL STOICHIOMETRIES

In the previous sections of this chapter the optimizationd kineticparameters has
been considered. It leads to maximal reaction rates or to minimal valuesof tran-
sition times and of total osmolarity of metabolic systems. It may be argued that
thiskind of evolutionary optimization was nothing else than a fine-tuning which
guaranteed the efficient interplay of enzymes within the pathways whose basic
structurehad evolved in amuch earlier stage of evolution. The question arises of
whether the special topology d enzymatic systems expressed by the molecular
interactions may also be described as a result of an evolutionary optimization
process. We are far from understandingin detail the origination of the different
metabolic pathwaysobservedin contemporary living cells. However, biochemists
have rather clear ideas concerning the temporal order of the emergence of the
main biochemical pathways (cf. Wdd, 1964; Hochachka and Somero, 1973;

Holms, 1986). The main assumptionis that there was a close mutud interaction
between the evolution of the metabolic machinery and the composition of the
earth's atmosphere. It is generally believed that life started when molecular ox-
ygen wasstill absentin theatmosphere. Accordingly, anaerobic fermentation (i.e.,

glycolysis) was thefirst sourceof metabolicenergy and, in asense, fermentation
has played, until the present stage of evolution, the central role in metabolism.

Besides the production of two ATP molecules per one molecule of glucose de-
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graded, acoholic fermentation yields two molecules of carbon dioxide whose
concentration probably had also been very low in the early atmosphere. The
second big achievement in the evol ution of metabolism may have been the estab-
lishment of the hexosemonophosphate pathway which is also able to take place
under anaerobic conditions. It produces NADPH which may be used for the re-
ductivesynthesisaf organic compoundsfrom glucose, under participationof ATP
derived from glycolysis, and it is also accompanied by the release of carbon
dioxide. After this stage, photosynthesisbecame possible, where the energy of
sunlight is used to produce glucose from water and carbon dioxide. The basic
steps of this process resemble those of the hexosemonophosphatepathway run-
ning in reverse order. Most importantly, photosynthesis involves the release of
molecular oxygen into the atmosphere. This paved the way for the development
of cellular respiration, that is, the complete oxidation of glucose by molecular
oxygen to carbon dioxide and water via thecitric acid cycle. In combinationwith
oxidative phosphorylation, 38 moleculesof ATP may be synthesized from ADP
and inorganic phosphate by the degradation of one molecule of glucose. Respi-
rationis thus much more efficient than anaerobic fermentation.

On amoredetailed level, the problem of thedevel opment of specific molecular
interactions, as expressed by the stoichiometry of present-day metabolism, was
probably closely related to that of the optimization of kinetic properties of en-
zymes. It was proposed that the evolution of metabolic pathways had involved
the specialization of a smaller set of enzymes with less developed regulatory
mechanismsand amuch broader substratespecificity than theenzymesof present-
day metabolism (Ycas, 1974; Jensen, 1976; Kacser and Beeby, 1984). Such di-
versity may be regarded as necessary to makea metabolic system possibledespite
the limited gene content of primitivecells. Probably, thetrandation processitself
evolved from a less accurate mechanism.

Theinvestigation of optimal stoichiometriesis of importance not only for the
understanding of biological evolution but also for optimization studies in bio-
technology. For example, the computer-aided detection of elementary modes and
the generation of alternative biosynthetic routes can be of significant valuein the
improvement of biotechnologica procedures (cf. Mavrovouniotis et al., 1990).
For theoretical conceptsin evolutionary biotechnology, see Eigen and Gardiner
(1984) and P. Schuster (1995).

6.3.1. Optimal Propertiesof the Pentose
PhosphatePathway

The relation between optimal kinetic and stoichiometric properties has been
stressed in the pioneering work of Meléndez-Hevia and Isidoro (1985) (see aso
Mekndez-Hevia and Torres, 1988; Meléndez-Hevia et al., 1994). Anayzingthe
stoichiometric structure of the nonoxidative phase of the pentose phosphatepath-
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way, they came to the conclusion that the reduction of the number of reaction
stepsin the transformation of an initial substrate S into an end product P may be
considered as axgeneral principle of evolutionary optimization of metabolic path-
ways. In fact, as has been shown in Section 6.2.1, the optimal flux through an
unbranched chain of reactions will decrease with the increasing number of inter-
mediate productsif thetotal amount of availableenzymeislimited[cf. Eq. (6.52)].
Concerning the pentose phosphate pathway, the question of whether Nature man-
aged the conversion of six pentosesinto five hexoses in a minimum number of
reaction steps was raised.

For thesolution of this problem, a game of combinatorial optimization obeying
the following rules was proposed (Meléndez-Hevia and Isidoro, 1985): (a) The
various sugars are only characterized by the numbersof their carbon atoms; (b)
at the beginningthereare six sugarscontainingfive carbonseach; (c) each reaction
step involves the transfer of two carbons [transketolase reaction (EC 2.2.1.1)] or
threecarbons[transaldolase(EC 2.2.1.2) or aldolase(EC4.1.2.13) reactions] from
one sugar to another; (d) any compound cannot contain less than three carbons;
(€) thegodl isto producefive sugarswith six carbons each by a minimumnumber
of steps.

Theoptimal strategy for thisgameis shown in Teble 6.3. Identifying Steps1A,
1B, 3A, and 3B with the reactions of transketolase, steps 2A and 2B with the
reactions of transaldolase, and step 4 with fructose-1,6-bisphosphate aldolase, it
is seen that the solution given in Table 6.3 is exactly the same as the sequence of
reactions taking place in the nonoxidative phase of this pathway (Figure 6.7)
(Horecker et al., 1954; Wood and Katz, 1958).

A similar optimization procedure has been applied to the nonreductive phase
of the Calvin cycle (Mekndez-Hevia, 1990). Here the goal is the to convert 12
sugars with 3 carbonsinto 6 of 5 carbonsand 1 of 6 carbons. It has been shown
that the simplest combinatorial solution of this problem isidentical to the actual
reaction sequencein the Calvin cycle.

6.3.2. Optimal Location of ATP-Consuming and
ATP-ProducingReactionsin Glycolysis

In Section 5.4.4, we have dealt with glycolysis by confining ourselvesto its
control properties. Now we try to gain some further insight into this pathway by
consideration of evolutionary optimization principles. A remarkablefeatureof the
stoichiometry of glycolysisis that it involves ATP-consuming reactions, despite
thefact that its main biological function consistsin the production of ATP. It is,
furthermore, striking that the two ATP-consuming reactions, hexokinase (HK)
and phosphofructokinase (PFK), are located in the upper part, whereas the two
ATP-producing reactions, phosphoglyceratekinase (PGK) and pyruvate kinase
(PK), belong to the lower part of this pathway (cf. Figure 3.1). Certainly, there
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Table6.3 Optimal Strategy of the “Combinatorial Game" Proposed by Meléndez-
Hevia and Isidoro (1985) for the Explanation of the Stoichiometry of the Nonoxidative
Phase of the Pentose Phosphate Pathway

Sugar Molecules

Step 1 2 3 4 5 6
5 5 5 5 5 5
1A TK,
3 7 5 5 5 5
2A “Tal
6 4 5 5 5 5
3A " TK,
6 6 3 5 5 5
Ik,
T 6 6 3 5 7 3
AN e
TA
6 6 3 5 4 6
TK,
6 6 3 3 6 6
. ,./-
4 Ald
\_\
6 6 0 6 6 6

arevariousconstraints concerning thechemical possibilities of convertingglucose
into lactate, which are in favor of this specid stoichiometric design. Beyond, it
seems worthwhileto consider also the possible kinetic advantages of such adis-
tribution of ATP-consumingand ATP-producing steps. Accordingly, weded with
the kinetic effect of changes in the number and location of ATP-consuming and
ATP-producing reactions on the energy yield of glycolysis.

To dlow general conclusions we do not incorporate too many details of pres-
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RSP Sed7P  F6P
| | [ |

XylsP GAP Ery4P F6P
‘\ TK, /

= —: GAP ,_ Ald FP,
/TN OAP

Xyl5P GAP Ery4dP F6P

TK: / TA §
RSP Sed7P FeP

Figure6.7 Reaction schemeof the nonoxidativepart of the pentose phosphate pathway. Abbre-
viations: TA. transaldolase; TK,, transketolase 1; TK,, transketolase 2, Ald, aldolase; Ery4P, eryth-
rose-4-phosphate; F6P, fructose-6-phosphate; FP,, fructose-1.6-bisphosphate; GAP, glyceraldehyde-
3phosphate; RSP, ribose-5-phosphate; Sed7P, seduheptulose-7-phosphate; XylSP, xylulose-
5-phosphate.

ent-day glycolysis. We start with the analysis of an unbranched pathway and
consider, theresfter, the effect of branching as observed in glycolysisat the al-
dolase reaction. Further chemica constraints which may have been important
during development of the structural design of glycolysis are neglected.

Q@r andlysisis based on Eqg. (5.88) which determines the steady-state flux J
through an unbranched chain of r reactions as depicted in Scheme 11 (Section
5.4.3.1). Thisformulamay be applied also for chains with bimolecular reactions
involving cofactors, if they are considered as external reactants. In this case, one
hasto replacethekineticconstantsk; and & _; by apparent first-order rateconstants
k, and £ _; which are obtained as products of the corresponding second-order rate
constants x; and x_; and the concentrations of those external reactants partici-
pating in the corresponding reaction steps. Throughout this section, we will con-
sider the concentration of freeinorganic phosphateto be constant and incorporate
it into the rate constants.

We denotethe ATP-producing sitesasPsi t es and the ATP-consumingsites as
C-sites, cf. Figure6.8. Both typesof reactionsarecalled coupling sites. Reactions
which are involved neither in ATP production nor in ATP consumption are de-
noted as 0-sites. The coupling sitesare described by thefollowing rate equations




330  Application of Optimization Methods and the Interrelation with Evolution

i,a) O-site C-site

ii,a) O-site 1 C-site
ATP ADP
Si1 «——§ Si1 Si-P
ib) O-site P-site
P; ADP ATP

SH-PQ—l»Si | S;l-PMSi

ii,b) O-site Psite

ADP ATP

Sij-Pe——>5;-P Si1-P S;

1
1
' -
! 1

Figure6.8 Scheme representing the possible replacement of O-sites (left) by C-sites or P-sites
(right) according to the possibilities that (i) the composition of substratesand productsremains un-
changed, whereby a phosphatetakes part as a reactant (casei,a) or product (case i,b) in the O-site;
(ii,a) introduction of a C-site implies addition of a phosphategroup to the reaction product; and (ii,b)
introduction of aP-site implies remova of a phosphategroup from the product.
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C-sites: v; = K, ATP - §;_, — k_;ADP - §; (6.89a)
P-sites: v, = G ADP - 8, — k_,ATP - §; (6.89b)

Dencting by a and b the number of C-sites and P-sites, respectively, the ATP-
production rateis related to the glycolyticflux in thefollowing way:

Jop = (b — ). (6.90)

To identify the optimal structural design according to the principle /4rp = max,
thekinetic properties of chains with different numbersand different locations of
coupling sites are compared. Clearly, the first step cannot produce ATP and the
final step cannot be a C-site, due to the composition of glucoseand lactate. For
simplicity's sake, no further restrictions concerning the allowed number and dis-
tribution of coupling sitesare made, exceptfora T b=<r.

Concerning the replacement of one type of reaction site by another type, two
situations can be distinguished. (i) When the composition of al intermediatesis
considered to be fixed, an 0-site can only be replaced by a C-site (casei,a) if it
is linked with phosphorylation anyway, and by a P-site (case i,b) if it is a de-
phosphorylation step. (i) A second possibility is to dlow changes in the com-
position of the intermediates, which makes possible to compare alternative paths
of agiven overall transformation. This means that introduction of a C-site (case
ii,a) or a P-site (case ii,b) brings about that the substrate or the product of the
reaction differs from that at the corresponding O-site by one phosphate group
(see Figure 6.8). For example, the glycera dehyde-phosphatedehydrogenase re-
action, in which a phosphate takes part as a reactant, is an 0-site according to
case(i,a). The 2.3-bisphosphoglycerate phosphataseisan 0-site according to case
(i,b). The phosphoglucoisomerase and triose-phosphate isomerase reactions are
examples of O-sites according to case (ii,b).

Coupling of the ith reaction to ATP consumption or ATP production will
change the thermodynamic properties. For the equilibrium constant of the un-
coupled reaction, g,, wehaveq; = k:/k_,. Theequilibrium constant of thecoupled
reaction readsq; = x;/x_;. When possibility (i) mentioned above is considered
for the replacement of 0-sites, g; and g; are related to each other by

C-sites: q = gk, (6.91a)

P-sites: 4 = gk, (6.91b)

where £ = 4.4.10~% denotes the equilibrium constants for the interconversion
o ADP into ATP, whichisactually an apparent equilibrium constant becausethe
concentration of inorganic phosphateis considered constant. A relation similar to
(6.91) also appliesto possibility (i), with the transformationfactor, K, now de-
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pending not only on the free-energy differences of ADP and ATPbut aso on the
free-energy differences between the phosphorylated and unphosphorylated sub-
strate or product. Because part of thefree-energy of ATP goesinto the phospho-
rylated sugar, R will be closer to unity than in case (i). For example, the standard
free-energy difference, AG®, between glucose-6-phosphateand glucoseis 14 kJ/
mole, and AG® between ADP and ATP is about — 30 kJ/mole [depending on
various factors such as pH and the magnesium concentration, cf. Gnaiger and
Wyss (1994)].

By necessity, changesin the equilibrium constants as given in Eq. (6.91) are
brought about by changesin the forward and backward rate constants. We use
the following relations between the first-order rate constants of the uncoupled
reactions and the apparent first-order rate constants of the coupled reactions,

~ k; -
C-sites: k= a—', k_; = k_;p, (6.92a)
1
) " Lk
P-sites: k; = kay, k_; = ﬂ—, (6.92b)
2

where for C-sites, & = ,ATP, k_;ADP, and for P-sites, k; = x,ADP, k—; =
x.;ATP. In these equations we neglect the possible dependencies of the factors
a, and By, on the special properties of reaction i.

The combination of Egs. (6.91) and (6.92) leads to

, ADP
upy = apy = K = K55 (6.93)

Physiological valuesof the concentration ratio ADPIATP arein therange0.1-0.3
in variouscellsand organelles. Therefore, it followsfrom Eq. (6.93) that not only
R but also K is much smaller than unity.

We use the plausible assumption that coupling of a reaction to a highly exer-
gonic reactionincreasesreaction rate, whereas coupling to an endergonic reaction
slows down the reaction. Accordingly,

K<a,a.p.p <1 (6.94)

Thermodynamically,a chain with a C-sitesand b P-sitesmay be characterized
by the overall affinity

A=RT ln(f’—l K®- "’Q) , (6.95a)
P2

Optimal Stoichiometries 333

0= H % (6.95b)

which depends on the number but not on the location of C-, 0-, and P-sites in
the chain. BecauseK < 1, the overall affinity decreases as the excess number, d
= b — a, of ATP-producing sites increases. The glycolytic flux is positive as
long as the overall affinity is positive, which is fulfilled for

_ PPy _

<
d InK

o (6.96)

The maximal excess number dg,., of ATP-producing sites may be expressed by
standard free-energy changes. If P, = P,, oneaobtainsthe maximal excess number
astheratio of the standard free-energy change of the uncoupled interconversion
of glucoseinto two moleculesof lactateand the standard free-energy change of
ATP hydrolysis,

AG,
= gl
Aoy = AGin 6.97)

With AGg,. = — 197 kJ/mole and AGap = —30.5 ki/mole (Lehninger, 1982),
one derivesd,,, = 6.5.

The main conclusions concerning the optimal kinetic properties of ATP-pro-
ducing reaction chains may be derived from the following two theorems.

Theorem 6B. (1) The replacement of an 0-site by a C-site (i.e, a—a T 1) at
any reaction increases the glycolytic rate J. (2) The replacement of an 0-site by
a Psite(i.e,b—b + 1) decreases J

Thistheorem pointsto thekinetic effectsof achange of thenumber of coupling
sites. The kinetic effects of avariation of the location of coupling sites at fixed
numbersa and b are described by

Theorem 6C. Jaswell asJyyp are increased first by an exchange of a P-site at
reaction i for an 0-site at reaction m with i < m and second by an exchange of
a C-site at reaction j for an 0-site at reaction m with m < j, provided that the
affinity A and the excess number d of ATP-producing sites are positive.

We now prove these theorems under the simplificationthat a, = a, = aand
B = B, = B. Theextensionto thegenera caseis straightforward.

Proof of Theorem 6B. Let us consider the replacement of an O-site by a C-site
at reactioni (Part1 of Theorem 6B). Accordingto Egs. (5.88) and (6.91)—(6.93),
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theflux J(O,) with an O-siteat reactioni and theflux J(C;) with aC-site at reaction
i read, respectively,

Oy _L o) 6.98
JO) = (P,Q ~ P) 2 + L4 . (6.98)
. j=1 K kS K
- - Q —1 er : &‘ !
JC) = (PK™'Q — Py k! =57 a == + , 6.99)
=1 Kk ko i &

whereQ;, = TI gm Strictly speaking, Eq. (6.98) applies to thesituation that all
m=j

reactions are 0-sites. They can, however, also be applied to the caseab > 0
when al earlier replacements have already been taken into account by including
thevaueskK, a, and g inthevaluesof (apparent) kinetic and equilibrium constants.
From Egs. (6.98) and (6.99) it follows directly that J(C;) > J(O)) if and only if

ron %k - o+ poy, 3 Zrat -y

i—1
N +P222"'—'(K” 1)+Psz"(K‘a—1)>0 (6.100)
i=1 &

Condition (6.100) holds true under consideration of relation (6.94) which com-
pletes the proof. Part 2 of Theorem 6B can be proved in an anal ogous way.

Proof of Theorem 6C. For fixed numbers of P- and C-sites, the numerator of
Eq. (5.88) is independent of the distribution of these sites along the chain. To
investigate the influence of the location of P-siteson J and J e (first statement
of Theorem 6C), we compare, therefore, the denominators D of Eq. (5.88) for
the following two situations. (a) P-site at reaction i and O-site at reaction m
[denominator D(P;,0,,)] and (b) O-site at reaction i and P-site at reaction m [de-
nominator D(O,,P,)] where in both casesi < m. One obtains

S 2 O, v 9

D(P,O,) = K >, I 4 gg-1 28 4 3 =R, (6.101a)
=1 Kk ko S &
m— 1 Q Q

D@©O;P,) = K 2, Qir | gg-1Znr 5_‘, = (6.101b)
Jj=1 k; km j=m+1 k

From Egs. (6.101a) and (6.101b) it follows that
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m—1
D(P,,0,) — D(O,,P,) = Q”K o+ X %’(I—K)
j=it1 K

+ &L’ (1 -KahH>0 (6102
where condition (6.94) has been taken into account. For a positiveoverall affinity
A, Eq. (6.102) implies J(O,P,) > J(®,0,,) andforb — a > 0, Jyp(0O,P,) >
Jarp(P:,0,,) aso, which completes the proof. The second statement of Theorem
6C can be proved in an analogous way.

It followsfrom Theorem 6C that J 4rp becomes maximum when all P-sitesare
located at the lower end of the chain and all C-sitesare located at the upper end
of the chain. According to Eq. (5.88), the optimal ATP-production rate reads,

therefore,
b—-a K-
Imab) = 5 Db H g — ) (6.103a)
Jj=1
with
D, =2 ka"—”f 19, (6.103b)
=1k
r- b Q
D,=K 3 k’ (6.103¢c)
Jj=at+l By
1
D, = —K"iQ, .. \
b= E‘,H ” Q. (6.103d)

Using Bgs. (6.103a)—(6.103d) it is now shown that an optimum for the ATP-
production rateJ ,p iS Not only obtained by proper localization of C- and P-sites
at the two ends of the chain but aso by variation of their numbersa and b. We
consider the special case of equal valuesfor dl thermodynamicequilibrium con-
stants and all forward and backward rate constants of the uncoupled reactions
(ie., ¢; = Q, k; = Kk, k_; = klg). With these conditions, expressions (6.103b)—
(6.103d) permit explicit evaluation by means of the formulafor geometric pro-
gressions. One obtains

kD, = aK*~ g~ ““(('Z//II{{)_ - ) (6.104a)

kD, = Kbgo* '(—q__—l_l) , (6.104b)
b

KDy = g= ((‘fllg_ - ) (6.104c)
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Figures6.9A and 6.9B show the glycolyticrate J and the ATP-production rate
Jare, respectively, as functions of the number of coupling sites for a chain with
10 reactionsfor special vaues of the thermodynamicparametersQ and K as well
as of the coupling parametersa and S. The curves are calculated on the basis of
Egs. (6.90), (6.103a) and (6.104a)—(6.104c). The starting points of the curvesat
low b values are given by the condition that we only consider chains where the
number of C-sitesdoes not exceed the number of P-sites (i.e., b = a). The end
points at high b valuesare determined by the limited total number of sites (i.e.,
atbs= r). Morerigorously, one should take into account that the total numbers
of stepswheresubstratesare phosphorylated and dephosphorylatedmust beequal.
Thisleads, with b = a, to the conditiona +pt (b — @) = 2b = r, becauseb
— aisthe number of O-sites (i.e., siteswhere inorganic phosphatecan beincor-
porated).

Asisseenin Figure6.9A, theglycolyticrate Jdecreasesfor dl possiblevaues
of a monotonically with the number b of P-sites. This property follows directly
from Theorem 6B, Part 2. For low vaues of a (a < 2) the flux J may become
negativeat very high numbers of P-sites (b — a > dy,,) [cf. Eq. (6.96)]. For
small values of b with b > a, the flux J is rather insensitive to variationsof b.
Thisisin accordancewith the result that for ¢; > 1, flux control in unbranched
chainsis mainly exerted by thefirst enzymicsteps, that is, achangeof thekinetic
properties of reactions at the end of the chain (resulting from the incorporation
of P-sites) haslittleeffect on the steady-stateflux (cf. Section 5.4.3.1). The ATP-
production rate Jxrp shown in Figure 6.9B displays a maximumat variations of
the number b of P-sitesas long as the number a of C-sitesis not too high. This
is explained by the fact that the two factorsin Eq. (6.90), b — a and J, change
in oppositedirectionsupon variationof b. In particular, theincreaseof Jrp results
from theinsensitivity of J to variationsof bfor low b vaues. At higher valuesof
b, thedecrease of J overcompensatestheincreaseof b. The flux J shown in Figure
6.9A increases with the number a of ATP-consuming sites at the upper end of
thechain. Thisresultsfrom Theorem 6B, Part 1. This effect is most pronounced
a the trangition froma = 0 to a = 1 which makes the first reaction quasi-
irreversible due to K << 1. Because steps behind quasi-irreversiblereactionsin
unbranched chains exert minor flux control, further replacement of O-sites by C-
sitesat subsequent reactionsyields less effect. Upon transitionfroma = 0 toa
= 1, the ATP-production rateas a function of b retainsthe property of exhibiting
amaximum. Thismaximumis higher for a = 1 (located at b = 5 at the chosen
parameter values) than fora = 0 (b = 4).

The curves shown in Figures6.9A and 6.9B are calculated for Q = 10° and
K = 0.3455. According to Eq. (6.96), these parameter vaues correspond to a
reditic vaue of d,., = 6.5. However, the standard free-energy changes listed
below Eq. (6.97) result in amuch higher overall equilibrium constant Qand in a
much lower equilibrium constant K for the synthesis of ATP from ADP and
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Figure 69 Glycolytic rate / (A) and ATP-production rate J» (B) as functionsof the number
b of P-siteslocated at theend of thechainfor various vaues of the numberaof C-sites at the upper
end of thechainforr = n + 1 = 10 Parametervaues: Q=1045K=0.3455a= g = k°5P,
= P, = 1 Thethermodynamiclimit according to Eq. (6.96) isd., = 6.5 Thethi ck linesconnect
points for the same excess number of P-sites (d = 4).
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inorganic phosphate. In a plot of the ATP-production ratefor very high values of

Q and such values of K that again dp., = 6.5, it can be seen that J urp retainsthe
property of exhibiting a maximum with the variation of the number b of P-sites
(Heinrich et al., 1996). For different valuesa # 0, the maxima with respect to
variation of b are virtually the same and are much higher than fora = 0. One
may conclude, therefore, that for realitic values of thermodynamic parameters,
one ATP-consuming site at thefirst step of the chain would be sufficient to guar-
antee high ATP production. However, the existence of two ATP-consuming sites
at the upper end of glycolysis (whichis not less optimal thermodynamically than
thecasea = 1) may be explained on the basis of the chemical fact that two
phosphate groups are necessary for a** symmetric pathway" in the degradation of

the triose phosphatesin the lower part of glycolysis (see below).

Effectd branching: In the above analysis, the fact that real glycolysisis char-
acterized by a splitting of C¢ compoundsinto two C; compoundsét the aldolase
reaction has been neglected. To introduce this feature the branching model de-
picted in Figure 6.10 may be considered. There, a splitting of the compound S
into the compounds S,,..; and S%..; occurs at the step m + 1. The later two
compounds can be interconvertedin an isomerization reaction.

According to the resultsderived for the unbranched chain, it is meaningful to
assumethat all C-sitesmay belocated only intheupper part of thechain (reactions
1tq m) and all P-sites only in the lower part of the chain (reactionsm +2tr
= n * 1). The steady state of the chain is characterized by J, = 2J;, whereJ,
and J, are the steady-state fluxes of reactionsltom+ 1andm+ 2ton + 1,
respectively. Therefore, we now haved = 2b — a for the excess number. Due
to thefact that reactionm + 1 is bimolecular in the backward direction, aquad-
retic equation results for the glycolytic flux. By solving this equation, one can
express the glycolytic flux and the ATP-production flux as functions of a and b
(Heinrich et d., 1996). Note that only even numbersa of C-sites may be consid-
ered because otherwise the degradation pathwaysof S, andS% ., could not be
thesame. It turns out that the conclusi onsconcerning the optimal number of ATP-
consuming and ATP-producing steps derived for the linear model remain vaid

Sml
V1
pj=—= Si. Sm—l*— Sm Vm+1
-
V2 v,
potential C-s1tes m+l ==Sn0..5, =P,
\ J

potential P-sites

Figure6.10 Branched reaction schemerepresenting potential ATP-producingpathways.
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upon consideration of branching. In particular, replacement of an 0-site by aC-
sitein thefirst part of thechain resultsin an increaseof the ATP-productionrate.
One may conclude that there is no essential kinetic differencein the linear and
branching models with respect to theefficiency of ATP production. However, the
branched system seems to be more effectivefrom a chemical point of view. For
example, an excess number d = 2 as observed in glycolysis can be redlized in
the branched model witha = 2 and b = 2, whereasin the linear modd, there
arethe possibilitiesa = 1,b = 3anda = 2,b = 4, thatis, in the linear mode
in each case more ATP-producing reactions are necessary then in the branching
mode!.

The main result of the present investigationis that the optimization of kinetic
properties favors pathways where the first steps are exergonic or coupled to ex-
ergonic processes (as ATP hydrolysis) and the subsequent steps are endergonic
or coupled to endergonic processes (as ATP production). Thisresult is in accor-
dance not only with glycolysis but also with other metabolic systems. For ex-
ample, the citric acid cycle starts with two exergonic reactions: (a) the citrate
synthase reaction (EC 4.1.3.7) which involves hydrolysis of the energy-rich
thioester bond of Acetyl-CoA and (b) theisocitratedehydrogenase(EC 1.1.1.42).
The subsequent reactions yield the energy-rich compound GTP and the redox
equivaents NADH and FADH,. The last reaction of the cycle, the malate dehy-
drogenase reaction (EC 1.1.1.37), is very endergonic. Another exampleis glu-
coneogenesis, which starts by circumventing the pymvate kinase step by two
steps: the pymvate carboxylase (EC 6.4.1.1) and the phosphoenol pyruvatecar-
boxykinase (EC 4.1.1.32) which both involve hydrolysis of either ATP or GTP.
Similarly, the fatty acid oxidation isinitiated by the fatty acid activationin an
ATP-dependent acylation reaction to form fatty acyl-CoA. Further fatty acid ox-
idation yields NADH and FADH, which are reoxidized through oxidative phos-
phorylation to form ATP.

Coupling of thefirst stepin glycolysisto ATPconsumption, whichisfavorable
with respect to enhancement of ATP-production rate, makes this step quasi-irre-
versible. In this situation, the flux control coefficientsadf all subsegquent reactions
are virtually zero, as has been shown in Section 5.4.3.1. This would imply the
problemthat regulation by the demandfor theend product would not be effective.
This may be the reason why contemporary glycolysis and other pathways are
characterized by alarge number of internal regulators (enzyme activation or in-
hibition by substances other than substrates or products) which dlow that also
other reactions exert flux control. For example, in glycolysis inhibition of the
hexokinase by glucose 6-phosphate and (in erythrocytes) by 2,3-bisphosphogly-
cerate leads to nonvanishing control coefficientsof the enzymes located down-
stream of hexokinase despite the fact that the hexokinase-reaction is quasi-irre-
versible (cf. Section 5.4.4).

In our analysis, we have neglected feedback loops. One may expect, however,
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that the incorporation of such mechanisms would have a similar effect as the
product inhibition resulting from reversible reactions. Because we have used, in
Figure 6.9, avaluefor the overall equilibrium constants, Q, that islower than the
real value, we have taken into account a certain degree of reversibility. It isworth
mentioning that incorporation of variable concentrationsof ATPand ADP and of
nonglycolytic ATP-consuming processes would give rise to further feedback ef-
fects, which result from stoichiometric coupling (cf. Section 5.4.4.3).

In future studies, it would also be worth combining the analysisof the stoi-
chiometricdesign with the optimization of kinetic parameters(e.g., enzyme con-
centrations) as presented in Section 6.2.

6.3.3. Concluding Remarks

Thetheoretical investigation of optimal stoichiometriesof metabolicpathways
is dtill at the very beginning. Probably, the problem may be tackled in the future
by application of mathematical methods developed in theoretical chemistry for
predicting the conceivableexistence of chemical objectsfor a given collection of
atoms as well as for generating reaction pathways by computers (Bauer et al.,
1988).

Furthermore, the methods outlined in Chapter 3 may be useful for solving
problemsin theevolutionary optimization of the stoichiometry of metabolic path-
ways. A given distribution of steady-state fluxes may be considered as a linear
superposition of fundamental flux modes which are independent of the kinetic
details of the participating reactions; that is, they exclusively reflect the stoichi-
ometric propertiesof the pathway. Theseare the basis vectorsk of the null-space
of the stoichiometry matrix N or, more specificaly, the elementary modes of a
pathway (see Section 3.2.4). The dimension of this null-spaceis closdly related
to the number of branchesof a metabolic network and may be used, therefore, to
characterize the number of different metabolic functions of the network. For ex-
ample, an unbranched pathway, as depicted in Scheme 11 (Section 5.4.3.1), is
characterized by only onek vector [k = (1, ..., 1)T] which isin line with the
fact that thereis only onesteady-stateflux and only oneend product, independent
of the total number r of participating reactions. In other words, for unbranched
chains the number, £, of metabolic functions equals one (f = 1). In contrast, a
branched pathway as depicted in Scheme 7 (Section 3.24) is characterized by
two basisvectorsk; and &, and accordingly by two independent steady-statefluxes
which may be independently regulated by variation of the kinetic parameters.
This dimension of the null-space is invariant against changes of the number of
reactions participating in the three branches of the given reaction scheme. There-
fore, one may attribute to the given scheme of reactions two different metabolic
functions (f = 2). Extending this consideration to more complex networks, one
may argue that, due to the limited enzyme content of acell, evolution wes char-
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acterized by an increasing number of metabolic functions relative to the total
number of reactions. This would lead to the optimization principle

f=1% = max (6.105)

~ 1%

For any metabolic pathway a good estimatefor the number of different met-
abolic functions could be obtained from the rank of the stoichiometric matrix
using the formulaf = r — rank(N), asf equals the number of different basis
vectorsof the null-space. From this it followsthat 7, which may characterize the
degreeof functionalization of metabolic networks, is bounded between zero and
unity (0 < 7 < 1). Another possibility isto definef asthe number of elementary
modes, which in a sense may also serve as ameasure of the number of different
functions. However, in the usual case that the number of elementary modes is
greater than the dimension of the null-space, they are linearly dependent and
cannot, hence, be regulated independently.

Wheress it is rather easy to calculatef for systems of moderate complexity,
the dimension of the null-space for large networks existing in real cellsis till
unknown. In view of the proposed principle (6.105) it would bean intriguing task
to derive, in afirg step, an estimate for # of living cells by calculating the di-
mension of the null-space of stoichiometry matrices on a large scale, by taking
into account as many reactions as possiblefrom the biochemical transformations
documented in the literature.
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