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Die angewandte Mathematik hat im Verlaufe der letzten Jahrhun- 
M e  eine so hohe Stufe der Ausbildung erreicht, ihre Schliisse 
haben einen solchen Grad von Sicherheit erlangt, d 3  sie unter den 
Wissenschaften den ersten Rang einzunehmen berechtigt ist. Sie 
ist der Anfang und das Ende fiir den Sternkundigen, den Techni- 
ker, den Seemann, sie ist die feste Achse aller Naturforschung jet- 
ziger Zeit. Nur der Biologie haben die Entdeckungen Galileis, New- 
tons und Mariottes verhiiltnismi$3ig geringe F ~ c h t e  getragen; fiir 
die Lebenserscheinungen wurden keine Formeln aufgefunden . . . 

Throughout the last centuries, applied mathematics has attained 
such a high level of perfection and such a degree of certainty in 
its conclusions that it is entitled to take the first place among the 
Sciences. Mathematics is the be-all and end-all for the astronomer, 
the engineer, and the seaman; it is the solid basis of all natural 
sciences today. Only for biology, the yield of the discoveries of 
Galilei, Newton and Mariotte has been comparatively small; no 
formulae have been found for the phenomena of life . . . 

ROBERT ~ ~ A Y E R ,  Die organische Bewegung in ihrem Zusammen- 
hange mit dem Stoffivechsel (Organic motion in its relation to me- 
tabolism), Heilbronn, 1845 
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Preface 
'i 

There is no doubt that nowadays, biology benefits greatly from mathematics. In 
particular, cellular biology is, besides population dynamics, a field where tech- 
niques of mathematical modeling are widely used. This is reffected by the large 
number of journal articles and congress proceedings published every year on the 
dynamics of complex cellular processes. This applies, among others, to metabolic 
control analysis, where the number of articles on theoretical fundamentals and 
experimental applications has increased for about 15 years. Surprisingly, mono- 
graphs and textbooks dealing with the modeling of metabolic systems are still 
exceptionally rare. We t h i i  that now time is ripe to fill this gap. 

This monograph covers various aspects of the mathematical description of 
enzymatic systems, such as stoichiometric analysis, enzyme kinetics, dynamical 
simulation, metabolic control analysis, and evolutionary optimization. We believe 
that, at present, these are the main approaches by which metabolic systems can 
be analyzed in mathematical terms. Although stoichiometric analysis ,and enzyme 
kinetics are classical fields tracing back to the beginning of our century, there are 
intriguing recent developments such as detection of elementary biochemical syn- 
thesis routes and rate laws for the situation of metabolic channeling, which we 
have considered worth being included. Evolutionary optimization of metabolic 
systems is a rather new field with promising prospects. Its goal is to elucidate the 
structure and functions of these systems from an evolutionary viewpoint. This 
may entail important applications in bioengineering, where optimization obvi- 
ously plays a fundamental role. One of our major goals is to present the state of 
the art in metabolic control analysis, focusing on its mathematical aspects. We 
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would be glad if we could contribute to unifying the nomenclature in this field. 
Besides its theoretical implications, metabolic control analysis, like the other ap- 
proaches reviewed in this book, provides a framework for the planning and con- 
duction of experiments. In that sense, the book is also addressed to experimen- 
talists.   ow ever, reviewing the multitudinous experimental applications of the 
theoretical tools presented would be beyond the scope of our monograph. 

The present book is, to some extent, an outcome of our teaching mathematical 
biology for undergraduate and graduate students in biophysics at Humboldt Uni- 
versity, Berlin. This biophysics program is based on comprehensive studies not 
only in biological disciplines but also in mathematics and physics and includes a 
specialized training in thermodynamics, systems theory, i d  computer modeling, 
among others. This interdisciplinary approach is reflected in this book. Neverthe- 
less, most of the text will be instructive to all biologists and chemists having the 
usual mathematical training in these disciplines. As far as the biological back- 
ground is concerned, it is supposed that the reader is familiar with basic features 
of enzyme catalysis, the main pathways and regulatory mechanisms in interme- 
diary metabolism, and principles of membrane transport. 

The theoretical presentation is illustrated by many examples. For pedagogical 
purpose, we made them as simple as possible. Often, they are reduced versions 
of more elaborate models, for example, of calcium oscillations, oxidative phos- 
phorylation, and glycolysis, taken from the literature. 

To many biochemists, the present text may appear a rather specialized and 
somehow sophisticated view on metabolic systems. On the other-hand, in light 
of the recent developments in the mathematical analysis of these systems, the 
book must be considered as introductory. Nevertheless, we have tried to take into 
account a representative selection of the recent literature. 

The reader will become aware of many open questions. This concerns, for 
example, the mathematical description of the interaction of metabolism and gene 
expression, the simulation of cellular metabolism on a large scale, including many 
interacting pathways and membrane transport, and appropriate ways of modeling 
the various types of metabolic channeling. One of the pending problems in met- 
abolic control analysis is a comprehensive extension to bscillatiins in living cells. 
Although cellular metabolism is one of the best studied objects in biology, we 
are far from satisfactorily understanding the emergence and evolution of such a 
complex machinery in terms of basic theories of self-organization. 

While writing this book, we benefited greatly from discussions with Dr. Milan 
Brumen (Maribor), Dr. David Fell (Oxford), Dr. Jamie Hofmey-r (Stellenbosch), 
Dr. Hermann-Georg Holzhiitter (Berlin), Dr. Daniel Kahn (Toulouse), Dr. Boris 
N. Kholodenko (Moscow), Dr. Jean-Pierre Mazat (Bordeaux), Dr. Tom A. Rapo- 
port (Boston), Dr. Christine Reder (Bordeaux), Dr. Enrique Melkndez-Hevia (La 
Laguna), Dr. Francisco Montero (Madrid), Dr. Gosta Pettersson (Lund), Johann 
Rohwer (Amsterdam), Dr. Thomas G. Waddell (Chattanooga), and Dr. Hans Wes- 

terhoff (Amsterdam). We discussed with these colleagus intensively a wide variety 
of topics relevant to cellular regulation, ranging from nonlinear dynamics to or- 
ganic c h a s t r y  and from rapid biochemical equilibria to molecular evolution. 
The venture of writing this monograph would probably have been impossible 
without the stimulating and cooperative atmosphere within the scientific com- 
munity of metabolic modeling, which is reflected, for example, in the large num- 
ber of scientific congresses in recent years. 

In our institute, many colleagues have contributed to the completion of the 
manuscript in different ways. Margrit Sternberg took care of the bibliography 
with patience and painstaking. Petra Schubert expertly typed the manuscript, drew 
many reaction schemes and rescued what we lost in the many different computer 
files of the text. Dr. Edda Klipp did several numerical simulations and produced 
many of the nice figures. Several colleagues and students have cross-read drafts 
of the manuscript and helped us eliminate some inconsistencies. In particular, we 
mention Stephan Frickenhaus, Ines Jentzsch, Edda Klipp, Ulrike Laitko, Arnadeus 
Stephani, Thomas Wilhelm, and Jana Wolf. We are glad to thank all of them. We 
are gratefully indebted to Dr. Clas Blomberg (Stockholm) for reviewing a draft 
of the manuscript very carefully and giving many helpful suggestions. 

We would like to express our warmest thanks to Chapman & Hall for friendly 
and efficient cooperation. Of particular help has been the fruitful work of the 
publishers Dr. Eleanor S. Riemer and Gregory Payne, who have never been out 
of patience when we were not able to meet the deadlines. We also remember with 
pleasure our discussion with Gregory Payne on our book project on a restaurant 
terrace above the roofs of Washington. We also thank Mary Ann Cottone and 
Jennifer G. Lane for expertly managing the production of the book. We are grate- 
fully indebted to Dr. Michael Conrad (Detroit) for establishing our contact with 
this publishing house. 
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affinity of reaction j 
atomic matrix 
eigenvector of the Jacobian 
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control coefficient for flux Ji and reaction j (normalized or non- 
normalized as indicated in the particular context) 
control coefficient for concentration Si and reaction j (normalized or 
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enzyme mechanisms are considered 
total concentration of enzyme j, when enzyme mechanisms are 
considered 
concentration of the enzyme-product complex 
concentration of the enzyme-substrate complex 
sum of enzyme concentrations in a metabolic pathway 
frequency of oscillations 
Faraday constant 
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flux cone for systems with irreversible reactions only 
kinetic orders in the power-law approximation 
change in Gibbs free energy 
growth rate 
conservation matrix 
measure of time hierarchy 
identity matrix 
steady-state flux in kinetic modeling, or thermodynamic flow 
rate constants of reaction j for the forward and backward directions, 
respectively 
null-space matrix 
inhibition constant 
Michaelis constant of the reaction substrate 
Michaelis constant of the reaction product 
Michaelis constants of the substrate and product, respectively, of an 
enzyme j with uni-uni mechanism 
cone representing all non-negative conservation relations 
allosteric constant for cooperative enzymes 
link matrix in metabolic control analysis 
matrix of Onsager coefficients, Lo, in irreversible thermodynamics 
Jacobian matrix 
flux mode 
number of internal metabolites 
W coefficient 
stoichiometric coefficient of substance Si in reaction j 
stoichiometry matrix 
reduced stoichiometry matrix 
parameter 
concentration of ith external metabolite 
equilibrium constant 
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perturbation of a parameter pi; coresponse coefficients for other 
steady-state variables are denoted similarly 
number of reactions 
universal gas constant 
response coefficient for variable Yi and parameter pj (normalized or 
non-normalized as indicated in the particular context) 
matrix of response coefficients 
substrate and product concentrations, respectively 
concentration of the ith intemal metabolite 
concentration of the ith intemal metabolite at a reference state 
trace of the Jacobian matrix 

temperature 
conservation quantities (numbered by index k) 

I- *action . rate (as a function of concentrations and parameters) 
cellular volume 
Lyapunov function 
maximal activity of an enzyme catalyzing an irreversible reaction 
maximal activity in the forward and reverse directions, respectively, 
of an enzymatic reaction j 
reaction rate of elementary steps in enzyme catalysis 
modal matrix 
thermodynamic forces 
steady-state variable 
elementary conserved-moiety vector 
conserved-moiety matrix 
rate constants of aggregate reactions in the power-law 
approximation 
Kronecker symbol 
determinant of the Jacobian matrix 
elasticity (normalized or non-normalized as indicated in the 
particular context) 
matrix of elasticities 
second-order elasticity coefficient 
eigenvalue of the Jacobian matrix 
Lagrange multiplier 
diagonalized Jacobian matrix 
small parameter 
proton-motive force 
parameter elasticitiy (normalized or non-normalized as indicated in 
the particular context) 
matrix of parameter elasticities 
entropy production rate 
time constants of reactions, or transient times of enzymic systems 
electric transmembrane potential 
sum of intermediate concentrations 

NOTE: Italicized symbols of substances stand for their concentrations, e.g., ATP 
or ca2+. Boldface Roman symbols denote matrices; boldface italic symbols de- 
note vectors. The partial derivative of a vector with respect to another vector, ax1 
aY, is meant to denote the matrix (aX,IaY,). 



"* 
Introduction 

The increasing role of mathematics in cell biology is witnessed by the ever- 
increasing number of mathematical models representing particular processes and 
subsystems of living cells. This development was made possible by the explora- 
tion of multitudinous elementary processes underlying the phenomena of life at 
the molecular level. Nevertheless, there appears to be some lack of general for- 
malized theory in biology. Physics comprises very elaborate buildings of theory 
for several centuries. Attempts to develop general theoretical bases for mathe- 
matical description of living organisms have been made only in the last decades, 
partly with the aid of the laws of physics. The fact that formalized theories in 
biology are still rare is not only due to difficulties arising from the enormous 
complexity of living matter but also to the fact that experimental quantitation in 
biology had begun relatively late. In biochemistry, in particular, the quantitative 
approach has been considerably stimulated by the identification of the main met- 
abolic pathways and the isolation of the enzymes involved, that is, since the 
middle of our century, We would like to stress, however, that also rigorous for- 
malization of classical mechanics from the beginnings with Galilei in 1590 up to 
Lagrange's formalism in 1788 took almost 200 years. 

The present book is devoted to the theoretical description of metabolic systems, 
that is, networks of enzyme-catalyzed reactions proceeding in living cells. Chapter 
2 outlines somefundamentals of biochemical modeling and is meant to be intro- 
ductory to the subsequent chapters. As we do not extend the width of the treatment 
too much, this chapter may be skipped by advanced readers. It includes the math- 
ematical description of single enzymes in terms of rate laws. Starting from a 
generalized mass-action kinetics, we give several specific rate equations which 
we will use in subsequent chapters. Furthermore, thermodynamic flow-force re- 
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lationships and the power-law formalism are compared with classical enzyme 
kinetics. A major part of Chapter 2 is devoted to the systemic level. Steady states 
are treated, including stability analysis and multistationarity, and conditions for 
the occurrence of metabolic oscillations are given. Basic models of bistable be- 
havior and of glycolytic and calcium oscillations are considered. 

Chapter 3 deals with structural analysis of metabolic networks. This approach 
is aimed at elucidating relevant relationships among system variables (e.g., con- 
centrations or fluxes) on the basis of the network stoichiometry without reference 
to kinetic properties. Such analysis is motivated by the extreme complexity of 
cell physiology. Topological properties are often difficult to recognize by mere 
inspection and require formalized methods. 

Chapter 4 deals with the implications of time hierarchy (i.e., the wide sepa- 
ration of time constants) for model construction in the field of enzyme systems. 
In particular, we address the quasi-steady-state and rapid-equilibrium approxi- 
mation methods, which can be applied when separate time scales are relevant. 
Moreover, we give an overview of modal analysis, which serves to decompose 
the system dynamics into motions on different time scales. 

Chapter 5 is meant to present the state of the art in the mathematical analysis 
of metabolic control. This is a theoretical framework that has been developed for 
about 20 years, originally based on the problem of how to define rate limitation 
in metabolic pathways. Metabolic control analysis serves to quantify, in terms of 
control coefficients, the extent to which different enzymes limit the flux under 
particular conditions. This analysis has become increasingly relevant for experi- 
mental investigation of metabolism; in the present book, however, we focus on 
theoretical aspects with some applications to concrete pathways. 

Chapter 6 deals with the mathematical analysis of optimality propenies of 
metabolism and evolutionary aspects. As is suggested by Darwin's concept of the 
"survival of the fittest," optimization plays an important role in evolution. This 
aspect opens a further access to mathematical treatment of metabolic systems. 
Our presentation is far from giving a comprehensive overview of the biological 
aspects of evolution of metabolic pathways. First steps are made toward an anal- 
ysis concerning the problem of whether the contemporary state of enzyme systems 
is optimal compared to other conceivable states. 

As mentioned above, the main efforts in the field here considered are directed 
toward development of models. In science, both physical objects, such as space- 
filling or wire models of DNA double helices or proteins, and nonmaterial, in 
particular, mathematical, representations are used. The usefidness of a model is 
determined by the compromise between adequacy (i.e., the correctness of repre- 
sentation) and simplicity (tractability). Every mathematical model is based on 
simplifying assumptions to render possible or facilitate the analytical or compu- 
tational treatment and the interpretation of results. As for models of metabolic 
systems, such an assumption concerns, among others, the distinction between 

internal and external metabolites. The latter substances are assumed to have fixed 
(buffered) concentrations, which can sometimes, in fact, be achieved by an ap- 
propriate e ~ r i m e n t a l  setup. Paradoxically, even model assumptions contradict- 
ing each other may be useful when they are favorable for tractability (e.g., the 
quasi-electroneutrality assumption and the existence of an electric field in models 
of ion distributions across and near biological membranes). A model is known 
from the very beginning of its development not to be correct to a certain extent. 
The following aphorism may fit in this context: "If we do not develop models, 
we do not learn why they are false." Of course, the iterative process of model 
building tends to gradually eliminate errors and unjustified assumptions, but a 
certain remainder of incorrectness is deliberately accepted for the sake of sim- 
plicity. No theory can be completely correct either; any scientific representation 
is a simplification and a more or less distorted picture of the object it is to reflect. 
So the delimitation between the terms theory and model is not sharp. A model is 
usually not as correct and general as a theory, and its logical basis is less rigorous. 

Models of metabolic processes, as any other model, are usually developed for 
a certain pragmatic purpose. One may intend to give a detailed mathematical 
representation of all the underlying enzymic reactions, which is very important 
for fitting experimental data in the best way possible. This type of modeling in 
biochemistry was stimulated to a considerable extent by the availability of pow- 
erful computers. Therefore, rather large kinetic models were developed and solved 
numerically. The resulting curves are often very impressive but bear the risk of 
pseudo-exactness because it is often unclear how reliable the theoretical back- 
ground and the parameters used in the model are. The results of detailed, very 
complex models are difficult to interpret owing to the high number of variables 
involved. Alternatively, one may be interested in explaining spec& phenomena, 
such as calcium oscillations or the dependence of ATP concentration on energetic 
load in cellular energy metabolism, or in finding the conditions for the emergence 
of chaos or multistationarity. It is then suitable to develop'minimal models by 
restricting oneself to essential features. This can be done in two ways. One can 
start from a real pathway and try to describe it by a model simplified as far as 
possible so that the phenomenon of interest is retained. This generally leads to 
skeleton models of metabolic pathways, in which groups of reactions are lumped 
into overall reactions, and simple kinetic rate laws are used (e.g., linear kinetics 
or power laws). The lumping of reactions may be done in an ad hoc way or by 
more sound methods based on, for example, temporal and spatial hierarchies in 
the system. Another approach is by focusing on a specific phenomenon and trying 
to find the simplest model to produce this. In the present book, we study, as an 

I example, a minimal model of a chemical reaction scheme with mass-action ki- 
netics showing limit cycle behavior. 

Efficient dynamical simulation in biochemistry requires one to analyze the 
underlying structure of the system. The kinetic parameters of enzymic reaction 
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systems are often unknown and are subject to frequent changes, even in short 
time periods. In contrast, the structure of these systems (i.e., the topology of 
connection of substances by reactions) remains virtually constant, unless evolu- 
tionary time scales are studied. Therefore, the modeling of any biochemical sys- 
tem should include the analysis of its structural invariants, such as conservation 
relations among concentrations and restrictions to fluxes imposed by balance 
equations. Moreover, thermodynamic aspects may be included in this analysis. 
For example, when some reactions are irreversible, additional sign conditions for 
the flux values arise. In the context of structural analysis, the repeatedly posed 
question of how to delimit metabolic pathways is worth being tackled. The dif- 
ficulty of this question results from the fact that all reactions in the living cell are 
virtually interdependent. One possible way of approaching this problem is by 
looking for the simplest routes leading from certain substrates to some product. 
Under the additional condition that the pathway operates at steady state, these 
routes may be represented by specific vectors in the so-called null-space of the 
stoichiometry matrix, that is, the space of all conceivable steady-state fluxes. 
Furthermore, practical independence of reactions often results from special ther- 
modynamic and kinetic properties, such as irreversibility of reactions, saturation 
of enzymes, and separation of time constants. 

Structural (topological) analysis in many fields is often done by using graph 
theory. As far as biochemical networks are concerned, problems arise when re- 
actions other than monomolecular are studied, because they cannot simply be 
represented by arcs. Indeed, several attempts have been made to adapt graph 
theory to biochemical networks by introducing auxiliary vertices. In our eyes, 
structural analysis of metabolic systems can be tackled more elegantly by using 
a matrix formalism than by graph theory. 

Time hierarchy is a ubiquitous phenomenon in biology. Biological evolution, 
ontogenetic development, transfer of genetic information, metabolic interconver- 
sions, and elementary processes of enzyme catalysis proceed on very distinct time 
scales, ranging approximately from 10'' to lo-'' s. Importantly, even at a given 
level of biological organization, for example in one and the same metabolic path- 
way, processes with very different time constants are involved. Relevant changes 
in metabolism mostly occur in a time range from seconds to hours. Temporal 
hierarchies have important implications for the methodology of modeling, be- 
cause it allows one to detect the changes relevant in the velocity "window" of 
interest. Simplifications may result by neglecting very slow processes, which can- 
not be observed experimentally. A third class is made up by the reactions which 
are so fast that they can be considered to have terminated in the time scale of 
interest. This has the consequence that although a metabolic system generally 
operates far from equilibrium, subsystems may attain quasi-equilibria. 

In contrast to the thermodynamic properties of reactions, such as the standard 
free-energy differences, the velocities of biochemical processes are determined 

by the properties of enzymes catalyzing them. Therefore the question of why 
evolution has brought about large differences in time constants in one and the 
same metab@@ pathway is intriguing. It may be supposed that quasi-equilibration 
of subsystems by time hierarchy serves to preclude complex behavior such as 
chaotic dynamics in situations where such behavior is of no functional use. 

Over a long time, common belief in biochemistry had been that only one, 
namely the slowest enzyme in a pathway, would control the flux (in some recent 
textbooks, this view is still maintained). This enzyme would then be the rate- 
limiting step, also called a pace-maker enzyme. When metabolic control analysis 
was introduced in the early seventies, it turned out that occasionally a particular 
enzyme may be rate limiting, but generally there is a distribution of control among 
many enzymes that varies with circumstances. 

A general point in the construction of models of complex systems is to describe 
the system behavior in terms of the properties of their constituents. In metabolic 
control analysis, this is achieved by equations linking the systemic properties 
expressed by "control coefficients" to the component properties of the enzymes 
expressed by "elasticity coefficients." Both types of coefficients are defined so 
as to refer to the response to very small perturbations of reaction rates or con- 
centrations of reactants and effectors. The concept of control coefficients was also 
extended to quantify the response of other steady-state variables, such as concen- 
trations of pathway intermediates. Restricting the mathematical analysis to infin- 
itesimal changes, one arrives at a linear theory. This simplifies the mathematical 
treatment and makes possible comprehensive and general elaboration, to a large 
extent by the use of matrix formalism. 

Metabolic control analysis provides a framework for experimental investiga- 
tion in that it clearly shows that understanding of the functioning of enzyme 
networks is mainly achieved by measuring changes around the in vivo state after 

i perturbations, rather than by only determining this state itself. The analysis in- 
dicates which quantities have to be measured to determine the response behavior 
of metabolic systems. For a large number of metabolic pathways, such as gly- 
colysis, the pentose phosphate pathway, oxidative phosphorylation, and trypto- 
phan biosynthesis, the distribution of control among the enzymes involved have 
been determined experimentally or theoretically for various physiological states. 

It is often useful to analyze metabolic systems at a higher level by grouping 
enzymes into "modules." This can be done according to the existence of func- 
tional units, which are not only the particular pathways but also organelles, such 
as mitochondria. This leads to a modular approach to metabolic control analysis. 
A further generalization of the original concept is to analyze time-dependent 
responses, in particular the control of relaxation processes and oscillations. 

As mentioned above, control analysis only provides reliable predictions when 
small changes are considered. However, this may not be sufficient for many ap- 
plications (e.g., in biotechnology and medicine). Furthermore, it may be difficult 
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to produce sufficiently small perturbations in experiment. First attempts have been 
made to cope with the nonlinear effects of larger changes. One method is based 
on the concept of "deviation index" and the other is a second-order approach 
resulting from a Taylor expansion of the system equations. In any case, control 
analysis should preferably be combined with construction of a simulation model, 
in order to obtain an integrated picture of the system behavior for small and large 
changes in environmental and internal conditions. 

Originally, one of the goals in the development of metabolic control analysis 
was to provide a tool for elucidation of the principles governing regulation of 
intracellular processes. There have been manifold speculations about the differ- 
ences between "control" and "regulation." Clearly, control coefficients describe 
nothing but the potential response of metabolite concentrations or fluxes to 
changes in a reaction rate. Whether or not such changes actually occur under 
physiological conditions (e.g., by action of an effector) is at present beyond the 
realm of control analysis. Regulation is somehow linked with the functions of 
metabolic systems, with the difficulty that there is no clear-cut definition of the 
term "function." Obviously, specific functions (in the intuitive sense of the term) 
can be distinguished for different pathways and different cells. Examples are the 
fairly constant supply of a metabolic product, the homeostasis of certain sub- 
stances involved in many different pathways (e.g., ATP), transmission and am- 
plification of intercellular signals, and maintenance of biorhythms by metabolic 
oscillations. Many theoretical approaches to regulation have concentrated on ho- 
meostasis in systems with feedback loops. Based on concepts of metabolic control 
analysis, quantities that may be useful to characterize regulation in the sense of 
homeostasis have recently been introduced, such as internal response coefficients 
and coresponse coefficients. 

Practical applications of metabolic control analysis are manifold. It can be 
used to study diseases caused by enzyme deficiencies, thus enabling us to under- 
stand why a pathway does not function properly. Conversely, one is often inter- 
ested in suppressing metabolic activity in pathogenic microorganisms. To this 
end, it is important to detect the enzymes with the highest flux control coefficients. 
It may be supposed that inhibition of these by some drugs reduces pathway flux 
most. Similarly, one may derive from the distribution of flux control which en- 
zymes should be amplified by genetic manipulation to give the highest effect in 
increasing the synthesis rate of a target biosynthetic product. One can even derive 
estimates for the gain in production rate when enzymes are altered in concentra- 
tion or kinetic parameters. In this way, metabolic control analysis may provide 
tools for optimization in biotechnology. 

The number of journal papers on metabolic control analysis has increased 
rather rapidly. The growing interest in this field is also documented by recent 
congress proceedings [e.g., Control of Metabolic Processes, Cornish-Bowden and 
Ciirdenas (eds.), 1990; Modem Trends in Biothennokinetics, Schuster et al. (eds.), 

1993b; what is controlling Life?, Gnaiger et al. (eds.), 19941. However, control 
analysis has hitherto been dealt with in very few monographs. The present book 
is planned t41S/1 the gap. We tried to cover most recent developments, inclusive 
control in single enzymes and control in metabolic channeling. 

Metabolic systems are characterized by two distinct groups of data. One set is 
composed of the variables (essentially concentrations and fluxes); the other set 
comprises the system parameters (stoichiometric coefficients, kinetic constants, 
etc.). Simulation models serve to compute the system variables on the basis of 
given values for parameters. The question arises whether the latter quantities are 
also amenable to theoretical explanation. To answer this question, one should 
consider time scales on which the kinetic properties and stoichiometry of enzy- 
matic properties have changed, that is, the dimension of biological evolution. In 
contrast to chemical reactions of inanimate nature, all the enzyme-catalyzed pro- 
cesses in the living cell are the outcome of natural selection which have acted 
over billions of years. 

It may well be that we will never be able to follow the details of the emergence 
of the c&ntemporary enzymes and metabolic pathways. However, a certain degree 
of understanding may be gained by considering evolution as an optimization 
process. This view implies that metabolic systems found in living cells show some 
fitness properties, which may be described by extremum principles. One should 
bear in mind, however, that biological evolution has not reached a final stage. 
Investigation of extremum principles in biology is not, therefore, necessarily 
based on the hypothesis that living organisms have attained states refemng to 
certain global optima. However, it can be assumed that subsystems of living or- 
ganisms, such as metabolic pathways, cannot be further optimized under given 
external conditions. Moreover, usage of extremum principles is a methodology of 
research, which allows one to filter out important limit situations, such as special 
constellations in the high-dimensional parameter space, between which, or in the 
vicinity of which, the real systems are situated. 

Obviously, investigation of optimization principles is even meaningful at the 
level of individual reaction steps. Here, it is an intriguing task to understand the 
extremely high catalytic efficiency of enzymes. One may ask, for example, 
whether the parameten of enzyme kinetic mechanisms (i.e., the values of ele- 
mentary rate constants or the Michaelis constants) may be explained on the as- 
sumption of maximal catalytic power. On the level of hultienzyme systems it is 
interesting to study how far the topology of enzymatic networks, represented by 
the stoichiometries of the pathways or special enzyme-modifier relationships, re- 
flect optimum properties. Only recently, theoreticians became aware of the im- 
portance of the "historical dimension" for the mathematical modeling of meta- 
bolic systems, in order to gain deeper insight into structure-function relationships. 

Extremum principles have a long tradition in physics; Hamilton's Principle of 
Least Action and the Second Law of Thermodynamics are important examples. 
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However, these principles are not considered as optimization principles. Biology 
and physics have in common to deal with processes on very distinct time scales. 
Whereas classical celestial mechanics deals, for example, with the motion of 
planets with given values for the gravitational constant and the masses of planets 
and the sun, cosmology has the goal, among others, to explain such parameters. 
This is a situation analogous to the explanation of those biological parameters 
that may change on long time scales. 

From the methodological point of view, evolutionary optimization is related 
to optimization in biotechnology. Also here, relevant objectives concern the max- 
imization of metabolic yield, the optimization of stability, and so on. On the other 
hand, there are some differences in that optimization in biotechnology is aimed 
at the improvement of one or few specialized functions, whereas biological evo- 
lution has mainly acted to achieve a well-tuned balance between several functions. 
This is a reason for the relevance of multicriteria optimization in the understanding 
of evolution. 

The reader of this book is supposed to be acquainted with basic concepts of 
elementary algebra, standard differential calculus, as well as operations with vec- 
tors and matrices. Moreover, for the particular chapters, additional mathematical 
knowledge is helpful. This mainly concerns linear algebra and nonlinear algebraic 
and ordinary differential equation systems. Some basic knowledge of nonlinear 
optimization is needed for the understanding of the treatment of significant evo- 
lutionary extremum principles. In the chapters on structural analysis and control 
analysis, ample use is made of matrix notation. Many relations can be formulated 
in this way very concisely, because the mathematical treatment of metabolic sys- 
tems requires a number of variables of the same type for its constituents (e.g., 
concentrations of many substances, or fluxes of reactions). Linear algebra had 
been used in the stoichiometric analysis of chemical systems as early as at the 
beginning of our century. Over the last two decades, it has been realized that 
standard linear algebra alone is insufficient for this analysis because it does not 
cope with non-negativity conditions. As many relevant quantities such as con- 
centrations of reacting species, numbers of atom groups constituting these species, 
and velocities of irreversible reactions are always non-negative, such constraints 
must be taken into account. Accordingly, mathematical tools from convex algebra 
have turned out to be helpful. 

The topics dealt with in the present book are multidisciplinary and may be 
treated from different viewpoints. We chose a mathematical approach correspond- 
ing to our own research. This is meant quite in the sense of what Robert Mayer, 
one of the discoverers of the F i t  Law of Thermodynamics, regretted, in the 
above epigraph, to be missing in biology. 

r* 

Fundamentals of 
Biochemical Modeling 

In this book, we deal with deterministic kinetic modeling of biochemical reaction 
systems. The principal notions are the concentration (i.e., the number of moles 
of a given substance per unit volume) and the reaction rate (expressed as concen- 
tration change per unit time). This type of modeling is sometimes referred to as 
macroscopic or phenomenological approach, at variance with microscopic ap- 
proaches, where molecules and their interactions are considered as fundamental 
concepts. In the latter approaches, rate constants are calculated in terms of mo- 
lecular quantities, for example, in the Transition State and Kramers Rate Theories 
(cf. Hhggi et al., 1990). 

Starting from general balance equations, we outline, in this chapter, important 
fundamentals of biochemical modeling concerning rate laws, steady states, and 
time-dependent phenomena of nonlinear enzymic systems. The section dealing 
with enzyme kinetics is meant to give an overview of basic concepts of a wide 
field which we do not wish to cover comprehensively. For systematic treatises of 
enzyme kinetics, the reader is referred to the books by Cornish-Bowden and 
Wharton (1988) and Kuby (1991). We also give several specific rate laws which 
we will use in the chapter devoted to metabolic control analysis (Chapter 5) and 
a newly derived rate law for a channeled pathway. Furthermore, thermodynamic 
flow-force relationships and the power-law formalism are compared with classical 
enzyme kinetics. 

As metabolic control analysis and optimization studies on biochemical systems 
are usually confined to steady states, we outline, in Section 2.3, fundamental 
concepts of analyzing stability of such states and treating multistationarity. Out 
of the wide domain of oscillatory behavior of biological systems, in particular, 
biochemical networks, we will sketch, in Section 2.4, the basic conditions for 
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such behavior and some exemplifying models of glycolytic and calcium oscilla- 
tions. Moreover, the frequently posed problem of finding minimal models show- 
ing oscillations is addressed. A three-component model of a chemical reaction 
system with very simple mass-action kinetics showing Hopf bifurcation is pre- 
sented. Furthermore, the possible physiological significance of oscillations is dis- 
cussed. 

2.1. BALANCE EQUATIONS 

Chemical and biochemical kinetics are based on the postulate that the reaction 
rate, v, at a point r = (x,y,z) in space at a time t can be expressed as a unique 
(usually nonlinear) function of the concentrations, Si, of all participating chemical 
species at the point r and at the time t, and possibly of time, 

whereS denotes the vector of concentrations. This equation allows for the pos- 
sibility that the rate v is explicitly dependent on time t. Furthermore, Eq. (2.1) 
implies that (bio)chemical reactions are not subject to memory effects nor to long- 
range interactions; that is, interactions over distances longer than the diameter of 
the volume element taken for defining concentration as average number of moles 
per volume. It is worth noting, however, that in other fields of biological modeling 
[e.g., in population dynamics (cf. Gopalsamy, 1992) and molecular biology (cf. 
Heinrich and Rapoport, 1980)], memory effects play a major role and are then 
described by delay differential equations. 

Direct dependence of reaction rates on time occurs, for example, in systems 
with oscillating inputs (Markus and Hess, 1990). In most cases, however, auton- 
omous systems are considered; that is, systems that do not depend on time directly. 
For such systems, Eq. (2.1) implies that the state of a biochemical system at some 
point in space is uniquely given by all the concentration variables (i.e., by a finite- 
dimensional vector). The state is also characterized by parameters (e.g., rate con- 
stants), which are (in contrast to variables) constant in the time span of interest. 
As we will only deal with isothermic and isobaric systems, we also consider 
temperature and pressure as parameters. Furthermore, some concentrations can 
be treated as parameters if they are virtually constant (external metabolites, see 
below). 

A further simplification used in many kinetic biochemical models and also 
throughout this book concerns spatial homogeneity; that is, all concentrations are 
considered uniform in the volume under study. This assumption is substantiated 
by the smallness of the volume of living cells and organelles, so that usual inter- 
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mediates distribute uniformly by diffusion in a very short time. As for experi- 
mental setups in vitro, the test volumes have to be well stirred for the assumption 
of spatial hoxqgeneity to be justified. 

An essential characteristics of metabolic reaction networks is their stoichi- 
ometry. It indicates the molecularity (more exactly, the proportions of molecular- 
ities) with which the reactants and products enter the reactions. For example, in 
the reaction 

catalyzed by the enzyme catalase (EC 1.11.1.6), hydrogen peroxide, water, and 
oxygen have the stoichiometric coefficients -2,2, and 1, respectively. The signs 
of stoichiometric coefficients de~end on the chosen orientation of the reaction. 
Usually, one considers the chemicals on the left-hand side of a reaction equation 
as reactants and those on the right-hand side as products, with the forward reaction 
going from "left to right" and the reverse reaction going from "right to left." 
This convention is not essential. Formally, the forward and backward reactions 
can be interchanged by inverting the signs of stoichiometric coefficients. 

The set of stoichiometric coefficients of a reaction can be considered as a 
vector. When analyzing systems of several reactions, it is useful to arrange the 
set of these vectors in a matrix. Usually, the rows of this stoichiometry matrix 
refer to substances, whereas the columns refer to reactions. For instance, to the 
system of reactions 

glucose + ATP -t glucose-6-phosphate + ADP, (2.3a) 

glucosed-phosphate 4 glucose- 1-phosphate, (2.3b) 

catalyzed by the enzymes hexokinase (HK, EC 2.7.1.1) and phosphoglucomutase 
(PGM, EC 5.4.2.2), respectively, and proceeding, for example, in liver cells, one 
may attach the stoichiometry matrix 

Here, all reacting species involved have been included into N. For larger bio- 
chemical systems, this is neither necessary nor useful. One often excludes those 
substances from the analysis, the concentrations of which are constant and vir- 
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tually independent of the system parameters due to presence in large excess (e.g., 
water) or to homeostasis of the substance as maintained by the biological organ- 
ism (e.g., glucose in the blood). They are usually referred to as external sub- 
stances. Another example is the influx of a species at constant rate. This species 
can then be considered as the product of the first-order degradation of a substance 
present in time-invariant concentration (see Horn and Jackson, 1972). If in the 
example given in Eq. (2.3). glucose and glucose-1-phosphate are considered as 
external, the first and third rows in N can be canceled. 

Kinetic modeling in biochemistry has been made possible by experimental 
identification of the structure of metabolic pathways, resulting in highly detailed 
charts and metabolic maps. Therefore, the situation is somewhat different from 
chemical kinetics dealing with an inanimate nature. The latter is often concerned 
with detecting the reaction mechanism; that is, identifying the compilation of 
elementary steps for a multistep process (cf. Bauer, 1990; Corio and Johnson, 
1991). This search may not lead to a unique adequate mechanism, as several 
mechanisms consistent with some overall process may not be distinguishable (cf. 
Vajda and Rabitz, 1994). 

Things are different in biochemistry, where most reactions are catalyzed by 
enzymes. [Examples of nonenzymic reactions in living cells are processes in- 
volving free radicals and several glycation reactions of proteins (cf. Giardino et 
aL., 1994)]. Thus, the mechanism is normally uniquely determined by the presence 
of enzymes, provided they are highly specific. Therefore, the stoichiometry of the 
systems can be taken as a prerequisite of the analysis. In contrast, the atomic 
composition of the substances ( e g ,  proteins) is often incompletely known, unlike 
in "nonbiological" chemical kinetics. 

Reaction rates, v, are usually given as the rate of change in the extent of reaction 
divided by the volume, V, 

The extent of reaction, 4; is defined as 

(cf. F'rigogine and Defay, 1954; Smith and Missen, 1992), where ANi is the dif- 
ference N,(t) - Ni(to) of mole numbers of substance Si, with to being some ref- 
erence point in time, and ni denotes the stoichiometric coefficient of substance Si 
for the reaction under consideration. 

If the stoichiometric coefficients coincide with the molecularities in the reac- 
tion, the reaction rate is uniquely defined in terms of concentration changes by 

Eqs. (2.5) and (2.6). When detailed knowledge about the molecular mechanism 
is not available for a given overall reaction equation, stoichiometric coefficients 
are indeteanate up to rescaling by a common factor. Accordingly, the reaction 
rate can be arbitrarily scaled as well. 

In the usual situation that the biochemical system encompasses (much) more 
than one reaction, we denote reaction rates by vj (j = 1 , . . . ,r) and the stoichio- 
metric coefficients by nii, where i and j refer to the subscripts of the substance 
and the reaction, respectively. 

When (bio)chemical reactions are the only cause of concentration changes (i.e., 
when there is no mass flow due to convection, diffusion, etc.), the temporal be- 
havior of concentrations is given by the balance equation 

(cf. Glansdorff and F'rigogine, 1971; Horn and Jackson, 1972). This equation is 
a consequence of the definition (2.6) and the conservation of mass, so that the 
contributions of all reactions can be summed. Equation (2.7a) can be written in 
matrix notation as 

ds - = Nv, 
dt 

where v and S denote the vectors of reaction rates and concentrations, respectively. 
Because we wish to exclude diffusion and convection, we can apply Eq. (2.7) 

to the transport of substances from one compartment to another, both of which 
are spatially homogeneous (for example, proton transport from mitochondria into 
the cytosol). The transported substance then has to be indicated by different sub- 
scripts for the two compartments. If the compartments have different volumes, 
one must either express Si in moles rather than moles/volume or divide the stoi- 
chiometric coefficients by the compartment volume, so that Eq. (2.7) can still be 
applied. 

When the system is autonomous, Eq. (2.7) becomes, more specifically, 

where f(.) is a vector function of the time-dependent concentrations. 
In the frequent situation that a biochemical system subsists in a steady state 

(cf. Section 2.3). the balance equation (2.8) becomes 
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This represents an algebraic equation system in the variables Si. For reaction rates 
at steady state, we will frequently use the term flux. Note that this term will 
normally refer to a scalar quantity rather than to a flow in space. 

2.2. RATE LAWS 

2.2.1. Generalized Mass-Action Kinetics 
The functions v,(S) entering Eq. (2.8) represent rate laws (also called kinetic 

functions). More exactly, they should be written vj(S,p) withp being a vector of 
parameters p,. Certain classes (types) of rate laws can be discerned. A very well 
known and fundamental kinetic function is the mass action rate law suggested by 
Guldberg and Waage in the last century (cf. Smith and Missen, 1992). It is derived 
from the idea that the reaction velocity is proportional to the probability of col- 
lision of reactants, which in turn is proportional to each concentration raised to 
the power of the respective molecularity, because this is the number of molecules 
that have to meet to initiate the reaction. This gives 

(cf. Moore, 1972; Horn and Jackson, 1972), where k + j  and k-, denote the forward 
and reverse rate constants, respectively, of reaction j. n i  and n$ stand for the 
stoichiometric coefficients of reactants and products, respectively, that is, 

This implies nu = n l  - n,i. In the case of the rate law (2.10). k,, k ,  and the 
n,;, n$ form the parameter vector p. The rate constants depend on temperature 
and pressure. 

At equilibrium (i.e. when vj = 0), Eq. (2.10) implies 

which is the well-known law of mass action, with q, = k+jlk-j  denoting the 
equilibrium constant of reaction j. 
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If external metabolites, Pi, participate in the reaction, their concentrations may 
be included in the mass-action term 

, r, . * 
v J ( ~ , p )  = k+, n JT" n PP - k-j n S ~ T  n P$, (2.13) 

I k i k 

where the products over i and k  run over all internal and external metabolites, 
respectively. The stoichiometric coefficients, m; and mi , are defined similarly 
as in Eqs. (2.1 la) and (2.1 lb). Alternatively, the external concentrations may be 
incorporated into the rate constants. An apparent equilibrium constant can then 
be defined as 

Any (bio)chemical rate law must satisfy the condition that upon insertion into 
the balance equation (2.8), the concentrations always remain non-negative. This 
condition is actually met by the kinetics (2.10) and (2.13), as can be seen by the 
following. The initial concentration values are clearly non-negative. Assume that 
at some point in time, some concentration Si becomes zero. For each reaction, 
one can distinguish the three following cases. If no is positive, the second term 
on the right-hand sides of Eqs. (2.10) and (2.13) equals zero, because of the 
assumptions Si = 0 and n: > 0. The velocity therefore remains non-negative, 
which ensures, owing to the balance equation (2.8) and nu > 0, that S, cannot 
decrease below zero. If nu is negative, the first term on the right-hand sides of 
Eqs. (2.10) and (2.13) is zero, due to Si = 0 and ni; > 0. The rate is then zero 
or negative, so that the balance equation (2.8) implies that Si cannot decrease 
further. If no = 0, the rate has no effect on S, owing to Eq.~ (2.8). 

For reactions in nonideal solutions, it is sensible to use the rate law (2.10) in 
a more general way, by allowing the exponents to differ from the stoichiometric 
coefficients and even to be noninteger (Othmer, 1981). 

Enzyme-catalyzed reactions can be described at least at two different levels. 
First, all elementary steps of enzyme-substrate binding, isomerization, and dis- 
sociation of enzyme intermediates may be taken into account. For these steps, the 
mass-action rate law is normally well suited. Kinetic modeling of enzymic sys- 
tems can, however, be simplified considerably if overall enzymic reactions rather 
than d the elementary steps are treated as basic units, because the order of the 
governing differential equation system and the number of parameters are reduced. 
Rate laws of these enzyme-catalyzed reactions can then be derived, in which only 
the concentrations of nonenzymic substrates and products but not the concentra- 
tions of enzyme intermediates occur (cf. Cornish-Bowden and Wharton, 1988; 
Kuby, 1991). To derive enzymatic rate laws, usually certain approximations are 
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employed; for example, the assumption that enzyme-containing intermediates are 
at equilibrium with the substrates (equilibrium models) or the quasi-steady-state 
hypothesis, which says that enzyme intermediates attain a quasi-steady-state even 
when the concentrations of the nonenzymic substances still change in time (see 
Section 4.2). 

At the level of overall enzymic reactions, the enzyme-kinetic rate laws exhibit 
features that cannot immediately be described by mass-action kinetics (e.g., sat- 
uration, cooperativity, inhibition or activation by effectors). The phenomenon of 
saturation, for example, arises from the fact that at high substrate concentration, 
nearly all enzyme molecules are bound to the substrate, so that a further increase 
in substrate concentration has almost no effect on reaction rate. 

To cope with the various specific phenomena in enzyme kinetics in a general 
way, Schauer and Heinrich (1983) proposed a generalized mass-action rate law 
of the form 

The F,(S,p) are positive functions which describe the above-mentioned specific, 
nonlinear effects. The parameter vectorp in this notation contains all parameters 
apart from the rate constants and the stoichiometric coefficients, ny and$ . Note 
that the requirement that concentrations remain always non-negative is again sat- 
isfied and that this kinetics is consistent with the law of mass action, because at 
equilibrium, where vj = 0, Eq. (2.15) entails Eq. (2.12). Moreover, the usual 
mass-action kinetics (2.10) is comprised in Eq. (2.15) as a special case with 
4(S,p) " 1. 

The mass-action kinetics can be written in terns of the reaction affinity, which 
is defined as 

From Eq. (2.15), one obtains 

where 
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From Eq. (2.17), it can be seen that for nonzero concentrations, a velocity vj 
is zero if and only if the reaction affinity Aj is zero, because for positive concen- 
trations, the *tion Gj(S,p) is unequal to zero. 

A drawback of Eq. (2.17) is that it is only applicable to reversible reactions, 
whereas Eq. (2.15) also describes irreversible reactions, when k+j = 0 or k-j = 0. 

2.2.2. Various Enzyme-Kinetic Rate Laws 
A fundamental rate law for enzymic reactions is the Michaelis-Menten kinet- 

ics, which applies to enzymes following the uni-uni mechanism shown in Scheme 
1 (Henri, 1902; Michaelis and Menten, 1913). While it was first derived for ir- 
reversible reactions, it was later generalized for the case of reversible uni-uni 
reactions (Haldane, 1930). The temporal changes in the concentrations of the 
enzyme-substrate complex and free enzyme are determined by 

This equation is consistent with the fact that the total enzyme concentration is 
constant, E + ES = ET = const. Using the quasi-steady-state assumption dESldt 
= 0 (cf. Section 4.2), one obtains the rate equation 

which contains several phenomenological constants. V i  and V; denote the max- 
imal activities of the forward and reverse reactions, respectively. Kml and Kd are 
the Michaelis constants of S, and S2, respectively. 

Scheme 1 

In the case of Scheme 1, the phenomenological constants are linked with the 
elementary rate constants by 

In the case that the concentrations are small compared to the respective Michaelis 
constant, the kinetics (2.20) simplifies to the linear mass-action kinetics 
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The ratios of maximal activities and Michaelis constants then play the role of 
first-order rate constants. 

Setting S2 = 0 in Eq. (2.20). one obtains the irreversible Michaelis-Menten 
kinetics 

with the simplified notation S = S,, Vm = VG , and K, = Km, . 
The reversible Michaelis-Menten kinetics (2.20) fits into the generalized mass- 

action kinetics (2.15), with 

and 

Relation (2.26) interrelating the phenomenological coefficients with the equilib- 
rium constant was derived by Haldane (1930). 

The rate law (2.20) is a minimal model in that a minimal catalytic scheme was 
assumed, in which only one form of the free enzyme and one form of the enzyme- 
substrate complex exist. There is experimental evidence that for many enzymes, 
the catalytic mechanism is more complex; for example, involving distinct enzyrne- 
substrate and enzyme-product complexes. The three-step mechanism depicted in 
Scheme 2 is more realistic than the two-step mechanism shown in scheme 1, 
because it involves separate steps of binding and catalytic conversion. 

Scheme 2 

The three-step mechanism can also be described by the reversible Michaelis- 
Menten kinetics (2.20), but the relations between the phenomenological constants 
and the elementary rate constants read now 

A generalized rate law can be derived for unbranched catalytic schemes with 
any number, r, of elementary steps 

where by definition k,(,+O = k k i  and k - ,  = k - ,  (Wilhelrn et al., 1994). This 
type of scheme covers all ordered mechanisms with one or more substrates and 
products. This means, in particular, that bimolecular reactions are also comprised. 
The concentrations of substrates and products are incorporated into the rate con- 
stants of the respective steps where they enter the scheme, giving rise to apparent 
rate constants. The apparent equilibrium constant is linked with the (apparent) 
rate constants by 

The kinetics (2.28) fits in the generalized mass-action kinetics.(2.15), with F,(S,p) 
being the reciprocal of a polynomial in the concentrations. Special cases of Eq. 
(2.28) for monomolecular reactions (uni-uni reactions) had been derived by Peller 
and Alberty (1959), and for systems involving two reactants and two products 
@i-bi reactions) by Bloomfield et al. (1962). It is easy to see that for uni-uni 
reactions with the substrate binding in the first step and the product being released 
in the final step, Eq. (2.28) leads, irrespective of the number of elementary steps, 
to the phenomenological rate law (2.20). 

Those reactions of molecularity higher than one (e.g., bi-uni and bi-bi) follow- 
ing a catalytic scheme other than the ordered mechanism (e.g., random or ping- 
pong mechanisms) do not obey the rate law (2.28), but are comprised in the 
generalized mass-action kinetics (2.15) with F,(S,p) being a quotient of two poly- 
nomials. Specific rate laws of this type are given, for example, by Kuby (1991). 

As was seen above, the phenomenological constants are linked with the ele- 
mentary rate constants in a different way and, hence, have different physical 
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meanings for different reaction mechanisms. Although experimental determina- 
tion of the values of elementary rate constants has advanced appreciably (Baykov 
et al., 1990, 1993; Christensen et al., 1990; Pate1 et a/., 1991), it is generally 
impossible to assign values to all of these constants in a mechanism which in- 
volves even a reasonable number of intermediates. On the other hand, this knowl- 
edge is often not necessary to write down phenomenological rate laws. 

For deriving phenomenological rate laws, the catalytic mechanism can be con- 
sidered, to some extent, as a black box. The question arises about which exten- The enzyme species are subject to the relation 

Scheme 3 

sions to a given enzyme scheme would change the rate law and which would not. 
An example of a uni-mi mechanism where the phenomenological rate law has a 
structure different from Eq. (2.20) is provided by a three-step mechanism in which 
the free enzyme isomerizes between two different forms. The rate law can be 
derived from Eq. (2.28). Setting the number of steps r = 3, assigning the index 
3 to the isomerization step of the enzyme and replacing kl by klSl,  and k - z  by 
k-2Sz, we obtain the formula 

which has also been derived by Cornish-Bowden (1994). It can be seen that this 
rate law is not comprised in the Michaelis-Menten kinetics (2.20), because the 
denominator includes a term proportional to S1S2 

An important aspect in enzyme kinetics is the effect of inhibitors and activa- 
tors. There are numerous catalytic mechanisms including the action of effectors. 
For illustration, we discuss an example of a mixed-type inhibitor of a reversible, 
uni-uni reaction. Consider a two-step catalytic mechanism with an effector bind- 
ing to the free enzyme and to the enzyme-substrate complex with the dissociation 
constants 

ES . I K, = - 
ESI ' 

EI and ESI are dead-end complexes which are not transformed into product (see 
Scheme 3). 

E + EI + ES + ESI = E, = const. (2.33) 

Applying the quasi-steady-state approximation to ES (cf. Section 4.2), dESldt is 
assumed to equal zero. This gives 

With v = b E S  - k - z E .  S2 and the definitions (2.21) and (2.22), one obtains for 
the quasi-steady-state reaction rate 

This inhibition kinetics also fits in the general form (2.15). It coincides with the 
reversible Michaelis-Menten rate law (2.20) when I = 0, as should be expected. 

Three special cases of the inhibition kinetics (2.35) are of particular interest: 

(a) Competitive inhibition (0 < KI, < w, K, -* w). In this case, the inhibitor only 
binds to the free enzyme. Equation (2.35) then specifies to 

(b) Noncompetitive inhibition (0 < K,, = K, < a). In this case, binding of the 
inhibitor to E and to ES is equally tight. Equation (2.35) then simplifies to 

This type of inhibition amounts to an effective diminution of total enzyme. 
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(c) Uncompetitive inhibition (KI, -+ m, 0 < Kb < m). Equation (2.35) specifies to 

Although in the above kinetic equations describing enzyme inhibition, I de- 
notes, strictly speaking, the free-inhibitor concentration, it is often approximately 
identified with its total concentration, IT, because this quantity is normally better 
known, for example when the inhibitor is added in experiment. This approxi- 
mation is justified whenever total inhibitor concentration is much higher than total 
enzyme concentration. In the case of high dissociation constants Kla and Km (poor 
binding), a weaker condition for validity of the approximation I r IT results in 
that the total enzyme concentration may be of the same order of magnitude as, 
or even lower than, the total inhibitor concentration, because most of the inhibitor 
then subsists in the free form. When the contribution of the bound inhibitor to 
the mass balance is not neglected, the quasi-steady-state equation gives rise to a 
quadratic equation in ES (cf. Gellerich et al., 1990). Things become simpler in 
the case.of irreversible inhibition; that is, when either or both of the equilibrium 
constants K,, and Kb are extremely low. If IT < ET almost all of the inhibitor 
then subsists in the form bound to the enzyme. I€ IT > ET, all of the enzyme is 
bound to the inhibitor and, hence, inactive, whereas the excess inhibitor remains 
in the free form. The reversible Michaelis-Menten rate law (2.20) can then be 
modified by the consideration that the total enzyme concentration is approxi- 
mately diminished by the inhibitor concentration to give 

Wang and Tsou (1987) stressed the fact that the enzyme-kinetic literature on 
enzyme inhibition mainly concerns reversible inhibition, although irreversible in- 
hibition is also very important. Many chemotherapeutic agents as well as pesti- 
cides are irreversible enzyme inhibitors by alkylating, phosphorylating, or acy- 
lating at the active sites. 

The above rate laws for inhibition mechanisms are based on the assumption 
that EI and ESI are dead-end complexes (see Scheme 3). In the more general case 
that an interconversion of EI and S, to ESI and perhaps a slow reaction from ESI 
to EI and S, occur, the quasi-steady-state rate laws are more complex and gen- 
erally involve terms proportional to$, P ,  $1, and SIP even under the simplifying 
assumption that the final steps of product formation are irreversible (cf. I.H. Segel 
and Martin, 1988). Rate laws for enzymes involving two substrates in the presence 

of modifiers can be found, for example, in the works of Wang and Tsou (1987) 
and Kuby (1991, Chap. 5). A special case of inhibition studied in recent years is 
the so-called suigide inactivation, where the enzyme-substrate complex converts 
into enzyme and product(s) and in parallel into an inactive complex (cf. Casas et 
al., 1993). 

Derivation of quasi-steady-state rate laws generally involves solving a system 
of linear algebraic equations for the enzyme-containing species (such as dESldt 
= 0 in the mechanism shown in Scheme 3). The number of concentration vari- 
ables can be diminished by consideration of the fact that total enzyme concentra- 
tion is conserved [such as expressed in Eq. (2.33)]. The solution of the resulting 
inhomogeneous linear equation system can be found by standard methods of 
linear algebra. The solving procedure can be simplified by a graph-theoretical 
method developed by King and Altman (1956). This method is explained in detail 
in a number of textbooks (e.g., Cornish-Bowden, 1976b; T.L. Hill, 1977; Kuby, 
1991). Due to the ever increasing facilities of symbolic computation software 
such as MATHEMATICA or MAPLE, enzymatic rate laws can nowadays also be 
derived with the aid of these programs. 

Plots of enzymatic activity versus substrate concentration often exhibit sig- 
rnoidal kinetics, that is, the rate increases more than linearly for low substrate 
concentrations. One of the first to detect such behavior was A.V. Hill (1910) when 
studying the binding of oxygen to hemoglobin. He used an empirical equation to 
describe this binding mathematically, which can be translated into the following 
rate equation: 

(n,: Hill coefficient, Ks: half-saturation constant). A mechanistic explanation of 
this equation would be that n, molecules bind simultaneously to the enzyme E 
before transformation into the product occurs. In the more realistic situation that 
the substrate molecules bind sequentially, Eq. (2.40) has to be replaced by a 
quotient of polynomials involving powers of concentrations with exponents from 
0 to n, (cf. Ricard and Noat, 1986). 

For example, consider an enzyme that can bind two molecules of substrate, so 
that the ternary complex E(S), is able to irreversibly generate the product, whereas 
the binary complex ES is not. The corresponding quasi-steady-state rate law fits 
into the general form 

with a = 0 (cf. Kuby, 1991, Chap. 7). In case that both an active and an inactive 
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form of the ES complex exist, an equation of the form (2.41) with a # 0 results 
(Frieden, 1964). Rate laws of this type also apply to other mechanisms, for ex- 
ample, in the situation that the substrate contains an impurity that forms an in- 
active complex with the enzyme (Kuby, 1991), or when the enzyme can exist in 
two forms (e.g., conformers) with two different activities (Ricard, 1978). Note 
that Eq. (2.41) does not necessarily produce sigmoidal kinetics. Under the con- 
dition 

one obtains a z v l a ~ 2  > 0 for S = 0 and, therefore, sigmoidal kinetics. 
A biphasic, but not sigmoidal, rate law is obtained in the case that one and the 

same reaction is catalyzed by two enzymes, or by an enzyme with two catalytic 
sites per molecule. Indeed, the sum of two Michaelis-Menten rate laws of the 
type given in Eq. (2.24) gives, when written over a common denominator, an 
equation of the type (2.41). A similar procedure can be applied to multiphase 
saturation curves. Recently, Holzhiitter et al. (1994) fitted experimental data of 
the transport rate of the oxoglutarate-malate exchanger of rat-heart mitochondria 
to a sum of five Hill equations. 

Sigmoidal kinetics is also obtained for enzymes composed of several subunits 
that interact with each other. A classical model was established by Monod et al. 
(1965). It starts from the assumptions that the enzyme can exist in two confor- 
mations with different catalytic activity and that binding of substrate, activator, 
andlor inhibitor leads to transitions between these states. We now give the Monod- 
Wyman-Changeux equation for the case that one conformation is completely 
inactive and the reaction is irreversible: 

(n: number of subunits of the allosteric enzyme, L: allosteric constant of the 
transition from active to inactive state, Ks: intrinsic dissociation constants of the 
enzyme-substrate complex, I: inhibitor concentration, A: activator concentration, 
Kl: inhibition constant, K,: activation constant). Equation (2.43) takes into ac- 
count both homotropic and heterotropic effects (i.e., the interactions between 
identical ligands and the interaction between different ligands, respectively). The 
Monod-Wyman-Changeux model is based on the assumption that all subunits 
switch simultaneously from one conformation to the other. When the correspond- 
ing equilibrium constant L becomes negligibly small, Eq. (2.43) simplifies to the 

Michaelis-Menten equation (2.24). A more general case where the subunits can 
exist in different conformations simultaneously is described by a model of Kosh- 
land et al. (19661% 

The presentation of enzyme kinetics in this section focuses on time-indepen- 
dent rate laws, which indeed constitute the main objective of research in this field. 
In addition, the temporal behavior of enzymes has been treated since the very 
beginning of investigations in enzyme kinetics (Henri, 1902). Recent develop- 
ments in this direction are, among others, the description of non-steady-state 
enzyme kinetics (Schauer and Heinrich, 1979; Segel, 1988; Frenzen and Maini, 
1988; Chou, 1993) and the kinetics of enzyme-catalyzed reactions in the presence 
of an unstable modifier (which is assumed to decay exponentially) (Topham, 
1990). 

In recent years, the putative importance of heterologous enzyme-enzyme com- 
plexes and of the direct transfer of metabolic intermediates between these have 
been discussed intensively (Srivastava and Bemhard, 1986; Srere, 1987; Cheung 
et al., 1989; Ovfidi, 1991; Anderson et al.. 1991). This phenomenon is usually 
referred to as metabolic channeling. Traditional equations of enzyme catalysis, 
which take into account complexes of enzymes with metabolites or with modi- 
fiers, but not with other enzymes, are insufficient in the situation of metabolic 
channeling. 

We will here derive an enzymatic rate law for a very simple channel mecha- 
nism, which is depicted in Figure 2.1 and studied in more detail in Sections 5.6.4 
and 5.15. The symbol w is used for the net rates of elementary steps. For the 
present derivation, this reaction system is further simplified. First, the channel is 
to be considered perfect; that is, the route of catalysis by the separate enzymes 
El and E, is excluded (i.e., w,, = w, = 0). Second, the two dissociation steps 

Figure 2.1 Reaction scheme with two sequential reactions including aparallel branch of dynamic 
channeling. 
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2b and 2c are assumed to be irreversible. A further idealization is that the asso- 
ciation steps for the two enzymes are so fast as to be at quasi-equilibrium. This 
gives 

The two enzymes obey the conservation relations 

The quasi-steady-state assumption for E2SI yields 

Substituting E, and E2 in Eqs. (2.44a) and (2.44b) by Eqs. (2.45a) and (2.45b), 
respectively, gives, under consideration of Eq. (2.46), 

These two equations entail a quadratic equation for the concentration of the com- 
plex EISl&. For the steady-state reaction velocity of the channel, v = k, a ELSIE2, 
it follows 

with 

kZb a = -  0 5 ~ 5 1 .  (2.49) 
kZb +"' 

t% 
The limiting cases for a are characterized by high bb and high kc, which imply 
that one of the dissociation steps is extremely fast. From among the two solutions 
to the quadratic equation, the solution with the plus sign is irrelevant, because for 
ET,, + 0 or ET,, + 0, the rate must vanish. For very large substrate concentrations, 
the rate v tends to a finite value. 

An interesting situation is when the second term in the square root in Eq. 
(2.48) is small compared with unity. This occurs, for example, in the case of high 
dissociation constant K2 compared with both enzyme concentrations, or if one 
enzyme concentration is much lower than the other one, or if the substrate con- 
centration is very low compared with K , .  The square root in Eq. (2.48) can then 
be expanded into a Taylor series. Neglecting terms of order greater than unity 
yields the approximation formula 

For vanishing substrate concentration, the rate v tends to zero, as should be ex- 
pected. In contrast to the usual Michaelis-Menten kinetics, where the rate is 
proportional to the total enzyme concentrations, now saturation occurs in the 
dependence of v on enzyme concentrations. 

Equation (2.50) can be written in the form of the irreversible Michaelis-Men- 
ten equation (2.24) with PI = S, 

The Michaelis constant now depends on enzyme concentrations, except for the 
case that K ,  is very high. In this case, we have 

Kml = K,. (2.52b) 

The rate of the channel is then a bilinear function of the two total enzyme con- 
centntions. 
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We see that in contrast to the equations encountered in traditional enzyme 
kinetics, enzyme-enzyme interactions lead, for obvious reasons, to equations 
quadratic in the concentration of an enzyme-containing species. Therefore, clas- 
sical methods such as the King-Altman procedure are no longer applicable. 

Rate laws for overall enzymatic reactions are an instructive example for the 
situation that a scientific description at some level can be derived, under certain 
assumptions, from a description at a lower level (the elementary steps in this 
case). There are other situations in science where such derivation is not or only 
incompletely feasible, so that the description at a higher level must again start 
from first principles (axioms). An example is provided by the interrelation be- 
tween classical mechanics and thermodynamics. Interestingly, in enzyme kinetics, 
the type of the relevant equations changes depending on the level of description. 
Whereas the simple mass-action kinetics relevant for the elementary reactions is 
linear in substrate and product concentrations, the overall enzyme-kinetic equa- 
tions are nonlinear in these variables. 

2.2.3. Thermodynamic Flow-Force Relationships 
The rate laws given in the preceding sections are usually referred to as kinetic. 

They express reaction velocities as functions of concentrations. In an alternative 
approach based on principles of nonequilibrium thermodynamics, velocities are 
expressed in terms of thermodynamic forces. Besides (bio)chemical reactions 
driven by reaction affinities, standard situations are the heat flow as driven by 
temperature gradients and the electric current as driven by electric potential gra- 
dients. The fundamentals of irreversible thermodynamics and its application to 
chemical and biological processes can be found, for example, in the textbooks of 
Katchalsky and Curran (1965). Nicolis and Prigogine (1977), and Jou et al. 
(1 993). 

Substance fluxes across biological membranes are also flows in the thermo- 
dynamic sense, with the electrochemical -potential difference being the corre- 
sponding force. It can, such as any reaction affinity, be defined as the negative 
change in Gibbs free energy accompanying the membrane flux or reaction. 

A basic postulate of irreversible thermodynamics is that the flows in a given 
system can be expressed as functions of all thermodynamic forces acting in or on 
the system, 

When reaction affinities are the only macroscopically relevant forces in the sys- 
tem, this equation can be specified to a "thermodynamic rate law," 

vi = vi(A,,A2, . . . ,  A,), i = 1, ..., r. (2.54) 
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What may be important are electric flows and forces, in particular, in the case of 
membrane transport processes. They can, however, be included in the variables 
vi and A, respecti,,ely, by considering the electric current as a superposition of 
ion fluxes and by using the concept of electrochemical potential gradient (cf. 
Guggenheim, 1967). 

In thermodynamic equilibrium, all affinities and all reaction rates are zero. The 
function (2.54) must therefore satisfy the condition 

The thermodynamic approach is particularly important for systems the internal 
mechanisms of which are incompletely known. Lacking detailed knowledge of 
the functions (2.53) and (2.54), one often uses a linear approximation in the 
vicinity of equilibrium, 

The Lik are called phenomenological coefficients or Onsager coefficients. In Eq. 
(2.56a), a coefficient Lii expresses the influence of the force Xi on its conjugate 
flow Ji (e.g., the effect of the temperature gradient in driving heat flow), whereas 
the coefficients Lki reflect the cross-effects on other flows (e.g., the effect of the 
temperature gradient on diffusion). As far as chemical reactions are concerned 
IEq. (2.56b)], cross-effects can usually be excluded (Lfi = 0 for i Z k), provided 
that the reactions are described at a sufficiently detailed level.   qua ti on (2.56b) 
can then be written as 

v = (dg L)A (2.57) 

with A and (dg L) denoting the vector of affinities of the elementary reactions 
and the (here diagonal) matrix of Onsager coefficients, respectively. 

This assumption concerning the absence of cross-effects is no longer fulfilled 
when two or more distinct reactions share common intermediary species. It de- 
pends on the level of description whether such (possibly short-living) interme- 
diates are included explicitly in the model. In biochemical modeling, this is of 
particular interest for enzymes coupling exergonic to endergonic processes. An 
example is provided by the mitochondrial H+-transporting ATP synthase (H+- 
ATPase, EC 3.6.1.34). A scheme representing the basic steps involved in this 



30 Fundamentals of Biochemical Modeling Rate Laws 31 

enzyme are shown in Figure 2.2 (cf. also Pietrobon and Caplan, 1985). As was 
stressed by T.L. Hill (1977), energy-transducing enzymes operate along at least 
two interconnected reaction cycles. In the example shown in Figure 2.2, these are 
the cycle of proton influx (reactions 1, 7, 5, and 6) and the cycle of ATP-ADP 
interconversion (reactions 2, 3, 4, and 7). 

When the condition is imposed that the system subsists in a steady state, the 
particular reactions do become interdependent due to Eq. (2.9). In the example 
shown in Figure 2.2, steady-state conditions applied to the enzyme-containing 
species yield equations of the form v2 = vgr v2 + V, = vl, and so on. The coupling 
by the steady-state condition brings about that the number of independent fluxes 
and forces is decreased. One can therefore introduce a reduced flow vector, J', 
and a reduced affinity vector, A', for which 

holds true. L' is a reduced matrix of Onsager coefficients, which is not normally 
diagonal. In the considered example, A' could encompass the proton-motive force 
and phosphate potential, and J' would comprise the proton influx rate and phos- 
phorylation rate (cf. Westerhoff and Van Dam, 1987). 

According to the fundamental Onsager reciprocity relations (Onsager, 1931; 
cf. Guggenheirn, 1967), L' is a symmetric matrix, 

For the considered case of coupled enzymic processes, this relation will be ana- 
lyzed in detail in Section 3.3.3. 

The original idea underlying linear irreversible thermodynamics was to line- 
arize the function (2.53) around an equilibrium point. Later, it was found both 
experimentally and theoretically that this function often exhibits a multidimen- 
sional inflection point, that is, a point where some or all second derivatives 
a Z J i I d ~ ~  vanish (Rottenberg, 1973b; cf. Caplan, 1981). In the neighborhood of 
such a point, linearity between flows and forces (possibly with an additive con- 
stant), but not necessarily proportionality, approximately holds. 

Thermodynamic approaches were intensely used in biochemical modeling 
several years ago (Kedem and Caplan, 1965; Kedem, 1972; Rottenberg, 1973b; 
Stucki et al., 1983; Caplan, 1981; Westerhoff et al., 1983; Westerhoff and Van 
Dam, 1987; Westerhoff, 1989; Groen et al., 1990). In a number of models, both 
kinetic and thermodynamic rate laws were used (Bohnensack, 1981, 1985; Holz- 
hiitter et al., 1985a; Pietrobon and Caplan, 1985; Pietrobon et al., 1986; Stoner, 
1992). It is worth noting that these approaches were employed to describe exclu- 
sively processes of biological energy transduction (oxidative phosphorylation in 
mitochondria and bacteria, photosynthesis, etc.). This is certainly due to the fact 

cytoplasmic side I: matrix side 

Figure 2.2 Reaction scheme of Hf -ATPase including elementary reaction steps. Symbols: E, 
ATF'ase; the supercripts (0) and (i) refer to the outside and inside of the membrane, respectively; Step 
7 represents a slip reaction. 

that energy is a central notion in thermodynamics. It is not clear, however, why 
the description by irreversible thermodynamics should be more appropriate for 
biological energy transduction than for other biochemical systems such as amino 
acid synthesis or the tricarboxylic acid cycle, which have usually been modeled 
by kinetic approaches. Even most models of glycolysis, which is part of energy 
metabolism, are kinetic (Selkov, 1975b; Ataullakhanov et al., 1981; Werner and 
Heinrich, 1985; Markus and Hess, 1986; R. Schuster et al., 1988; Joshi and 
Palsson, 1989a). This argument can be put also the other way around. Given that 
kinetic modeling has turned out to be very powerful in the modeling of many 
biochemical networks of anabolism and catabolism, why not apply it to biological 
energy transduction? Several advantages and drawbacks of thermodynamic and 
kinetic modeling were outlined in an interesting dispute between Westerhoff 



32 Fundamentals of Biochemical Modeling Rare Laws 33 

It is our impression that nowadays, for the construction of simulation models, 
kinetic rate laws are more and more favored compared to flow-force relationships 
(Heinrich et al., 1977; Goldbeter et al., 1990; Majewski and Domach, 1990b; 
Novak and Qson, 1993; KO etal., 1994, as well as the papers on glycolysis cited 
earlier). The kinetic paradigm gives a deeper insight into biochemical systems, 
as it allows one to make use of more detailed knowledge about the enzymatic 
processes involved (cf. Korzeniewski and Froncisz, 1991). 

A comparison of the (linear or nonlinear) thermodynamic flow-force relation- 
ships (2.54) with the general kinetic rate law (2.15) shows that the affinities are 
insufficient in number to reflect all degrees of freedom that determine the reac- 
tions. Consider, for example, a single monomolecular reaction interconverting S1 
and S2. In the thermodynamic description, the rate would be written as a function 
of the affinity 

whereas in the kinetic description, it reads 

Imagine now the situation that both the concentrations S ,  and S, are multiplied 
by some factor 1, S;  = AS1, S; = AS,. The reaction velocity given by Eq. (2.60a) 
would not change in this situation, not even if v(A) were a nonlinear function; but 
the rate given by Eq. (2.61) generally would, which reflects reality more ade- 
quately. To elucidate this discrepancy, we rewrite Eq. (2.61) as 

where the factor F(Sl,S2) has been dropped for the sake of simplicity and S? 
denotes the concentration of S2 at some equilibrium point. v can now be regarded 
as a function of AS2 and A, that is, of the deviation of the concentration S2 from 
its value at the chosen equilibrium point and of the reaction affinity. The usual 
way to derive flow-force relationships to describe reaction kinetics is to expand 
Eq. (2.62) into a Taylor series. This gives, because A = 0 at equilibrium, 

which contains only one linear term and two second-order terms. Only in the 
linear approximation can v be written as a function of the only argument A [cf. 
(2.60a)l. To be ablqgo describe the kinetically relevant situation that all concen- 
trations are increased by (approximately) the same factor (see above), one has to 
include at least the second-order terms. The reduction of two variables (S1 and 
SJ to only one degree of freedom (affinity) is therefore an oversimplification. 

Reaction rates depend not only on concentration ratios but also on their ab- 
solute values because the probability of collision of molecules becomes higher 
with increasing concentrations. For example, the dependence of ATP synthesis 
on internal and external pH in chloroplasts cannot be subsumed under a depen- 
dence on the proton-motive force, as was shown by experiment (Possmeyer and 
Gr2ber, 1994). Furthermore, the fluxes across biological membranes are not nor- 
mally a unique function of the overall force given by the electrochemical potential 
difference, but depend on the electric potential difference in a different way than 
on the concentration ratio (Pietrobon and Caplan, 1985; Skulachev, 1988). 

It has sometimes been argued that the rates of many biochemical reactions 
depend on the concentration ratio ATPIADP, so that this ratio is a global signal 
variable. One should not, however, forget that changes in the absolute values of 
ADP and ATP generally also have an effect. Indeed, such changes are excluded 
when the sum of ADP and ATP is constant, but there are many instances where 
this is not the case, for example when adenylate kinase is operative, so that AMP 
must be included in the balance of adenine nucleotides. In some cases, it is con- 
venient to work with concentration ratios, namely when they can be measured 
more easily than the particular concentrations (e.g., pH differences by the distri- 
bution of special substances, cf. Skulachev, 1988), but in many cases they cannot. 

Alternatively to the ATPIADP ratio, the energy charge, (ATP + ;ADP)I(ATP 
+ ADP + AMP) was suggested to be a key variable by Atkinson (1968) (see 
Reich and Selkov, 1981). The aim in defining such global variables is to compress 
the body of data into a tractable number of variables easy to survey. Indeed, the 
energy charge obtains as a pool variable under some conditions concerning the 
separation of time constants of the reactions of interconversion of adenine nucle- 
otides (Heinrich et al., 1977). However, also in this case, the signal effect on other 
enzymes by the particular adenine nucleotides cannot necessarily be expressed 
by the energy charge only. Therefore, such compression of variables into the ATPI 
ADP ratio or energy charge usually eliminates relevant variables. 

We have seen above for the case of a monomolecular reaction that thermo- 
dynamic rate laws are more restrictive than kinetic functions. Let us now consider 
the linear flow-force relationship resulting in the more general case of reactions 
of any stoichiometry. We start from the generalized mass-action rate law (2.15) 
for a single reaction with the stoichiometric coefficients ni. It can be split up into 
the rate laws for the forward and reverse reactions: 



34 Fundamentals of Biochemical Modeling 

respectively. Dividing these two equations by each other, we find 

This equation can be written in logarithmic form as 

where V denotes the arithmetic mean of v C  and v-. In the neighborhood of ther- 
modynamic equilibrium states, the unidirectional rates are much higher than net 
velocity (vC,v- > IvC - v-I) and, hence, much higher than the quantities IvC 
- vl and Iv- - 81. Accordingly, we can approximate Eq. (2.66) by using the 
Taylor expansion ln(1 + x) =-- x at a thermodynamic equilibrium state, where vC 

= v- = 8. This gives 

The net rate depends on the average unidirectional velocity, V, and hence, on 
the equilibrium point chosen for the approximation. For a single reaction, this 
point depends on the conservation quantity of the concentrations involved (in the 
case of a monomolecular reaction, S1 + Sz) In the analysis of multienzyme 
systems, the question of how to choose an appropriate reference state is even 
more problematic. For example, when the system involves conservation relations, 
the equilibrium state depends on all conservation quantities and is, therefore, a 
systematic property. However, a rate law should be defined in a very general way 
to be applicable wherever the considered reaction occurs. This requirement is 
fulfilled by kinetic rate laws such as the Michaelis-Menten kinetics (2.20). 

This kinetics can be rewritten as a function of the affinity and the sum of 
substrate and product concentrations, 8 = S1 + Sz, 
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(Rottenberg, 1973b; Westerhoff and Van Dam, 1987). When the reaction is stud- 
ied in isolation, 8 is consiant. The reaction rate can then be regarded as a function 
of the affinityqly, that is, as a (nonlinear) flow-force relationship (2.60a), which 
contains parameters that are only available by a kinetic characterization of the 
reaction. When the reaction is embedded in a metabolic system, the dependence 
on 8 becomes essential. Accordingly, rewriting the Michaelis-Menten kinetics 
in the form (2.68) is not of particular use. 

A way to circumvent some difficulties in applying flow-force relationships to 
chemical reactions is to define separate affinities for the forward and reverse 
reactions (Lengyel, 1989), but this amounts to rewriting kinetic equations in other 
variables. 

Due to the treatment of systems as black boxes, the thermodynamic approach 
only necessitates a small number of parameters. On the other hand, by a moderate 
increase in the number of parameters and using some knowledge of the internal 
mechanisms of the system, an enormous gain in modeling power can be achieved. 
For example, replacing the linear version of the thermodynamic rate law (2.60a) 
for an enzymic uni-uni reaction by the reversible Michaelis-Menten rate law 
(2.20) increases the number of parameters to be estimated from one to four. Due 
to the Haldane relation (2.26), only three of these four parameters are independent. 
On the other hand, the Michaelis-Menten rate law, which is based on the knowl- 
edge that the reaction is catalyzed by an enzyme, allows one to describe a number 
of additional phenomena, such as saturation, the limit case of irreversibility (q + 

0 or q -t a), and the fact that the rate depends on the absolute values of concen- 
trations. Apart from situations where the knowledge about the system is really 
very limited, there is no reason why not to prefer a kinetic description in the case 
of biochemical reactions. For several other processes such as diffusion, electro- 
diffusion, and heat flow, thermodynamic flow-force relationships are very helpful. 

An attempt to marry the simplicity of thermodynamics with the adequacy of 
kinetics is the Mosaic Non-Equilibrium Thermodynamics (MNET) developed by 
Westerhoff and Van Dam (1987). Flow-force relationships are combined with en- 
zyme-kinetic rate laws like in a mosaic. The requirement of proportionality between 
fluxes and forces is relaxed so as to only require linearity, possibly including ad- 
ditive terms. This also serves to extend the validity of the treatment to the vicinity 
of multidimensional inflection points. Onsager symmetry is no longer invoked. 
The number of applications of this approach is, however, limited until now. 

In this book, we focus on kinetic approaches. Nevertheless, reference to ther- 
modynamics is made whenever appropriate [e.g., in the determination of the di- 
rection of fluxes (as will be done in optimization, see Section 6.2) or of detailed 
balanced subnetworks (see Section 3.3)]. Thermodynamics plays the role of an 
"accountant" deciding what is feasible in terms of energy balances and what is 
not. Its tools are not, however, sufficient to predict steady states and time-depen- 
dent behavior of biochemical systems far from equilibrium. 
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2.2.4. Power-Law Approximation 
Rate laws of enzymic reactions in terms of the concentrations of substrates 

and products are usually nonlinear. Therefore, analytical treatment of models of 
larger reaction systems is very difficult or even impossible. For example, the flux 
through a chain of enzymic reactions endowed with reversible Michaelis-Menten 
kinetics cannot be expressed in terms of parameters in explicit form (cf. Section 
5.4.3.1). 

In many fields of science, intricate mathematical functions are often approxi- 
mated by more concise expressions to simplify mathematical treatment. Care must 
be taken, however, that the essential properties are still reflected in this simplifi- 
cation. The most common approximation method is linearization. Accordingly, 
biochemical rate laws have often been linearized in terms of concentrations (Hein- 
rich and Rapoport, 1974a; Palsson et al., 1985; Liao and Lightfoot., 1987; S. 
Schuster and Heinrich, 1987; Cornish-Bowden, 1991) or in terms of reaction 
affinities (Kedem and Caplan, 1965; Rottenberg, 1973a; Westerhoff and Van Dam, 
1987). By this method, however, many biochemically relevant effects such as 
saturation and sigmoidicity cannot be described. 

Another possibility is to use power-law approximations (Savageau, 1969, 
1976; Savageau et al., 1987a; Peschel and Mende, 1986; Cascante et al., 1989a, 
1989b). Development of this method was inspired by the mathematical structure 
of usual mass-action kinetics, which involves products of concentrations raised 
to some power each. Any reaction rate vj can be written as the difference of a 
forward and a reverse reaction rate, which are functions of concentrations [cf. Eq. 
(2.15)1, 

It can also be written in terms of logarithmic concentrations, 

v, = vi+ (ln S) - v,7 (In S). (2.70) 

An essential prerequisite of the power-law approach is that some operating point 
must be chosen, which is, in most cases, some stationary state. Thereafter, the 
logarithms of the forward and reverse rates are linearized around the operating 
point, 

where $' denotes the concentrations at the operating point. With the abbreviations 

one can write 

Transforming back into Cartesian coordinates, one obtains 
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(2.72) 

It can be seen that the power-law approximation is equivalent to a linearization 
in logarithmic space. A directly linearized rate law, 

has n + 1 parameters (for a given reaction j), whereas the power law (2.77) 
involves 2(n + 1) parameters. The latter function can therefore be expected to 
exhibit a larger richness in different curve shapes. 

In the considered approach, the parameters aj and 4 in Eq. (2.77) play the role 
of rate constants. The concentrations of external metabolites can either be incor- 
porated into these rate constants or be written in the same way as the concentra- 
tions of internal substances. The exponents gji and hji are referred to as kinetic 
orders. Note that if the approximation procedure outlined above [Eqs. (2.70)- 
(2.76)] is applied to the mass-action rate law (2.10). the latter remains unchanged. 
In that rate law, the kinetic orders are given by the stoichiometric coefficients. In 
the general power-law function (2.77), the kinetic orders are phenomenological 
parameters which may or may not be integer. 
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An important aspect in enzyme kinetics is the effect of inhibitors. It is obvious 
that in the power-law equation (2.77), the concentration of an inhibitor, I, must 
be raised to a negative power. This gives rise to the singularity v -, m at I 4 0, 
which would paradoxically imply an activation for very small inhibitor concen- 
trations. Accordingly, several models using the power-law approach lead to huge 
concentration values of many orders of magnitude higher than realistic values 
(e.g. Torres et al., 1993). In contrast, usual inhibition kinetics such as in Eq. (2.35) 
ensures that the reaction rate remains finite and nonzero as I tends to zero. 

Replacing enzyme-kinetic rate laws such as Michaelis-Menten kinetics by - - 

laws means that certain knowledge about the mechanism of enzyme ca- 
talysis and, accordingly, about kinetic properties such as saturation is deliberately 
sacrificed for the sake of the simplicity of mathematical treatment. As computa- 
tional resources are nowadays no longer limiting in biochemical modeling, usage 
of power-law approaches only seems to be acceptable for processes for which a 
detailed kinetic description is not yet available. 

2.3. STEADY STATES OF BIOCHEMICAL NETWORKS 

2.3.1. General Considerations 
To restrict modeling analysis to essential features, one often investigates the 

asymptotic time behavior of dynamical systems only, (i.e., the behavior after a 
sufficiently long time span). The asymptotic behavior may be oscillatory or even 
chaotic, but in many important situations, the systems will reach steady states. 

The concept of steady state plays an outstanding role in kinetic modeling. A 
metabolic or any other macroscopic system is said to subsist in a steady state 
(also called stationary or time-invariant state) if the macroscopic variables (in the 
case of biochemical pathways, these are usually concentrations and fluxes) do not 
change within a tolerable accuracy over a certain time span of interest. As a matter 
of course, the concept of steady state is a mathematical idealization that can 
describe real situations only in an approximative way, due to fluctuations of dif- 
ferent nature. Steady states comprise, as special cases, thermodynamic equilib- 
rium states, in which all net flows as well as entropy production are zero. In 
general, however, net flows in steady states are not equal to zero (but constant), 
so that entropy production is positive. 

Static situations are widespread in biology. Well-known examples are the fairly 
constant body temperature of homeothermic animals, the glucose concentration 
in the blood, and the pH in a great variety of living cells. Biochemical examples 
of virtually time-invariant states are erythrocyte glycolysis (cf. Ataullakhanov et 
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al., 1981; Werner and Heinrich, 1985; Joshi and Palsson, 1989a) and amino acid 
synthesis (cf. Fell and Snell, 1988). On the other hand, many biological events 
such as growth, neqe excitation, heart activity, and, on a longer time scale, bio- 
logical evolution are clearly nonstationary. Nevertheless, examination of steady 
states and their neighborhood often helps to better understand the behavior of 
biological processes (cf. Edelstein-Keshet, 1988). 

A more detailed analysis shows that the frequent occurrence of stationary b e  
havior in biochemical networks results from the phenomenon of separation of 
time constants. In living cells, fast and slow processes are coupled with each 
other. The fast processes attain, under some stability conditions, a quasi-steady- 
state after an initial transient period (cf. Chapter 5). Every steady state can, in 
fact, be considered as a quasi-steady-state of a subsystem embedded in a larger, 
nonstationary system. 

The usefulness of analyzing time-invariant states of biochemical systems be- 
comes clearer by consideration of the general approach of classical thermody- 
namics. This theory starts with the study of equilibrium states, because a number 
of physical quantities such as temperature and entropy can be much more easily 
defined for these states. Moreover, several extremality principles derived from the 
Second Law of Thermodynamics are related to equilibrium states. Nevertheless, 
assertions about nonequilibrium systems can be made, as long as transition pro- 
cesses between equilibrium states are analyzed. 

Because biological organisms are characterized by a throughput of energy and 
matter, it has to be acknowledged that time-invariant regimes in biology must 
usually be nonequilibrium phenomena. The German word Fliessgleichgewicht 
(equilibrium of flows) coined by von Bertalanffy (1953) properly expresses the 
fact that in steady states input flows balance output flows. 

The modeling of nonequilibrium systems is one step up the ladder compared 
to equilibrium thermodynamics. Here, the analysis of steady states is the first step, 
because of the widespread occurrence of these states and the favorable property 
that differential equations containing time as an independent variable simplify to 
algebraic equations (similar to the equilibrium states studied in thermodynamics). 
Also for these states, extremality principles such as the principle of minimum 
entropy production (cf. Glansdodf and Prigogine, 1971) can be derived. As for 
biochemical reaction systems, the analysis of steady states implies that the dif- 
ferential equation system (2.8) is replacid by the algebraic equation system (2.9). 

In analogy to equilibrium thermodynamics, transitions between steady states 
can be studied also. Relaxation processes (i.e., attainment of a steady state after 
a perturbation) and oscillatory regimes with small amplitudes can be approxi- 
mately described by linearizing the equations in the neighborhood of the station- 
ary state, which allows analytical solution of these equations. Moreover, lineari- 
zation is a well-suited prerequisite for stability analysis. 
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2.3.2. Stable and Unstable Steady States 

A steady state, s, of a metabolic system described by the autonomous differ- 
ential equation system (2.8) is considered to be stable if after an initial pertur- 
bation 

the concentrations Si(t) remain within a close neighborhood of the original steady 
state. Otherwise, the steady state is unstable. It is said to be asymptotically stable if 

[For a more rigorous definition of stability, compare textbooks on differential equa- 
tions (e.g., Andronov et al., 1966; Guckenheimer and Holmes, 1983)l. Very often 
it is sufficient to analyze stability with respect to infinitesimally small perturba- 
tions 6$ = 6Si(0) (local stability). In this case, stability analysis can be performed 
on the basis of a Taylor expansion of the system equations (2.8). that is, 

where the derivatives of the functionsJ& . . . , S,) defined in Eq. .(2.8) have to 
be calculated at the reference steady state S .  

If infinitesimally small perturbations are considered, the quadratic terms on 
the right-hand side of Eq. (2.81) can often be neglected and one arrives at a linear 
differential equation system for 6Si(t). In matrix notation this linear equation 
system may be written as 

where the matrix M with the elements mV = af,/aSj denotes the Jacobian of the 
original differential equation system. Taking into account Eq. (2.8), M may be 
expressed in terms of the stoichiometry matrix and the rate laws, 

(The derivatives av,laSj which enter the matrix M also play a basic role in metabolic 
control analysis where they are called elasticity coefficients; see Chapter 5). 
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The solutions of the linear differential equation system (2.82) may be expressed 
in different ways. A formal solution may be given as 

(a 
5S(t) = exP(Mt)5S0, (2.84) 

where the exponential function is a matrix which transforms the initial pertur- 
bation 6 9  into 6S(t). It is defined as the following expansion of the matrix Mt: 

where I denotes the identity matrix. For more practical purposes, the solutions of 
Eq. (2.82) may be written as 

where bi denote the eigenvectors and li the eigenvalues of the Jacobian. The n 
unknown constants ci are determined by the initial perturbations. The eigenvalues 
may be calculated by solving the characteristic equation 

which is a polynomial equation of order n. 
From the solution (2.86) of the linearized differential equation system (2.82), 

it can immediately be seen that a steady state of this system is asymptotically 
stable if, and only if, all the eigenvalues of the Jacobian for Si = Si have negative 
real parts. If at least one eigenvalue has a positive real part, then the steady state 
is unstable. Strictly speaking, Eq. (2.86) can only be applied if all the solutions 
of the characteristic equation are distinct. Otherwise, some functions 6Si(t) involve 
polynomial functions, which do not, however, have any effect on stability (cf. 
Section 4.4). 

Upon reduction of the complete equation (2.8) to the linearized equation 
(2.82), nonlinear terms have been neglected. Concerning the problem of whether 
the stability behavior is affected by these terms, one may prove the following 
theorem (cf. Hahn, 1967): 

Theorem 2A. If the steady state of the linearized system (2.82) is asymptotically 
stable then the steady state of the complete system (2.8) is also asymptotically 
stable. Ifthe steady state of the linearized system is unstable (at least one eigen- 
value of the Jacobian has a positive real part), then the steady state of the com- 
plete system is also unstable. 
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In the framework of the linear theory, conclusions on the behavior of the tra- 
jectories for the case that some eigenvalues have negative real parts and the re- 
maining eigenvalues have zero real parts can hardly be drawn. In that case the 
stability behavior can only be determined when the nonlinear terms in the expan- 
sion (2.81) are taken into account. 

From Theorem 2A, it follows that for stability analysis it is often sufficient to 
test the signs of the roots of the characteristic equation (2.87). To this end, the 
so-called Hurwitz criterion may be applied (cf. Hahn, 1967). The coefficients of 
the characteristic equation are used to form the Hurwitz matrix 

The elements HV of H are defined as 

for 0 < 2i - j 5 n 
otherwise. 

The Hurwitz determinants Di are defined by the following sequence of principal 
subdeterminants 

Dl = an- , ,  DZ = a,,-lan-z - a,a,-3, . . . , (2.90) 
Dn-,  =a,D, , - , ,  D, =a&-, =Det(H). 

The following theorem is due to Hurwitz (1895). 

Theorem 2B. The characteristic equation (2.87) has only mots with negative real 
parts iJ; and only iJ; the inequalities 

and 

hold true. 

[For a proof of this theorem, cf. Hahn (1967).] 

It follows immediately that for one-component systems (n = l), a steady state 
is asymptotically stable if 

r+ 

Let us discuss in more detail the case n = 2. Despite the fact that real metabolic 
systems contain a huge number of variable concentrations, many important mod- 
els are formulated as two-component systems (cf. Sections 4.2 and 4.3 for the 
reduction of the number of variables using quasi-steady-state and rapid-equilib- 
rium approximations). Moreover, the behavior of two-component systems is 
mathematically very well understood (Andronov et al., 1966; Guckenheimer and 
Holmes, 1983). The time-dependent properties of a two-component system are 
governed by the differential equations 

where the functions f, and f, include dependencies on parameters. The linear 
approximation in the neighborhood of a steady state gives 

The characteristic equation reads 

where 

denote the trace (tr) and the determinant (A), respectively, of the Jacobian. Be- 
cause a, = 1 the Hurwitz criterion leads to the stability conditions 
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tr < 0. 

For n = 2 the stability conditions follow directly from the explicit solutions of 
the characteristic equation (2.87) 

The dynamical properties of a metabolic system with only two variable con- 
centrations may be studied by consideration of the motion within a plane which 
is spanned by the two concentration variables. There, the solutions of the differ- 
ential equation system (2.93) may be represented by the solution of the differential 
equation 

with given initial conditions Si(0) for i = 1, 2, where the time variable has been 
eliminated. The curves determined by Eq. (2.99) are called trajectories of the 
system. 

After small perturbations, a dynamical system may approach an asymptotically 
stable steady state in different ways. Accordingly, a stable steady state may be of 
different type. For n = 2 the following two cases are possible. 

1. The steady state is a stable node if both eigenvalues L, and & of the Jacobian are 
real and negative, that is, if in addition to relations (2.97a) and (2.97b), the follow- 
ing condition is fulfilled: 

2. The steady state is a stable focus if the Jacobian has a pair of complex eigenvalues 
A, and & with a negative real part. Tbis is the case if in addition to relations (2.97a) 
and (2.97b), the following condition is fulfilled 
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Conditions (2.97), (2.100), and (2.101) follow directly from the solution (2.98) 
of the characteristic equation and by consideration of the general solution (2.86). 

Unstable steadydtates may be classified in a similar way. For an unstable node 
(1, and & are real and positive) or an unstable focus (complex eigenvalues 1, and 
& with a positive real part) condition (2.97a) is replaced by tr > 0. 

There exists a third type of unstable steady states, called a saddle point, which 
corresponds to the occurrence of two real eigenvalues with opposite sign. Ac- 
cording to Eq. (2.98), this is the case for A < 0 irrespective of the sign of the 
trace of the Jacobian. 

The stability of stationary states depends on the system parameters. Upon 
changes of the parameters, the eigenvalues of the Jacobian alter as well. At certain 
critical points called bifurcations, this will lead to a change in the character of 
the trajectories in the neighborhood of the steady state. For two-component sys- 
tems, the following situations deserve special interest. For A > 0 and tr = 0, the 
eigenvalues of the Jacobian are pure imaginary, and solution (2.86) of the line- 
arized system (2.82) predicts closed trajectories in the phase space around the 
steady-state point, which is called a cente,: This corresponds to solutions periodic 
in time. The frequency of this oscillation reads, in the linear approximation, 

The transition from a parameter region with tr < 0 to a region with tr > 0 is 
called Hopf bifurcation (Hopf, 1942; cf. Guckenheimer and Holmes, 1983). Tran- 
sitions from a parameter domain with A < 0 to a domain with A > 0 generally 
results in a change of the number of stationary states (cf. Section 2.3.3). 

For three-variable systems (n = 3), the characteristic equation (2.87) reads 
with, a3 = 1, 

where -q, and -a, denote the determinant and trace of the Jacobian, respec- 
tively. For the coefficient a,, one derives 

a af, a !  + af, af, + af2 ah afl a !  a !  ah a !  ah, (2. 104) 
I - as, as, as, as, as, as, as, as, as, as, as, as, 

From the Hunvitz criterion, it follows that the stationary state of a three-variable 
system is asymptotically stable if the conditions 
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are fulfilled. 
It is worth mentioning that Theorem 2A makes assertions about stability but 

not about the shape of the trajectories of the complete system (2.93) compared 
to that of the trajectories of the linearized system (2.94) in the neighborhood of 
steady states. It may occur that the complete system predicts an unstable focus, 
whereas the solution of the linearized system represents an unstable node. 

If one is interested in the asymptotic stability of a steady state after finite 
perturbations (global stability) the analysis may be performed by using so-called 
Lyapunov functions. These functions, VL = VL(<,, . . . , r,) with &(t) = ASi@ 
= Sj(t) - Si, are constructed in such a way that they have the following properties: 

2. VL > 0 for # 0 in a certain region D around the stationary state, (2.106b) 

3. dV, < 0 for all z 0 in D. (2.106~) 
dt 

Theorem 2C (Lyapunov's Second Stability Theorem). I f  there is a Lyapunov 
function in a region D, then the steady state Si = 3, is globally asymptotically 
stable in D. 

The proof of this theorem can be found, for example, in the books of Hahn 
(1967) and Guckenheimer and Holmes (1983). Note that if relation (2.106~) does 
not hold as a strict inequality, a weaker conclusion concerning stability can be 
drawn (Lyapunov's First Stability Theorem). 

The time derivative of VL along the solution curves reads 

In practical applications of Theorem 2C difficulties may arise because there 
are no general methods for finding suitable Lyapunov functions. In mechanical 
systems often the energy may play the role of V,. For the analysis of steady states 
of chemical systems, it may be useful to consider the entropy production. 

2.3.3. Multiple Steady States 
When the system equations (2.8) are nonlinear with respect to the system 

variables Si, the steady-state solutions are not always unique. This means that for 
a given parameter vector p more than one vector S fulfills Eq. (2.9). Furthermore, 

when the kinetic parameters vary, the number of possible steady states may also 
change at critical values of the parameters. The phenomenon of multistationarity 
may be important ?&explaining switching processes between different branches 
of metabolic systems. 

Scheme 4 

Multiple steady states may occur even for one-component systems (n = 1). 
Let us consider the reaction system depicted in Scheme 4 where the kinetics of 
reaction 3 is characterized by cooperative substrate inhibition. All three reactions 
are assumed to be irreversible. The following kinetic equations are used 

v, = const., (2.108a) 

(k, and k3: rate constants; K,: inhibition constant of S,; n,: Hill coefficient). The 
kinetic equation (2.108~) describes, for example, essential characteristics of 
the phosphofructokinase reaction in glycolysis (EC 2.7.1.1 1) as a function of the 
concentration of its substrate ATP. 

Figure 2.3 shows the reaction rates given in Eq. (2.108) as functions of the 
concentration S1. The three different straight lines for v, - v2 correspond to 
different values of the rate constant k,. In the present case, steady states are 
determined by vl - v2 = v3, that is, by the intersection points of the curves for 
v, - v, and v3 in Figure 2.3. Three cases are possible. For low and high values 
of k,, there is only one intersection point corresponding to high or low concen- 
trations S,, respectively. In these cases, the steady states are unique. They are 
stable, as can be shown by Eq. (2.92). For intermediate values of k, three steady 
states are possible for one and the same set of kinetic parameters. The steady state 
in the middle is unstable. It can easily be seen in Figure 2.3 that in the stable 
steady state with low concentration of S,, this intermediate is mainly metabolized 
via reaction 3 (low inhibition), whereas in the stable state with high S,, reaction 
2 is more active than reaction 3. 
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1.0 

Figure 2.3 Plot of the difference of reaction rates v, and v, (straight lines) and of the reaction 
rate v3 for the system shown in Scheme 4 as functions of S1. Parameter values: v, = 0.9, n~ = 4, k3 
= 0.4, and K, = 3. 

A bifurcation occurs if at an intersection point both curves have the same 
tangent, so that the following equations are fulfilled simultaneously: 

v ,  - v2 = v g ,  (2.109a) 

These equations allow one to determine all critical parameter values where the 
number of steady-state solutions changes. Due to the nonlinearities, it may be 
difficult to solve one of the equations ([(2.109a) or (2.109b)l to obtain a param- 
eter-dependent function for Sl which may be used in the other equation to derive 
an expression for the critical parameter values. However, one easily derives a 
"parametric representation" of the bifurcation line within the (kz,vl)-plane. From 
Eq. (2.109b) one obtains 

and from Eq. (2.109a) 
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r, 
Equation (2.1 l0a <may be used to calculate kz for varying S, values. Introduc- 

ing the resulting function k,(S1) into Eq. (2.110b), one obtains a curve 
vl(kz(Sl),Sl), where bifurcations occur. Figure 2.4 shows the bifurcation h e  of 
the reaction system depicted in Scheme 4 within the (k,,v,)-plane for fixed values 
of the kinetic parameters of reaction 3. For parameters taken from region B, the 
steady states are unique, whereas for parameters of region A, three steady states 
are obtained. 

The steady-state concentration S1 as a function of the first-order rate constant 
k, for various values of v1 is depicted in Figure 2.5. Solid and broken lines cor- 
respond to stable and unstable states, respectively. It is seen that in the vicinity 
of bifurcation points, a switching between two stable steady states may be brought 
about by very small parameter changes. Furthermore, slow variations of the pa- 
rameter kz from low values to high values and backward may lead to a hysteretic 
cycle. Crossing the region of multiple stationary states, it depends on the "his- 
tory" of the system which stable steady state will be reached. 

It follows from the theory of implicit functions that for all one-component 
systems described by the parameter-dependent differential equation dS,ldt = 
fi(S,,pl , . . . , p,,,), bifurcation points for multiple steady states are determined by 
the conditions 

which for the example given above are equivalent to Eqs. (2.109a) and (2.109b), 
respectively. 

For two-component systems the location of steady-state points within the phase 
plane is determined by intersection points of nullclines, that is, the curves defined 
in an implicit manner by the equations 

A bifurcation implying a change in the number of steady-state solutions, occurs 
if in addition to Eqs. (2.112a) and (2.1 12b) the condition that the nullclines are 
tangential to each other at the intersection point is fulfilled. By use of implicit 
differentiation of Eqs. (2.1 12a) and (2.112b), this condition can be written as 



50 Fundnmentals of Biochemical Modeling Steady States of Biochemical Networks 51 

Figure 2.4 Bifurcation diagram of the reaction system depicted in Scheme 4 in the parameter 
space (k,v,). Parameter values: n~ = 4, k3 = 0.4, K, = 3. Region A, three steady states; region B, 
one steady state. 

This equation is equivalent to 

As follows from the theory of implicit functions the condition A = Det(M) 
= 0 is necessary for a change of the number of steady states at varying parameter 
values also for the general case of n-component systems with n > 2. 

The phenomenon of bistability has been extensively studied for the glycolytic 
system. For example, in a mathematical model of erythrocyte glycolysis, three 
stationary states are obtained if the rate constant of ATP-consuming processes is 
below a critical value (cf. Section 5.4.4.3, in particular Fig. 5.7). Bistability in 
glycolysis results mainly from the special kinetic properties of phosphofructoki- 
nase; in particular, the substrate inhibition by ATP and the activation by AMP. 
This has been demonstrated experimentally in open reconstituted enzyme systems 
using a stirred flow-through reactor (Eschrich et al., 1980; Schellenberger et al., 
1988). The system contains the enzymes phosphofructokinase (EC 2.7.1.1 I), py- 

Figure 2.5 Stationary intermediate concenhation Sl for the system shown in Scheme 4 as a 
function of the rate constant b. Solid limes: stable steady states: broken lines: unstable steady states. 
Parameter values: n, = 4, k3 = 0.4, K,,, = 1. K, = 3. 

ruvate kinase (EC 2.7.1.40), adenylate kinase (EC 2.7.4.3), and phosphogluco- 
isomerase (EC 5.3.1.9). Depending on the enzyme concentrations which are 
adjustable parameters, transitions between alternate stable stationary states 
characterized by high or low ATP concentration were observed. Furthermore, 
variations of the maximum activity of phosphofructokinase from low to high 
values and vice versa gave rise to a hysteretic cycle. Eschrich et al. (1990) studied 
experimentally as well as theoretically the dynamics of part of the glycolytic 
reaction sequence in cell-free yeast extracts. In addition to the enzymes converting 
glucose-&phosphate to triose phosphates, it contains the enzyme fructose-1,6- 
bisphosphatase (EC 3.1.3.11). It has been shown that in a certain domain of 
parameter values, two different stable stationary states may coexist. While, at 
small perturbations, the system relaxes to the original steady state, suprathreshold 
perturbations may drive the system to the alternative steady state. In these exper- 
iments, reversible hysteretic effects were observed by varying the influx rate of 
glucose-6-phosphate. Schellenberger and Hervagault (1991) analyzed mathemat- 
ically the reaction cycle formed by phosphofructokinase and fructose-1,6- 
bisphosphatase and drew attention to the fact that the occurrence of bistability 
may give rise to irreversible transitions. If one of the two bifurcation points, which 
separate regions of unique steady states and multiple steady states, are located 
outside the range of accessible parameter values, the formation of a full hysteretic 
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loop (i.e., restoring the original state after large parameter perturbations) may 
become impossible. 

2.4. METABOLIC OSCILLATIONS 

2.4.1. Background 
Metabolic systems may exhibit self-sustained oscillations, that is, the concen- 

trations and fluxes may be periodic functions of time. In dynamical systems theory 
the occurrence of stable periodic solutions of nonlinear differential equation sys- 
tems is a well-known phenomenon. Its discovery dates back to the work of Poin- 
car6 (1880-1890, 1899) in celestial mechanics, followed mainly by the work of 
Andronov and coworkers (Andronov et al., 1966; cf. Minorsky, 1962; Gucken- 
heimer and Holmes, 1983). In the space spanned by the system variables (state 
space), oscillations represent closed curves. In contrast to oscillations in linear 
systems (such as the harmonic pendulum), which are known for a much longer 
time, stable oscillations in nonlinear systems may have the property that after 
fluctuations of variables, the trajectory returns to the original orbit. Closed tra- 
jectories with this feature are called limit cycles. From the thermodynamic point 
of view, self-sustained oscillations are possible only in open systems far from 
equilibrium (Glansdorff and Prigogine, 1971; Feistel and Ebeling, 1989). Oscil- 
lations in biological systems were first analyzed mathematically by Lotka (1910) 
and Volterra (1931). Interestingly, the differential equation system nowadays re- 
ferred to as the Lotka-Volterra system is conservative (i.e., the solutions represent 
a continuum of oscillations rather than limit cycles). However, Volterra (1931) 
also considered dissipative (nonconservative) systems (cf. also May, 1974). The 
possibility of oscillations on the genetic level, that is, periodic enzyme synthesis 
has been analyzed in early theoretical studies by Goodwin (1963, 1965). 

Experimentally, autonomous biochemical oscillations have first been observed 
in glycolysis in intact yeast cells with typical periods in the order of minutes 
(Ghosh and Chance, 1964; Chance et al., 1964a, 1964b). Thereafter, glycolytic 
oscillations have been studied in cell-free extracts (Hess and Boiteux, 1968; Pye, 
1969). Furthermore, oscillations have been studied in open reconstituted enzyme 
systems using a stirred flow-through reactor (Schellenberger et al., 1988). First 
models of glycolytic oscillations are due to Higgins (1964). Selkov (1968,1975b), 
and Goldbeter and Lefever (1972). 

Oscillations have been detected also in other enzymic systems, in particular, 
the periodic synthesis of cyclic AMP in the cellular slime mold Dictyostelium 
discoideum (Gerisch and Hess, 1974). More recently, the existence of hormone- 
induced oscillations in intracellular calcium concentrations has attracted much 
attention of experimentalists (Bemdge, 1989) as well as of theoreticians (Gold- 

beter et al., 1990; Dupont et al., 1991; Somogyi and Stucki, 1991; cf. Section 
2.4.4). 

For reviews anQextbooks on the modeling of self-sustained oscillations in 
biochemical and chemical systems, see the works of Higgins (1967), Goldbeter 
(1990), Winfree (1990). and Gray and Scott (1994). 

2.4.2. Mathematical Conditions for Oscillations 
Systems of autonomous first-order differential equations may exhibit oscilla- 

tions only if they involve more than one variable (n > 1). For n = 1, periodic 
solutions are excluded because dSldt = AS) is a unique function of S and, hence, 
cannot have opposite signs for a given S at different times t. For two-dimensional 
systems (n = 2), there are a number of theorems giving conditions for the oc- 
currence of oscillations. The proof to the following two theorems can be found 
in Guckenheimer and Holmes (1983). 

Theorem 2D (Theorem of Poincar6 and Bendixson). 8 and only 8 a trajectory 
remains for to S t < 03 within a jinite region D of the phase plane without 
approaching a stationary state this trajectory is a periodic trajectory (closed 
cycle) or tends to such a trajectory for t -* 03. 

Theorem 2E (Criterion of Bendixson). If the expression afllaSl + afJaS, does 
not change sign in a region D of the phase plane then D contains no periodic 
trajectory. 

Whereas Theorems 2D and 2E apply to any two-dimensional dynamical sys- 
tem, the following two theorems concern systems of chemical reactions. 

Theorem 2F. Chemical systems with two variable compounds cannot exhibit limit 
cycles if only monomolecular and bimolecular reactions are involved. 

The proof was given by Hanusse (1972) on the basis of the mass-action kinetics 
(2.10). It follows that for chemical systems with mass-action kinetics to exhibit 
stable oscillations (limit cycles), it is necessary that they contain at least trimo- 
lecular reactions or involve more than two variable substances (cf. Section 2.4.5). 
Note that oscillations of the Lotka-Volterra type (which are not limit cycles) are 
not excluded by this theorem. 

The following statement is valid for chemical systems involving any number 
of reacting substances. 

Theorem 26. For systems composed only ofjirst-order reactions, the eigenvalues 
of the Jacobian are always real and negative, which excludes both damped 0s- 
cillations and limit cycles. 

In the proof of this theorem (Hearon, 1953; Bak, 1959) the fact was used that in 
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any reaction cycle occurring in the system, Wegscheider's condition must be ful- 
filled (cf. Section 3.3.1). 

For enzymic systems, a large number of possible regulatory mechanisms exist 
(activation or inhibition by internal metabolites) which may provide the necessary 
nonlinearities in the rate equations for generating oscillations. For the special case 
n = 2, Higgins (1967) was able to derive several necessary conditions on the 
form of the rate equations for the existence of a Hopf bifurcation. 

Let us consider, for example, an unbranched pathway involving two interme- 
diate compounds and three irreversible reactions (Scheme 5). Such a scheme can 
be used, for example, for analyzing glycolytic oscillations (cf. Section 2.4.3). We 
include the possibility that the activity of the enzyme catalyzing reaction 2 may 
be regulated allosterically by Sl andlor S2. Effector actions are designated by 
dashed lines, with activations and inhibitions symbolized by plus and minus signs, 
respectively. For the kinetic properties of reactions 1 and 3, it is assumed that 

Relation (2.1 15b) is fulfilled, for example, by a Michaelis-Menten equation for 
reaction 3. Equation (2.1 1%) means that S, is no effector of reaction 3. The trace 
and determinant of the Jacobian of the system depicted in Scheme 5 may then be 
expressed as follows: 

,= -dY2+dY2-d"' (2.116a) 
as, as, as,' 

av2 av, A = -- (2.1 16b) 
as, as2 

For a Hopf bifurcation it is necessary that A > 0 and that tr may become positive 
upon a change of the kinetic parameters (see Section 2.3.2). With relation 
(2.11 5b), one immediately obtains from Eqs. (2.11 6a) and (2.116b) the following 
necessary conditions: 
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Relation (2.1 17a) is generally fulfilled without effector regulation. From relation 
(2.1 17b) it follows that under the given assumptions, a positive feedback of the 

' metabolite S2 on its own production is a potential regulatory mechanism for the 
generation of oscillations ("back activation oscillator"; cf. Section 2.4.3). 

Likewise, relations (2.115) and (2.1 16) imply that a "forward inhibition os- 
cillator" is impossible under the considered assumptions, as av2/aSl < 0 implies 
A < 0 which excludes a Hopf bifurcation. The qualitative effect of other regu- 
latory loops (for example, of S1 on reaction 3 or of S2 on reaction 1) can be 
predicted in a similar way (Higgins, 1967) 

2.4.3. Glycolytic Oscillations 
Experimental studies on glycolytic oscillations (Betz and Selkov, 1969) have 

clearly shown that there is a phase angle shift of about 180" in the changes of the 
concentrations of fructose-6-phosphate (F6P) and fructose-bisphosphate (FP,). 
According to the crossover theorem (Holmes 1959; Higgins, 1965) (see Section 
5.10) this indicates that the phosphofructokinase (PFK) reaction may play an 
important role in the generation of the oscillations. From that, it was concluded 
that a back activation of PFK by FP2 provides an explanation for the observed 
periodic behavior. Accordingly, Higgins (1964, 1967) proposed the two-compo- 
nent model depicted in Scheme 5 with only one regulatory loop, namely an ac- 
tivation of reaction 2 by S2. It is governed by the differential equations 

where Sl = F6P and S2 = FP2. v, and v2 represent the rates of the hexokinase 
and phosphofructokinase reactions, respectively, whereas v3 denotes the rate of a 
reaction degrading FP2. The concentrations of glucose as well as of the cofactors 
ADP and ATP are considered to be constant which implies v1 = const. With the 
conditions av21aSl > 0 and av31aS2 > 0, which are normally fulfilled for Mi- 
chaelis-Menten kinetics, and the above-mentioned activation of PFK by FP, 
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(av21aS2 > 0), this model meets the necessary conditions for generation of oscil- 
lations mentioned in Section 2.4.2 M s .  (2.1 15) and (2.1 17)]. 

First models of glycolytic oscillations were based on kinetic equations taking 
into account saturation of v2 and of v, by Sz. Later, the following more simple 
model had been proposed: 

that is, the systems exhibits a Hopf bifurcation at k, = 6". Furthermore, one 
easily derives that within the parameter region defined by 

with y > 1 (Selkov, 1968). It has also been shown that back activation of PFK 
by FP, is not operative under in vivo conditions and that it is more appropriate 
to consider alternative models' including cooperative back activation of PFK by 
ADP or the even more effective AMP activation. Concentration changes of AMP 
are linked to those of ADP due the very fast adenylate kinase reaction (Betz and 
Selkov, 1969, cf. Goldbeter and Caplan, 1976). 

Let us consider the model (2.119) in more detail. Despite its nonlinearity, the 
steady-state concentrations may be expressed analytically as functions of the ki- 
netic parameters: 

The trace and determinant of the Jacobian read 

It is seen that the determinant is always positive, whereas for y > 1, the trace 
may change its sign depending on the kinetic parameters. According to the sta- 
bility criteria for two-component systems given in Eq. (2.97), the steady state 
(2.120) is unstable for 

the periodicity condition t? - 4 4  < 0 is fulfilled, that is, the eigenvalues have 
an imaginary part. Consequently, for kinetic parameters which fulfill relations 
(2.122) and (2.123), the steady state is an unstable focus. 

Figure 2.6 shows, within the (v,, 4-plane, the curve k2 = 6" which separates 
regions of stable and unstable steady states as well the curves k2 = k,- and k2 = 
k,+ which separate regions of periodic and aperiodic behavior. Limit cycles are 
obtained for parameter values taken from the region of instability near the bifur- 
cation curve k, = erit. Figures 2.7A and 2.7B show self-sustained oscillations of 
the concentrations S, and S2 as functions of time and in the phase plane, respec- 
tively. It is seen that in accordance with the experimental facts, the oscillations 
of the concentrations of F6P (S,) and FP2 (S2) are out of phase. Increasing the 
distance from the bifurcation line (e.g. lowering of k,) results in an increase of 
the size of the limit cycle. Eventually, the system becomes globally unstable at 
very low k2 values. 

Figure 2.6 Stability diagram of the Higgins-Selkov oscillator. Across the curves. the following 
transitions between different types of steady states occur: h-(v,), transitions from unstable nodes to 
unstable foci; k;"'(v,). Hopf bifurcations; k:(v,), transitions fmm stable foci to stable nodes. Parameter 
values: y = 2, k, = 1. 
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Figure 2.7 Self-sustained oscillations in the Higgins-Selkov system [Eqs. (2.1 19a) and (2.119b)l. 
(A) Concentrations S, and S, versus time. (B) Limit cycle (thick l i e )  and neighboring trajectories in 
the phase plane. Parameter values: v ,  = 0.95, k, = k, = 1. 

The basic models of Higgins (1964) and Selkov (1968) have been modified in 
different ways. For example, Goldbeter and Lefever (1972) extended the model . . 

by describing the p&sphofructokinase reaction by a rate equation resulting from 
the allosteric model of Monod et al. (1965) [Eq. (2.43)l. In fact, it describes the 
kinetic properties of this enzyme rather well in a number of cells (Blangy et al., 
1968; Otto et al., 1974). Furthermore, Goldbeter and Lefever (1972) considered 
the coupling of the glycolytic oscillator to diffusion of the metabolites, but ne- 
glecting the diffusion of enzymes. In this way, they could show that also in the 
case of glycolysis, reaction-diffusion processes may result in chemical waves (i.e., 
to dissipative structures in space and time). 

Selkov (1975b) was able to demonstrate that allosteric regulation of phos- 
phofructokinase is not the only possible explanation of glycolytic oscillations. He 
considered a model of cellular energy metabolism which includes only stoichio- 
metric couplings but no regulatory interactions by internal modifiers of the en- 
zymes. The corresponding reaction scheme is similar to that shown in Scheme 
12 in Section 5.4.4, where its details will be explained in the framework of control 
analysis of glycolysis. In addition to glycolysis, the stoichiomehic oscillation 
model involves an alternative source for ATP (e.g., oxidative phosphorylation). 
The occurrence of oscillations has been demonstrated only for the case that some 
of the reaction rates are described by saturation functions. The corresponding 
nonlinearities in the rate equations make the stability analysis rather cumbersome 
despite the fact that other nonlinearities resulting from allosteric interactions have 
not been included (cf. also Heinrich et al., 1977). 

2.4.4. Models of Intracellular Calcium Oscillations 
A wide variety of cells exhibit oscillations of intracellular calcium (Ca2+) in 

the form of repetitive spikes. For example, calcium oscillations may be stimulated 
by hormones or neurotransmitters in hepatocytes, where the oscillation period 
ranges from 0.5 to 10 min (Woods et al., 1986,1987). Shorter and longer periods 
of calcium oscillations have been observed depending on the cell type. Generally, 
the period of calcium oscillations decreases with increasing agonist concentration. 
It is generally assumed that the PI signaling pathway [i.e., the receptor-stimulated 
hydrolysis of phosphatidylinositol4,5-bisphosphate (PIP2) to inositol 1,4,5-his- 
phosphate (P3) and diacylglycerol catalyzed by phospholipase C (PLC, EC 
3.1.4.3)] plays a crucial role in the generation of the calcium oscillations. PIP2 is 
regenerated from IP3 by inositol-1,4,5-trisphosphate 5-phosphatase (EC 3.1.3.56) 
and several subsequent enzymes. Concerning.the oscillatory mechanism it is most 
likely that the "oscillator" is located within the cytoplasm and that its mechanism 
is closely related to the mobilization of calcium from intracellular stores [e.g., 
endoplasmic or sarcoplasmic reticulum (ER, SR) (Berridge, 1989)l. In a model 
proposed by Meyer and Shyer (1988), oscillations result from a positive feedback 
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loop between cytosolic calcium and the formation of IP3 (cf. Fig. 2.8). In partic- 
ular, it is assumed that IP, triggers the release of calcium from intracellular stores 
(Cg&) into the cytosol (Cg;). The cytosolic calcium, in turn, activates IP3 
synthesis. The oscillating variables are the concentration of IP, and the concen- 
trations of cytosolic and stored calcium [for a more elaborate version of this 
model, cf. Meyer and Stryer (1991)l. 

Other models of hormone-induced calcium oscillations are based on the phe- 
nomenon of calcium-induced calcium release (CICR mechanism) as first de- 
scribed by Endo et al. (1970) for skeletal muscle cells and later on by Fabiato 
and Fabiato (1975) for the sarcoplasmic reticulum in cardiac cells. Let us here 
consider the minimal two-variable model as proposed by Dupont and Goldbeter 
(1989) (cf. also Goldbeter et al., 1990; Somogyi and Stucki, 1991). This model 
includes the following processes (see Fig. 2.9): 

Inward and outward transport of cytosolic calcium through the plasma membrane 
(rates v, and v2, respectively) 
IP,-activated release of calcium from an IP3-sensitive intracellular store (rate v3) 
Active transport of cytosolic calcium into an IP3-insensitive store (rate v4) 
Release of calcium from the IP3-insensitive store which is activated by the cytosolic 
calcium (CICR mechanism, rate v5) 
Leak flux of calcium from the latter store into the cytosol (rate vg) 

The model is based on the following differential equations: 

G - = v, - v2 + v3 - v4 + v, + v6, (2.124a) 
dt 

where Sl and S2 denote the concentrations of the calcium in the cytosol and the 
IP3-insensitive stores, respectively. The influx rates vl and v, are considered to be 
constant. To justify a constant rate vg, Dupont and Goldbeter (1989) use the 
contestable assumption that the IP,-sensitive store is very fast replenished. For 
v,, the expression v, = f3P is employed, where the factor Prepresents a saturation 
function of the release of calcium from the IP3-sensitive store with respect to IP,. 
From the mathematical point of view, the constant rates vl and v, may be sub- 
sumed into one parameter v, = v1 + v,. 

It is reasonable to assume that the rates v2 and v, of the two ATP-dependent 
calcium pumps are activated by cytosolic calcium, whereas they are independent 
of the concentration of stored calcium, that is, 

Hormne 

Figure 2.8 Model for generation of calcium oscillations by Meyer and Shyer (1988). For sym- 
bols see text. 

Figure 2.9 Schematic picture of the processes responsible for receptor-induced intracellular cal- 
cium oscillations [adapted from Dupont and Goldbeter (1989)l. For an explanation of the various 
processes, see the text. 
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( L . A L J a ,  
from the IP,-insensitive store by cytosolic calcium is a necessary condition for a 
Hopf bifurcation. Fdi&e concentration dependent rates we use, in a more detailed 

(2.125b) analysis, the expressions proposed by Somogyi and Stucki (1991), 

For the leak rate v,5, one may assume (2.130d) I 
which fulfill conditions (2.125), (2.126), and (2.128), and (2.129). For the acti- 

(2.126a) vation of v5 by S,, a Hill equation is used, where and n, denote the half- 
saturation constants and the Hill coefficient, respectively. 

(2.1 26b3 The steady-state solution of equation system (2.124) reads 

\as, as, as, as,/ as,' Using these equations and expressions (2.127), one derives for the determinant 

and trace of the Jacobian at the steady state 

Whereas the determinant is always positive, the trace may change its sign de- 
at any Hopf bifurcation. Using this relation and inequalities (2.125a) and (2.125b). pending on the parameter values. The boundary of the region of stability where 
it is immediately seen from Eq. (2.127a) that the trace may only become positive Hopf bifurcations occur can be calculated by putting tr = 0. Figure 2.10 shows 

- - 

regions of stable and unstable behavior within a two-dimensional section of the 
parameter space defined by variable values of v, (combined calcium input) and 

(2.129) k5 (rate constant of CICR) and fixed values of the other parameters. 
The existence of the oscillations is confirmed by numerical inte~ation of the 
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Figure 2.10 Srability diagram for the model of calcium oscillations given by the differential 
equations (2.124a) and (2.124b) and rate laws (2.130aH2.130d). Parameter values: k, = 1, k, = 2, 
k, = O.O1.KO.s = 3 . 1 . n ~  = 4. 

differential equations (2.124) by using parameter values from the region of insta- 
bility. The oscillations shown in Figures 2.1 1A and 2.1 1B correspond to low and 
high values of vo, respectively, It is seen that in both cases, the oscillations of the 
cytosolic calcium concentration have the form of repetitive spikes in accordance 
with experimental data (cf. Cuthbertson, 1989). In contrast, the oscillations of 
stored calcium have a sawtooth appearance [not shown, see Dupont and Goldbeter 
(1989)l. For high vo values, the oscillation frequency is much higher than for low 
values of this parameter. On the other hand, the amplitude of the cytosolic calcium 
oscillations is not as much affected by a change in vo as the frequency. Taking 
into account that an increase in vo may be brought about by an increase in the 
parameter p, these results may explain the experimental fact that the frequency 
of calcium oscillations increases with the concentration of IP3 and in this way by 
the extent of receptor stimulation. The IP3 concentration plays in the considered 
model the role of a parameter, which can be set to different values and thus act 
as a switch. Oscillatory behavior occurs even at constant IP3 concentration, pro- 
vided it has appropriate values. In contrast, in the above-mentioned model of 
Meyer and Shyer (1988) the IP3 concentration is a system variable. The effect of 
the parameter p on the period and the amplitude of the oscillations has been 
systematically studied by Goldbeter et al. (1990). The results support the hy- 
pothesis that the physiological effect of calcium messenger oscillations is 

time 
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Figure 2.11 Time course of the cytosolic calcium concentration. S, = Ca$ as obtained by 
numerical integration of Eqs. (2.124a). (2.124b). and (2.130aH2.130d). Parameter values: (A) k, = 
1, vo = 1.4; (B) k, = 1, vo = 3.0. The other parameter values are the same as in Figure 2.10. 
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brought about by a frequency-encoded mechanism rather than by an amplitude- 
dependent mechanism (cf. Section 2.4.6). 

The fact that the rates v, and v3 may be lumped into one quantity, vo = vl + 
v3, indicates that the effect of caZ+ efflux (v,) from the P3-sensitive store can be 
mimicked by a change of the caZ+ entry from the extracellular medium into the 
cytosol. It seems, therefore, that the assumption of two different calcium stores, 
one sensitive to IP3 and one insensitive to IP3 is not a necessary prerequisite of 
calcium oscillations. In fact, Dupont and Goldbeter (1993) have shown that cal- 
cium oscillations may also be explained on the basis of a one-pool model where 
the same caZ+ channel is assumed to be sensitive to both IP3 and caZ+ behaving 
as coagonists. 

The process of caZ+ oscillations is often accompanied by a spatial propagation 
of caZ+ waves. The velocity of the waves is of the order of 10 p d s  in oocytes 
(Jaffe, 1991) and of 30 p d s  in hepatocytes (Thomas et al., 1991). In isolated 
cardiomyocytes the velocity ranges from 30 to 125 p d s  (Engel et al., 1994). 
According to Meyer (1991) and Dupont and Goldbeter (1992), the calcium waves 
may be classified into two main types. For type 1, repetitive caZ+ spikes move 
through the cytoplasm, whereas for type 2, the calcium concentration increases 
along the entire cell before it returns to its basal level in a nearly homogeneous 
manner ("tide" waves). 

Mathematically, calcium waves may be described by adding to the differential 
equation system (2.124) a diffusion term for the concentration of cytosolic cal- 
cium. Models for the propagation of calcium waves in one or two spatial dimen- 
sions have been proposed (Meyer and Stryer, 1991; Thomas et al., 1991; Dupont 
and Goldbeter, 1992). In these models it is assumed that the caZ+ pools are 
distributed homogeneously within the cell. The influence of the geometric ar- 
rangement of discrete pools on the period and the propagation rate of calcium 
waves remains to be studied. 

2.4.5. A Simple Three-Variable Model with Only 
Monomolecular and Bimolecular Reactions 

According to Theorem 2F given in Section 2.4.2, chemical systems with two 
variable compounds cannot exhibit limit cycles if only monomolecular and bi- 
molecular reactions are involved. As a matter of fact, well-known oscillatory two- 
component systems as the Brusselator (cf. Nicolis and Prigogine, 1977) or the 
system given by Selkov (1968) [cf. Eq. (2.1 19)] involve himolecular reactions or 
contain nonlinearities higher than second order. Elementary chemical reactions 
are, in general, monomolecular or bimolecular because simultaneous collisions 
of more than two molecules are extremely improbable. Accordingly, the question 
arises of how complex a reaction system analyzed at the level of elementary 
reactions must be in order to allow limit cycle behavior. The problem of finding 
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the smallest system showing Hopf bifurcations on the basis of the mass-action 
kinetics (2.10) was addressed by Wilhelm and Heinrich (1995). 

Obviously, fbthe solution of this problem it is necessary to give a precise 
meaning to the term "smallest." The following characterization is proposed: 
(1) lowest number of variable reactants; (2) lowest number of quadratic terms in 
the differential equations; (3) minimal number of reactions, and (4) minimal num- 
ber of bimolecular reactions. These four features are listed with descending im- 
portance. 

Because it has been demonstrated that there exist three-variable mass-action 
systems showing Hopf bifurcations (Hanusse, 1973) and due to Theorem 2F, the 
smallest system must be searched for within the group of three-component sys- 
tems (cf. point 1). For n = 3 local stability analysis may be performed on the 
basis of the characteristic equation (2.103). 

A Hopf bifurcation takes place across the surface 

where ao, al and a, denote the coefficients of the characteristic polynomial. 
Under condition (2.134) the characteristic equation (2.103) has one negative 

real eigenvalue (1, < 0) and a pair of pure imaginary eigenvalues (& = iw, 
1, = -iw). 

By analyzing the stability of all three-component systems giving rise to only 
one nonlinear term in the differential equations (cf. point 2) it has been shown 
that there is exactly one system which follows from the given characterization of 
the smallest system with Hopf bifurcation (Wilhelm and Heinrich, 1995). Its 
mechanism involves five reactions with two of them being bimolecular, as is 
depicted in Figure 2.12. Because the scheme encompasses an autocatalytic step, 
it might be of importance in population kinetics also. The dynamic properties of 
this system are governed by the following differential equations: 

where P1 denotes the fixed concentration of the outer reactant Pl of the autocat- 
alytic reaction. 

The system has two steady states: 
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Figure 2.12 Scheme of a simple oscillating reaction system with three species, $, with variable 
concentrations and three external compounds, Pi. 

The coefficients of the characteristic polynomial for the first steady state read: 

This gives 

ala, - 4 = (k3 + k5)(k3 + k4 - klP,)(k4 + k5 - klPl). (2.138) 

For the second steady state, one obtains 
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a ,  = k3k5, (2.139b) 

and from that 

Using Eqs. (2.137)42.140), it follows from the Hurwitz criterion (2.105) that the 
first steady state is stable within the range 0 5 klPl < k4 and the second one 
within the range k4 < klPI < k3 + k4 + k,. Figure 2.13 shows the steady-state 
concentration Sl as a function of the parameter k,P, at fixed values of the other 
parameters. Stable and unstable steady states are characterized by solid and bro- 
ken lines, respectively. 

The system has two bifurcation points: a transcritical bifurcation at klPI = k4, 
and a Hopf bifurcation at klA = k3 + k4 + k,. 

Figures 2.14A and 2.14B show numerical solutions of the differential equation 
system in the state space for parameter values klPl from both sides of the Hopf 
bifurcation point. 

Figure 2.13 Bifurcation diagram of the steady-state concentration of S, for the system given by 
Eqs. (2.135aH2.135~). Solid and broken lines indicate stable and unstable states, respectively. 
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Figure 2.14 Numerical solutions of the differential equation system (2.135aH2.135~) in the 
state space in the neighborhood of the Hopf bifurcation point. Parameter values: (A) k,Pl = 2.9 
(stable steady state). (Figure conrinued on facing page) 

Obviously, the characterization of the "smallest system" given above is not 
the only one possible. As an alternative, one could give point 3 (i.e., minimal 
number of reactions) a higher priority than point 2 (i.e., lowest number of quad- 
ratic terns). Accordingly, other minimal chemical systems with Hopf bifurcations 
might exist. In particular, the analysis does not exclude the possibility of an os- 
cillating three-component system with two quadratic terms but less than five re- 
actions. Furthermore, it remains an open problem whether the irreversibility of 
all reactions depicted in Figure 2.12 is a crucial assumption. For example, if 
reaction 1 is considered to be reversible a second quadratic nonlinearity (a $) 
would appear in the differential equation. 

It may be interesting to compare the system given by Eqs. (2.135a&(2.135~) 
with other three-variable systems containing only one quadratic term. It has been 
demonstrated, for example, that the system 

Figure 2.14 (continued) (B) klPl = 3.1 (stable limit cycle). Other parameter values: k, = k, 
= k 4 = 5 = 1 .  

dY - = X + aY, 
dt (2.141b) 

with positive parameters a, b and c may exhibit not only limit cycles but also 
chaotic behavior (Rossler, 1979). However, Eqs. (2.141a)-(2.141~) cannot de- 
scribe a chemical system, because the trajectories are not confined to the non- 
negative orthant. This may be immediately seen from Eq. (2.141a) which predicts 
dXldt < 0 for X = 0; Y,Z > 0. Note that for the generalized mass-action kinetics 
(2.15), the trajectories always remain in the non-negative orthant. 

2.4.6. Possible Physiological Significance of Oscillations 
There is ample evidence that oscillations are a ubiquitous phenomenon in 

biological systems. Periodic changes in different biological processes are ob- 
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served in all types of organisms, from bacteria to the most complex multicellular 
organisms. The periods may range from seconds to years. Besides the glycolytic 
oscillations and calcium oscillations considered in Sections 2.4.3 and 2.4.4, these 
include oscillations in bacterial protein synthesis, periodic changes in photosyn- 
thesis, and periodicities in neural activity as well as in muscular contractions. 
Well known are the circadian and circannual rhythms in plants and the menstrual 
cycles in higher animals. For many biological processes, .the physiological role 
of oscillations is obvious. For example, in cardiac cells, biochemical oscillations 
are transformed into periodic mechanical movements, whereas in neural cells, 
oscillations are used for the transmission of information. It is generally believed 
that oscillatory behavior is of functional advantage also for other processes. First, 
oscillations may, in contrast to steady states or transient states, play a role in the 
temporal coordination of various cellular processes. In this respect, the phenom- 
enon of synchronization and related mechanisms for the entrainment of oscilla- 
tions are of major importance. Taking into account the close relationship between 
oscillation and wave phenomena, metabolic oscillators are likely to be important 
for the spatial organization of cellular processes (cf. Rapp, 1987). Furthermore, 
it has been stated that oscillatory processes may be more efficient with respect to 
energy conversion in cells (Termonia and Ross, 1981). 

It is widely accepted that the physiological effect-f oscillations is frequency 
encoded. This view is supported by the fact that for receptor-stimulated oscilla- 
tions, the frequency increases with the concentration of the agonist (see Section 
2.4.4 for the effect of the hormone concentration on the frequency of calcium 
oscillations). The problem of the parameter dependence of oscillation frequencies 
is generally addressed in Section 5.8.5 using metabolic control analysis. There it 
is shown that for the glycolytic oscillator defined by Eq. (2.119). the frequency 
of the oscillations increases proportionally with increasing input rate of glucose, 
at least for parameter values near the Hopf bifurcation. Furthermore, there is 
strong evidence that frequency-encoded signal transduction is much more stable 
against noise than amplitude-dependent mechanisms. Frequency encoding may 
be even effective if the system enter regimes of chaotic behavior where after short 
times the information encoded in amplitudes is lost. [For more detailed consid- 
erations on frequency encoding, cf. the works of Rapp et al. (1981) and Goldbeter 
and Li (1989)l. 

For many biochemical systems, the functional significance of oscillations is 
still unknown. This concerns, for example, glycolysis, despite the fact that the 
glycolytic oscillator is most successfully investigated, experimentally as well as 
theoretically. Because all cells contain this pathway and glycolysis was histori- 
cally the first way for the supply of energy in the form of ATP, one hardly believes 
that the regulatory couplings which make oscillations in this pathway possible 
are of only secondary importance. It has been argued by Selkov (1980) that, at 
an early stage of evolution, glycolysis has been responsible for oscillations on a 
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circadian time scale. The period of glycolytic oscillations, which is normally in 
the order of minutes, may be drastically increased due the "deposition effect"; 
that is, the reverwe transformation of the pool of glucose-6-phosphate and fruc- 
tose-6-phosphate into polysaccharides. Using a refined model of anaerobic me- 
tabolism, Selkov (1980) could show that incorporation of the synthesis and break- 
down of glycogen may increase the oscillation period from T = 3 min to T = 
25 h. 

However, it may well be that in many cases oscillations have no physiological 
meaning: that is, the occurrence of limit cycles is sometimes unavoidably con- 
comitant to the fact that metabolic systems are highly nonlinear processes working 
under conditions far from equilibrium. 

Generally, models of metabolic systems predict oscillations only for certain 
ranges of the parameter values and it is not always clear whether these parameter 
regions correspond to physiological states. It is also conceivable that cells need 
mechanisms to avoid oscillations in cases where they are not necessary for their 
function. One possible way is the optimization of kinetic parameters. It has been 
realized that great differences in the magnitudes of rate constants, which is a 
typical phenomenon in biochemical systems (cf. Chapter 41, often counteracts the 
generation of oscillations (cf. Savageau, 1975; Heinrich et al., 1977; Dibrov et 
al., 1982). This may be exemplified for unbranched reaction chains with feedback 
inhibition of the first reaction by the end product (cf. Scheme 6). 

Since the discovery of this type of regulation in the biosynthetic pathways of 
amino acids (Umbarger, 1956) it has been emphasized that it is optimal for ho- 
meostasis in metabolic pathways (cf. Section 5.4.3.1). However; the detailed 
mathematical analysis of such systems has shown that these systems exhibit os- 
cillatory behavior if a critical extent of inhibition is exceeded (Morales and Mc- 
Kay, 1967; Hunding, 1974; O t h e r ,  1976). Furthermore, the tendency toward 
instability grows with the increasing number of reactions. The following condition 
for the emergence of unstable states has been derived: 

where n" denotes the Hill coefficient characterizing the inhibition of the first 
reaction by the endproduct of the pathway. n stands for the number of interme- 
diates (so that the number of reactions is r = n + 1) and A is a factor depending 
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on the steady-state concentration of the end product wniegra-Gonzales and Mar- 
tinez, 1969). ngt decreases monotonically with increasing chain length. With 
A = 1, which is valid for high input rates (Hunding, 1974). one derives for the 
critical values of the inhibition constants nFt = 8 when n = 3, and nFt = 1.6 
when n = 10. From these results one could conclude that long synthetic pathways 
of amino acids with feedback inhibition would generally be in the oscillatory 
regime. However, Eq. (2.142) has been derived for a chain where all the reactions 
are described by the same kinetic constants (ki = k for i = 2, . . . , n + 1). If 
the kinetic constants ki differ from each other, more complicated conditions for 
unstable steady states and oscillations arise. For unbranched pathways with three 
intermediates, the system becomes unstable under the condition 

(Savageau, 1975). It is seen that n2' defined in Eq. (2.143) may increase drasti- 
cally as differences in the values of the rate constants increase. For example, 
kl = 1, b = 10 and k, = 100 results in n" = 122.21 (i.e., a Hill coefficient 
much higher than those observed in enzyme kinetics). 

If the rate constants do not differ very much from a common mean value (k) 
(i.e., ki = (k)  + Aki with IAkill(k) < l), one derives by a Taylor expansion of 
expression (2.143), 

where Akl + A h  + Ak3 = 0 has been taken into account. Equation (2.144) 
may be rewritten as 

where 2 = (k2) - (k)' denotes the variance of the kinetic parameters. Equations 
(2.143H2.145) substantiate the above assertion that separation of time constants 
may be instrumental to protect cells from oscillations if they are of no use for 
their functioning. 

c* 

S toichiometric Analysis 

Stoichiometry concerns the proportions of changes in the concentrations of chem- 
ically reacting species. These proportions also indicate the topological structure 
of reaction networks, because they involve information about which substances 
are linked with each other by reactions. Stoichiometry does not primarily deal 
with the velocities of changes, which is the realm of kinetics. In contrast to kinetic 
properties, which can vary in biological systems quite rapidly due to inhibition 
and activation of enzymes, the stoichiometric properties are in a sense structural 
invariants, unless evolutionary time scales are considered (Ark, 1965; Clarke, 
1988; Reder, 1988). Moreover, stoichiometric properties are often better known 
than kinetic parameters of reactions. Knowledge of the stoichiometric properties 
is a prerequisite for any simulation of biochemical reaction networks. Importantly, 
the stoichiometric properties of a model do not depend on whether the description 
is discrete, continuous, deterministic, or stochastic (cf. firdi and T6th, 1989). 

One can distinguish two different approaches to stoichiometric analysis ac- 
cording to whether or not knowledge of the atomic composition of reacting sub- 
stances is taken into account. The catalase reaction (2.2) and the hexokinase- 
phosphoglucomutase system (2.3) can be taken as examples of the two cases. 
(Although the molecular structure of glucose, ATP, and so forth is known, it is 
not essential for analyzing the kinetic properties of system (2.3)) In many in- 
stances, kinetic modeling in biochemistry does not require knowledge of the 
atomic composition of the substances involved. The system equations can be 
written down by just using information about the molecularities with which re- 
actants and products enter the reactions. 

As explained in Section 2.1, the proportions with which the substances in a 
reaction system are interconverted can be written in the form of a stoichiometry 
matrix, N. For illustration, let us consider the reaction scheme of the main pro- 
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cesses of energy metabolism in erythrocytes (glycolysis and various membrane 
transport processes) depicted in Figure 3.1. This scheme will be studied in more 
detail in Section 5.4.4.1. 

Using the numbering of reactions and substances as indicated in the legend to 
Figure 3.1, we can write the stoichiomehy matrix for the internal metabolites and 
ions as given in Table 3.1. The extemal species are here chosen to comprise all 

Figure 3.1 Glycolytic reactions and various membrane transport processes in erythrocytes. Re- 
actions: (1) hexokinase (HK). (2) phosphoglucoisomerase (PGI). (3) phosphofmctokinase (PFK), (4) 
aldolase (Ald), (5) hose-phosphate isomerase (TIM), (6) glyceraldehyde-phosphate dehydrogenase 
(GADP), (7) bisphosphoglycerate mutase (P,GM), (8) 23-bisphosphoglycerate phosphatase (P,Gase). 
(9) phosphoglycerate kinase (PGK), (10) phosphoglycerate mutase (PGAM), (1 1) enolase (Enol), 
(12) pyruvate kinase (PK), (13) lactate dehydrogenase (LDH), (14) adenylate kinase (AK), (15) ATP 
consumption by membrane phosphorylation, (16) NalK-ATPase, (17) passive transport of chloride 
ions, (18 and 19) passive transport of pyruvate and lactate, respectively, (20 and 21) passive mspor t  
of sodium and potassium, respectively. 

Metabolites and ions: (1) glucose6-phosphate (G6P). (2) fmctose6-phosphate (F6P). (3) fmc- 
tose-1.6-bisphosphate (FP3, (4) glyceraldehyde3-phosphate (GAP), (5) dihydroxyacemne phosphate 
(DHAP), (6) 1.3-bisphosphoglycerate (1,3P2G), (7) 2,3-bisphosphoglycerate (2,3PzG), (8) 3-phos- 
phoglycerate (3PG). (9) 2-phosphoglycerate (2PG). (10) phosphoenolpyruvate (PEP), (I 1) intracel- 
lular pyruvate (PyqJ, (12) intracellular lactate (Lac,), (13) AMP, (14) ADP, (15) ATP, (16 and 17) 
NAD. NADH, (18, 19, and 20) intracellular potassium mi), sodium (Nd) and chloride (Cl,). 
respectively, (21) glucose (Gluc), (22 and 23) extracellular pyruvate (Pyr,) and lactate (Lac,), re- 
spectively, (24,25, and 26) extracellular potassium &:), sodium (Nd), and chloride (C1;). respec- 
tively, (27) inorganic phosphate (Pi). Substances 21-27 are taken as extemal species. 

Table 3.1 Stoichiometric Matrix N of Glycolysis for the Internal Metabolites According 
to the Numbering of Reactions and Metabolites Given in the Legend to Figure 3.1 

1 - 1 0 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 - 1 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 1 - 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 - 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 - 1 0 0 0 0 0 0 0 0 0  
0 0 0 , 0 0 0 0 0 0 0 0 1 - 1 0 0 0 0 - 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 - 1 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0  
1 0 1 0 0 0 0 0 - 1 0 0 - 1 0 2 1 1 0 0 0 0 0  

- 1 0-1 0  0  0  0  0  1 0  0  10- 1- 1- 1 0  0  0  0  0  
0 0 0 0 0 - 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 - 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 3 0 0 0 - 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0  

substances outside the cell and glucose, because, in erythrocytes, hexokinase is 
nearly saturated with glucose. 

In case the atomic composition is relevant for the modeling study, one can use 
the atomic matrix, A. Its elements, a,, give the number of atoms of the chemical 
element k involved in one molecule of substance Si (cf. Ark, 1965; @di and Tbth, 
1989). For example, the composition of hydrogen peroxide, water and molecular 
oxygen participating in the catalase reaction (2.2), can formally be written as 

Without knowledge of thereaction mechanism, the columns of the stoichiomehy 
matrix are indeterminate to the extent of multiplication by arbitrary factors. For 
instance, we could write H202 -' H20 + $0, instead of reaction (2.2). This 
indeterminacy does not affect the stoichiometric analysis throughout this chapter. 
It does, however, matter for the kinetic equations because the stoichiometric co- 
efficients enter, as exponents, the mass-action-type rate laws (cf. Section 2.2.1). 
One should then choose such a scaling of stoichiomehic coefficients that reflects 
the number of molecules really colliding to initiate elementary reaction events. 
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From knowledge of the stoichiometric structure of a reaction system, interest- 
ing conclusions can be derived without using information about the kinetic prop- 
erties. This concerns, in particular, conservation relations and dependencies be- 
tween steady-state fluxes. 

3.1. CONSERVATION RELATIONS 

3.1.1. Linear Dependencies Between the Rows 
of the Stoichiometry Matrix 

Frequently, the concentrations of several substances involved in biochemical 
reaction systems enter so-called conservation sums, such as 

ATP + ADP + AMP = const., (3.2) 

which holds, for example, in the system depicted in Figure 3.1. (Note: Italicized 
symbols of substances indicate their concentrations). Conservation relations can 
involve coefficients other than unity. For example, the conservation of phosphate 
gives, in the same system, a relation in which ATP occurs with the coefficient 3, 
whereas ADP, 1.3P2G and 2.3P2G enter it with the coefficient 2. Negative coef- 
ficients attached to some concentrations may also occur. For example, in the 
reaction S, + S2 + S3, the conservation relation S, - S2 = const. holds. More 
complex, biochemically relevant examples are given in R. Schuster et al. (1988) 
and in Section 4.3. 

In general terms, conservation relations can be written as 

withg and T denoting a vector of constant coefficients and a conservation quantity, 
respectively. The Roman T stands for the transpose. Mathematically, conservation 
relations cause some rows of the stoichiometry matrix to be linearly dependent. 
This can be written as 

Postmultiplication of this equation by the rate vector v and integration yield Eq. 
(3.3), due to the system equation (2.7). Equation (3.3) means that a linear com- 
bination of metabolite concentrations is conserved in time. 

It may occur that there are more than one (linearly independent) vectors g that 
fulfill Eq. (3.4). It follows from linear algebra that the number of independent 
conservation vectors g is given by n - rank (N), with n denoting the number of 
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rows of the stoichiometry matrix (see Groetsch and King, 1988). Accordingly, 
the number of independent conservation quantities, Tk, equals n - rank(N). On 
simulating the dytkamic behavior of the system, one can therefore eliminate this 
number of concentration variables. If N is full rank [i.e., if rank(N) = n], the 
system has no conservation relations. 

For any given reaction system, a complete set of linearly independent vectors 
g can be manged into a matrix, G, which is called conservation matrix (cf. Park 
Jr., 1988) and fulfills the equation 

This matrix is not uniquely determined because each matrix & = PG with P 
being any nonsingular square matrix of appropriate dimension is a conservation 
matrix as well (the rows of & then are linear combinations of the rows of G). 
Accordingly, the set of all vectors g resulting from Eq. (3.4) for a given matrix 
N constitutes a .vector space of dimension n - rank(N). Independence of con- 
servation relations can be defined as linear independence of the corresponding 
vectors g. Note that the scaling indeterminacy of stoichiometric coefficients men- 
tioned above does not affect the conservation relations. 

An alternative way of representing the linear dependencies between the rows 
of the stoichiometry matrix was proposed by Reder (1988). By rearranging the 
rows of N so that the upper rank(N) rows are linearly independent, one can 
decompose N as 

where the submatrix i@ has rank (N) rows. As the rows of N' are &early depen- 
dent on the rows of N", we can write 

L is called the link matrix. Therefore, the system equations of the reaction network 
assume the form 

where the vector of concentrations is split into two vectors, S, and &,, of dimen- 
sions rank (N) and n - rank(N). The metabolites should be renumbered ac- 
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cording to the rearrangement of the rows of N. From Eq. (3.8) one derives the 
relations' 

and from that 

Sb = L'S, + const., (3.10) 

that is, the metabolite concentrations Si with i > rank(N) may be expressed as 
linear functions of the concentrations Si with i 5 rank(N). Therefore, the system 
dynamics is completely described by the upper part of Eq. (3.8) (i.e., the reduced 
system dSJdt = N%). 

As the two equations (3.5) and (3.7) express the same fact, it is quite natural 
that the matrix G can be written in terms of the matrix L. For example, we can 
choose 

G = (- L'  I ) .  (3.11) 

Together with the non-negativity condition for concentrations, 

the set of all conservation relations (3.3) for a given reaction system determines 
a region to which the concentration vector is confined. This region is a (possibly 
unbounded) convex polyhedron (cf. Rockafellar, 1970) and is called invariant 
manifold (Gavalas, 1968) or reaction simplex (Horn and Jackson, 1972). Denoting 
the difference of the concentration vectors for two different points in time, tl and 
t2, by AS, we obtain, from Eq. (3.3), 

GAS = 0. (3.13) 

This means that any vector lying in the concentration polyhedron is orthogonal 
to all conservation vectors. 

3.1.2. Non-negative Conservation Relations 

Conservation relations are frequently brought in relation to conservation of 
atoms or atom groups (Aris, 1965; Gavalas, 1968; Park, 1974; Cavallotti et al., 
1980; Hofmeyr et al., 1986; Park Jr., 1988). Consider, for example, the pyruvate 
decarboxylase reaction (EC 4.1.1.1). 
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The stoichiometrJrynatrix reads N = (- 1 - 1 1 I ) ~ .  A conservation matrix G 
can be found by consideration of the conservation conditions for the atomic spe- 
cies carbon, oxygen, and hydrogen, 

Another feasible conservation matrix is 

whose rows correspond to conservation of the CH&O group, proton, and car- 
boxyl group. There are also vectors fulfilling Eq. (3.4) which contain negative 
components [e.g., g = (1 - 1 0 o)~]. 

A necessary condition for a conservation relation to represent conservation of 
chemical units is that all coefficients be non-negative, 

Relation (3.17b) excludes the trivial case that all coefficients are zero. The case 
with only one coefficient being positive occurs if some substance does not par- 
ticipate in any reaction, so that it can be canceled from the network. Therefore, 
condition (3.17) actually implies that at least two coefficients are positive. We 
shall call vectors satisfying relations (3.4) and (3.17) non-negative conservation 
vectors [in view of condition (3.17b), a more exact term is semipositive conser- 
vation vectors (cf. Schuster and Hofer, 1991)l. 

Attention has to be paid to systems containing electrically charged molecules 
or atoms (ions). If these systems are closed, not only some atom groups but also 
electric charge is conserved. An example is provided by the superoxide dismutase 
reaction (EC 1.15.1.1) proceeding in many living cells, 

The stoichiometry matrix reads N = (- 2 - 2 1 I ) ~ .  Because n - rank(N) = 3 
and the number of atomic species is 2, one has to include the conservation of 
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electric charge to obtain a conservation matrix in which all rows are amenable to 
physico-chemical interpretation. An admissible conservation matrix is 

The elements of the third row of G represent electric charge. The corresponding 
conservation relation is not, however, non-negative. Nevertheless, one can always 
express charge conservation as a non-negative vector by considering all electrons 
involved. As to reaction (3.18), the vector relating to conservation of electrons is 
g = (17 0 18 16)~, as neutral hydrogen and oxygen atoms have one and eight 
electrons, respectively. 

There are different methods for calculating conservation matrices. One method 
is by determining a set of basic solutions to the homogeneous linear equation 

[which is equivalent to Eq. (3.4)], using the Gaussian elimination method (cf. 
Groetsch and King, 1988). The matrix G thus obtained has the form given in Eq. 
(3.1,l); that is, it contains an identity matrix as submatrix. A modified method for 
calculating G was given by Park Jr. (1988). It is based on the Gauss-Jordan 
inversion (cf. Groetsch and King, 1988). Both of these methods do not, however, 
guarantee that G be non-negative. Sauro and Fell (1991) proposed to determine 
conservation relations with only non-negative coefficients by computing the ma- 
trix L several times, with a different order of the rows of the stoichiometry matrix. 

For detecting non-negative conservation matrices in a more systematic way, 
one can use methods of convex analysis. In that mathematical theory, it is shown 
that the solution sets to linear homogeneous equation systems subject to linear 
homogeneous inequality constraints, such as Eq. (3.4) and inequality (3.17), are 
unbounded pointed convexpolyhedral cones (Rockafellar, 1970). Convex analysis 
further says that such cones can be represented as non-negative linear combination 
of generating vectors, which are unique up to scalar multiples; that is, the cone, 
K, representing all non-negative conservation relations for a given reaction system 
can be written as 

where ek are the generating vectors and p is their number. By definition, a gen- 
erating vector of a cone is a vector that belongs to this cone and cannot be 
represented as convex linear combination of two different vectors belonging to 

this cone as well. Figure 3.2 shows a schematic representation of a polyhedral 
cone. It can be seen that the generating vectors are located on the edges of the 
cone. Their numbea,qay be greater than the dimension of the cone. This dimen- 
sion, in tum, is less than, or equal to, n - rank ( N ) .  

The conservation relations corresponding to the generating vectors are to be 
called extreme non-negative conservation relations. In the following, we shall 
impose the additional condition that for each generating vector, the only common 
divisor of its components be unity, which can easily be fulfilled by appropriate 
reduction (resealing). The vectors thus obtained shall be called reduced generating 
vectors. 

A complete set of generating vectors can be found by an algorithm developed 
in convex analysis (NoiiEka et al., 1974). A variant of this algorithm specified so 
as to be applicable to the problem dealt with in this section was given in S. 
Schuster and Hofer (1991). In this method, a sequence of matrices is consecutively 
computed, starting from the stoichiometry matrix augmented with the n X n 
identity matrix. Such sequences of matrices are usually called tableaux. For il- 
lustration, consider reaction (2.2). The stoichiometry matrix reads N = 
(- 2 2 I ) ~ .  The initial tableau reads 

One now calculates a new tableau, T('), by constructing all possible non-negative 
linear combinations of pairs of rows of T@) so that the elements of the first column 

Figure 3.2 Convex polyhedral cone, X spanned by four generating vectors, e,  toe,. 
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become zeros. To this end, in Eq. (3.22), we sum up the first and second rows, 
and the first row with the double of the third row, 

Non-negative combination of the second and third rows does not lead to a zero. 
Therefore, T(') has here less rows than T(O). As this special system has only one 
reaction, T(') is the final tableau. The right-hand submatrix contains the generating 
vectors el = (1 1 o ) ~  and e2 = (1 0 2)T. Owing to Eq. (3.3) and relation (3.21), 
this means that every non-negative conservation relation of the catalase reaction 
can be written as 

q,(H,O, + H20)  + q2(H20, + 20,)  = const., q , ,  q,  2 0. ( 3 . B )  

A graphical representation of the corresponding cone is given in Figure 3.3. The 
vectors (1 1 o ) ~  and (1 0 2)T span a two-dimensional cone. In the state space, any 
concentration vector lies in a manifold given by the intersection of the conser- 
vation relations H202 + H20 = Tl and H202 + 2 0 2  = T,. The concentration 
polyhedron is therefore a straight line. Its direction is given by the fact that it is 
orthogonal to the cone X [cf. Eq. (3.13)]. Its location depends on the values of 
the conservation quantities Tl and T,. 

For systems with several reactions, further tableaux are successively calculated 
in the algorithm, so that not only the first column of N but also the others become 
null vectors. For constructing TO'+') from TO, one first determines, for each row 
of TO, a set Z(i) which contains the column indices, h, of all the elements @ of 
the right-hand side part of TO that are zero; that is, 

I(i) = (hl h > r, t# = 0). (3.25) 

Thereafter, one calculates the vectors 

where t,O) and t p  are the ith and kth rows of fl', respectively. Vectors 6 have to 
be computed, by Eq. (3.26), for all pairs of indices i and k that fulfill the conditions 
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figure 3.3 Cone. K, of conservation vectors for the catalase reaction. el = (1 1 0)' and e, = 
(1 0 2)T are the generating vectors of cone x. 

and 

for all row indices, 1, of TO with 1 # i,k. The tableau T V f  ') is constructed by 
using, as rows, all the vectors 6 calculated by Eq. (3.26) as well as all rows of 
TG' with t t ]+ ,  = 0 .  Note that the number of tableau rows may change in this 
procedure. The row vectors of the right-hand submatrix of the final tableau, T('), 
which originate from the identity matrix in T('), are the generating vectors of 
cone X. 

We now illustrate the algorithm by a more complex stoichiometry matrix, 
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which corresponds to a model of part of erythrocyte metabolism studied by 
Schauer and Heinrich (1983). After the second iteration, we obtain the tableau 

In the third column, condition (3.27) is fulfilled for the index pairs (1,3), (1,4), 
(3.5) and (4,5). Rows 1 and 4 must not, however, be combined, because I(1) = 
(6,7,9), I(2) = {5,7,9), and I(4) = {4,5,8,9), so that the intersection of the index 
sets indicating the location of zeros in the first and fourth rows is a subset of the 
index set, I(2), for the second row. The final tableau reads 

If we had combined the first and fourth rows of T"', we would have obtained the 
row (2 2 1 1 2 O), which is no extreme vector because it is the sum of e ,  and e,. 

For closed reaction systems, one can always find n - rank(N) linearly inde- 
pendent non-negative conservation relations, so that the cone X has dimension n 
- rank(N). The proof of this statement starts from the fact that these systems 
fulfill mass conservation, that is, 

with the pi denoting the molar masses of the substances Si. Equation (3.32) is a 
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special case of the conservation relations (3.3). Any conservation relation with 
some coefficients being negative can be replaced by the sum of this relation and 
relation (3.32) w i M e  latter multiplied by a sufficiently large positive number. 
This linear combination yields, due to pi > 0 for any i, a non-negative conser- 
vation relation. 

Open reaction systems may have less than n - rank(N) independent non- 
negative conservation relations, as exemplified by the system 

for which we have SI - S2 = const., but no non-negative conservation relation. 

3.1.3. Conserved Moieties 
Chemical entities (atoms, ions, assemblies of atoms or ions) participating in a 

reaction system without loss of integrity and always remaining in the system (even 
if it is an open one) are called conserved moieties. Because any part of a conserved 
entity is also conserved, it is often of interest to find maximal conserved moieties 
(i.e., the largest molecular assemblies that are conserved in a given reaction 
system). 

The moiety structure of closed reaction systems can be obtained by factorizing 
the atomic matrix (Park Jr., 1986). In many situations, however, this matrix is not 
available. For example, in the association reaction of the a and py subunits of the 
G-protein (cf. Alberts et al., 1983), and in numerous other reactions involving 
macromolecules, the atomic composition and structure of some or all participating 
species are unknown. On the other hand, this information is unnecessary for 
detecting how many units of how many different moieties enter the particular 
reacting substances. For instance, to derive the Michaelis-Menten .equation for 
enzyme kinetics, the atomic structure of the enzyme need not be known and, 
moreover, often is not known. Nevertheless, one employs a conservation relation 
stating that the sum of free enzyme and enzyme-substrate complexes is constant. 

In the present section, we deal with the situation that a stoichiometry matrix 
is given at the outset and information about the conserved-moiety structure is 
sought. We first formalize the concept of conserved moiety from a purely stoi- 
chiometric viewpoint, generalizing the analysis of Park Jr. (1986). We regard 
conserved moieties as some physicochemical entities unspecified in their concrete 
structure. The constitution of a reaction system by these entities can be written 
in terms of vectors, z, whose elements, z ,  indicate how many units of a moiety 
are contained in one molecule of the reacting species Si. Obviously, every vector 
z is a special conservation vector, g, which fulfills Eq. (3.4). 

For a given reaction system, a vector z with n components is called elementary 
conserved-moiety vector if, and only if, it has the following four properties: 
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(PI) Conservation property: 

zw = oT 

(P2) Integer-element property: 

zi are integers for all i 

(P3) Non-negativity: 

zi 2 0 for any i ,  z Z 0 (3.36) 

(P4) Nondecomposability (maximal size of moiety): For any couple of vectors Z' and 
z'' fulfilling conditions (Pl)-(P3), z is no linear combiiation of these vectors 
with integer coefficients greater than, or equal to, 1: 

z # q'z' + q"f,  q', q" 2 1, integer. (3.37) 

To explain the meaning of condition (P4), we have to consider two cases according 
to whether or not Z' and z" are identical. If condition (P4) were not fulfilled in 
the former case, q' + q" entities of some moiety could be combined into one 
moiety, which would then be larger than the one corresponding to z. In the catalase 
reaction given in Eq. (2.2), z = (2 2 O)= would correspond to hydrogen atoms. 
This vector can, however, be written as two times the vector z' = z" = (1 1 o ) ~ ,  
which corresponds to the larger H2 moiety. 

Now consider the case that z' and z" are different. Consider, for example, the 
pyruvate decarboxylase reaction given in Eq. (3.14). The second row, (3 0 1 2), 
of the matrix G indicated in Eq. (3.15) corresponds to the conservation of oxygen 
atoms. It satisfies conditions (Pl)-(P3), but not condition (P4), because it can be 
decomposed as (1 0 1 0) + 2(1 0 0 1). These two row vectors, which are involved 
in the matrix G given in Eq. (3.16), correspond to the oxygen in the keto group 
and the O2 in the carboxyl group. They can be combined with other moieties 
represented by the same vectors, so that larger moieties obtain (the CH3C0 and 
carboxyl groups, respectively). A more detailed discussion of the four properties 
(P1)-(P4) can be found in the work of S. Schuster and Hilgetag (1995). 

As the example of the pyruvate decarboxylase reaction shows, two moieties 
having the same conserved-moiety vector (e.g., O2 and C) can be combined into 
one moiety, because they are "inherited" together in the reactions. Such combi- 
nation might be questionable when the two moieties are located at different sites 
in the molecule. However, we wish to consider conservation in terms of the em- 
pirical formula (i.e., with no reference to structure). Therefore, there should be 
no two vectors z that are identical. Accordingly, we define a matrix Z with n 
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columns to be a conserved-moiety matrix if, and only if, it contains, as rows, all 
transposed vectors fulfilling properties (P1)-(P4) and has the property 

(P5) ~issimil&: All row vectors of Z are different, 

zi # zk for all i and k. (3.38) 

The following example shows that the present analysis also applies to open 
systems: 

Gluc + ATP + G6P + ADP, 

G6P + F6P, 

PEP + ADP + Pyr + ATP, 

where an experimental setup is considered which guarantees that the concentra- 
tions of glucose (Gluc), fructose-6-phosphate (F6P), phosphoenolpyruvate (PEP), 
and pyruvate (J?yr) are fixed, so that these substances are external. The (here 
unique) moiety matrix contains only one row, (1 0 1) with the ones corresponding 
to ATP and ADP and the zero to glucose-6-phosphate (G6P). This row actually 
reflects conservation of the adenosine group contained in ATP and ADP. The 
example shows that open systems may involve substances, here G6P, which do 
not contain any conserved moiety, in contrast to closed systems. Note that many 
open systems, such as the unbranched reaction chains studied in Section 5.4.3.1, 
do not involve any conserved moiety at all. 

It is worth noting that in certain reaction systems, the number of chemical 
elements is smaller than the number of independent conservation relations, n - 
rank(N), as the following example representing the hydrodealkylation of toluene 
yielding benzene and methane demonstrates (Bjombom, 1977; Cavallotti et al., 
1980), 

This system involves only two atomic species, but n - rank(N) = 3. The system 
has in fact three maximal conserved moieties, notably the phenyl group, the 
methyl group, and the hydrogen atoms initially contained in the H2 molecule. 

Interestingly, even the number of conserved moieties may be less than n - 
rank(N), both in open and in closed reaction systems. Among other examples, 
Alberty (1994) analyzed the ATP citrate @m-S)-lyase reaction (EC 4.1.3.8), 

ATP + citrate + CoA + ADP + Pi + acetyl - CoA + oxaloacetate. (3.41) 

This system has six linearly independent conservation relations. On the other 
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hand, it involves only five maximal conserved moieties, namely the ADP, P,, CoA, 
acetyl, and oxaloacetate groups. This discrepancy is due to the fact that for the 
given set of conserved moieties, not all of the possible reactions are realized. A 
second reaction among the given compounds might be, for example, 

ATP'ADP + Pi, (3.42) 

which is an example of a slippage reaction [for the notion of enzyme slip, cf. 
Pietrobon and Caplan (1985)l. If this reaction is included into the system (3.41), 
the system has only five linearly independent conservation relations, which we 
can choose so as to correspond to maximal conserved moieties. 

The above reasoning on the number of conserved moieties becomes clearer by 
an alternative approach, in which the possible reactions among a given set of 
compounds are to be identified. From the set of substances, the conserved-moiety 
matrix Z can be derived. Now we are looking for a stoichiometry matrix N that 
fulfills the conservation equation ZN = 0. We can conclude that N can have at 
most n - rank(Z) linearly independent columns. As for example (3.41), n - 
rank(Z) equals 2. Therefore, two independent reactions can proceed with the set 
of substances given above (ATP, citrate, etc.); for example, reactions (3.41) and 
(3.42). 

For many chemically admissible reactions between macromolecules andlor 
metabolites, no enzyme is present to catalyze them, so they do not proceed in 
living cells at a measurable rate. Therefore, systems in which not all of the ad- 
missible reactions take place [incomplete systems in the terminology of grdi and 
T6th (1989)l and, hence, additional conservation relations occur, are of special 
importance in biochemistry. 

It can easily be seen that for any reaction system, all reduced generating vectors 
of cone X fulfill conditions (P1)-0'4) and are, hence, elementary conserved- 
moiety vectors. For example, computation of the generating vectors for the py- 
ruvate decarboxylase reaction (3.14) by the algorithm outlined in Section 3.1.2 
yields the three rows of the matrix G given in Eq. (3.16) and, in addition, e4 = 
(0 1 0 I ) ~ ,  all of them fulfilling conditions (Plt(P4). The latter vector does not, 
however, correspond to a conserved chemical unit, whereas the three former vec- 
tors do. 

Conversely, there are systems containing maximal conserved moieties that do 
not directly correspond to generating vectors of cone X. For the example of the 
superoxide dismutase reaction (3.18), the generating vectors are (1 0 2 O)T, 
(1 0 0 2)=, (0 1 2 o ) ~ ,  and (0 1 0 2)T. The first and third of them correspond to the 
extra electron initially belonging to the superoxide radical and to the proton, 
respectively, whereas the second and fourth of them have no immediate physical 
meaning. The system has, in addition, a third maximal conserved moiety, namely 
the 0, moiety, which corresponds to the vector (1 0 1 This vector also satisfies 

conditions (Plt(P4) although it is not a generating vector. It can be calculated 
by taking half of the sum of the first and second generating vectors given above. 
In contrast, for m h y  other systems, such as reaction (3.14), no conserved-moiety 
vectors besides those given by the reduced generating vectors of cone X exist. 

Recently, an algorithm for computing the complete conserved-moiety matrix 
based on knowledge of the stoichiometry matrix has been proposed and imple- 
mented as a Turbo-Pascal program for the PC (S. Schuster and Hilgetag, 1995). 
It is based on the algorithm for determining the extreme vectors to cone X. To 
find possible additional conserved-moiety vectors, additional tableaux are calcu- 
lated by linearly combining pairs of extreme vectors and testing whether the 
combined vectors can be divided by integers greater than 1 to give additional 
moiety vectors, which, upon calculation of the next tableau, are tried to combine 
to give still further moiety vectors. 

As there may be more elementary conserved-moiety vectors than conserved 
chemical units really occurring, matrix Z contains all vectors that represent max- 
imal conserved moieties and possibly, in addition, other vectors satisfying con- 
ditions (P1)-(P5). This is in line with results of Park Jr. (1988) saying that there 
may exist more than one moiety structure that conforms with a particular outward 
stoichiometry. This situation is somehow similar to the multiple solutions of poly- 
nomial equations, where usually only some of them are physically meaningful. 
The four properties (PlHP4) are well suited for distinguishing, for any given 
stoichiometry matrix, between those conservation relations that can, in principle, 
correspond to maximal conserved moieties and those that cannot. 

3.2. ADMISSIBLE STEADY-STATE VECTORS 
AND THE NULL-SPACE 

3.2.1. Linear Dependencies Between the Columns 
of the Stoichiometry Matrix 

As stated in Section 2.3, analysis of stationary states playa an outstanding role 
in biological modeling. For metabolic systems, the central equation to describe 
steady states is Eq. (2.9). For fixed values of the pararneters,~~, this is an equation 
in the unknowns Si. In addition, Eq. (2.9) can also be regarded as an equation in 
the unknowns vj, which is of importance when the parameters are incompletely 
known or when the assumption that they are constant is no longer fulfilled [e.g., 
in the case of activation or inhibition of enzymes or for processes on evolutionary 
time scales (see Chapter 6)]. For all admissible parameter values, the reaction 
rates obey the equation 
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This can now be regarded as an equation system restricting the admissible values 
of vi. It is particularly easy to analyze because of its linearity. 

Nontrivial solutions of Eq. (3.43) for the vector v only exist if there are linear 
dependencies between the columns of N, that is, if the rank of N is smaller than 
the number of reactions, r. These dependencies can be expressed by a matrix, K, 

The r - rankm) columns, ki, of K are particular, linearly independent solutions 
of Eq. (3.43). They span the null-space (also called kernel) of matrix N (cf. 
Groetsch and King, 1988), that is, the subspace of all vectors satisfying Eq. (3.43) 
within the space of reaction rates. These are the steady-state flux vectors mathe- 
matically compatible with the stoichiometric structure of the system. Accordingly, 
any steady-state flux vector, J, can be written as a linear combination of the 
vectors ki, 

where the sum runs from 1 to r - rank(N). 
The null-space matrix K is not uniquely determined. It can be postmultiplied 

by a nonsingular matrix, Q, of dimension [r - rank(N)] X [r - rank(N)] to 
give another admissible null-space matrix, R, 

K = KQ. (3.46) 

This follows immediately from Eq. (3.44). 
In many applications, for example, in metabolic control analysis (cf. Section 

5.3). one is interested in finding an appropriate, preferably simple representation 
of the null-space matrix. Of special interest is the representation containing an 
identity matrix 

because it contains a large number of zeros. K' has dimension rank(N) X [r - 
rank(N)]. This representation may be obtained by the Gaussian elimination 
method. 

3.2.2. Block-Diagonalization of the Null-Space Matrix 
As stated above, the choice of the null-space matrix is not unique. In several 

instances, it is useful to seek a representation of K that has a block-diagonal 
structure, 
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where p denotes the maximum number of diagonal blocks in K for the reaction 
system under consideration. If p equals unity, K is not block-diagonalizable. If 
the stoichiometry matrix contains columns that are linearly independent of all 
other columns of N, whereas these other columns are linearly dependent on each 
other, the corresponding components in the columns of any K determined by Eq. 
(3.44) are zero. These null rows (if any) have been transferred to the bottom of 
K in Eq. (3.48). The steady-state flux through the reactions corresponding to such 
null rows is always zero, because of Eq. (3.45) (cf. Section 3.3.1). 

The blocks of K correspond to subsystems of the reaction network, the fluxes 
of which are completely independent; that is, the fluxes within one subsystem can 
be changed by appropriate parameter changes without alteration of the fluxes in 
other subsystems. 

Consider, for example, the reaction system shown in Figure 3.4, which includes 
the main reactions of glycolysis (with some of them lumped) and some adjacent 
reactions occurring, for example, in liver cells. ATP and ADP are here to be 

GlP 
ADP 

Figure 3.4 Scheme of the main reactions of glycolysis and some adjacent reactions. Reactions 
1, 4, 5, and 8 are also involved in the scheme depicted in Figure 3.1 (with a different numbering). 
Numbers 6 and 7 stand for lumped reactions. Additional reactions: 2) 6-phosphofiucto-2-kinme (EC 
2.7.1.105); 3) fructose-2,6-bisphosphatase (EC 3.1.3.46); 9) phosphoglucomutase (EC 5.4.2.2). GlP, 
glucose-1-phosphate; FZ,6P2, fructose-2.6-hisphosphate; TP, pool of hose phosphates. 
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considered to be external metabolites with fixed concentrations. For this example, 
matrix K can be chosen to be 

K= 

Because the two bottom rows are null vectors, reactions 8 and 9 catalyzed by 
adenylate kinase and phosphoglucomutase, respectively, subsist in equilibrium 
whenever the system is at steady state. The remaining submatrix consists of three 
diagonal blocks. They correspond to the ATPase reaction, the F2,6P2 cycle, and 
the main glycolytic pathway. The fluxes in any one of these subsystems are in- 
dependent of the fluxes in the other subsystems, provided that ATP and ADP are 
considered as external metabolites. Note that the adenylate kinase reaction has 
zero net flux even if ATP and ADP were treated as internal. 

The representation of K as given by Eq. (3.48) is of importance for detecting 
strictly detailed balanced subsystems; that is, subsystems composed of reactions 
the fluxes of which are always zero when the whole system is at steady state (see 
Section 3.3.2). The representation of K in block-diagonal form is also of impor- 
tance for metabolic control analysis (see Sections 5.1 1 and 5.13). 

For computation of the block-diagonal form of the null-space matrix by com- 
puter, it is of importance that the representation of matrix K as given by Eq. (3.48) 
obtains, by rearranging rows and columns, from the form given by Eq. (3.47). 
The proof to this assertion and a source code of a program performing this com- 
putation were given by S. Schuster and R. Schuster (1991). 

3.2.3. Non-negative Flux Vectors 
In many situations, all the reaction rates are known to have fixed signs. Without 

loss of generality, we can, in this case, prescribe the orientation of reactions so 
that their fluxes are non-negative, 

This constraint is of importance in particular when the reaction rates are defined 
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as opposite unidirectional rates rather than as net rates (Clarke, 1981, 1988; Fell 
and Small, 1986; Brdi and T6th, 1989). For example, in the description of the 
dynamics of radihtive tracers or nuclear magnetic resonance (NMR) labels, the 
forward and backward reaction rates enter the equations separately (Holzhiitter, 
1985; R. Schuster et al., 1992). Furthermore, in many biochemical models, even 
the net rates of some reactions are practically restricted to be non-negative, notably 
when they are quasi-irreversible, that is, when the forward reaction is much faster 
than the backward reaction (Heinrich et al., 1977; Leiser and Blum, 1987; Joshi 
and Palsson, 1989a) or when this is implied by the biological function of the 
pathway (e.g., ATP production by glycolysis). 

On calculating the null-space matrix K by standard methods of linear algebra 
[e.g., according to formula (3.47)], it may occur that some of its elements are 
negative although the corresponding fluxes should be non-negative for some of 
the reasons mentioned above. It is therefore of interest to find a non-negative 
representation of K. 

Equation (3.43) gives, upon transposition, vTNT = OT. Clearly, this equation 
together with the inequality system (3.50) is isomorphic to the equationlinequality 
system (3.4) and (3.17a) after replacing N by its transpose. Therefore, its solution 
set for v can be found by the algorithm given in Section 3.1.2. As in the case of 
the cone Xgiven in Eq. (3.21), we can write the cone of al l  non-negative steady- 
state fluxes, I, as non-negative linear combination of generating vectors, 

The cone I is the intersection of the null-space of N and the non-negative 
orthant. It can therefore have any dimension from zero to r - rank (N). As in 
the case of the cone X, the number of generating vectors of I may be greater 
than the dimension of the cone (see Fig. 3.2). 

If, in addition to the non-negativity condition (3.50), the constraint that some 
rates have fixed values is imposed, the admissible region for all fluxes is a convex 
polyhedron. This more general situation is treated in R. Schuster and S. Schuster 
(1993). Another generalization is by restricting the signs of only some of the 
rates, whereas the others are allowed to have any sign. This situation will be dealt 
with in the following section. 

3.2.4. Elementary Flux Modes 
Some reactions may proceed in either direction under physiological conditions, 

such as the reactions shared by glycolysis and gluconeogenesis and the reversible 
reactions of the pentose phosphate pathway. In the case that some reactions are 
reversible and some are irreversible, we decompose the flux vector into the sub- 
vectors vh and vreV. The irreversibility constraint can be written as 
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Now, the situation may occur that depending on the kinetic parameters and the 
concentrations of external metabolites, vTeV as well as its opposite - vmV are re- 
alizable. Accordingly, two classes of generating vectors are, in general, needed 
to span the cone (which is now to be denoted by C), basis vectors, 6,  which have 
the property that their opposites, - 6 ,  are also situated in the cone, and funda- 
mental vectors, f, which do not have this property (see Rockafellar, 1970; NoZiEka 
et al., 1974). We then have 

Consider, for example, the branched reaction system shown in Scheme 7 and 
assume here that reaction 1 is irreversible in the direction from PI to S,, whereas 
reactions 2 and 3 can proceed in any direction. 

The cone of admissible steady-state fluxes for this system is a half-plane, which 
is shown in Figure 3.5. This cone has the basis vector (0 - 1 I ) ~ .  Note that mul- 
tiplication of this vector by any real number gives another admissible basis vector 
[e.g., (0 1 - As soon as the cones defined by Eq. (3.53) contain basis vectors, 
they are not pointed. For nonpointed cones, some of the fundamental vectors lie 
in their interior, so that the favorable uniqueness property characteristic for 
pointed cones as defined by Eq. (3.51) is lost. The set of basis vectors is not, in 
general, unique either, because any linear combination of these may also serve as 
a basis. For the system in Scheme 7, any one vector situated within the half-plane 
C could serve as a fundamental vector, for example, the vectors fl = (1 1 o ) ~  or 
.f, = (1 0 l)T shown in Figure 3.5. The two mentioned vectors correspond to the - - 
situations that the entire flux goes from P1 to P, or from P1 to P,, respectively. 
Another possible choice would be to select the vector& = (2 1 I ) ~ ,  which is the 
sum off, and f, and is orthogonal to 6,. It corresponds to a situation where the 
flux coming from PI is equally distributed between branches 2 and 3. 

Owing to the nonuniqueness of fundamental and basis vectors, it is of interest 
to find those vectors that can be interpreted in biochemical terms. Guided by the 
principle of Ockham's razor, one may seek the simplest biochemically meaningful 
flux vectors possible. They should be chosen so that all other admissible flux 
patterns are superpositions of these elementary modes. 

Admissible Steady-State Vectors and the Null-Space 

Figure 3.5 Cone C of admissible steady-state fluxes for the system in Scheme 7 with reactions 
2 and 3 being reversible and reaction 1 being irreversible. Cis here a half-plane. b, = (0 - 1 1)'. a 
basis vector;fi = (1 1 o ) ~  andf2 = (1 0 I IT, the fundamental vectors representing elementary modes. 

f3 = (2 1 1)' is the sum off, and f,. 

Leiser and Blum (1987) proposed to identify cyclic and noncyclicfundamental 
modes of systems containing substrate cycles, by invoking that any steady-state 
flux pattern could be decomposed as a linear superposition of these modes and 
that these modes are all thermodynamically realizable, that is, that they comply 
with possibly imposed sign constraints for fluxes [relation (3.52)]. Fell (1990, 
1993) proposed to define fundamental modes as the simplest relevant ways of 
connecting the inputs to the outputs of the system and to represent them-by a 
proper choice of basis vectors of the null-space. He observed that this method 
meets with the difficulties that irreversibility constraints may be violated and that 
there may be a greater number of fundamental modes than basis vectors of the 
null-space. Some authors (Seressiotis and Bailey, 1988; Mavrovouniotis et al., 
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1990; Mavrovouniotis, 1992) developed methods for constructing, by computer, 
simple metabolic routes leading from a given substrate to a given product. 

In what follows, we treat the problem of finding simple flux modes by using 
the theory of convex cones as outlined above. This leads to the concept of ele- 
mentary modes. To illustrate this concept we again consider the branched system 
shown in Scheme 7 with reaction 1 being irreversible. The simplest flux patterns 
possible in steady state and qualitatively different from each other can be repre- 
sented by the vectors 

Although v, and v4 belong to the same basis vector, we take them separately 
because opposite fluxes correspond to different biological functions. For example, 
the two directions of operation of the H+-ATF'ase are related to ATF' production 
and proton transport. On the other hand, flux vectors differing by a positive factor 
are considered to belong to the same flux mode. 

We now formalize the above reasoning by the following definitions. 

1. Ajlwr mode, M,  is defined as the set 

M = ( v E  R ' l v  = I v * ,  1 > 0). (3.55) 

where v* is an r-dimensional vector (unequal to the null vector) fulfilling the 
following two conditions: 

(Cl) Steady-state condition. v* satisfies Eq. (3.43). 
(C2) Sign restriction. If the system involves irreversible reactions, then the cor- 

responding subvector, v*, of v* fulfills inequality (3.52). 
According to this definition, a flux mode is sufficiently characterized by one 

representative of M. 
2. A flux mode M with a representative v* is called an elementaryflux mode if, and 

only if, v* fulfills the condition: 

(C3) Simplicity (nondecomposability). For any couple of vectors v' and v" (un- 
equal to the null vector) with the following properties: 
(i) v' and v" obey restrictions (C1) and (C2). 
(ii) both v' and v" contain zero elements wherever v* does so, and they 

include at least one additional zero component each, 
v* is not a non-negative linear combination of v' and v", 
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CondIkn (C3, ii) is a formalization of the concept of genetic independence 
introduced by Seressiotis and Bailey (1988). This condition says that a decompo- 
sition into two other modes should not involve additional enzymes. 

3. A flux mode M is called a reversiblejlwr mode if, and only if, M' = { - vl v E 
M) is a flux mode as well. Otherwise, M is called an irreversibleflux mode. The 
same distinction can then be made for elementary flux modes. 

For the example depicted in Scheme 7 with reaction 1 being irreversible, the 
elementary modes represented by the flux vectors given in Eqs. (3.54a) and 
(3.54b) are irreversible elementary modes, whereas the vectors given in Eqs. 
(3.54c), and (3.54d) represent reversible elementary modes. 

The reaction system shown in Figure 3.6 containing a cycle of irreversible 
reactions, can serve for illustration of the concept of elementary modes. This 
scheme was also studied by Leiser and Blum (1987). 

It can easily be seen that the following seven flux vectors represent elementary 
flux modes: , 
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They are represented in Figure 3.7. Four modes involve three reactions and three 
modes comprise four reactions. The mode given in Eq. (3.578) represents a cycle. 
For thermodynamic reasons (cf. Section 3.3), a nonzero cyclic flux is only pos- 
sible if external metabolites participate in the reactions in the cycle. In fact, in 
the pyruvate/oxaloacetate/phosphoenolpyruvate cycle, ATP is hydrolyzed to ADP 
(not shown in Fig. 3.6). 

To illustrate the decomposability condition (C3), consider the flux vector v = 
(0 1 - 1 2 1 2)T, which fulfills the steady-state condition. It is the sum of v, and 
v7 given in Eqs. (3.57d) and (3.57g), both of which have more zeros than v and 
do not involve additional reactions. v is therefore not an elementary mode in the 
sense of definition 2. 

When all reactions are irreversible, all elementary modes correspond to gen- 
erating vectors of the flux cone I determined by Eq. (3.51) and vice versa. This 
can be rationalized by the reasoning that all generating vectors satisfy, by defi- 
nition, conditions (Cl) to (C3). 

It is worth noting that there are systems that have irreversible elementary modes 
only, although some reactions of the system are reversible. For the system in 
Scheme 7 with only one reaction treated reversible, no reversible elementary mode 
occurs. 

An algorithm for detecting the elementary modes for systems of any com- 
plexity was given by S. Schuster and Hilgetag (1994). This algorithm starts from 
a tableau containing the transposed stoichiometry matrix and the identity matrix, 

where the decomposition of N into N, and Nh is done according to the decom- 
position of v into teV and vm. At the beginning, the hypothetical situation is 
considered that all metabolites are external. In this case, every reaction represents 
an elementary mode on its own. This is reflected by the submatrices (I 0) (re- 
versible modes) and (0 I) (irreversible modes) in the initial tableau, T'O). In each 
step of the algorithm, preliminary elementary modes have to be linearly combined 
to give new preliminary elementary modes in the next tableau. The coefficients 
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Figure 3.7 Elementary modes of the reaction system dep~cted in Rgure 3.6. The thick arrows 
indicate the reactions involved in the elementary modes v, given in Eqs. (3.57a)-(3.57g). 

of these combinations are chosen so that the columns of the transposed stoichi- 
ometry matrix are consecutively transformed into null columns. The final tableau, 
T"), contains a submatrix (the columns on the right-hand side) whose rows rep- 
resent the elementary modes. Finally, one has to take into account that for all 
reversible elementary modes which are obtained by the algorithm, its negative is 
such a mode also. A similar algorithm was given by Mavrovouniotis (1992). It 
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does not, however, immediately yield all elementary modes, but only the set of 
all routes leading from a specified substrate to a specified metabolic product. 

The number of elementary modes may be an important index characterizing 
biochemical systems. It indicates the richness of the system considered, by show- 
ing the variety of its physically realizable functions. Which of these functions are 
operative or in what proportions they operate simultaneously is determined by 
the extent of inhibition and activation of enzymes (i.e., by the actual values of 
kinetic parameters). 

The present analysis serves to detect essential structural features of any given 
biochemical network not just by inspecting the reaction scheme but by algebrai- 
cally analyzing the stoichiometry matrix. This method widens the approach of 
calculating null-space vectors to that matrix. 

Although there are many biochemical reactions that can proceed in both di- 
rections, it seems that in living cells, reversible flux modes rarely occur. Never- 
theless, many biochemical transformations can proceed in opposite direction, but 
not on exactly the inverse routes. Atkinson (1986) stressed that metabolism is 
organized so that nearly every pathway is paired with an oppositely directed 
conversion that involves different reactions and a different overall stoichiometry, 
especially with regard to the coupling agents, ATPJADP and NAD/NADH. An 
example is provided by glycolysis and gluconeogenesis, which use phosphofruc- 
tokinase and fructose-1,6-bisphosphatase, respectively. It seems that, in biochem- 
ical systems, irreversible reactions are located in sufficient number and at appro- 
priate positions to exclude the occurrence of reversible flux modes. 

3.3. THERMODYNAMIC ASPECTS 

3.3.1. A Generalized Wegscheider Condition 
Although biochemical reaction networks are usually open with respect to flow 

of energy and matter, it is useful to study properties of closed systems, as a limit 
situation. For example, subsystems of open networks can be approximately con- 
sidered as closed in a fast time scale if they are fast compared to the other sub- 
systems (cf. Chapter 4). As closed reaction systems have no inputs and outputs, 
the only steady state possible is the thermodynamic equilibrium state. Moreover, 
certain subnetworks of open systems may subsist in thermodynamic equilibrium 
irrespective of the separation of time scales, such as the phosphoglucomutase 
reaction in Fig. 3.4. 

A network of biochemical reactions is called detailed balanced if in every 
steady state all net reaction rates are zero (cf. Horn and Jackson, 1972). Closed 
reaction systems are always detailed balanced owing to the principle of micro- 
reversibility (Lewis, 1925, cf. Wei, 1962), that is, in each steady state, 

v(S,p) = 0. (3.59) 
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For the special situation of cycles of monomolecular reactions, Wegscheider 
(1902) showed th?t detailed balance implies that the product of equilibrium con- 
stants around any'&cle must be equal to unity (cf. also Hearon, 1953), 

Consider, for example, the cyclic reaction system shown in Scheme 8. When this 
system does not involve any external metabolites, it is closed and, hence, detailed 
balanced. For this system, Wegscheider's condition can be written as q,q,q, = 1. 

Scheme 8 

Using the thermodynamic definition of the equilibrium constant in terms of 
the change in standard Gibbs free energy, 

qj = exp -- ( :?)I 

Wegscheider's condition (3.60) can be derived from the fact that the change in 
free energy that accompanies the turnover of a complete cycle is zero. 

Wegscheider's condition can be generalized for closed systems of any com- 
plexity with reversible reactions endowed with the generalized mass-action ki- 
netics (2.15), which is equivalent to Eq. (2.17). As, in open systems also, ther- 
modynamic equilibria may occur for special values of the external metabolites, 
the generalization of Eq. (3.60) may even comprise open systems (cf. Vol'pert 
and Khudyaev, 1975; Feinberg, 1989; S. Schuster and R. Schuster, 1989). We 
distinguish two cases according to whether the rank of the stoichiometry matrix 
is smaller than, or equal to, the number of reactions, r. In the latter case, the null- 
space of N is void, so that v = 0 is the only steady-state solution. 

In the case rank(N) < r, we can construct a null-space matrix K, which fulfills 
Eq. (3.44). We now take into account that the functions Gj(S) in Eq. (2.17) are 
positive throughout. Strictly speaking, these functions may be equal to zero if 
some concentration is zero. This can lead to "false equilibria," in which rates but 
not all affinities are zero (cf. Othmer, 1981). We will exclude occurrence of false 
equilibria here. At any proper equilibrium state, the generalized mass-action rate 
law (2.17) implies that all affinities are zero. Equation (2.16) then gives 
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In qj = z nij In Si. 
i 

This can be written in matrix notation as 

In = NT In S. (3.63) 

Premultiplication of this equation by K~ from the left yields, owing to Eq. (3.44), 

KT In 4 = 0. (3.64a) 

which can also be written as 

where kji are the elements of matrix K. Because Eq. (3.64) results from the as- 
sumption v = 0, it is a necessary condition for an equilibrium state to exist. We 
now prove that the condition is also sufficient. As the steady-state flux vector, J ,  
is situated in the null-space of N, it is a linear combination of the columns of K 
[cf. Eq. (3.45)J. Equation (3.64) therefore implies 

In steady state, the generalized mass action kinetics (2.17) can be written as 

Multiplying this equation by the term 4Gy 'Qj with 

and summing up over all j gives 
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It can be seen easily that the numerator and denominator in Q, always have the 
same sign. In the case they are both zero, Q, has the limit qjns?, as can be 

derived by I ' H ~ ~ & I ' S  rule. h any case, Q, is positive. Because ide terms G;' are 
positive also, the left-hand side of Eq. (3.68) is a positive-definite function of the 
fluxes. The right-hand side of this equation vanishes because of Eq. (3.65) and 
the steady-state equation NJ = 0. Therefore, condition (3.64) entails that all 
fluxes are zero, which completes the proof of the assertion that Eq. (3.64) is 
necessary and sufficient for the equivalence of steady state and thermodynamic 
equilibrium. 

Equation (3.64) consists of r - rank(N) particular equations. They can be 
considered as a generalized Wegscheider condition. Because in closed systems 
no external metabolites occur, the apparent equilibrium constants coincide with 
the "real" equilibrium constants, and condition (3.64) reads 

As the only steady state in closed systems is thermodynamic equilibrium, the 
generalized Wegscheider condition (3.69) is always fuliilled in such systems. In 
contrast, for open systems, Eq. (3.64) is only fulfilled for special values of the 
external concentrations. 

For the reaction cycle shown in Scheme 8, the null-space matrix reads KT = 

(1 1 Thus, Fq. (3.64) reads In 9, + In q2 + In q3 = 0, which is equivalent 
to Eq. (3.60) for this system. 

A more complex example is the reaction system depicted in Figure 2.12. in 
the more general situation that all reactions are reversible (cf. Section 2.4). The 
null-space matrix can be chosen to contain the vectors kl = (1 1 0 0 O)T and k2 
= (1 0 1 1 The generalized Wegscheider condition (3.64) then consists of the 
two equations 

If and only if both of these equations are fulfilled, the considered reaction system 
is detailed balanced. For given equilibrium constants, Eqs. (3.70a) and (3.70b) 
represent two equations for the three external concentrations. They determine a 
one-dimensional manifold in the state space of external concentrations. 

In some enzyme-kinetic reaction schemes, the interesting situation occurs that 
the concentrations of external metabolites drop out upon multiplication of appar- 
ent equilibrium constants around a cycle. An example is provided in Figure 3.8. 

PI, P,, and P3 are considered to be external species, because upon derivation 
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Figure 3.8 Catalytic scheme of a bi-uni enzyme with random mechanism. 

of enzyme-kinetic rate laws, the substrates and products are usually treated in this 
way. An admissible null-space vector reads k, = (1 1 - 1 - 1 O)T. The corre- 
sponding generalized Wegscheider condition reads 

Here, the concentrations PI  and P2 can be canceled. So we are left with a ratio 
of equilibrium constants that refers to the cycle containing reactions 1 4 .  There- 
fore, this equation is always fulfilled, irrespective of the values of P, and P2. 

A second null-space vector reads k2 = (1 1 0 0 Equation (3.64) implies 

This equation is only satisfied for special values of substrate and product con- 
centrations, in contrast to Eq. (3.71). Therefore, the system shown in Figure 3.8 
can, in general, reach a steady state with nonzero fluxes. 

For further applications of Wegscheider's condition in enzyme kinetics, see 
the works of Ricard (1978), Walz and Caplan (1988). and Kuby (1991). This 
principle has also to been taken into account in analyzing the effects of metabolic 
channeling (Mendes et al., 1992; Cornish-Bowden and Chrdenas, 1993). 

It can be shown that when the generalized Wegscheider condition is fulfilled 
(in particular in closed systems), there is exactly one equilibrium state in the 
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interior of each reaction simplex of full dimension. Furthermore, this state is 
asymptotically stable with the interior of this simplex being the basin of attraction. 
For the usual mas's%ction kinetics, the proof to this statement was given by Horn 
and Jackson (1972). It makes use of the Lyapunov function 

where ai and b are constants chosen appropriately. This proof can easily be mod- 
ified for the case of the generalized kinetics (2.17) (S. Schuster and R. Schuster, 
1989). For reactions with more complex kinetics [e.g., in regular (nondilute) so- 
lutions], equilibrium states are not, however, always globally stable (cf. Othmer, 
1981). 

Checking the stability of equilibrium is important for fast subsystems. Provided 
that the generalized Wegscheider condition (3.64) is fulfilled by a fast subsystem 
under consideration, it has a unique, globally asymptotically stable equilibrium 
state. This is of importance for the applicability of the rapid-equilibrium approx- 
imation (cf. Section 4.3.). 

The issue of detailed balancing can also be approached from the viewpoint of 
irreversible thermodynamics. Entropy production is defined as 

with T denoting temperature. Inserting the definitions of apparent equilibrium 
constants and affinities [Eqs. (2.14) and (2.16), respectively] gives 

When the system subsists in steady state, the first term on the right-hand side 
of Eq. (3.75) equals zero. Inserting the vector J of steady-state fluxes, we obtain 

Because the vector J is situated in the null-space of the stoichiometry matrix (see 
Section 3.2.1), we can express it as a linear combination of the columns of the 
matrix K, as given in Eq. (3.45). This equation can be written more concisely as 
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with a being a vector of dimension r - rank ( N ) .  Equations (3.76) and (3.77) 
yield 

In this equation, the terms are amenable to an interesting new interpretation. The 
vector 

can be regarded as containing the overall afinities of the reaction system (i.e., 
generalized forces). The vector a encompasses the corresponding overall flows 
(independent fluxes). 

The definition of the affinity [Eq. (2.16)] can be written in matrix notation as 

Due to Eq. (3.44, Eq. (3.79) can be written as 

A' = P A .  

This equation can be illustrated by the example of a chain of consecutive 
monomolecular reactions. The overall affinity is here simply the sum of the par- 
ticular reaction affinities, and we indeed have KT = (1 1 . . . 1). In steady state, 
entropy production can therefore be written in terms of a smaller number of 
reaction rates than for nonstationary dynamics. The generalized Wegscheider con- 
dition (3.64) can then be interpreted in that all overall affinities in the system 
(assumed to be in steady state) are zero. We have shown above that when this is 
the case, all rates are zero. This can be shown using the generalized flows in the 
following way. 

The generalized mass action kinetics (2.17) can be written as 

v = (dg G1)(ln 4 - fl In S )  (3.82) 

with G' being a vector with the components GjQrl .  Under steady-state condi- 
tions, Eqs. (3.77) and (3.82) lead to 

(dg Gr)(ln q - NT In S) = Ka. (3.83) 

Premultiplying this equation by aTKT(dgG')-', we obtain by consideration of 
KN = 0 
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When condition (a.64) is fulfilled, the left-hand side of Eq. (3.84) equals zero. 
Because all Gj ari pbsitive, the right-hand side of Eq. (3.84) represents a positive- 
definite quadratic form in the generalized fluxes, ai. Therefore, all generalized 
flows equal zero in steady state when the generalized Wegscheider condition 
(3.64) is fulfilled. Consequently, this condition implies, for any steady state, 

3.3.2. Strictly Detailed Balanced Subnetworks 
Zero fluxes can be relevant in certain subsystems of open reaction networks. 

Consider, for example, the scheme of glycolysis and of some adjacent reactions 
shown in Figure 3.4. It has been shown in Section 3.2.2 that the phosphogluco- 
mutase reaction is a dead-end branch so that its net reaction rate always equals 
zero when the considered network has attained a stationary state. This feature is 
independent of the kinetic parameters of all reactions involved and will therefore 
be called strict detailed balancing. Other examples of dead-end branches are the 
reactions leading to the complexes EI and ESI in Scheme 3 (Section 2.2.2). 

The situation changes when G1P is treated as an external species. The flux 
through the phosphoglucomutase reaction can then be zero in an exceptional 
situation only, namely for very special values of the kinetic parameters of those 
reactions affecting the concentration of G6P. This reaction is then detailed bal- 
anced, but not strictly detailed balanced. 

Necessary and sufficient conditions for strict detailed balancing are given by 
the following theorem (the proof was given by S. Schuster and R. Schuster, 1991): 

Theorem 3A. A subnetwork, T;:, of a given reaction network is strictly detailed 
balanced if and only if the following two conditions arefuljilled: 

(i) The null-space matrix K can be chosen to be block-diagonal, ar given in Eq. 
(3.48). 

(ii) Either the reactions of correspond to some or all rows of the null submatrix 
on the bottom of K, or they correspond to a submatrix K(" and the equation 

K'V In g'" 0 (3.86) 

is fulfilled where $0 is the vector of apparent equilibrium constants of T,. 

Equation (3.86) can be considered as a generalized Wegscheider condition for 
subnetwork T;:. 

Detection of strictly detailed balanced subnetworks is helpful when steady 
states of the whole network are analyzed. This analysis is simplified if all reactions 



that have, at any steady state, zero net reaction rates are detected at the very 
beginning. Very frequently, simulation of reaction systems is hampered by incom- 
pleteness or unsatisfactory accuracy of the known data. However, the effect of 
strictly detailed balanced reactions on the concentrations of internal metabolites 
is fully determined by their equilibrium constants. Usually, thermodynamic pa- 
rameters can be measured more accurately than kinetic ones (e.g., rate constants), 
especially for very fast reactions. 

Note that for the system shown in Figure 3.8, the null-space matrix is not 
diagonalizable. Therefore, no strictly detailed balanced reactions occur, although 
one of the two generalized Wegscheider conditions involved in Eq. (3.64) is ful- 
filled. 

3.3.3. Onsager's Reciprocity Relations for Coupled 
Enzyme Reactions 

The concept of null-space can be used to prove the Onsager reciprocity relation 
(2.59) for the case of chemical reaction systems at steady state. This is of im- 
portance, in particular, for enzymes coupling endergonic to exergonic processes 
(see Section 2.2.3). At steady state, the flux vector can be written as a linear 
combination of the columns of the null-space matrix [cf. Eq. (3.77)l. Because the 
components of the vector a can be considered as containing the overall reaction 
rates (cf. Section 3.3.1), we rename it J'. For the enzyme scheme shown in Figure 
2.2, for example, admissible null-space vectors are k, = (1 1 1 1 1 1 OIT and k2 
= (1 0 0 0 1 1 I ) ~ .  Accordingly, the velocities of ATP production and reaction 
slip can be taken as overall fluxes, Ji and J;. 

In correspondence to these new rate variables, overall affinities can be defined, 
which are to be gathered in the vector A' defined in Eq. (3.79). Equation (3.78) 
means that entropy production can also be written in terms of the overall affinities 
and fluxes, 

Equations (2.57) and (3.77) give 

A = (dg L ) - ' W ' .  (3.88) 

Due to Eq. (3.81), this leads to 

With the help of Eq. (2.58), we obtain 
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Because J' can bb:$anged to assume a manifold of different values, by alteration 
of the external metabolite concentrations, Eq. (3.90) can only hold if 

This equation gives the sought matrix of transformed Onsager coefficients, which 
link the vectors J' andAr. L' is not normally diagonal. Indeed, there are in general 
strong cross-effects between the forces A,!, because the exergonic and endergonic 
processes are coupled to each other by the enzyme. 

Using the rule for transposition of matrix products, one obtains that [KT (dg 
L) - ' KIT = KT (dg L) -I K. The latter matrix is therefore symmetric. As the 
inverse of a symmetric matrix is also symmetric, the matrix on the right-hand side 
of Eq. (3.91) and, hence, matrix L' have this property as well. This completes 
the proof of Eq. (2.59). which is a particular case of Onsager's reciprocity relations 
(Onsager, 1931; cf. Guggenheim, 1967). They are usually proved in a more com- 
plicated way on the basis of the symmetry of time. 



Time Hierarchy in Metabolism 

4.1. TIME CONSTANTS OF METABOI ,IC PROCESSES 

A time constant is a measure of the time span over which significant changes 
occur in a given system, generally during the relaxation after perturbation of a 
stable steady state. Basically, one can distinguish between time constants of re- 
actions, of substances, and of a whole system. For none of them, however, a 
unique definition in mathematical terms has been agreed upon. For the time con- 
stant of (individual) reactions with linear rate laws, a widely used definition is 

where k+ and k- denote the forward and backward rate constants, respectively. 
This definition results from the solution to the differential equation governing the 
relaxation of such reactions, which is proportional to exp(- (k+ + k-)t). 

Equation (4.1) also applies to reactions with Michaelis-Menten kinetics [Eq. 
(2.20)] when substrate and product concentrations are low. Under this condition, 
that equation can be approximated by the linear rate equation 

Equation (4.1) then gives 
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Following a suggestion by Higgins (1965) one can estimate the response time 
for reactions with nonlinear rate laws as 

, .. !.,* 

at an operating point under consideration. This can be derived by linearization of 
the system equation around this operating point (see Section 2.3.2). 

For the reaction A + B C + D with standard mass-action kinetics, for 
example, the response time reads 

Equation (4.3) can be derived from Eq. (4.4) by applying it to the reversible 
Michaelis-Menten kinetics and taking the derivatives at S, = 0 and S2 = 0. As 
the first derivatives of this kinetics with respect to S, and -S2 are monotonic 
decreasing functions of S, and S2, respectively, Eq. (4.3) underestimates the time 
constant as computed by Eq. (4.4). For example, applying Eq. (4.3) to three 
glycolytic enzymes in human erythrocytes (using data of several authors cited by 
Liao and Lightfoot Jr., 1987) gives NaK-ATPase (EC 3.6.1.37), z = 50 min; 2,3- 
bisphosphoglycerate phosphatase (EC 3.1.3.13), 23 min; bisphosphoglycerate 
mutase (EC 5.4.2.4), 0.013 s. By this approximation, the relaxation time of 2,3- 
bisphosphoglycerate phosphatase is, however, extremely underestimated, because 
this enzyme is nearly saturated with its substrate, so that the derivative entering 
Eq. (4.4) is nearly zero. By consideration of the degradation kinetics of 2,3P2G, 
an estimate of z = 10 h was evaluated for this enzyme (Rapoport et al., 1976). 
For bisphosphoglycerate mutase, Heinrich et al. (1977) calculated the relaxation 
time of 3.9 s. The difference to the value given above results from consideration 
of the inhibition by 2,3P2G. For pyruvate kinase (EC 2.7.1.40), hexokinase (EC 
2.7.1.1), and phosphofructokinase (EC 2.7.1.1 l), relaxation times of 28 s, 36 min, 
and 74 s, respectively, were calculated. Accordingly, the relaxation time constants 
of the glycolytic enzymes in human erythrocytes cover at least a range of four 
orders of magnitude, let alone the enzymes so fast as to be near equilibrium, for 
which the time constants are very low and difficult to measure or calculate. This 
separation of time constants is accompanied by the fact that the fast enzymes are 
so efficient that they can catalyze rates much higher than maximum pathway flux 
(e.g., 100-fold in glycolysis in muscle, see Betts and Srivastava, 1991). A bio- 
chemical reaction is usually said to be fast if z is less than 1 s. 

From among the 20 enzymes considered in a model of the tricarboxylic acid 
cycle in Dictyostelium discoideum (Wright et al., 1992), two enzyme rates are 
described by a reversible uni-uni Michaelis-Menten rate law so that Eq. (4.3) can 
be applied. This gives the relaxation times of 1.73 s for succinate dehydrogenase 
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(EC1.3.99.1) and 0.21 s for fumarase (EC4.2.1.2) (with the above-mentioned 
uncertainty due to saturation). Another nine enzymes were modeled by irrevers- 
ible, unimolecular mass-action kinetics so that the relaxation times are equal to 
the reciprocals of the rate constants, which gives values in a range from 0.075 s 
to 10 min. Accordingly, the modeled system also exhibits a distinct separation of 
time scales, all the more as it encompasses other enzymes with even shorter 
relaxation times, which were not explicitly included in the model. 

Separation of time constants is also observed for membrane transport pro- 
cesses. For the membrane fluxes through the erythrocyte membrane, time con- 
stants lie between s (water exchange) and lo5 s (passive Na+ and K+ 
exchange) (Glaser et aL, 1983; Brumen and Heinrich, 1984). 

The wide separation of time constants is often called time hierarchy (Park, 
1974; Reich and Selkov, 1975; Heinrich et aL, 1977). Hierarchic organization is 
a striking feature of living matter in general. Living organisms are built up of 
nested spatial structures (organelles, cells, tissues, organs, etc.). Control and reg- 
ulation act at different levels (metabolic regulation, epigenetic regulation and hor- 
mone system, etc.). Evolutionary processes clearly run much slower than pro- 
cesses in metabolism. By time hierarchy sensu stricto, however, we mean the 
operation on distinct time scales at one and the same spatial level of organization, 
f i r  example, within the living cell. 

The occurrence of time hierarchy has important consequences for the mathe- 
matical modeling, because the resulting differential equation systems are then 
stiff. The usual integration routines, such as the RungeKutta procedure, are then 
only stable when operating with very small step sizes of the order of magnitude 
of the time constants of the fast processes. 

To reflect the systemic properties of metabolic pathways, time constants which 
take into account the interactions within the system rather than relaxation times 
of isolated reactions should be used. This can be seen, for example, when cal- 
culating the relaxation time of the hexokinase-phosphofructokinase system in 
glycolysis (about 1.5 h in human erythrocytes), which exceeds the values for the 
particular enzymes given above, due to the glucose-6-phosphate inhibition of 
hexokinase (Heinrich et aL, 1977). 

When small perturbations of a steady state are considered (Si(t) = Si + 6Si(t)) 
the solutions for 6Si(t) may be expressed by the eigenvectors and the eigenvalues, 
1 ,  of the Jacobian (see Section 2.3.2). If Re(Li) < 0, an appropriate measure for 
characterizing relaxation processes is provided by the characteristic times 

For red blood cell glycolysis, for example, characteristic times were calculated 
by Eq. (4.6) to cover a range from 0.9 ms to 12 h (Liao and Lightfoot Jr., 1987). 
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Note that the above examples of time-scale separation concern systems at the 
metabolic level. It is clear that an even more pronounced separation applies to 
cellular physiol6gy when genetic processes are included also, which normally 
have time constants of hours up to years. When interested in characterizing the 
long-term behavior of a metabolic system after perturbations, one may use the 
largest time constant defined by Eq. (4.6) (cf. Schuster and Heinrich, 1987). 

A time constant for concentrations is the turnover time introduced by Reich 
and Selkov (1981, Chap. m). To define this quantity, one should split up the 
reaction rates into the rates of forward and reverse reactions, 

The system equation (2.8) can now be written as 

where n; and n,i are defined by Eqs. (2.1 la) and (2.1 lb). The turnover time is 
to characterize the time needed to convert the pool of a given substance Si once. 
A possible definition is 

which includes the effects of all unidirectional processes utilizing Si. The original 
definition of Reich and Selkov (1981) was more restrictive in that only the largest 
of the unidirectional rates entered the denominator in Eq. (4.9). 

Clearly, the turnover times reflect the level of aggregation used in the model. 
When, for example, two metabolites isomerizing into each other by a fast reaction 
are combined into one pool (e.g., the pool comprising glucose-6-phosphate and 
fructose-6-phosphate), the latter has a much larger turnover time than either of 
the particular metabolites. Aggregate pools can often be defined in a way that 
they are produced or consumed only by irreversible reactions, so that the unidi- 
rectional rates are equal to the net rates. This simplifies to calculate turnover times 
because for metabolic systems, unidirectional rates of reversible reactions are 
generally known to much less an extent then net rates. 

To illustrate definition (4.9), we again consider the data on the tricarboxylic 
acid cycle in Dictyostelium discoideum given by Wright et al. (1992). For the 
reversible isomerization between the tricarboxylic acids citrate, cis-aconitate and 
isocitrate, only the net rate was calculated. Therefore, the turnover times of the 
particular acids cannot be determined from this model, but the turnover time of 
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the tricarboxylic acid pool can, because the isocitrate dehydrogenase reaction 
(EC1.1.1.42) is virtually irreversible. Its rate (given to be 2 mM/min, which is at 
steady state equal to the net rate of isomerization) can be used in the denominator 
of definition (4.9). The concentrations of isocitrate and citrate are given to be 
0.0099 mM and 0.025 mM, respectively. cis-Aconitate can be neglected in com- 
parison with these values. So we obtain zm = (0.0099 + 0.025)/2 min = 1.047s 
for the tricarboxylic acid pool. 

The turnover time z- is related to the transition time zi = SilJ introduced by 
Easterby (1973, 1981) [cf. Section 5.8.4, in particular Eq. (5.278)], with the dif- 
ference that in the latter definition, the net rates instead of unidirectional rates are 
considered. For unbranched reaction chains with the first step being irreversible, 
zi characterizes the contribution of Si to the time needed to establish all the steady- 
state concentrations after "switching on" the reaction chain. A further definition 
of a time constant (slow substrate time scale) was given by Segel (1988). 

As a quantitative measure of time hierarchy, Heinrich and Sonntag (1982) 
proposed the following definition, which takes into account the mean difference, 
(Azi), between the largest time constant and all the others: 

where 

q = max q. (4.1 1) 

The mean value of the time constants, (q), in Eq. (4.10) serves for normalization. 
It is readily verified that Hz is bounded by 

and attains this maximum value if one reaction is slow and all remaining reactions 
are as fast as possible. This is in line with the common idea of a hierarchy that 
there are more dominated items (here: reactions) than dominating ones. 

4.2. THE QUASI-STEADY-STATE APPROXIMATION 

When analyzing any time-dependent system, one can usually discern three dif- 
ferent classes of processes according to their time constants. The "central" class 
comprises the processes moving in the time scale of interest. A second class 
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comprises the processes so slow that they can, in the experiment or theoretical 
study, be neglected or the concentrations of the substances involved can be treated 
as parameters (extgrnal metabolites, see Section 2.1). The third class is made up 
by the processes which are so fast that they can be considered to have run off in 
the time scale of interest. As we will show later in this section, this relaxation 
only occurs under some stability conditions. If these conditions are not fulfilled, 
the fast processes may oscillate or exhibit an even more complex behavior. They 
may then also be eliminated from the analysis by appropriate averaging tech- 
niques. 

Scheme 9 

The reaction chain depicted in Scheme 9 may serve as an example. Here, we 
assume the three reactions to be irreversible and endowed with linear kinetics, 

Assume that 

After a brief initial relaxation period, the concentration S2 will approximately 
have the value 

because any deviation from this value will rapidly vanish; that is, S2 attains a state 
approximately given by 

Note that as long as S, does not reach a steady state, S2 does not really reach one 
either. However, as Segel (1988) put it, S2 can "keep up" with the changing 
concentration of S,, because Eq. (4.15) couples S2 to S,. For such behavior, the 
term quasi-steady-state is used. Figure 4.1 shows a typical phase curve S, versus 
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Figure 4.1 Phase plot SI versus S2 illustrating the quasi-steady-state approximation for the re- 
action chain shown in Scheme 9 for the case that reaction 3 is faster than reaction 2. Parameter values: 
P I  = 1, k, = 7 ,  k, = 1 ,  k, = 7 .  The thick lines represent trajectories for different initial conditions. 
The thin straight line is the nullcline for S,. S denotes the final steady state. 

S2 computed numerically. It can be seen that any trajectory goes, in a first period, 
toward the line given by Eq. (4.15). As this initial relaxation is very rapid, the 
long-term behavior can be described by the differential equation 

together with the algebraic equation (4.15). The number of differential equations 
is therefore reduced from two to one. 

Such a reduction of the system equations is the basic idea of the Bodenstein 
method or quasi-steady-state approximation (QSSA) (Bodenstein, 1913; cf. Hei- 
neken et al., 1967; Kondratiev, 1969). This method is widely used in chemical 
kinetics for systems that exhibit large differences in concentrations among the 
different substances involved, due to widely separated rate constants. For the 
example considered above, S2 as given by Eq. (4.15) is, in fact, much smaller 
than S,, owing to inequality (4.14). 

In a general presentation, the Bodenstein method can be outlined as follows. 
Assume that the concentration vector S can be decomposed as 
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Sil) >> Sy' for all i and j. (4.19) 

Note that concentrations may be small for two distinct reasons. First, some 
conservation quantities such as total enzyme concentrations may be small and, 
second, some rate constants may be high (such as k, in the system shown in 
Scheme 9), so that the concentrations of the substances utilized by the corre- 
sponding fast reactions become very small after an initial time span. Note that 
inequality (4.19) generally holds only after this initial transient. 

Under condition (4.19), it is reasonable to normalize the concentrations by 
some typical value of each subvector: 

with 9') >> 9". For the large concentrations, S,('), the normalization factor, S('), 
could be the largest initial value, #&(O). For the small concentrations, #'), a 
similar choice might be problematic because the @) may be rather large for t = 
0 and relax to small values only after some initial period. Taking a value $')(t) 
for some small t > 0 is then more appropriate. Things are easier if the $') are 
involved in a conservation relation. Then the respective conservation quantities 
can be taken as normalization factors. 

Partitioning the stoichiometry matrix N in accordance with Eq. (4.18), we can 
write the system Eq. (2.8) as 

with the small parameter 

As ,u is a small parameter, it is sensible to approximate the solutions of the 
equation system (4.21) by the solutions to the algebro-differential equation system 
composed of Eq. (4.21a) and 
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The latter equation is the steady-state condition for the substances with small 
concentrations. Assume that this equation can be solved for S(') in terms of S('). 
Inserting the corresponding function into Eq. (4.21a) gives a differential equation 
system for S(l) of dimension smaller than that of the original system [(4.21a) and 
(4.21b)l. This is, therefore, an example of a singularly perturbed differential equa- 
tion system. A regularly perturbed differential equation system, in contrast, in- 
volves small parameters only on the right-hand sides, so that the dimension of 
the system (and, hence, the number of initial or boundary conditions necessary 
to solve the system) does not decrease as the small parameters tend to zero. 

More rigorously, the outlined approximation only applies if some conditions 
phrased in a theorem given by Tikhonov (1948; cf. Wasow, 1965; Klonowski, 
1983) are satisfied. We now give this theorem in a general form for any vector, 
Y, of state variables. 

Consider the ordinary differential equation system 

where p is a small parameter and Y has been decomposed into two subvectors, 
Y b d  yf, of slow and fast variables, respectively. Let 

denote a solution of the equation system 

if such a solution exists. For every given vector Tj, ~ ( r )  is a fixpoint of the so- 
called adjoint system 

where Tj is considered as a vector of parameters. t' can be interpreted as stretched 
time, tlp. 

Theorem 4A (Tikhonov's Theorem). The solution Y(t) of the equation system 
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(4.24) tends to  the solution (YS(t) ~ [ T j ( t ) ] ) ~  of the "degenerate system" (4.24a), 
(4.26) as  p tends to zero, if: 

(TI )  These s&ions exist and are unique, and the right-hand sides of the equation 
systems are unique 

(T2) A solution p(Ys), exists, which corresponds to an isolated, asymptotically stable 
@point of the Moint system (4.27) 

(T3) The initial conditions Yf(0) of the adjoint system (4.27) lie in the basin of at- 
traction of the solution p(YS(0)). 

The proof of this theorem can be found in the works of Tikhonov (1948) and 
Wasow (1965). 

Condition (Tl) is normally fulfilled for biochemical systems because the right- 
hand sides bf Eq. (4.21) involve kinetic rate laws, which are continuously differ- 
entiable at east once. The stability conditions (T2) and (T3) are not always met i (cf. Section 2.3.2). Because usually only one or a few metabolites are treated as 
quasi-steadfr-state species, the stability analysis often bears no difficulties. For 
example, the fixpoint of Eq. (4.16) is globally asymptotically stable because the 
corresponding eigenvalue is negative (- k3). 

The uniqueness and stability of quasi-steady-states is always granted when the 
subsystem consists of reactions with linear kinetics and satisfies Wegscheider's 
condition (see Theorem 2G). Accordingly, applying the quasi-steady-state ap- 
proximation to such subsystems that have these properties guarantees that the 
preconditions of Tikhonov's Theorem are fulfilled. 

The quasi-steady-state approximation is of particular importance in the deri- 
vation of enzyme-kinetic rate laws. The total concentrations of enzymes are con- 
stant and normally much below substrate concentrations (Albe et al., 1990) so 
that one can introduce the small parameter p = ETISl. There are, however, a 
number of exceptions to this rule (cf. Betts and Srivastava, 1991), notably in the 
case of ribulose bisphosphate carboxylase (EX 4.1.1.39) (Farquhar, 1979). Con- 
sider a simple enzymic reaction with the catalytic mechanism shown in Scheme 
1 (Section 2.2). As outlined above, it is helpful to use normalized concentrations 
[cf. Eq. (4.20)]. For the present example we choose e = EIE,, es = ESIE,, sl 
= Sl/Sl(0) and s2 = S2/Sl(0) with S1(0) denoting the initial concentration of S1. 
The system equations can then be written as 

des 
p = klSl(O)s, . e - (k-I  +. Q e s  + k-2S1(0)s2 . e, 

with the new time scale tETISl(0) + t .  It is not necessary to write down the 
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equations governing e and S2, because they result from the given system equations 
by the conservation relations E + ES = ET and Sl + S2 + ES = const. of the 
scheme. For very smallp, Eq. (4.28a) can be approximated by replacing the left- 
hand side by zero, which gives, together with the conservation relation for the 
enzyme species, the Michaelis-Menten equation (2.20) with the phenomenolog- 
ical parameters given in Eqs. (2.21) and (2.22). 

The new time scale has been introduced because in the limit p = ETISl(0) -+ 

0 [which is to be thought of as diminution of ET rather than increase of Sl(0) (cf. 
Battelli and Lazzari, 1985)], the reaction would normally cease to proceed be- 
cause of lack of enzyme. This can be compensated for by compressing the time 
scale or by rescaling the rate constants (see, e.g., Heineken et al., 1967; Heinrich 
et al., 1977; Battelli and Lazzari, 1985, 1986). In the latter case, any decrease in 
ET is then accompanied by an increase in the rate constants. 

Stability of the steady state of the adjoint system is always granted in enzyme 
kinetics, as long as there is no enzymeenzyme interaction, because the slow 
variables (i.e., the non-enzymatic species) are considered constant in this system 
and simpIe mass-action kinetics applies satisfactorily well, so that the equation 
system is linear (cf. Theorem 2G). 

It was shown by Segel(1988) and Frenzen and Maini (1988) that the condition 
ET/S,(0) << 1 for applicability of the quasi-steady-state hypothesis in deriving 
the Michaelis-Menten rate law is unnecessarily restrictive. It can be replaced by 

provided that k1 >> k-,. This can be understood by the reasoning that the change 
in substrate concentration during the initial transient period should be small com- 
pared to its initial value. As this change is approximately equal to the substrate 
sequestered in the ES complex, one can invoke that E&(0)IIKml + S1(0)] << 
S1(0), which leads to condition (4.29). This condition can be fulfilled, for example, 
by an enzyme showing weak binding to the substrate (high Kml value) even when 
the enzyme concentration is high. 

In the case of competitive inhibition kinetics, the condition must be modified 
to 

(Segel, 1988), with K,, denoting the inhibition constant defined in Eq. (2.31). It 
is clear that the higher the inhibitor concentration, the smaller will be the effective 
enzyme concentration, so that the limit of validity of the quasi-steady-state hy- 
pothesis is shifted to higher total enzyme levels. 

The Rapid-Equilibrium Approximation 123 

4.3. THE RAPID-EQUILIBRIUM APPROXIMATION 

Consider again twreaction system shown in Scheme 9 (Section 4.2) and assume 
now that reaction 2 is reversible. This reaction scheme can then represent, for 
example, part of the glycolytic pathway with S1 and S2 standing for glucosed- 
phosphate (G6P) and fructose-6-phosphate (F6P). For simplicity's sake, we as- 
sume the rate of reaction 2 to be given by 

The system equations read 

Assume further that 

As can be seen in Figure 4.2, the concentrations S1 and S2 will reach, after a 
short initial time span, such values that the ratio S2/Sl approximately equals the 
equilibrium constant, 

This is because any excess of S1 or S2 deviating from this ratio will be removed 
very rapidly due to the high rate constants of reaction 2. Accordingly, this reaction 
can be considered to subsist nearly in equilibrium, although a nonzero flux may 
go through it. As can be seen from Eq. (4.31) and inequality (4.33), v2 may differ 
considerably from zero even if the concentration ratio S2/S, satisfies relation 
(4.34). 

The quasi-equilibrium relation (4.34) entails that the system equation (4.32) 
can be simplified to a system of dimension one because the two variables are 
(approximately) proportional to each other. Summation of Eqs. (4.32a) and 
(4.32b) gives . 
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Figure 4.2 Phase plot Sl versus S, illustrating the rapid-equilibrium approximation as applied 
to reaction 2 in the reaction chain shown in Scheme 9. Parameter values: P, = 1, kl = 7, k, = 5 ,  
k-, = 4 . 4  = 1. The thick Lines represent trajectories for different initial conditions. The thin straight 
line is the nullcline for S,. The thin broken lines is given by the rapid-equilibrium condition (4.34). 

Using the rapid-equilibrium relation (4.34), we can rewrite the left-hand side of 
Eq. (4.35) as (l/q2 + l)dS21dt. This gives the reduced system equation 

The dynamics of the system is approximated by this equation after the initial 
relaxation period. It is worth noting that for the considered system, also the quasi- 
steady-state equation can be applied. dS21df = 0 gives S2 = k?_Sll(k-2 + k3). As 
can be seen in Figure 4.2, this approximation is even better than the rapid-equi- 
librium approximation. However, construction of the quasi-steady-state line re- 
quires knowledge of three kinetic parameters, whereas the rapid-equilibrium line 
can be computed by knowledge of the equilibrium constant q2 only. Parameter 
values in Figure 4.2 have been chosen so as to clearly show the difference between 
the two lines. Normally, one applies the rapid-equilibrium approximation only in 
case of a more distinct time hierarchy, so that the two lines lie more closely to 
each other. 

The idea underlying the development of the rapid-equilibrium approximation 
dates back at least to the beginning of our century (Wegscheider, 1900). We will 
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now outline, in a general way, the approximation method to treat systems involv- 
ing several fast, reversible reactions (see also Schauer and Heinrich, 1983; Liao 
and Lightfoot, 1988b; and for the case of tracer kinetics, R. Schuster et al., 1992). 

Reaction velocities can be classified into slow rates, v,S, and fast rates, vj, ful- 
filling the inequality 

Fast reactions ire characterized by high rate constants (or analogous kinetic pa- 
rameters in the case of rate laws more complicated than simple mass-action ki- 
netics, such as maximal activities in the case of Michaelis-Menten rate laws) and 
low time constants. Clearly, relation (4.37) cannot be fulfilled in the whole con- 
centration space because the rates also depend on concentrations. For example, 
there are submanifolds in the concentration space where one or more fast reactions 
are at equilibrium (4 = 0). In the largest part of this space, however, high rate 
constants do imply high reaction rates, so that inequality (4.37) holds. Accord- 
ingly, we can partition the rate vector v as 

where the components of v k d  v' correspond to the slow and fast reactions, 
respectively. Likewise, we can decompose the stoichiometry matrix as 

Nf is then the stoichiometry matrix of the fast subsystem. Due to the decompo- 
sition (4.39), rank (N') is less than, or equal to, the rank of N. 

Now we rescale the fast rates by a small parameter, p << 1, 

so that they get the same, or a smaller, order of magnitude as the components of 
vS. Inserting Eqs. (4.38), (4.39), and (4.40) into the system equation (2.8) yields 

This is a singularly perturbed differential equation system because, in the limit 
p + 0, the dimension of the system decreases, as will become clear below. The 
conditions under which such equation systems can be approximated by consid- 
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eration of the limit ,u + 0 are given in T ionov ' s  Theorem (see Section 4.2). As 
far as Eq. (4.41) is concerned, application of this theorem is facilitated by a 
variable transformation which generates, out of this equation, some differential 
equations (say, a in number) that do not involve the factor 1 1 ~ .  An example of 
such a transformation is the summation of the Eqs. (4.32a) and (4.32b). As this 
independence is to hold irrespective of the special values of kinetic parameters, 
as long as they are consistent with condition (4.37). it must be a property resulting 
only from stoichiometry. Accordingly, an n X n transformation matrix T con- 
sisting of two submatrices is used, 

so that one submatrix transforms the matrix Nf to a null matrix, 

We denote the new variable vector by Y, 

with dim (y6) = a and dim (Y') = n - a. T must be nonsingular in order that 
the time course S(t) of the original variables can be determined from Y(t). Con- 
sequently, both TS and T~ have to be full rank. 

Equation (4.43) expresses linear dependencies among the rows of Nf. As there 
are n - rank ( N ~ )  such dependencies and TS has full rank, 

Under consideration of Eqs. (4.43) and (4.44). we transform Eq. (4.41) to 

Multiplying Eq. (4.46b) by ,u and taking the limit ,u + 0, we obtain 

Equations (4.43) and (4.47) can be combined to 
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.* 
As T must be nonsingular, Eq. (4.48) implies 

Based on Tikhonov's Theorem (see Section 4.2). the differential equation system 
(4.46a) and (4.46b) can, in the lirnitp + 0, be replaced by the algebro-differential 
equation system (4.46a) and (4.49). Equation (4.49) may serve to eliminate the n 
- a fast variables in Eq. (4.46a). At most rank (Nf) variables can be eliminated, 
because this corresponds to the maximum number of independent equations in 
Eq. (4.49). This implies 

which together with relation (4.45) gives 

The approximation under consideration can only be applied if condition (T2) 
of Theorem 4A is fulfilled. In the framework of linear stability analysis, this 
condition is equivalent to the condition that all eigenvalues of the Jacobian of the 
adjoint system 

have negative real parts at the considered fixpoint. Note that compared with Eq. 
(4.46b), the term p~fN8~"a~  been omitted on the right-hand side of Eq. (4.52), 
because for sufficiently small ,u, it does not have any effect on the signs of the 
eigenvalues (cf. Levin and Levinson, 1954). 

Usually, the quasi-steady-state equation (4.49) is solved by concentration val- 
ues which even fulfill the more restrictive equilibrium condition 

However, such a solution only exists if the fast subsystem given by the differential 
equation dSldt = Nfv' is detailed balanced. Such a situation occurs when the fast 
subsystem is, upon canceling of the slow reactions, decoupled from the inputs 
and outputs and becomes closed, which implies detailed balancing. The steady 
state of the fast subsystem is then stable (see Section 3.3.1), so that condition 
(T2) is fulfilled. 
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According to Eqs. (4.43) and (4.51). we can choose TS such that it expresses 
a complete set of independent conservation relations of the fast subsystem (see 
Section 3.1.1). The variables are therefore the conservation quantities of the 
fast subsystem. They are often called slow moieties or pool variables. Note that 
all metabolites not participating in any fast reactions represent pool variables on 
their own. 

Park (1974) advocates to admit only transformation matrices TS with non- 
negative, integer entries because the pool variables are to represent concentrations 
of real atom groups (moieties). Integer entries can always be guaranteed, as long 
as the stoichiometry matrix of the fast subsystem only contains integer elements. 
Non-negativity can be met if the fast subsystem is a closed system, otherwise it 
is not always fulfilled (see Section 3.1.2). Formally, the two conditions need not 
be satisfied in order that the rapid-equilibrium approximation be applied [cf. the 
model of erythrocyte metabolism presented by R. Schuster et al. (1988)], but the 
pool variables are easier to interpret if they are linear combinations of concentra- 
tions with non-negative, integer coefficients. 

As was shown in Section 3.1.1, conservation matrices can always be chosen 
so as to contain the identity matrix, 

TS = (* I). (4.54) 

The matrix T~ necessary to calculate the fast variables, c, can be chosen arbi- 
trarily, only subject to the constraint that T be non-singular. If TS is chosen as in 
Eq. (4.54), a feasible choice of Tf is 

This means that some original variables Si may be used as fast variables Yf. It can 
easily be shown that the validity of conditions (Tl), (T2). and (T3) is independent 
of the choice of matrices TS and Tf. 

The elimination of variables by rapid-equilibrium approximation is feasible in 
two ways according to whether the algebro-differential equation system is ex- 
pressed in terms of the original concentration variables, Si, which directly enter 
the rate laws, or the transformed variables, Y,. When this equation system is to 
be written in terms of the original variables, the set of concentration variables 
should be decomposed into subsets of independent and dependent variables (Snd 
and Sdcp, respectively). As long as all reactions are reversible (0 < qi < m) and 
obey the law of mass action [Eq. (2.12)], we can write the equilibrium condition 
(4.53) in logarithmic form: 
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[cf. Eq. (3.63)], where qf is the vector of apparent equilibrium constants of the 
fast reactions. We now rearrange the rows and columns of Nf so that the submatrix 
of dimension rani&) X rank(N9 on the upper left of Nf is nonsingular. Choosing 
the concentration variables corresponding to this submatrix as dependent vari- 
ables, they can be calculated in terms of the independent concentrations, by solv- 
ing Eq. (4.56) for Sdep. This gives 

The fact that Eq. (4.56) is linear in the logarithmic concentrations is in favor 
of keeping to the original variables. In the alternative version, where the algebro- 
differential equation system is expressed in terms of the transformed variables, 
construction of the function Y' (YS) would have to be made on the basis of the 
conservation equation of the fast subsystem, YS = TS S, which is involved in Eq. 
(4.44), and the equilibrium condition (4.56). Because the former equation is linear 
in S and the latter equation is linear in InS, they cannot, in general, be combined 
to give an explicit expression Y'(YS). Nevertheless, the values of the fast variables 
Yf are uniquely determined by the slow variables on the basis of Eqs. (4.44) and 
(4.56). This is due to the fact that for systems of reactions endowed with the 
generalized mass-action kinetics (2.13, the equilibrium concentrations are 
uniquely determined in terms of the conservation quantities and equilibrium con- 
stants (Horn and Jackson, 1972; S. Schuster and R. Schuster, 1989). The com- 
putation of equilibrium concentrations is the subject of chemical reaction equi- 
librium analysis, which provides sophisticated computation algorithms (cf. Smith 
and Missen, 1992). 

Returning to the original concentration variables, we now outline a method for 
treating the algebro-differential equation system resulting from the rapid-equilib- 
rium assumption. Inserting Eq. (4.57) into Eq. (4.46a) gives 

Note that the partial derivative of the vector Sdcp with respect to the vector SOd is 
meant to denote the matrix ( e p / e ) .  The left-hand side of the equation system 
(4.58) is linear in dPdldt and can be solved for these variables by matrix inver-c 
sion, 

with 
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Equation (4.59a) is a differential equation system that can be used to describe 
the system behavior under the rapid-equilibrium assumption. Numerical integra- 
tion of this differential equation system has several advantages, compared to that 
of the original system. First, Eq. (4.59a) only has dimension n-rank@). Second, 
it is not as stiff as the original system because the high kinetic constants have 
been eliminated. The fast reactions only affect the system behavior via their equi- 
librium constants. Third, for the same reason, knowledge of the kinetic parameters 
of the fast reactions is no longer necessary. 

Let us illustrate this method by way of two examples. First, we again consider 
Scheme 9. As stated above, reaction 2 can stand for phosphoglucoisomerase 
(PGI). This is a quasi-equilibrium enzyme, as was shown by measuring the con- 
centration ratio F6P/G6P in vivo, which turned out to be nearly equal to the 
equilibrium constant, q,, = 0.4 (cf. Reich and Selkov, 1981). The fast subsystem 
has the conservation relation S1 + S2 = const. The pool variable is therefore 
Y; = S1 + Sz [cf. also Eq. (4.35)], which can readily be interpreted as pool of 
the hexose monophosphates in glycolysis. More formally, this pool variable can 
be deduced from the partitioned stoichiometry matrix 

(with the second and third columns interchanged relative to the numbering of 
reactions). An admissible matrix TS fulfilling Eq. (4.43) is 

The transformation matrix yielding the fast variables can be chosen, for example, 
as 

,S1 thus enters both the slow variable and the fast variable = S1. The adjoint 
system reads 

d ~ :  - = - 92(S&. (4.63) 
dt' 
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The fixpoint of this equation is given by v2 = 0. In this equilibrium state, which 
is stable, relation (4.34) holds true. Note that the approximation is valid not only 
for the linear h e t i c s  (4.31) but for any rate law comprised in the general mass- 
action kinetics. With the help of Eq. (4.34), the fast variable can be expressed in 
terms of the slow variable as 

One can also use the original variables S1 and Sz with, say, S, being the dependent 
variable, as we have done above [cf. Eq. (4.36)]. 

Care must be taken if the whole system involves conservation relations. Be- 
cause of the decomposition of N into NS and Nf, any conservation relation of the 
whole system also holds in the fast subsystem. For illustration of this case, con- 
sider a scheme of threonine synthesis in E. coli (cf. Gottschalk, 1986), as depicted 
in Figure 4.3. Aspartate semialdehyde dehydrogenase and homoserine dehydroge- 
nase can be considered as quasi-equilibrium enzymes. To explain the method in 
a stepwise way, we consider first a fast subsystem which consists only of the 
former reaction. The fast subsystem then has the following conservation relations: 

I 

I + 
Asp f i  AspP f i  ASA f i  ~ ~ ~ ~ f i  HSerP 

ATP ADP NADH NAD 1 NADH NAD I ATP ADP 

LYS Met 
Figure 4.3 Scheme of threonine synthesis. Reactions: (1) aspartokinase I, 11 and III (EC 2.7.2.4); 

(2) aspartate semialdehyde dehydrogenase (EC .1.2.1.11); (3) homoserine dehydrogenase (EC 
1.1.1.3); (4) homoserine kinase (EC 2.7.1.39); (5)  threonine synthase (EC 4.2.99.2); (6) thrmnine 
consumption; (7 and 8) branches leading to lysine and methionine, respectively. Metabolites: Asp, 
aspartate; AspP, Cphospho-aspartate; M A ,  aspartate semialdehyde; HSer, homoserine; HSerP, ho- 
moserine phosphate; Thr, threonine; Lys, lysine; Met, methionine. The dashed arrows indicate negative 
feedback effects of threonine. 
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AspP + ASA = Y i ,  

AspP + NAD = Y;, 

NADH + NAD = Y ; ,  

in addition to Si = const. for those metabolites only involved in slow reactions. 
The conservation relation (4.65~) holds not only in the fast subsystem but also in 
the whole scheme. Note that relation (4.65b) cannot be interpreted in terms of 
conservation of moieties. If such an interpretation is desired, one could replace it 
by the relation NADH + ASA = Yi, which reflects conservation of a hydrogen. 
However, the outlined approximation method even works if a relation with a 
negative coefficient is used (e.g., AspP - NADH = Yi). 

According to the conservation relations (4.65a) and (4.65b), we construct linear 
combinations of the governing equations, 

- = 
d dYt - (AspP + ASA) = v, - v3 - v7, (4.66a) 

d l  d t  

- - d 
dY' - - (AspP + NAD) = v, + v3, (4.66b) 
dt dt 

which do not involve the fast reaction rate'vz The equilibrium condition for the 
aspartate semialdehyde dehydrogenase reaction (ASADH) gives 

ASA . NAD 
NADH = (4.67) 

A ~ P P  . ~ A S A D H '  

With the conservation relation (4.65~) and YS, = NT, this yields 

Substituting this equation into Eq. (4.66b) and putting it together with Eq. (4.66a), 
we obtain by the chain rule of differentiation 

with 
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Q = ASA + qAS-H . AspP. (4.70) 

Now we takeiuto account that also homoserine dehydrogenase is fast. The fast 
subsystem has the stoichiometry matrix 

according to the following numbering of metabolites: (1) AspP, (2) ASA, (3) 
HSer, (4) NADH, (5) NAD. To this matrix, the conservation matrix 

can be attached. Accordingly, the following linear combination of governing equa- 
tions does not comprise any fast reaction rates: 

d 
- (AspP + ASA + HSer) = v, - v4 - v7, 
dl 

(4.73a) 

d - (AspP - HSer - NADH) = vl + v4 - v8, 
dt  (4.73b) 

and an equation saying that the sum of NAD and NADH does not change in time. 
Besides the equilibrium condition (4.67), now the relation 

holds true (HSDH stands for homoserine dehydrogenase). They give 

Substituting these equilibrium conditions into Eqs. (4.73a) and (4.73b), we 
obtain a two-dimensional equation system, which can be solved for dAspPldt and 
dASAldt. 

In biochemical and biophysical modeling, the situation may occur that fast 
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processes lead to side constraints other than chemical equilibria (e.g., quasi-elec- 
troneutrality conditions or osmotic equilibria). It may then occur that the fast 
variables cannot be eliminated analytically from these side constraints. A method 
to circumvent this difficulty is by differentiating the side conditions with respect 
to time. This gives additional differential equations, which can be integrated to- 
gether with the system equations (2.8), by use of appropriate initial conditions 
fulfilling the side conditions. These conditions are then automatically fulfilled for 
any subsequent point in time. This method was used, for example, by B ~ m e n  
and Heinrich (1984) to include an osmotic constraint into a model of erythrocyte 
metabolism. 

4.4. MODAL ANALYSIS 

A useful method for analyzing the behavior of cellular biological systems is pro- 
vided by modal analysis. The central idea of this technique is to linearize the 
governing differential equations and to perform a linear transformation of the 
component variables, so that the equations become uncoupled of each other and 
move on separate time scales (Palsson et al., 1984, 1985; Liao and Lightfoot Jr., 
1987, 1988a, 1988b). Time constants are here used in the sense of definition (4.6) 
based on the eigenvalues of the Jacobian. The method is based on the n o d  
mode analysis in classical mechanics. 

The first step is to choose a reference state So for linearization of the system 
equations (2.8). So may be, for example, a steady state or the initial state of the 
system. For simplicity's sake, we first consider the case that So is a stable steady 
state and will discuss the general case at the end of this section. Linearization 
then yields Eq. (2.82) with 6 s  = S - So (cf. Section 2.3.2). A similarity trans- 
formation is now applied to the Jacobian M, 

with A containing the eigenvalues of M as diagonal elements. In the case that M 
has multiple eigenvalues, it may not be diagonalizable. A is then the Jordan 
normal form of M (cf. Gantrnacher, 1959). W is called modal matrix and is 
constructed by using the eigenrows of M (i.e., the eigenvectors of the transposed 
matrix MT). The inverse matrix, W-', encompasses the eigenvectors of M as 
columns. 

W transforms the vector S into a vector X, 

X = ws. (4.77) 
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Provided that M is diagonalizable, the solution of Eq. (2.82) can be written, 
under consideration of 6 s  = S - So, as 

;,a- 

S(t) = W-'exp(ht)W(S(O) - So) + So (4.78) 

[cf. Eq. (2.84)]. From Eqs. (4.77) and (4.78), the solution for the components of 
X(t) can be written as 

Accordingly, each component of the vector X changes in time according to a 
"pure" exponential function, with the time constant - I/Re$ If M is not diag- 
onalizable, some functions xj(t) involve polynomial functions, 

where pj are the multiplicities of the eigenvalues 4, and a? are constant factors. 
As the long-term behavior is determined by the exponential part of this function, 
one can consider each variable xj to have the time constant - l/ReS, as in the 
case when M is diagonalizable. 

The equation S(t) = W-' X(t) [cf. Eq. (4.77)] shows that the components of 
the vector X are the time-dependent weights of the eigenvectors of M in the 
solution S(t). On the other hand, the components of the eigenrows of the Jacobian 
M are the weights of the concentrations Si in the ''pool" variables x,(t), which 
move on time scales corresponding to the eigenvalues of M. We will therefore 
call these eigenrows weighting vectors, wt. 

The main purpose of modal analysis is to detect the various time scales of the 
system. For example, by applying this procedure to red blood cell metabolism, 
Liao and Lightfoot Jr. (1987,1988b) showed that the time constants of this system 
cover a range from 0.9 ms to 12 h. In addition, modal analysis provides weighted 
sums (pools) of concentrations which move on the detected time scales. It is 
particularly interesting to evaluate the largest and smallest time scales relevant 
for the behavior of each substance involved in the system under study. 

Modal analysis also provides information about well-separated time scales 
(temporal hierarchy). Detecting the fast modes can help to choose and apply 
suitable approximation methods. To this end, one first chooses a reference point 
S,. This step can hardly be circumvented in the case of nonlinear systems, because 
the classification of slow and fast reactions then depends on the concentration 
values. However, the approximations based on modal analysis are remarkably 
insensitive to the choice of the reference state. Next, the Jacobian, its eigenvalues 
li, and eigenrows are calculated. Note that in the case of linear systems, the 
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Jacobian does not depend on concentrations. The eigenvalues are classified ac- 
cording to whether or not 

where z, is the minimum time constant of interest for the specific situation under 
study (given, for example, by the time resolution of experimental measurement). 
When studying the behavior of a metabolic pathway in the time range of, say, 
seconds to hours, one should define z,,, = 1 s. The weighting vectors wk corre- 
sponding to those & fulfilling condition (4.81) can be considered to have relaxed 
in a period shorter than the time scale of interest. Owing to Eqs. (4.77) and (4.79), 
this leads to the quasi-steady-state relation 

for times larger than the time constant - l/ReLk [with k being an index for which 
relation (4.81) is fulfilled]. This is equivalent to 

Because condition (4.81) excludes that wk is an eigenrow of the Jacobian M 
belonging to the eigenvalue zero, we have 

Due to this relation, the algebraic equation (4.83) couples several concentrations 
to each other, so that the system of governing differential equations can be reduced 
in dimension. This is particularly suitable for linear systems, in which the Jacobian 
and, hence, the modal matrix do not depend on concentrations. 

For illustration, consider again the reaction system of Scheme 9 (Section 4.2) 
with the parameter values 

that is, reaction 2 is assumed to be fast. The eigemows of the modal matrix then 
read (- 1.99, 1) and (1.007, I), and the corresponding eigenvalues R1 = - 150 
s-' and 3, = -0.67 s-', respectively. When z, is fixed to be, say, 0.1 s, the 
first mode can be classified to be fast. Equation (4.83) reads, in this case, 
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which gives 

This is an algebraic relation between S1 and S,, which approximately holds true 
after an initial time span of about - 113, = 6.7 ms. Interestingly, Eq. (4.87) is 
approximately equivalent to the quasi-equilibrium relation (4.34), due to the fact 
that k, and k-, are large. 

Obviously, there must exist interrelations between the modal analysis and 
rapid-equilibrium approximation. Both methods work with linear combinations 
of concentrations (pool variables). In a first attempt to elucidate this interrelation, 
it was shown that as the reactions classified to be fast become infinitely fast, each 
modal matrix W tends to an admissible transformation matrix T used in rapid- 
equilibrium approximation (Liao and Lightfoot Jr., 1988b; R. Schuster and S. 
Schuster, 1991). 

Finally, we consider the general case that So is not necessarily a stable steady 
state. The linearized system equation then reads 

and, in the transformed variable vector X, 

= ILY + Wf(S4 - AWP. 
dt 

The solution is found to be 

We see that each pool variable xj is composed of a constant and a term moving 
with the time constant - l/Re(L,). Therefore, modal analysis applies also in the 
general case. Clearly, this analysis as well as the rapid-equilibrium approximation 
do not require that the whole system eventually settles down to be stationary. 

Modes are often difficult to handle and to interpret, because they are, in general, 
linear combinations of concentrations with noninteger coefficients. In nonlinear 
systems, these coefficients even depend on the chosen reference state SO. There- 
fore, the approximation based on Eq. (4.83) is often cumbersome to apply. The 
question of whether the modal matrix can be simplified to a matrix with easily 
interpretable, preferably integer entries deserves to be studied in the future. 
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From the biological point of view it is an i m p o m t  task to characterize the role 
of the particular reactions proceeding in the living cell in determining the various 
dynamic modes of metabolism. Due to the high number of variables and the strong 
stoichiometric as well as regulatory interrelations, it seems to be impossible to 
gain such insight by qualitative considerations only. A theoretical framework, 
named metabolic control analysis, has been developed to elucidate in quantitative 
terms to what extent the various reactions of metabolic pathways determine the 
fluxes and metabolite concentrations. The theory is based on two types of coef- 
ficients, the control coeficients characterizing the systemic response of the system 
variables (fluxes, concentrations, etc.) after parameter perturbations and the elas- 
ticity coeficients which quantify the changes of reaction rates after perturbations 
of substrate concentrations or kinetic parameters under isolated conditions. In the 
early papers of metabolic control analysis a partly different terminology has been 
used, control strengths (Higgins, 1965; Heinrich and Rapoport, 1973, 1974a) and 
sensitivities (Kacser and Burns, 1973) for the systemic coefficients and effector 
strengths (Heinrich and Rapoport, 1974a) for the perturbations of isolated reac- 
tions. In this chapter it will be shown that metabolic control analysis yields a 
number of general rules which allow one to understand the systemic behavior of 
metabolic networks on the basis of the kinetic properties of their enzymes. 

Up to now a comprehensive theory has only been developed for the control of 
stationary states [for recent reviews, see Fell (1992). S. Schuster and Heinrich 
(1992), Liao and Delgado (1993) and Cornish-Bowden (1995)l. The fundamentals 
of this theory are outlined in the following sections. There are, however, several 
attempts to extend metabolic control analysis to time-dependent processes (relax- 
ation processes or oscillations; see Sections 5.5, 5.8.4 and 5.8.5). 
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Traditional metabolic control analysis is a linear theory which considers only 
the effect of infinitesimally small parameter perturbations in the vicinity of a 
reference state.where the systemic behavior is governed by linear approximations 
of the system equations (2.8). Recently, several attempts have been made to extend 
the theory to finite parameter perturbations (see Section 5.9). 

It will become clear in the following that in the present theory the term control 
is used in a very special sense which should be clearly distinguished from the 
term regulation. Whereas the former merely points to the effect of a change of 
arbitrary parameters on a system variable, the latter is closely related to the bio- 
logical function of metabolic pathways. In Section 5.10 it is shown, however, that 
metabolic control analysis may also be useful for quantifying metabolic regula- 
tion. 

5.1. BASIC DEFINITIONS 

Originally, metabolic control analysis was designed to quantify the concept of 
rate limitation in complex enzymic systems. Kacser and Burns (1973) drew at- 
tention to the fact that the steady-state fluxes Jj in a metabolic system depend on 
the values of the total concentrations Ek of the enzymes acting as catalysts of the 
individual reactions. Correspondingly, they defined fIwc control coeficients as 
follows 

which relate the fractional changes in the steady-state fluxes to the fractional 
changes in the total enzyme concentrations. 

Taking into account that kinetic parameters other than enzyme concentrations 
may affect reaction rates vk and, therefore, steady-state fluxes, Heinrich and Ra- 
poport (1973, 1974a) proposed using the following definition for flux control 
coefficients 

where Avk denotes the change in the activity of a reaction k due to the influence 
of a modifier or a change of an enzyme-kinetic parameter, not necessarily the 
enzyme concentration, while all other parameters and concentrations are kept 
constant. This means that Avk refers to a change in the enzyme rate under isolated 
conditions. 
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Because mathematically the fluxes Jj cannot be directly expressed as functions 
of the rates vk, Eq. (5.2) has to be regarded as an abbreviated notation of 

where p, is a kinetic parameter which affects only reaction k directly, that is, 

av. dv, # 0, = 0 for any j + k. 
apt apt 

In Sections 5.2 and 5.6 it is shown under what conditions the control coeffi- 
cients calculated on the basis of formula (5.3) are fully independent of the special 
choice of the parameter p,. The coefficients defined in Eq. (5.3) can then be 
interpreted as the extent to which reaction k (rather than some parameter) controls 
a given steady-state flux. 

The concept of control coefficients has been extended to quantify the response 
of steady-state concentrations (Heinrich and Rapoport, 1973, 1974a) by intro- 
ducing concentration control coefficients 

subject to condition (5.4). In Section 5.8 we will show how metabolic control 
analysis may be generalized by considering variables other than concentrations 
and fluxes. 

Concerning definitions (5.3) and (5.5). we will use in the following a somewhat 
modified notation which reflects that the control coefficients may be considered 
as elements of control matrices 

with the first subscript ( i  or j] and second subscript (k) referring to the rows and 
columns, respectively, of the matrices. Note that c;lk = C$ and ci = C$ 

Besides the coefficients defined in Eqs. (5.3) and (5.5) non-normalized (un- 
scaled) expressions have been introduced: 

4. 

(see Sections 5.2 and 5.7). 
The parameters pk can be of Werent types. Besides enzyme concentration, 

which enters definition (5.1), the Michaelis constant, the elementary rate con- 
stants, the turnover number, and the concentrations of external metabolites are 
admissible. In the framework of metabolic control analysis, those parameters that 
can be changed easily in experiment [e.g., the concentrations of enzyme-specific 
inhibitors (Groen et al., 1982)l are of special importance. 

5.2. A SYSTEMATIC APPROACH 

Let us consider a reaction network described by a system of ordinary differential 
equations of the type (2.8). as discussed in Section 2.1. The response of the steady- 
state concentrations Si and the steady-state fluxes Jk toward small parameter per- 
turbations can be systematically analyzed in the following way. The steady-state 
equation Nv(S,p) = 0 [cf. Eq. (2.9)] defines in an implicit manner the parameter 
dependence of the concentrations and fluxes; that is, the functions 

In the neighborhood of a stable reference state with kinetic parameters p = 
p0 the effect of parameter perturbations can be evaluated using a Taylor expansion: 

In this equation, Y represents the variables Si or 4. Apk = pk - p i  denotes the 
parameter changes, and AY = Ye) - yeo). In the following, the first and second 
partial derivatives of the variables with respect to the kinetic parameters which 
enter the right-hand side of Eq. (5.9) are named first-order and second-order 
response coefficients, respectively. For metabolic systems, the steady-state equa- 
tions (2.9) are generally highly nonlinear in the variables S and it is impossible 
to express the functions (5.8) in an explicit manner. However, restriction of the 
analysis to the linear terms in the Taylor expansion (5.9) enables us to derive 
simple expressions for ASi and dlj using the following procedure (for the second- 
order terms, cf. Section 5.9). 
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Implicit differentiation of Eq. (2.9) with respect top  yields, under considera- 
tion of Eq. (5.8a), 

In the case that the system does not contain conservation quantities and the 
steady state is asymptotically stable, the Jacobian M = NavIaS is nonsingular 
(see Section 2.3.2). Therefore, for the first-order response of metabolite concen- 
trations, one derives from Eq. (5.10) 

and for the response of steady-state fluxes, using Eqs. (5.8b) and (5.1 l), 

It is seen that for the metabolite concentrations as well as for the fluxes, the 
response coefficients can be split into two terms. The terms 

and 

depend via the stoichiometric coefficients on the systemic properties of the net- 
work but are independent of the special choice of the perturbation parameters. In 
contrast, the term avlap is independent of the systemic properties of the network 
and characterizes the effect of parameter changes on the individual reactions at 
fixed concentrations of the metabolites. If the parameter perturbations are infini- 
tesimally small (Ap = Sp) one may use linear approximations for Av as well as 
for AS and hl, that is, 

By definition, the elements of the vector Sv are the immediate changes of the 
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reaction rates after parameter perturbation at t = to, whereas the vectors SS and 
SJ contain the final changes of the concentrations which are attained after ad- 
justment of thesystem to the parameter perturbations for t + m. With (5.15), it 
follows from Eqs. (5.1 l)-(5.14) that 

The matrices of control coefficients cS and CJ transform the vector Sv into the 
vectors SS and SJ, respectively. Choosing the perturbation parameters in such a 
way that the matrix avlap is nonsingular, the matrices of unscaled control coef- 
ficients can be rewritten as follows: 

These equations can be used as definitions for control coefficients, which are 
more general than definitions (5.7a) and (5.7b), because the parameters p, need 
not be reaction-specific. Using Eqs. (5.17) and (5.18), the set of admissible pa- 
rameters can be considerably enlarged. For example, concentrations of enzymes 
catalyzing more than one reaction, concentrations of unspecific inhibitors, pH, or 
temperature can be used. 

Some simplifications result if there are reaction-specific perturbation param- 
eters fulfilling relation (5.4). Then Eqs. (5.17) and (5.18) can be specified to give 
Eqs. (5.7b) and (5.7a), respectively. 

The partial derivatives of reaction rates with respect to substrate concentrations 
or kinetic parameters are called (unscaled) elasticity coefficients. We use the fol- 
lowing notation: 

av. 
q = l: x-elasticities. 

aPk 

Elasticity coefficients characterize the kinetic properties of the individual enzymes 
in isolation, in a close neighborhood of a reference state (Bums et al., 1985). 

Reaction system with conservation equations: Formulas (5.13) and (5.14) for 
the calculation of control coefficients have to be modified if metabolic systems 
with conservation equations are considered (Reder, 1988). In this case, the stoi- 
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chiometric matrix does not have full rank (see Section 3.1) and the Jacobian 
M = NavIaS is, therefore, singular. Implicit differentiation of the steady-state 
equation (2.9) with respect to the kinetic parameters yields 

av as, av as, as, av p-- + NO--- + NO-=o. as, ap as, as, ap ap 

under consideration of the relation between independent concentrations S, and 
dependent concentrations Sb [cf. Eq. (3.10)]. Due to L' = aSb/aSa and Eq. (3.7), 

av as, av 
NO-L- + NO- = 0 as ap ap 

with avlaS = (avlaSa,avlaS,). L stands again for the link matrix. From Eq. (5.22) 
one gets 

where 

is the Jacobian of the reduced system, in which the dependent concentrations Sb 
have been eliminated by use of the conservation relations. @ is a nonsingular 
matrix because the steady state is assumed to be asymptotically stable. Taking 
into account Eqs. (3.10) and (5.23) one obtains 

for the parameter dependence of the concentrations and 

for the parameter dependence of the steady-state fluxes. For systems without 

conservation equations (L = I), Eqs. (5.25b) and (5.26b) simplify to Eqs. (5.13) 
and (5.14), respectively. 

Using Eqs,@25b) and (5.26b) and the definition (5.24) of the Jacobian of the 
reduced system, one can easily prove the relationships 

which are valid for any metabolic system. Relation (5.27a) means that CJ is an 
idempotent matrix (Gantmacher, 1959). Obviously, this equation implies that the 
matrix CJ raised to any integer power (greater than zero) equals this matrix itself. 
For a further discussion of relations (5.27a) and (5.27b), see Sections 5.3.4 and 
5.5. 

Response coejicients: Using definition (5.20), Eqs. (5.25a) and (5.25b) may 
be written as follows: 

and 

where ek and qk denote response coefficients (Kacser and Burns, 1973; Hofmeyr 
et al., 1986). These relations show that the effect of a perturbation of a parameter 
pk on a state variable Si or 4 may be described as a sum of individual terms 

which have been called partial response coefficients (Kholodenko, 1990). 
With Eqs. (5.28) and (5.29) the response of concentrations and fluxes to si- 

multaneous perturbations of several parameters can be written in the following 
form: 

and 
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Normalized coefficients: It is often useful to transform the unscaled coefficients 
into a normalized form. This gives, for the elasticities, 

and for the control coefficients, 

The reaction rates (v = J) and substrate concentrations S in the reference state 
are used for normalization. (dgY) signifies a diagonal matrix with the components 
of the vector Y standing in its principal diagonal. Note that premultiplication by 
a diagonal matrix implies that all entries of one and the same row of a matrix are 
multiplied by the same factor, whereas postmultiplication has a similar effect on 
the columns. Accordingly, the transformation rules (5.34a) and (5.34b) give the 
matrices defined earlier in Eqs. (5.3), (5.5) and (5.6). 

The normalized matrices E and rc contain the elements 

s. av. 
&.. = 2 2  (5.35a) 

V, asi' 

z, =&3 
~k (5.35b) v, apk' 

respectively, whereas the normalized matrices C' and CS contain, as elements, 
the control coefficients defined in Eqs. (5.3) and (5.5), respectively. 

The normalized coefficients can be written as logarithmic derivatives. This 
gives, for the elasticities, 

a h v .  
&.. = -1 (5.36a) 
I' a In Si' 

z, = 3 (5.36b) 
Ik a h p k '  

and for the control coefficients, 

a ln $ /a  h p k  
CS, = a ln vk/a lnpkP 

(5.37a) 

- .* 
To avoid undefined values of the logarithms, we use the convention that the re- 
action rates are counted in such a direction that they are positive. Using normal- 
ized coefficients, Eqs. (5.13) and (5.14) are replaced by 

and 

d = I + &CS, 

respectively. 
Response coefficients can also be defined in normalized form. They fulfill Eqs. 

(5.28) and (5.29) with normalized elasticities and control coefficients. 
Using, for an enzymatic network, the total enzyme concentrations Ek as per- 

turbation parameters, one obtains for the normalized control coefficients 

E as. c s  - 
P - s ,  aEk' 

under the assumption that the reaction rates are linearly dependent on enzyme 
concentrations, that is, 

Equation (5.40) is the definition of control coefficients originally proposed by 
Kacser and Burns (1973) [cf. Eq. (5.1)]. In deriving Eq. (5.40), a one-to-one 
correspondence of enzymes and reactions has been assumed (i.e., avjlaEk = 0 
for jZk) .  When the enzyme concentrations are not explicitly treated as variables, 
they belong to the system parameters. It is then more appropriate to denote the 
(normalized or non-normalized) partial derivatives of the system variables with 
respect to the enzyme concentrations as special response coefficients, ek and 
Qk, rather than to consider them as control coefficients. These response coeffi- 
cients are meaningful quantities also when condition (5.41) is not satisfied. 

In the above calculations, v normally stands for the rate of the overall enzyme- 
catalyzed reaction. It is important to note that the mathematical treatment formally 
remains valid when the system is described at a more detailed level of enzyme 
catalysis. In this case, v may play the role of the rates of the elementary steps 
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and, accordingly, the calculated control coefficients would refer to the control 
exerted by these steps rather than by the whole enzyme (see Sections 5.14 and 
5.15). In such a treatment, a number of additional conservation relations arise, 
owing to the fixed total enzyme concentrations. 

For the scale&control coefficients, these relations read 

5.3. THEOREMS OF METABOLIC CONTROL ANALYSIS 

5.3.1. Summation Theorems 
The various control coefficients are not fully independent of each other. l b o  

types of relationships between concentration control coefficients as well as flux 
control coefficients can be derived which are generally valid irrespective of the 
complexity of the considered reaction network. Some of the relationships, called 
summation theorems, reflect the structural properties of the reaction nehvork and 
are independent of the kinetic parameters of the individual enzymes. In contrast 
to that, the connectivity theorems presented in Section 5.3.2 relate the properties 
of the single enzymes to the systemic behavior. 

We first consider the normalized control coefficients given in Eqs. (5.38) and 
(5.39). Postmultiplication of these equations with the r-dimensional vector 1 = 
(1, . . . , l)T yields under consideration of the steady-state condition NJ = 0 

and 

that is, for each metabolic compound, the sum of the concentration control co- 
efficients is equal to zero, whereas the control coefficients of a given steady-state 
flux sum up to unity. Relation (5.42) represents the summation theorem for the 
concentration control coefficients (Heinrich and Rapoport, 1974a), and relation 
(5.43) the summation theorem for the flux control coefficients (Kacser and Burns, 
1973; Heinrich and Rapoport, 1974a). 

It was shown by Reder (1988) that relations (5.42) and (5.43) are special cases 
of generalized summation theorems. This may be seen best by using the matrices 
of unscaled control coefficients CS and C' which fulfill Eqs. (5.25b) and (5.26b), 
respectively. Postmultiplication of these equations by the null-space matrix K [cf. 
Eq. (3.44)] yields 

The number of generalized summation relations equals the number of linearly 
independent k vectors. In the case that the stoichiometry matrix is of full rank, 
this number is equal to r - n. If the metabolic system contains conservation 
quantities, the matrix K has r - rank(N) linearly independent columns. It is worth 
mentioning that the structure of the generalized summation theorems does not 
depend on the conservation relations, as can be seen by the fact that the link 
matrix L does not enter these theorems in an explicit manner. Because the vector 
of the steady-state fluxes is contained in the null-space of N, Eqs. (5.44a) and 
(5.44b) are also fulfilled if one uses the vector J instead of K. The resulting 
equations 

for the unscaled coefficients are equivalent to the special summation relations 
given in Eqs. (5.42) and (5.43) for the normalized coefficients. 

As outlined in Section 5.2, the control coefficients may be expressed in the 
form of partial derivatives of the concentrations or fluxes with respect to the 
enzyme concentrations in the case that the latter enter the rate laws in a linear 
manner. If this condition is fulfilled, the summation theorems (5.42) and (5.43) 
can also be derived on the basis of the following argument (Giersch, 1988). From 
Eqs. (2.9) and (5.8) it follows that the steady-state concentrations and steady-state 
fluxes are homogeneous functions of the enzyme concentrations of order 0 and 
1, respectively, which means 

and 

Differentiation of Eqs. (5.47) and (5.48) with respect to 1 yields 
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and 

respectively. For 1 = 1, this gives 

and 

which correspond to Eqs. (5.42) and (5.43), respectively. 

5.3.2. Connectivity Theorems 

and 

Postmultiplication of Eqs. (5.25b) and (5.26b) by (Jv1JS)L yields, under con- 
sideration of Eq. (5.24). 

respectively, which are the connectivity theorems of metabolic control analysis. 
With Eqs. (5.33) and (5.34) they may be rewritten using normalized control co- 
efficients and elasticity coefficients, 

A physical interpretation of the connectivity theorems related to the relaxation of 
fluctuations of system variables will be given in Section 5.10.3. 

For systems without conservation equations (L = I), Eqs. (5.52a) and (5.52b) 
simplify to the relationships originally proposed by Westerhoff and Chen (1984) 
and Kacser and Burns (1973), respectively, 

Introducing L = I in Eqs. (5.51a) and (5.51b) and comparing the resulting equa- 
tions with Eqs. (5.53a) and (5.53b) it is seen that for systems without conservation 
quantities, the form of the connectivity theorems is invariant to scaling of control 
coefficients and elasticity coefficients. 

The theorems derived above are also valid when the system is described at the 
level of elementary enzymic steps, provided the control coefficients as well as the 
elasticities refer to these steps. 

5.3.3. Calculation of Control Coefficients Using 
the Theorems 

In unbranched reaction chains, but not in branched systems, the traditional 
summation theorem (5.43) and the connectivity theorem are sufficient in number 
for calculating the flux control coefficients in terms of the elasticities (and simi- 
larly the concentration control coefficients) (Heinrich and Rapoport, 1975; Sauro 
et al., 1987; Westerhoff and Kell, 1987; see Section 5.4.3.1). Attempts were made 
to complete the set of equations by branch-point relationships (Fell and Sauro, 
1985; see Section 5.4.3.2). Later, it became clear that for arbitrary stoichiometries, 
the control coefficients are completely determined by the theorems if instead of 
the traditional summation relationships (5.42) and (5.43), the generalized sum- 
mation theorems (5.44a) and (5.44b) are taken into account, because the branch- 
point relationships are special cases of these. 

The summation and connectivity theorems [Eqs. (5.44) and (5.51), respec- 
tively] can be combined into the compact formula 

which is a central equation in metabolic control analysis. In the following, we 
show the equivalence of this equation with Eqs. (5.25b) and (5.26b), which give 
explicit expressions for C' and CS. Note that the stoichiometric properties of the 
metabolic pathway enter Eqs. (5.25b) and (5.26b) in the form of the stoichiometry 
matrix and Eq. (5.54) via the link matrix and null-space matrix. 

We first prove that the matrix 
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is the inverse of the matrix (K EL) entering the left-hand side of Eq. (5.54). 
Because K contains linearly independent columns only, the matrix product 

(KTK) is nonsingular and, hence, invertible. Moreover, we have 

Because all columns of K are orthogonal to all rows of P ,  a matrix composed 
of these two submatrices is nonsingular. Therefore, we can premultiply the right- 
hand side of Eq. (5.56) by 

NO- 'NO 
I = (KT) (KT). 

This gives, due to PK = 0, 

which completes the proof. 
Now we postmultiply Eq. (5.54) by the matrix given in Eq. (5.55) and obtain 

(where the relation KA + ELB = I following from Eq. (5.58) has been used) 
and 

Eqs. (5.59) and (5.60) are equivalent to Eqs. (5.26b) and (5.25b), respectively. 
Thus, the connectivity and generalized summation theorems can be used to cal- 
culate the flux and concentration control coefficients in terms of elasticities and 
stoichiometry. 
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5.3.4. Geometrical Interpretation 
Mazat et al. (1990) have shown that geometrical considerations may lead to a 

deeper insig%t into the theorems of metabolic control analysis. We will demon- 
strate this by analyzing the special example of an unbranched pathway consisting 
of only two reactions 

v 
p1 =A== v2 %A p2 Scheme 10 

with PI and P2 being outer metabolites. Reaction scheme 10 is characterized by 
the stoichiometric matrix N = (1 - 1). The concentration S1 which is the only 
internal variable affects the rate v, as a product of reaction 1, and the rate v2 as a 
substrate of reaction 2, that is, 

where p, and p2 are kinetic parameters which are assumed to act specifically on 
reactions 1 and 2, respectively. Using Eq. (5.61a) to express S1 as a function of 
vl, that is, S1 = S,(v,, p,), one obtains from Eq. (5.61b) 

which describes, at given values of the kinetic parameters, a curve containing all 
possible combinations of the reaction rates vl and v2 in the space of the reaction 
rates (see Figure 5.1). 

Due to the condition vl = v2, the steady-state reaction rate is determined by 
the intersection of the curve (5.62) with the straight line which is located in the 
direction of the vector 

k represents the basis for the one-dimensional null-space of N = (1 - 1). The 
tangent to the curve v2 = v$(v,) given by Eq. (5.62) at the steady-state point is 
given by the direction of the vector 
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Figure 5.1 Geometrical interpretation of flux-contml control coefficients for the reaction system 
depicted in Scheme 10. 

which contains the unscaled elasticity coefficients ell and ezl. S1 denotes the 
steady-state concentration of S,. The vectors k and t are not parallel because, 
otherwise, the only element of the Jacobian matrix, dv,ldS, - dvzldSl, would be 
zero, so that the condition that the real-parts of all eigenvalues of this matrix are 
negative would not be fulfilled. Therefore, initial perturbations 6v = (6~,,6v,)~ 
of the reaction rates can be decomvosed as a sum of two vectors. 6vc and 6vt, in . - 
the direction of k and t, respectiveiy; that is, 

k t 
6v = 6vk + 6vt = a,- + az- 

Ikl Itl 

with scalar coefficients a, and %. Thus, Eq. (5.16b) assumes the form 
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which gives, under consideration of the summation and connectivity theorems 
(5.44b) and (5.51b), 

Accordingly, the perturbation of the steady-state fluxes 6J is the projection of the 
initial perturbation 6v on the null-space vector k in the direction of the tangent t 
defined by the elasticity coefficients (see Figure 5.1). 

From Eq. (5.66), it follows that c i s  a projection matrix, which represents the 
mapping of the initial perturbation of reaction rates into the null-space to give the 
final change in steady-state fluxes. The direction of this projection is not normally 
orthogonal. This reasoning can be generalized to dimensions larger than 2. The 
space of reaction rates can be conceived of as spanned by the column vectors, ki, 
of the null-space matrix, K, and the vectors (eli, . . . , eJT, i = 1, . . . , rank (N), 
of unscaled elasticities with respect to the independent metabolites. Any pertur- 
bation 6v(6p) can then be decomposed as a linear combination of these r vectors. 
The resulting flux change 6J is a projection of 6v onto the subspace spanned by 
the vectors ki in the direction of the subspace spanned by the vectors of elasticities 
mentioned above. The property of C

J 

to be a projection matrix is also reflected 
in the relation C%' = C

J 

[Eq. (5.27a)l. 

5.4. CONTROL ANALYSIS OF VARIOUS SYSTEMS 

5.4.1. General Remarks 
In the following paragraphs various applications of metabolic control analysis 

are presented. We start with the calculation of elasticity coefficients on the basis 
of enzyme-kinetic equations and consider, thereafter, control coefficients of hy- 
pothetical and real metabolic pathways. 

When the rate equation of an enzymic reaction is known, the elasticity coef- 
ficients with respect to substrates, products, and effectors as well as the elasticities 
with respect to kinetic parameters can be calculated by differentiation (Section 
5.4.2). The calculation of control coefficients is more difficult. Due to nonlinear- 
ities in the steady-state equations, it is in most cases impossible to derive explicit 
expressions for the parameter dependence of the steady-state concentrations and 
steady-state fluxes. Therefore, the direct application of formulas (5.7) or (5.37) 
(i.e., determination of the control coefficients by explicit differentiation) is not 
possible. Different methods may be envisaged. Control coefficients can be cal- 
culated by Eqs. (5.25b) and (5.26b). which have been derived by implicit differ- 
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entiation of the steady-state equations. An alternative, equivalent procedure is the 
calculation of scaled or unscaled control coefficients on the basis of the sum- 
mation and connectivity theorems as outlined in Section 5.3.3. It requires the 
following information about the system: (1) a complete set of basis vectors of 
the null-space of the stoichiometry matrix, (2) conservation relationships as ex- 
pressed by the link matrix, and (3) the E-elasticity coefficients in a reference 
steady state. In addition, the calculation of scaled control coefficients necessitates 
the knowledge of the quantities used for normalization, that is, the concentrations 
and fluxes in the reference steady state. 

Whereas the basis vectors of the null-space and the link matrix may be easily 
obtained by analysis of the stoichiometry matrix, the E-elasticities as well as 
concentrations and fluxes in the reference state require experimental determina- 
tion or calculation on the basis of a model for the given metabolic pathway. In 
Section 5.4.4, we will study various models of glycolysis, which allow one to 
carry out a control analysis. Sometimes, conclusions concerning the control prop- 
erties of metabolic pathways may also be drawn on the basis of incomplete knowl- 
edge of the stoichiometric structure and the kinetic properties of enzymes (see 
Sections 5.12 and 5.13). The examples in this section are chosen so that analytical 
and simple numerical treatment is feasible. For more complex networks, special 
computer programs such as those mentioned in Section 5.17 are necessary. 

5.4.2. Elasticity Coefficients for Specific Rate Laws 
Let us consider elasticity coefficients for several well-known rate laws used in 

enzyme kinetics, which were considered in Section 2.2. 
(a) Michaelis-Menten equation: From the rate equation (2.24) one derives for 

the normalized E-elasticity 

es decreases monotonically with increasing substrate concentration. For very low 
substrate concentrations, where the Michaelis-Menten equation may be approx- 
imated by the linear equation v = (V,,,lKtns)S, the E-elasticity tends to unity while 
at saturating substrate concentrations, eS becomes vanishingly small. For the IT- 
elasticity of the Michaelis constant one derives 

From the Michaelis-Menten equation (2.20) for reversible reactions with S = 
S,, P = Sz, Kd = Kml, and Kd = Kmz. one gets the elasticity coefficients 
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and 

S P 
Ep = v ,  + - (V, + V,) - ( Kms ) K,,,P 

For v > 0, the E-elasticity for the substrate S is positive, and for the product P, 
it is negative. 

Rearranging terms in Eq. (5.70a) gives 

Owing to the Haldane relation (2.26) and with the rate of the forward reaction 

Eq. (5.71) can be written as 

The term PlqS characterizes the displacement from equilibrium (cf. Fell, 1992) 
and may be written in terms of the reaction affinity, PIqS = exp(-AIRT) [cf. Eq. 
(2.16)l. The term vflVi represents the fractional saturation of the enzyme with 
substrate. 

For a near-equilibrium enzyme, the first term on the right-hand side of Eq. 
(5.73) is much higher than the second term (which is bounded above by 1). In 
this situation, the normalized elasticity only depends on the displacement from 
equilibrium, 
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Similarly, 

The approximations on the right-hand sides of Eqs. (5.74a) and (5.74b) have been 
obtained by Taylor expansion of the exponential function up to the linear term. 
This approximation is justified because we assumed the enzyme to operate near 
equilibrium, so the affinity is small. It can be seen by comparison of Eqs. (5.70) 
and (5.74) that near equilibrium the elasticities become independent of the kinetic 
parameters and only depend on the thermodynamic properties (affinity). Clearly 
cS and c, tend to infinity as the reaction reaches equilibrium. 

(b) Hill equation: For the rate equation (2.40), the normalized elasticity co- 
efficient 

obtains, which implies cs + n~ for S + 0 and cs + 0 for S + 03. 

(c) Model of Monod, Wyrnan, and Changeux: With the rate equation (2.43a) 
one derives 

where the possible effect of activators is included in the allosteric constant L [cf. 
Eq. (2.43b)l. Considering the inhibitor concentration as a parameter of the kinetic 
equation, differentiation of Eq. (2.43a) with respect to I gives a n-elasticity 

Note that the term in the first parentheses on the right-hand side of Eq. (5.77) 
gives the n-elasticity of an irreversible MichaelisMenten kinetics with noncom- 
petitive inhibition with respect to the inhibitor concentration. 

In Figures 5.2A and 5.2B, cs and x, are plotted as functions of S and I, re- 
spectively, for the rate equation (2.43). 
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Figure 5.2 Substrate elasticity ES (A) and parameter elasticity x1 (B) as functions of the substrate 
and inhibitor concentrations for the Monod model according to Eqs. (5.76) and (5.77). respectively. 
Parameter values: (A) n = 4, IIK, = O; (B) n = 4, SIK, = 1. 
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(d) Generalized mass-action kinetics: The above calculations can be general- 
ized for any type of enzyme kinetics, by considering the generalized mass-action 
kinetics given in Eq. (2.15). One then obtains the following elasticities: 

When the enzyme operates near equilibrium, the expression for cj simplifies con- 
siderably because the denominator of the second term on the right-hand side of 
Eq. (5.78) is nearly zero, so that the fist term of the sum can be neglected in 
comparison with the second term. Furthermore, from Eqs. (2.1 la) and (2.1 lb), it 
follows that 

Therefore, Eq. (5.78) can be simplified to 

Again, the elasticity becomes, near equilibrium, independent of the kinetic prop- 
erties of the enzymes, which are expressed by the function F,.(S,p). In Eq. (5.80), 
either n,i or n$ is zero [cf. Eqs. (2.1 la) and (2.1 lb)]. Note that Eq. (5.74a) is a 
special case of Eq. (5.80) with n,i = 1 and n$ = 0, whereas Eq. (5.74b) is 
obtained with n,i = 0 and n$ = 1. 

5.4.3. Control Coefficients for Simple 
Hypothetical Pathways 

5.4.3.1. Unbranched Chains 
Many biochemical pathways (e.g., amino acid synthesis or glycolysis) can be 

modeled, in an idealized way, as unbranched reaction chains consisting of mono- 
molecular reactions, provided that the concentrations of cofactors are kept con- 
stant. Because of their simple structure, these reaction chains, with or without 
feedback loops, have often been the subject of mathematical modeling (Kacser 
and Bums, 1973; Heinrich and Rapoport, 1974a; Savageau, 1976; Hofmeyr, 1989; 
Palsson et al., 1985). 

Unbranched reaction chains such as that shown in Scheme 11 are suitable 

systems to which the control analysis as presented in the preceding sections can 
be applied. 

At steady state, all reaction rates are equal to the steady-state flux 

If the kinetic properties of the enzymes are described by the Michaelis-Menten 
equation (2.20) for reversible reactions, one may derive from the steady-state 
condition (2.9) the following expression for the metabolite concentrations: 

(Heinrich et al., 1987). k;+ and 4- denote the Michaelis constants of the substrate 
and product, respectively, of reaction j. y? and 5- are the maximal activities of 
the forward and backward reactions, respectively. Writing Eq. (5.82) for i = 
n + 1, one obtains, under the assumption that the concentrations of the pathway 
substrate, P I ,  and of the end product, = Pz, are constant, an expression 
which may be rearranged into a polynomial equation of order n + 1 for the flux 
J. For example, the steady-state flux of a chain with one internal metabolite S, 
and two reactions is determined by the quadratic equation 

with 

The concentration S1 is obtained by introducing the solution of Eq. (5.83) into 
Eq. (5.82). 

Due to Eq. (5.81), the matrix of flux control coefficients has the property that 
all its rows are identical. Therefore, it can be reduced to a vector with the elements 

= G f o r a l l i  = 1, ..., r. 
Unbranched pathways with nonsaturated enzymes: If all enzymes operate un- 

der nonsaturating conditions, that is, 
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the reaction rates are described by linear equations 

where 

[cf. the Haldane relation (2.26))] denote the first-order rate constants and ther- 
modynamic equilibrium constants, respectively. Equation (5.82) simplifies to 

From this equation one obtains, with = P,, an expression for the steady- 
state flux 

Because the steady-state flux can be written as an analytical function of the system 
parameters for the case of unbranched reaction chains with linear kinetics, control 
coefficients can be calculated in closed form in terms of these parameters. 

Let us use the rate constants kj as perturbation parameters in such a way that 
the equilibrium constants are not changed (i.e., kj and k-j are changed by the 
same fractional amount). This is realized, for example, by changes in the enzyme 
concentrations. One then obtains, under consideration of avjlakj = vjlkj, 

which with Eq. (5.88) yields 

(Heinrich and Rapoport, 1974a). Equation (5.90) implies 
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It is worth noting that for unbranched chains, normalization does not change 
the values of the flux control coefficients, because at steady state all reaction rates 
are equal to the steady-state flux. 

Equation (5.90) shows that bears a direct relation to llkj; that is, fast (slow) 
reactions generally have low (high) control coefficients. However, the values of 
the flux control coefficients are also strongly dependent on the thermodynamic 
equilibrium constants and on the position of the reaction within the chain. This 
may best be demonstrated by considering the ratio of two flux control coefficients 

c' ki i-l 
= - fl q, with i > j. c kj i=j 

From this equation, one derives, for example, that the flux control coefficient of 
a reaction i which is located beyond an irreversible reaction s with q, + m becomes 
vanishingly small for any finite value ki. 

One may also take the kj as perturbation parameters in such a way that the 
backward rate constants, k-j, are not changed. This possibility will be discussed 
in more detail in Section 5.6.2. 

Using Eq. (5.88), flux changes may be calculated also for finite parameter 
perturbations with al l  equilibrium constants fixed. With AJ = J(kl + Akl, . . . , 
k,,, + Ak,,,) - J(kl, . . . , k,,,), one derives, with the help of Eqs. (5.88) and 
(5.90), 

with Avj = Akj(S,- - Sj/qj) denoting the perturbations of reaction rates consid- 
ered as if the reactions proceeded in isolation. Equation (5.93) means that for 
unbranched chains with linear rate laws, flux control by arbitrary rate perturba- 
tions Avj can be characterized completely by the flux control coefficients origi- 
nally defined for infinitesimal perturbations. For very small values of Avjlvj. Eq. 
(5.93) and the summation relationship (5.91b) entail the linear approximation 
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In the case that only one reaction k is perturbed, Eq. (5.93) becomes (cf. Small 
and Kacser, 1993; Hofer and Heinrich, 1993) 

This equation has some importance for the question of whether control coeffi- 
cients, which are defined for infinitesimal parameter changes, are helpful for es- 
timating the effect of finite changes, as will be discussed in Section 5.9. 

General treatment: If the reaction rates of the enzymes are described by non- 
linear kinetic equations (e.g., the Michaelis-Menten kinetics), there are generally 
no explicit expressions for the steady-state flux or for the metabolite concentra- 
tions, and the control coefficients cannot be calculated by direct differentiation. 
However, much insight is gained by application of the summation and connectiv- 
ity theorems which allow to express the and as functions of the elasticities 
(see Section 5.3.3). 

Let us first consider the unbranched two-enzyme system depicted in Scheme 
10 (Section 5.3). The summation and connectivity theorems for the flux control 
coefficients read 

which have the solutions 

For the concentration control coefficients, these theorems read 

From these equations, one obtains 

In the typical situation that < 0 and > 0 (neither product activation nor 
substrate inhibition), Eq. (5.97) requires that both flux control coefficients be 
positive. The control coefficient of reaction 1 with respect to the intermediate 
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concentration is also positive, whereas the concentration control coefficient of 
reaction 2 is negative. 

For the c*e n > 1, we assume that vi is only affected by the concentrations 
of its substrate (Si- ,) and of its product (Si). Then the elasticity coefficients read 

and the connectivity theorem (5.53b) assumes the form 

We here assume all reactions to be reversible, so that all eii are nonzero. Equation 
(5.101) implies 

for 1 5 i 5 n. The coefficient c+ which enters Eq. (5.102) can be determined 
using the summation theorem (5.43). One obtains 

as a general expression for the flux control coefficients in an unbranched enzymic 
chain. 

Equation (5.101) implies that the ratio of the control coefficients of two neigh- 
boring reactions equals the negative inverse ratio of the elasticities of these re- 
actions with respect to the intermediate shared by these reactions. Because near- 
equilibrium enzymes have high elasticities [cf. Eqs. (5.74a) and (5.47b)], this 
implies that these enzymes exert almost no flux control. Furthermore, when an 
enzyme is nearly saturated with its substrate, the elasticity with respect to the 
latter is very low. Equation (5.103) then implies, in general, that the control co- 
efficient of substrate-saturated enzymes be high. When an enzyme is saturated 
with its product, it follows from this equation that the control coefficient of the 
subsequent enzyme in the chain is, in general, very low. 

In the case that 

cii<O, E ~ + , , ~ > O  foranyi, (5.104) 

it follows from Eq. (5.103) that all flux control coefficients are non-negative. 
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Therefore, the summation theorem implies that they are all smaller than, or equal 
to unity. Using linear kinetics, one can easily transform Eq. (5.103), which ex- 
presses the flux control coefficients in terms of elasticities, into Eq. (5.90), which 
expresses them in terms of system parameters. 

For the calculation of the concentration control coefficients we use the con- 
nectivity theorem (5.53a) which reads, under consideration of Eq. (5.100), 

Applying this equation for j # i, one obtains the following two recurrent formulas: 

and 

8.- G+, = -cj- fori + 1 C j S n .  (5.106b) 
Ej+lj 

As the flux control coefficients are known [cf. Eq. (5.103)] it is appropriate to 
.replace the ratio & j + l j / & j  in Eqs. (5.106a) and (5.106b) by the ratio - C;'/G1 
[cf. Eq. (5.101)]. The resulting equations may be used to express all coefficients 
C", with j < i and j > i + 1 as functions of c and < , + ,  , respectively, and of 
flix control coefficients, 

and 

c' G. = ci+,- fori + 1 5 j S n  + 1 .  (5.107b) c'+ 1 

With Eqs. (5.107a) and (5.107b), the summation theorem for the concentration 
control coefficients reads 

This equation and the connectivity theorem (5.105) applied for i = j represent 
two linear equations which can be solved for c and q i + ,  . From these, in turn, 
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all concentration control coefficients can be calculated using Eqs. (5.107a) and 
(5.107b). The final result is 

.a. 

Under the assumption that cii < 0 and c i + ] , ,  > 0 [cf. relation (5.104)] which 
implies positive flux control coefficients, one may derive from Eqs. (5.109a) and 
(5.109b) > 0 for j 5 i and < 0 for j > i; that is, activation of an enzyme 
leads to a decrease of the concentrations of all metabolites which are located 
upstream, whereas all metabolite concentrations downstream are increased. This 
fact is also expressed by the crossover theorem [see Higgins (1965) and Section 
5.10.11. 

Further conclusions from Eq. (5.109) are (a) very fast enzymes which exert 
no flux control (C;' = 0) also have vanishing concentration control coefficients; 
(b) when all enzymes downstream a metabolite Si or all enzymes upstream this 
metabolite are very fast, so that they have very low flux control coefficients, then 
all control coefficients with respect to the concentration of this metabolite are 
very small. This may be explained by the fact that in these cases all metabolites 
Sj are in quasi-equilibrium with the end product or with the initial substrate of 
the chain. 

Unbranched chain with feedback inhibition: Feedback inhibition is a frequent 
phenomenon in biochemical pathways. The physiological role of such regulatory 
loops for homeostasis has intensely been discussed (Umbarger, 1956; Other ,  
1976; Dibrov et aL, 1982). The apparatus of metabolic control analysis can be 
used to quantify such homeostatic effects. 

Let us consider the reaction chain shown in Scheme 6 (Section 2.4.6) under 
the simplifying assumption that all enzymes catalyze irreversible reactions, that 
is, 

& ,  [= 0 for j = i 
" # O  f o r j = i -  1. 

It is further assumed that the feedback is exerted by the metabolite S, which acts 
as an inhibitor of the first reaction, which means 
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Let us first consider t h e m  control coeficients. Using Eq. (5.1 lo), it follows 
immediately from Eq. (5.101) that 

and theconnectivity and summation theorems for the two remaining coefficients 
c$ and c+ I;,, read 

Equation system (5.113) has the solution 

In the absence of feedback inhibition (E, ,  = 0) only the first enzyme exerts 
the flux control (c$ = 1, c+, = 0). For E ~ , ,  # 0, f l u  control is shared by two 
enzymes: the first enzyme El and the enzyme En+, which degrades the inhibitor 
S,. If en+ > 0 (which is generally fulfilled because S, is the substrate of En+ ,), 
one derives c$ > 0 and c+, > 0 from Eq. (5.114). Because 

the flux control is shifted entirely to the end of the chain if if the feedback inhi- 
bition is very strong, that is, lel,,l >> l ~ , + ~ , , l .  

In a similar way, the summation and connectivity theorems can be used to 
calculate the concentration control coeficients. One obtains for the coefficients 
of the first enzyme 

(i = 1, . . . , n) and of the last enzyme 

< 0 for i = n. 

(5.117b) 
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The enzymes E$, . . . , En which exert no flux control [cf. Eq. (5.112)] generally 
have nonvanishing control coefficients with respect to the concentrations of their 
substrates. Qle obtains 

(i = 2, . . . , n - 1). In Eqs. (5.116)-(5.118), the inequalities refer to the case 
E ~ + ~ , ~  > 0, and all coefficients % not listed are equal to zero. 

It follows from Eq. (5.1 16) that a very strong feedback inhibition (le,,,l >> 1) 
results in very low concentration control coefficients of the input reaction with 
respect to all metabolites (c, << 1). Furthermore, Eq. (5.117b) implies that in 
this situation the control of the last reaction with respect to the last intermediate, 
S,, is also very weak (Ic,,+lI >> 1). Both facts indicate the homeostatic effect 
of the negative feedback loop (see Section 5.10.1). 

5.4.3.2. A Branched System 
For the reaction system depicted in Scheme 7 (Section 3.2.4) the stoichiometry 

matrix reads N = (1 - 1 - 1). Using 

as basis vectors for the null-space of N (see Section 3.2). the summation and 
connectivity relations for the unscaled control coefficients may be subsumed into 
the following matrix equation: 

Note that this equation is a special case of Eq. (5.54). Solving this linear equation 
system for the flux control coefficients leads to 

For example, in the usual case that E,, < 0 (product inhibition) and E,,, E,, > 
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0 (substrate activation) one derives immediately from Eq. (5.121) that all flux 
control coefficients q. are positive except for c3 and G 2 ,  which are negative. 

The system represented in Scheme 7 may also serve as an example to illustrate 
that the branch-point relationships introduced by Fell and Sauro (1985) are di- 
rectly related to the generalized summation theorem (5.45b). Taking this relation 
for one column, k, of the null-space matrix gives CJ(dgJ-'k = (dgJM'k for 
the normalized flux control coefficients. Using for the system depicted in Scheme 
7, k = J = (J1 Jz J3)T, one arrives at summation relationships for the three fluxes 
saying that for a given flux, the sum of all control coefficients equals unity. The 
branch-point relationships are obtained by choosing the k vector in three other 
ways. With k = (0 1 - one derives from Eq. (5.45b) that 

Using the following abbreviations for the flux ratios 

one obtains the first branch-point relation 

(1 - a)G2 - aG3 = 0. 

Similarly, with k = (1 0 I ) ~ ,  one obtains 

(1 - a)GI + CJu = O 

and with k = (1 1 O)T, 

aG, + G2 = 0. 

Equations (5.124a)-(5.124~) represent the branch-point relationships for the 
reaction system shown in Scheme 7, which together with the three summation 
relationships and the three connectivity relationships are sufficient to calculate the 
nine flux-control coefficients as functions of the elasticities and the flux ratio a. 

5.4.4. Control of Erythrocyte Energy Metabolism 
5.4.4.1. The Reaction System 
We consider glycolysis in erythrocytes to demonstrate how the control prop- 

erties of a real pathway may be derived on the basis of a mathematical model. 
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The glycolytic system has attracted much attention of both experimentalists and 
theoreticians for many years. This concerns, for example, glycolytic oscillations 
(see SectionR.4.3). However, in addition to oscillatory modes, steady states are 
very frequently observed. The regulatory principles of these states are worth being 
investigated and still involve many unsolved problems, despite the fact that many 
of the glycolytic enzymes have been purified and characterized kinetically and 
that reliable flux and concentration data exist for different conditions. One reason 
for the difficulties encountered is the fact that in many cells the glycolytic pathway 
is interconnected with other pathways such as respiration, gluconeogenesis, and 
the pentose phosphate pathway. In order to study glycolysis per se, the choice of 
an appropriate simple biological system is therefore of great importance. In the 
present section we consider mature mammalian erythrocytes where the metabo- 
lism is reduced virmally to glycolysis with some contribution of the pentose 
phosphate pathway. However, even in the glycolytic system of the erythrocyte, a 
rather high number of enzymes participate which are coupled with each other. 
For the purpose of deducing the essential relations in metabolism, appropriate 
simplifications have to be introduced in setting up a model. In particular, it is 
taken into account that glycolysis, as most other biochemical pathways, includes 
slow and very fast enzymes. This allows to apply the rapid-equilibrium approx- 
imation which leads to a reduction of the number of variables a d  parameteiH (see 
Section 4.3). Furthermore, the models of erythrocyte metabolism presented below 
neglect the pentose phosphate pathway because its contribution in the consump- 
tion of glucose is only 10% at pH 7.2. 

The reactions taken into account are depicted in Figure 3.1. These are (1) the 
reactions of the Embden-Meyerhof pathway, (2) the two reactions of the 2,3PzG 
bypass, and (3) the nonglycolytic ATP-consuming processes which are partly 
coupled to the active transport of sodium and potassium across the cellular mem- 
brane. The full stoichiometry matrix of this system is given in Table 3.1. 

In this section we present three different models of erythrocyte metabolism 
characterized by increasing complexity. Each model has its own limits of validity. 
Model A (Section 5.4.4.2) neglects all nonglycolytic processes, in particular the 
nonglycolytic ATP-consuming processes. Model B (Section 5.4.4.3) takes into 
account the interplay between ATP-producing and ATP-consuming processes, and 
Model C (Section 5.4.4.4) considers in some detail the interaction between energy 
metabolism and osmotic properties of erythrocytes. 

5.4.4.2. Basic Model 

This model of the glycolytic system (Model A) is based on the following 
assumptions (see Heinrich and Rapoport, 1973; Rapoport et aL., 1974): 

1. Among the glycolytic reactions, one may distinguish two different groups of en- 
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Table 5.1 Values of Parameters and Variables of Model A (In Vivo Steady State) 

Parameter Value Variable Value 

Metabolite 
Concentrations 
ATP 1.2mM 
ADP 0.22 mM 
Lac 1.4 mM 
PY r 0.08 mM 

Kinetic Constants 
k~~ 1.94lh 
~ P F K  50.8h 
~ P K  125.Olh 
~ P P G M  3.76 X 10% 
V m . ~ z ~ a s e  0.75 mM/h 

Equilibrium Constants 

Flux Rates 

Metabolite 
Concentrations 
G6P 
F6P 
FP2 
GAP 
DHAP 
1,3P2G 
2,3 P2G 
3PG 

2PG 
PEP 
NADrnADH 

zymes. The first group encompasses enzymes which catalyze quasi-irreversible 
reactions with high equilibrium constants % (-A@ >> RT). To this group belong 
hexokinase (HK, EC 2.7.1.1). phosphofructokinase (PFK, EC 2.7.1.11), bisphos- 
phoglycerate mutase (P2GM, EC 5.4.2.4). 2,3-bisphosphoglycerate phosphatase 
(P2Gase, EC 3.l.3.13), and pyruvate kinase (PK, EC 2.7.1.40). Another group of 
enzymes catalyzes reversible reactions, for which the mass-action ratios T i e r  little 
from the equilibrium constants. To this class belong phosphoglucoisomerase (PGI, 
EC 5.3.1.9), fructosebisphosphate aldolase (Ald, EC 4.1.2.13), triose-phosphate 
isomerase (TIM, EC 5.3.1.1), glyceraldehyde3-phosphate dehydrogenase, 
(GAPD, EC 1.2.1.12). phosphoglycerate kinase (PGK, EC 2.7.2.3), phosphogly- 
cerate mutase (PGAM, EC 5.4.2.1), enolase, (Enol, EC 4.2.1.11). and lactate de- 
hydrogenase (LDH, EC 1.1.1.27):In accordance with experimental data, it is as- 
sumed that these enzymes are fast compared to those of the former group. The 
rapid-equilibrium approximation (see Section 4.3) leads to equilibrium conditions 
for the corresponding reactions. 
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2. The concentration of the adenine nucleotides ADP and ATP are considered to be 
fixed; that is, they are parameters of the model. Their concentrations are determined 
not 09 by glycolysis but by the interplay of ATP-producing and ATP-consuming 
processes (see Model B). 

3. Among the many regulatoly couplings realized by the action of metabolites as 
activators or inhibitors, only the feedback inhibitions of HK by G6P and of P2GM 
by 2,3P2G are taken into account. 

4. Simple rate laws were used to characterize the kinetic properties of the enzymes 
which were based on a linear relationship between enzymatic activity and substrate 
concentrations. The fast enzymes were characterized solely by the equilibrium 
constants. 

5. The mathematical treatment is confined to the steady state observed under in vivo 
conditions. The model serves two purposes: (a) calculation of the glycolytic flux 
J = J,,,, and of the metabolite concentrations as functions of the model parameters 
and comparison of the results with experimental data; @) characterization of the 
control of the glycolytic flux by evaluating the control coefficients of the gly- 
colytic enzymes. 

Under steady-state conditions, the reaction rates of the enzymes HK, PFK, and 
PK must fulfill the following conditions: 

where J represents the steady-state flux of glycolysis (consumption of glucose). 
The factor 2 in Eq. (5.125b) indicates that the flux beyond the aldolase is twice 
that through the PFK. By use of the rate equations 

(K,,,: inhibition constant of glucose-6-phosphate) and the equilibrium relation 

Eq. (5.125a) becomes a quadratic equation for the concentration of F6P, 
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Under in vivo conditions the concentration of glucose does not enter the rate 
equation of HK [Eq. (5.126a)l because the intracellular concentration of glucose 
(Gluc = 5 rnM) is much higher than its Km value (Kmoluc = 40 pM). 

Inserting the relevant solution of Eq. (5.128) into Eq. (5.126b), one gets 

for the glycolytic flux. Using the linear relation 

and taking into account the steady-state condition (5.125b), the concentration of 
PEP is determined by 

21 
PEP = - (5.131) 

~ P K  

with J given by Eq. (5.129). The concentrations of all other metabolites may be 
obtained from PEP by consideration of the equilibrium conditions for the fast 
enzymes as well as of the steady-state condition of the two enzymes of the 2,3P2G- 
bypass. As enolase, phosphoglycerate mutase, and phosphoglycerate kinase are 
quasi-equilibrium enzymes, we have 

PEP - =  2PG 3PG . ATP 
2PG 4enol9 3pG = 9ffi.m- 1,3P2G . ADP = qffiK (5.132) 

with 2PG and 3PG denoting the concentrations of 2-phosphoglycerate and 3- 
phosphoglycerate, respectively. Therefore, with formula (5.131) one gets 

The concentration of pyruvate and lactate are maintained in vivo at almost con- 
stant levels by the interplay of various tissues. Therefore, the concentrations Pyr 

and Lac may be considered as parameters. The NADNADH ratio is, therefore, 
fixed by the equilibrium condition for the LDH reaction, 

a. 

NAD -- PY 
NADH - ~ W H  - Lac 

The concentrations of GAP, DHAP, and FP, are calculated on the basis of the 
equilibrium conditions for the enzymes GAPD, TIM, and aldolase in the follow- 
ing way 

1 ,3P2G NADH 
GAP = 

~ G A P D  . NAD ' 

DHAP = q m  . GAP, (5.135b) 

G A P .  DHAP 
FP2 = 

q ~ l d  

with 1 ,3P2G and NADNADH resulting from Eqs. (5.13%) and (5.134), respec- 
tively. 

The calculation of the 2,3P2G concentration requires the steady-state condition 

Under in vivo conditions the enzyme P2Gase is saturated by its substrate, because 
the concentration of 2,3P2G (=5 rnM) is about 500 times higher than the corre- 
sponding Km value. Considering the inhibition of the P2GM by its product 2,3P2G, 
one may use the kinetic equations 

With these equations one obtains from Eq. (5.136) 

for the 2,3P2G concentration, where for 1,3P2G one has to insert formula (5.133~). 
The values of the parameters and variables of Model A are listed in Table 5.1. 

The values approximate the experimental data obtained by kinetic characterization 
of the isolated enzymes as well as by determination of the flux rates and metab- 
olite concentrations under in vivo conditions. 
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Inspection of formula (5.129) shows that under the given model assumptions, 
the glycolytic flux is only dependent on the kinetic parameters of the enzymes 
HK and PFK and on the equilibrium constant of PGI. It does not depend on the 
kinetic properties of the PK and the fast equilibrium enzymes. Therefore, the 
summation theorem for the normalized flux control coefficients assumes the form 

Because the parameters kHK and kpm enter the rate laws of HK and PFK, respec- 
tively, in a linear manner the coefficients C', and c',= may be calculated as 
follows: 

By use of Eq. (5.129) one gets 

C : , = l - & = I -  
a12 

(5.141a) 
( i n  + Jizi)JG 

with 

kHK ATP 
a = 

k ~ F K q F G ~  K ~ , ~ 6 ~  ' 

One may easily see that 

always; that is, flux control is exerted mainly by the hexokinase, the first enzyme 
of the glycolytic pathway. Using the parameter values listed in Table 5.1 one 
obtains GK = 0.69 and c',= = 0.31. The participation of phosphofmctokinase 
in flux control results from the feedback inhibition of hexokinase by G6P. An 
inhibition of the PFK, for example, would lead to an increase of its substrate F6P 
as well as of G6P, which would diminish the glycolytic flux by inhibition of the 
hexokinase. Elimination of the feedback inhibition of G6P (K,,,,, 4 m) would 
result in C',, 4 0 [cf. Eq. (5.141)]. 

Despite the higher control coefficient of the HK, the enzyme PFK may play 
an important role in the regulation of glycolysis owing to the high elasticity 
coefficients of a great number of internal and external effectors for this enzyme 
(see Otto et aL, 1974, 1977). 
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5.4.4.3. Interplay of ATP Production and ATP Consumption 

1 Selkov (1975a, 1975b) proposed a skeleton model of glycolysis which, in 
contrast to &del A presented in Section 5.4.4.2, focuses on the production and 

i degradation of ATP. It is described by the reaction scheme 12, 

Scheme 12 
ATF' ADP ADP 

AMP ADP 

where PI represents glucose and S1 the pool of metabolites in the middle part of 
glycolysis. The ATP-consuming reactions of the upper part and the ATP-produc- 
ing reactions of the lower part of glycolysis are lumped into reactions 1 and 2, 
respectively. v, represents the velocity of a side reaction without ATP production 
(describing, for example, the biosynthetic reactions leading to the synthesis of 
serine). v, denotes the rate of nonglycolytic ATP-consuming reactions (ATPases) 
and v, the rate of the adenylate kinase reaction (AK, EC 2.7.4.3). The model of 
Selkov has been modified by Heinrich and Rapoport (1975) by taking into account 
special features of e~ythrocyte glycolysis, in particular the 2,3P2G bypass (Model 
B, see Figure 5.3). The reaction scheme results from that depicted in Figure 3.1 

HK-PF 
* 

PGK Ghc W I G  nm PEP* P~ 

f 
ADP AMP 

Figure 5.3 Simplified reaction scheme of erythrocyte glycolysis (Model B). The upper part of 
glycolysis (HK, PGI, PFK, Ald, TIM. GAPDH) are lumped into one reaction "HK-PFK." The lower 
part (PGAM, Enol, PK) is represented by the PK reaction. 
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by some simplifications. Furthermore, the substrate inhibition of phosphofructo- 
kinase by ATP was included. Because the flux through the lower part of glycolysis 
is twice the flux through the upper part, 4 moles of ATP are produced at the 
reaction steps catalyzed by the enzymes PGK and PK, whereas 2 moles of ATJ? 
are consumed by the HK-PFK system. Accordingly, the degradation of 1 mole of 
glucose leads to the net production of 2 moles of ATP. The actual ATP production 
is decreased depending on the share of the 2,3P2G bypass which circumvents the 
ATP-producing PGK reaction. 

As in Model A, very simple rate laws were used for all enzymes. Except for 
the HK-PFK system, the activities of all enzymes were characterized by linear or 
bilinear relationships (see Table 5.2). Furthermore, all reactions are considered to 
be irreversible except for the adenylate kinase reaction (AK). For the sake of 
simplicity, the saturation of the PzGase by 2,3PzG is neglected. 

The factorflATP) in the expression v,,,, (Table 3) describes the substrate 
inhibition of PFK by ATJ?. K1,, and nH are the inhibition constant and the coop- 
erativity coefficient, respectively, of the substrate inhibition by ATJ?. 

Figure 5.4 shows the rate of the HK-PFK system as a function of ATP ac- 
cording to the rate law listed in Table 5.2. ' h o  cases are considered: nH = 1 (no 
substrate inhibition) and nH = 4 (substrate inhibition). The kinetic constant 

Table 5.2 Rate Equations of  Glycolytic Enzymes 
Included in Model B 

v 3 - p ~ ~  = ~HK.PFKATP.~(ATP) 

d - ATP = - 2vHK- p ,  + v,, + vPK - vA,, - v,. 
dt (5.1440 

From Eqs. (5.144d)-(5.144f), it follows that 

kHK-PFK was adjusted in such a way that in both cases a rate v,,,, = 1.25 mM/ 
h was obtained for ATP = 1.2 mM (in vivo point P in Figure 5.4). 

Using the rate law given in Table 5.2 one may calculate the elasticity coefficient 
for the HK-PFK system with respect to the ATJ? concentration. One obtains: 

The dynamic properties of the model depicted in Figure 5.3 are governed by the 
following differential equations 

d - (AMP + ADP + ATP) = 0, 
dt 

AMP + ADP + ATP = A = const.; (5.145b) 

that is, the sum A of the concentrations of the adenine nucleotides is a conserved 
quantity. Because adenylate kinase is a very fast enzyme, the rapid-equilibrium 
approximation can be applied to Eq. (5.144d). This leads to the following equi- 
librium relation between the concentrations of the adenine nucleotides: 

Note that, when only steady states are considered, the adenylate kinase reaction 
could be considered to be at equilibrium even if it were not fast, because it rep- 
resents a strictly detailed balanced reaction in the scheme given in Figure 5.3 (see 
Section 3.3.2). In system (5.144), the velocity v, may be eliminated by subtract- 
ing Eq. (5. 144d) from Eq. (5.144f), 

following the procedure explained in Section 4.3. Equations (5.145b) and (5.146) 
represent two algebraic conditions for the concentrations of the adenine nucleo- 
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Table 5.3 Values of Parameters and Steady-State 
Values of Variables of Erythrocyte Glycolysis 

Parameter Value 

km-PFK 3.2Oh 
~ R G M  1500h 
k,, 0.15h 
kpoK i . 5 7 . i o 4 ~ ~  h 
~ P K  559ImM h 

1.46h ~ A T P ~  

nn 4.0 
KI.ATP 1.0 mM 
~ A K  2.0 
A 1.5 m M  

Variable Value 

Metabolite Concentrations (mM) 
1,3P2G 0.0005 
2,3PzG 5.0 

Figure 5.4 Glycolytic rate v ~ p ,  as a function of the ATP concentration according to the rate 

0.02 
law of the HK-PFK system given in Table 5.2. Parameter values: curve a. nn = 4. k,., = 3.20 

PEP h-'; curve b, nn = 1, kHK.Pp~ = 2.29/h; P: in vivo point; broken line: ATP = A. 
AMP 0.076 
ADP 0.22 
A TP 1.20 It is seen that the concentration of AMP decreases monotonically with increas- 

ing ATP concentration, whereas the function for ADP displays a maximum and 
Metabolic Fluxes (mMih) becomes zero for ATP = 0 and ATP = A. 
VHK-PFK ( = J )  1.25 The left-hand side of Eq. (5.147) may be rewritten as follows 
VRGM 0.75 
V P Z G ~ S C  0.75 

1.75 VPGK 

VPK 2.50 

From Eqs. (5.147) and (5.149), it follows that 

tides. Accordingly, the concentrations of AMP and ADP may be expressed by -ATP = 1 -- 
the concentration of ATP: ( Z i ) - ' ( - 2 v m -  ~ r n  + VPGK + VPK - VATPA. (5.150) 

[ q;. d m ]  The differential equation system (5.144) can now be reduced in dimension by 
ADP = A -- + - + qAK- 1 - - = g,(ATP), (5.148a) replacement of Eqs. (5.144d)-(5.1440 by the algebraic conditions (5.148a) and 

(5.148b) and the differential equation (5.150). 
AMP = A - g,(ATP) - ATP = g2(ATP). Stationary states are defined by vanishing time derivatives of the metabolite 

concentrations. One obtains from Eqs. (5.144a)-(5.144~) and (5.150) 
The functions ADP = g,(ATP) and AMP = g2(ATP) are represend graphically 
in Figure 5.5. 2 % ~ - P P K  - VPZGM - VWK = 0,  



182 Metabolic Control Amlysis 
Control Analysis of Various System 183 

Figure 5.5 Interrelation between the concentrations of adenine nucleotides according to Eqs. 
(5.148a) and (5.148b) for qAl( = 2; P: in vivo point. 

Summation of Eqs. (5.15 1 aH5.15 Id) yields 

v P G ~  = v ~ ~ a a c  

and, by use of the kinetic equations listed in Table 5.2, 

k E K A o P .  1,3P2G = kAwUeATP. (5.153) 

Because under steady-state conditions the ATP production in the PK step is com- 
pensated by the ATP consumption by the HK-PFK system (2vHK-pFK = vpK). Eqs. 
(5.152) and (5L153) characterize the balance between ATP-consuming and ATP- 
producing processes. For the calculation of the ATP concentration by use of Eq. 
(5.153), the concentration of 1,3P2G is eliminated by consideration of Eq. 
(5.151a), which reads, in more detail, 

2kHK - PmATP . f(ATP) - kPIGM . 1,3P2G - kPCK . 1,3PzG . ADP = 0. (5.154) 

This entails 

Inserting Eq. (5.155) into Eq. (5.153) yields 

2km - pKkEKADP . ATP . f(ATP) 
"PGK ' = km,ATP = VAw,,, (5.156) 

~ R G M  + ~PGKADP 

where the concentration of ADP must be considered as a function of ATP [cf. 
Eq. (5.148a)J. 

Figure 5.6 shows the net rate of the glycolytic ATP production (vpOK) and the 
rate of the nonglycolytic ATP consumption (vAm3 as functions of the ATP 
concentration for various values of the rate constant of the ATPase. The values 
of the kinetic parameters (see Table 5.3) are close to those found in human eryth- 
rocytes. The intersection points of the curves vp&ATP) and vAThse(ATP) deter- 
mine the steady-state values of the ATP concentration. Evidently, the point ATP 
= 0 represents a trivial steady state which is a solution of Eq. (5.156) irrespective 
of the values of the kinetic parameters (state Po). It is further seen that above a 
critical value, K % ~ ~ ,  (curve a), only the trivial steady state is obtained. For kAme 
< k$AaFe, two steady states P, and P2 are found, in addition to the trivial steady 
state. A detailed stability analysis which is based on a linearization of the equation 
system (5.144aH5.144~), (5.145), (5.148) and (5.150) and computation of the 
eigenvalues of the corresponding Jacobian (see Section 2.3.2), reveals that the 
states with low (nonvanishing) ATP concentration (states PI) are unstable, whereas 
the steady states with high ATP concentration (states P,) are stable. One may 
conclude that the steady state found in vivo corresponds to the stable high-energy 
state P,. 

The curves depicted in Figure 5.7 show the steady state concentration of ATP 
as a function of kAme for n, = 1 and n, = 4. Stable and unstable states are 
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ATP (mM) 

Figure 5.6 Rates of the enzymes ATPase (solid lines) and PGK (broken line) as functions of the 
ATP concenuation according to Eq. (5.156). The intersection points Po. PI, and P2 correspond to 
steady states. The intersection point P2 on curve c is the in vivo point. Parameter values: curve a, 
kAm, = 5.83h. curve b, kA- = 4.23h; curve c, kAm, = 1.46h. The values of the other 
parameters correspond to those listed in Table 5.3. 

characterized by solid and broken lines, respectively. It becomes clear that the 
critical values &%,, represent bifurcation points which separate parameter 
regions with different numbers of steady states. 

Figure 5.8 shows the steady-state concentration of ATP as a function of the 
rate of the ATPase for various values of the cooperativity coefficient (nH) of the 
ATP-substrate inhibition of the HK-PFK system. The curves for high n, values 
are characterized by the property that in the neighborhood of the in vivo state, 
the ATP concentration is rather insensitive against variations of the ATP-con- 
sumption rate. The regulatory property of glycolysis which leads to homeostasis 
of the ATP concentration in face of variations of the rate of ATP consumption 
was extensively studied by Selkov (1975b). 

There are two reasons for ATP homeostasis. First, the share of the 2,3P2G 
bypass v ~ ~ ~ ~ / ~ v ~ - ~ ~  decreases with increasing ATP-consumption rate. Accord- 
ing to the steady-state equation (5.15 1 a) 

Figure 5.7 ATP concenuation as a function of the rate constant kAm for two different values 
of the cooperativity coefficient of the ATP inhibition of PFK (n, = 1 and n, = 4). Solid and broken 
lines indicate stable and unstable steady states, respectively. 

a decrease of v ~ ~ ~ / ~ v ~ ~ - ~ ~  is accompanied by an increase of the share of the 
ATP-producing PGK reaction which meets the higher demand on ATP. A second 
effect contributing even more to homeostasis is the activation of the glycolytic 
flux at decreasing ATP concentration, which results from a lowering of the ATP 
inhibition (Figure 5.9). 

In Table 5.4 the control coefficients are listed for the glycolytic flux (J = 
vm-,) and for the concentrations of the metabolites ATP and 2,3P2G. It is seen 
that in contrast to Model A, not only the HK and PFK but also the enzymes 
P2GM, P2Gase and ATPase exhibit nonvanishing flux control coefficients. This 
result is due to the circumstance that the upper and lower parts of the glycolytic 
system are coupled by the common cofactors ATP and ADP. Nevertheless the 
HK-PFK system is mainly responsible for flux control, such as in Model A. The 
calculations were performed for the in vivo state under the assumption n~ = 1 
(no substrate inhibition of HK-PFK by ATP) and n~ = 4 (substrate inhibition of 
HK-PFK by ATP). It is seen that for n, = 1, the flux control coefficient of ATPase 
is negative because the decrease of ATP after activation of ATPase leads to a 
diminution of the rate vH,p,. In the more realistic case (n, = 4), a decrease of 
ATP will activate glycolysis so that the flux control coefficient of ATPase becomes 
positive. The control coefficients for ATP may be considered as a quantitative 
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Figure 5.8 ATP concentration as a function of the rate vA- = kA-ATP of ATP-consuming 
processes for different values of n, and kHK.%. Parameter values: ~ H K . P F K  = 2.29h (nu = 1); 

\ kHK.PPK = 3.20h (n, = 4); km.- = 5 . 5 m  (n, = 8). Broken lines indicate unstable steady states. 
P: in vivo point. 

measure for the ATP homeostasis, as already discussed. The homeostatic effect 
of the substrate inhibition is expressed by the fact that for n~ = 4 the coefficients 
&EPFK and C ~ Z ~  are small compared to those obtained for n~ = 1. It is seen 
that the substrate inhibition of HK-PFK by ATP results not only in a homeostasis 
of ATP but also of 2,3P2G. 

The flu control coefficients of the enzymes P2GM and PGK are of opposite 
sign. The negative value of exK for n~ = 4 is easily understood by consideration 
of the fact that activation of PGK results in diminution of the 2,3P2G bypass and, 
in this way, to an increase in ATP concentration. 

Under the assumptions of this model, the pyruvate kinase reaction neither 
controls the concentrations of ATP and 2,3P2G nor the glycolytic f lu .  This results 
from the simplifying assumption that the PGK reaction is irreversible. The control 
coefficients for the glycolytic flux and for the metabolite concentrations listed in 
Table 5.4 sum up to unity and zero, respectively, that is, they fulfill the summation 
theorems. 

An extension of Model B of glycolysis was set up to study the influence of 
pyruvate kinase deficiency on the energy metabolism of human erythrocytes (Holz- 
hiitter et al., 1985b). A new comprehensive kinetic model of the pyruvate kinase 
of human erythrocytes was included and account was taken of the magnesium- 

figure 5.9 Glycolytic rate J = v ~ p ,  as a function of the rate constant kAVaec for two different 
values of n,. Parameter values: kHK.p, = 2.29 h-'  (nH = 1); kHK.% = 3.20 h-' (nu = 4). P: in 
vivo point. 

Table 5.4 Control Coefficients of Enzymes for the Glycolytic Flux and Metabolite 
Concentrations (Model B) 

Variable 

VHK-PFK( =a ATP 2,3P2G 
Enzyme n H = l  n H = 4  n ~ = l  n H = 4  n H = l  n H = 4  

HK-PFK 1.32 0.52 0.72 0.28 2.74 1.07 
PzGM -0.10 0.14 -0.22 -0.08 0.18 0.68 
PzGase 0.00 0.00 0.00 0.00 - 1.00 - 1.00 
PGK 0.10 -0.14 0.22 0.08 -0.18 -0.68 
ATPase -0.32 0.48 -0.72 -0.28 - 1.74 -0.07 
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complex formation of the adenine nucleotides and 2,3-biphosphoglycerate. The 
analysis of individual cases with pyruvate kinase mutations permitted estimates 
and classification of the degree of disorder of the glycolytic pathway, which were 
in accord with clinical and other experimental assessments. 

Other extensions consider the coupling of the glycolytic pathway with reac- 
tions responsible for the synthesis and breakdown of adenine nucleotides, in par- 
ticular the 5'-nucleotidase (EC 3.1.3.5), AMP deaminase (EC 3.5.4.6), adenosine 
kinase (EC 2.7.1.20), adenine phosphoribosyltransferase (EC 2.4.2.7) and the 
uptake of adenosine across the erythrocyte membrane (Schauer et al. 1981a, 
1981b). The main effect of including these reactions is that the total sum of the 
adenine nucleotides is no longer a conserved quantity. This model allows one to 
simulate the breakdown of adenine nucleotides after glucose depletion. 

R. Schuster et al. (1988) developed a model of erythrocyte metabolism which 
comprises, in addition to glycolysis, the pentose phosphate pathway. Special at- 
tention is drawn to the fact that in erythrocytes the main function of the pentose 
phosphate shunt is to form NADPH. The NADPH produced by the two dehydro- 
genases (glucose-6-phosphate dehydrogenase, G6PD, EC 1.1.1.49, and 6-phos- 
pogluconate dehydrogenase, 6PGD, 1.1.1.43) is mainly utilized by the glutathione 
reductase (EC 1.6.4.2) catalyzing the reaction: GSSG + NADPH + 2GSH + 
NADP. Furthermore, an NADPH-dependent lactate dehydrogenase (I. Rapoport 
et aL, 1979) was included into the model. Steady states are calculated as functions 
of the rate constants kATPase and k,,, representing the energetic load and the oxi- 
dative load, respectively, of the system. The calculation of flux control coefficients 
of the nonequilibrium reactions reveals that most of these coefficients are very 
small with the following main exceptions: 

(a) Nonglycolytic ATP-consuming processes (ATPases) which affect strongly the gly- 
colytic rate, C',,, = 0.70; see Model B for n, = 4 (Table 5.4). 

(b) 2,3-Bisphosphoglycerate phosphatase (F',Gase) which controls the glycolytic flux 
and the reactions of the 2,3P2G bypass, C& = 0.22, c'pzz. = 0.94. 

(c) The reactions of the oxidative load affecting the reactions of the oxidative part of 
the pentose phosphate pathway, c'oym = @P = 0.47. It has been concluded 
that in the in vivo state of erythrocyte glycolysis, the 2,3P2G bypass and the 
pentose phosphate pathway are almost independently controlled by the reactions 
consuming those metabolites which are produced by the corresponding pathways. 
The model was used for predicting the effect of glucosed-phosphate dehydrog- 
enase deficiencies (R. Schuster et aL. 1989) and was recently extended to predict 
the metabolic effect of large-scale enzyme activity alterations (R. Schuster and 
Holzhiitter, 1995). 

5.4.4.4. Glycolytic Energy Metabolism and Osmotic States 

The theoretical investigation of energy metabolism in erythrocytes has been 
extended by inclusion of its interaction with active and passive fluxes of ions 

across the cell membrane ( B ~ m e n  and Heinrich, 1984; Werner and Heinrich, 
1985). This model (Model C) allows one to evaluate the state of metabolism as 
well as osmotk and electric effects. Accordingly, control coefficients related to 
the volume can be calculated. (For a general treatment of the control of variables 
other than concentrations and fluxes, see Section 5.8.) Compared with previous 
models (e.g., Model B), the set of system parameters is enlarged by the quantities 
characterizing the electric charges and osmotic effects of hemoglobin, the per- 
meabilities of ions, and the cell surface area. 

The metabolic part of the "metabolic-osmotic model" is essentially based on 
the reduced reaction scheme used for Model B (Figure 5.3). Several assumptions 
and simplifications are used in the model: 

(a) The in vivo state is characterized by a fixed cornposhion of the external medium. 
(b) The inhibitory actions of H+ ions on the enzymes PFK and P2GM are taken into 

account. 
(c) Two nonglycolytic ATP-consuming processes are considered: the NaK-ATPase 

(EC 3.6.1.37) and the non-ion transport ATPases. It has been proposed that 25- 
70% of the ATP produced by glycolysis is utilized by the NaK pump (Grimes, 
1980). Maretzki et al. (1980) and Reimann et al. (1981) determined a value of 
30%. The non-ion transport ATPases are linked to membrane phosphorylation 
processes. 

(d) Consideration of the transmembrane potential (A!ff) and of the cell water volume 
(V) as system variables necessitates the incorporation of detailed electric and 
osmotic conditions. It is assumed that the intracellular and extracellular com- 
partments are electrically neutral and in osmotic equilibrium. 

The differential equations for the concentrations of the glycolytic metabolites 
are easily derived from the reaction scheme (Figure 5.3). As the metabolite con- 
centrations may also be changed by variations of the cell volume (V), one anives 
at the following type of equation: 

where Si denotes the concentrations of 1,3P2G, 2,3P2G, PEP, and ATP [cf. Eqs. 
(5.144a)-(5.144~) and (5.150)l. V' represents the cellular volume in a reference 
state. For the enzymatic activities vk rate laws are used which approximate the 
kinetic properties of the isolated enzymes. They are essentially the same as used 
in Model B. An exception is the rate equation for the NaK-ATPase, 

kN,  - ,,,, . ATP . Na; 
V N ,  - ATPw = 1 + ATPIK,,,, ' 
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in which the fact that the activity of this enzyme is stimulated by intracellular K i  + Nai - CI; + ZAP . ATP + zADp . 
sodium is considered. In vivo, this enzyme is almost saturated by ATP [KmAp  = ADP + z 2 . 3 ~ ~ ~  . 2,3PzG + Z ,  . Hb = 0 

0.04 mM; Cavieres (1977)l. 
The passive transport of sodium and potassium is described by the well-known In Eq. (5.164), g, denotes the osmotic coefficient of hemoglobin which is a 

Goldman equation (Goldman, 1943). Taking into account that the action of the function of hemoglobin concentration (Gary-Bobo and Solomon, 1968; Freedman 
NaK-ATPase leads to the transport of 3 moles of sodium outward and 2 moles and H o h a n n ,  1979). Only glycolytic metabolites with high concentrations 
of potassium inward per 1 mole of ATP degraded, the time-dependent changes (ADP, ATP, 2,3P2G) are considered in Eqs. (5.164) and (5.165). The coefficients 
of the intracellular cation concentrations are governed by the following differential ZAP, ZADP, Z2,3p2~, and z ,  denote the pH-dependent charges of the compounds 
equations: indicated. Equations (5.160H5.165) constitute a complicated nonlinear system 

which consists of differential as well as of algebraic equations (algebro-differ- 

1 d y) - AA,ln(r) (NaL - r .  N d )  ential equation system). This equation system was solved by numerical procedures -- 
"0 dl 

(Na: . VO PNa 1 - r 
- 3 ~ ~ ~ - ~ ~ ~ r  (5.160a) for the steady state in vivo as well as for time-dependent states (Brumen and 

Heinrich, 1984; Werner and Heinrich, 1985). 

-- A, In(r) ( K z  - r . K,:) (K+ . V) = -- + 2vNalK - APase r 
The model allows one to calculate the control coefficients not only for metab- 

V'dt " V O p K  1 - r  olite concentrations and fluxes but also for the cellular volume. This coefficient 
can be defined as follows: 

with 

The various control coefficients for the volume are listed in Table 5.5. It is seen 

(PNa = 1.3 X lo-'' d s ,  P, = 1.1 x lo-'' d s :  permeabilities of sodium and that the control coefficients fulfill the summation theorem, 

potasslum, respectively; A, = 137 ~m':  cell surface area; F: Faraday constant). 
The transmembrane exchange of chloride is much faster than that of sodium 

and potassium. Therefore, the transport equation for chloride ions is substituted 
by the equilibrium condition 

Table 5.5 Control Coefficients o f  Model C for the 
Cell Water Volume Under in Vivo Conditions 

HK-PFK 0.63 
The pH in the intracellular and extracellular medium are related as follows: 

pH, = pH,. - loglor. 

The system equations are completed by the conditions of osmotic equilibrium NaK-ATPase - 0.21 
between the intracellular and extracellular compartments, 

RT(K,: + No: + CI,;; + ADP + ATP + 2,3P2G + g, . Hb) = const., (5.164) 

as well as the condition of electroneutrahty, Source Bmmen and Hemch (1984) 
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despite the fact that there are some coefficients that differ considerably from unity. 
The high control coefficients of the passive transport of Na+ and K+ reflect the 
fact that these cations are of overwhelming importance for the osmotic properties 
of the cell. The control coefficients c:%,,, and c:,,,, are of opposite sign. This 
is simply explained by the fact that an increase of the permeability PK leads to a 
loss of potassium by the cell, whereas an increase of the permeability PNa will 
result in an increase of intracellular sodium. The control coefficients of these 
transport processes almost compensate each other; that is, a simultaneous change 
of PK and PN, by the same factor would have only a negligible effect on the 
cellular volume. 

The results of Table 5.5 confirm that the sodium-potassium pump plays an 
important role for the regulation of cell volume. An increase of the Na/K-ATF'ase 
activity would result in an enhancement of the outflow of sodium, which accord- 
ing to the (2:3)-stoichiometry of the pump is not fully compensated by the inflow 
of potassium. The resulting decrease in cell volume corresponds to the negative 
control coefficient of this enzyme (see Table 5.5). A positive volume control 
coefficient is obtained for the HK-PFK system, which may be explained primarily 
by the increase of 2,3P2G concentration upon activation of the glycolytic flux. 

The above-mentioned models were the basis for a more complete model of 
erythrocyte metabolism which includes glycolysis, the 2,3P2G bypass, the pentose 
phosphate pathway, the adenine nucleotide metabolism, and various transmem- 
brane processes, as well as osmotic and electrostatic conditions (Joshi and Pals- 
son, 1989a, 1989b, 1990a. 1990b). This model comprises 33 mass balance equa- 
tions which contain 41 reaction velocities. Taking into account the constraints 
resulting from osmotic balance, electroneutrality, and cofactor preservation, the 
complete description encompasses 29 system variables (metabolite concentra- 
tions, concentrations of inorganic ions, cell volume, transmembrane potential, and 
pH). Despite the fact that a number of relevant processes have not been considered 
(e.g., active and passive transport of calcium, interaction of ATF' and 2,3P2G with 
hemoglobin), the model of Joshi and Palsson (1989a, 1989b, 1990a, 1990b) is up 
to now the most comprehensive model of erythrocyte metabolism and, apparently, 
for an autonomous metabolic system in general. 

5.4.5. A Simple Model of Oxidative Phosphorylation 
Oxidative phosphorylation (i.e., the formation of ATP from ADP and inorganic 

phosphate using the energy of oxidizable substrates) is a crucial process in bio- 
logical energy transduction. We will here consider oxidative phosphorylation as 
it occurs at the mitochondrial inner membrane. The energy transformation pro- 
ceeding at bacterial plasma membranes is very similar. 

According to the chemiosmotic hypothesis of Mitchell (1961), the respiratory 
chain uses the free energy of oxidation to extrude protons out of the mitochon- 

drion and thus generate a proton-motive force. This quantity is defined as the 
electrochemical potential difference of protons across the membrane, 

*. 
HL &+ = RTln-  + FAY, (5.168) 
H A  

where A Y is the transmembrane potential. This force serves to produce ATP via 
catalysis by the H+-transporting ATF' synthase (H+-ATPase, EC 3.6.1.34). The 
respiratory chain is a sequence of reactions catalyzed by a multienzyme complex. 
In a minimal model, its control properties can be described by treating it as one 
overall reaction, as will be justified in the modular approach of control analysis 
(Section 5.12). That approach allows not only for the existence of several enzymes 
in one complex, but also for more than one independent flux through this multi- 
enzyme complex. The respiratory chain actually has at least two linearly inde- 
pendent fluxes owing to the slippage between substrate oxidation and proton 
transport (see Luvisetto et al., 1987; Westerhoff and Van Dam, 1987). Strictly 
speaking, the ATF'ase reaction exhibits slip also and should be described by two 
degrees of freedom. 

A more detailed model should also include the proton leak and the adenine 

H+ ATP ADP 
Figure 5.10 Scheme of the main processes in oxidative phosphorylation. Abbreviations: SH, 

and S, reduced and oxidized form of substrate, respectively (e.g., lactate and pymvate); ADN trans- 
locator, adenine nucleotides translocator. 
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nucleotide translocator (see Figure 5.10). Although the proton leak (i.e., the pas- 
sive back-flow of protons through the membrane without being used for ATP 
synthesis) is not catalyzed by an enzyme, control coefficients can be calculated 
on the basis of definitions (5.3) and (5.5). The perturbation parameter can be 
chosen to be the concentration of an uncoupler [e.g., FCCP (Groen et al., 1982)l. 
Uncouplers increase the membrane permeability for protons and thus decrease 
the coupling between respiration and phosphorylation. 

The inorganic phosphate needed for ATP synthesis enters the mitochondrion 
via the phosphate carrier, which transports inorganic phosphate and protons to- 
gether at a ratio 1:l. When the phosphate carrier is, for simplicity's sake, neglected 
in the model, one must therefore consider that one extra proton is needed per 
produced ATP molecule than is a c~a l l y  utilized by the ATPase. 

To calculate control coefficients, one needs knowledge of the stoichiometric 
proportions in the reactions, that is, the number of protons extruded per oxygen 
atom consumed (H'IO ratio) and the number of protons needed to produce one 
molecule of ATP ( H + P  ratio). There are dissenting views in the literature about 
the values of these ratios. Estimates can be derived from the thermodynamic 
reasoning that the endergonic process cannot utilize more free energy than is 
produced by the exergonic process by which it is driven. Measurements of these 
ratios can be carried out by the oxygen pulse method and ATP pulse method 
(Mitchell and Moyle, 1965). The modem mainstream view (see Brand, 1994) is 
that ng = H+/O = 10 (certainly between 9 and 13) for oxidation of matrix 
NADH. Succinate oxidation is believed to proceed with ng = H+/O = 6, with 
minority views that the value is 8. A widely accepted estimate of n; = H+/P is 
4, made up of three H+ per ATP on the ATP synthase and one H+ on the phos- 
phate carrier (cf. Brand, 1994). This gives PI0 ratios of 2.5 for NADH-linked 
substrates and 1.5 for succinate oxidation. Fitton et al. (1994) found that the Pi0 
ratio decreases with increasing respiration rate, from about 2.3 to about 0.9 for 
respiration on lactate. In a dynamic model presented by Korzeniewski and Fron- 
cisz (1991), the following values for oxidation of NADH were used: ng = H+I 
0 = 9, n; = H+/P = 3.5. Different explanations have been given for the fact 
that these ratios may be noninteger. The most logical explanation is that these are 
average stoichiomemes of complex enzymatic reaction cycles, which also include 
slip reactions. This view is supported by the fact that some drugs, such as alrni- 
trine, can increase the H+/P ratio, as reported by Rigoulet et al. (1990) who gave 
a value of 2.7 without the addition of almitrine. 

To consider that the intramitochondrial and extramitochondrial volumes are 
different is not necessary when the concentrations in the cytosol are assumed to 
be constant, as will be done here. The concentrations of S, SH,, 0, and H20 will 
also be assumed to be constant. Furthermore, the slip in the respiratory chain and 
H+-ATPase will be neglected for simplicity's sake. The system equations can 
then be written as 
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where vo, vp, vA and v, stand for the rates of respiration, phosphorylation, adenine 
nucleotide transport, and leak, respectively. 

Obviously, the system involves one conservation relation, ADP + ATP = 
const. We have 

The unscaled elasticity matrix can be written as 

The elasticity, 4, of the adenine nucleotide translocator with respect to proton 
concentration is not normally zero because this translocator is electrogenic. Its 
rate therefore depends on the transmembrane potential, AF. This potential, in 
Nm, is linked to the inside and outside proton concentrations. Approximately, 
this interrelation can be written as proportionality of ApH and A Y (Bohnensack, 
1985; Holzhiitter et aL, 1985a). A better, quasi-linear approximation was derived 
by S. Schuster and Mazat (1993). In the elasticities&,& and&, the dependence 
of the respective processes on AY should also be included. 

Using Eqs. (5.25) and (5.26), the control coefficients for the considered model 
of oxidative phosphorylation can, in principle, be calculated. This method is, 
however, hampered by the problem that the elasticities of this system are difficult 
to measure, because the concentrations inside mitochondria are difficult to change 
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specifically. Another possibility is to calculate control coefficients on the basis of 
a dynamic model, as was done by Korzeniewski and Froncisz (1991). They mod- 
ulated enzyme activities numerically and computed the change in fluxes. Control 
coefficients over respiration rate with respect to substrate dehydrogenation (0.23), 
external ATP utilization (0.56), proton leak (0.20), and other reactions were cal- 
culated. Only some of these coefficients are in agreement with experimentally 
determined values. The above-mentioned problem of uncertainty in the values of 
elasticities corresponds in kinetic models to uncertainties in the kinetic parame- 
ters. 

Control coefficients pertaining to oxidative phosphorylation can be determined 
in a more direct way by inhibitor titration. This has frequently been done (Groen 
e t  al., 1982; Brand e t  al., 1988; Gellerich e t  al., 1990; Letellier e t  al., 1993). It 
was found that control coefficients strongly depend on cell type and experimental 
conditions. For example, the control coefficients over respiration rate may vary 
between State 4 (no ADP supply) and State 3 (excess of ADP) from 0.9 to nearly 
0 (control by the proton leak) or from 0 to 0.5 passing at 0.65 (control by phos- 
phorylation plus ATP consumption) [see the review by Brown (1992)l. 

5.4.6. A Three-Step Model of Serine Biosynthesis 

, The system under study in this section is the pathway leading from 3-phos- 
phoglycerate (3PG, derived from glycolysis) to serine via 3-phosphohydroxypy- 
ruvate (3PHPA) and phosphoserine (PSer) (see Figure 5.1 1). A control analysis 
of this pathway in mammalian liver (rabbit and rat) was done by Fell and Snell 
(1988). They used the method of calculating control coefficients from the elas- 
ticities and stoichiometric structure, as described in Sections 5.2 and 5.3. 

As the flux of serine biosynthesis is small compared with the fluxes through 
the major pathways such as glycolysis, the three enzymes shown in Figure 5.11 
have very little effect on the cellular concentrations of 3-phosphoglycerate, 
NAD', NADH, glutamate, and a-ketoglutarate. Therefore, these substances can 
be considered as external metabolites for the considered pathway. 

3-Phosphoglycerate dehydrogenase (PGDH) and phosphoserine transaminase 

PGDH PSTA Psp serine 3PG-/i\- 3 P H P A m  PSer -F>* 

Figure 5.1 1 Reaction scheme of serine biosynthesis. Abbreviations: PGDH, 3-phosphoglycerate 
dehydrogenase (EC 1.1.1.95); PSTA, phosphoserine transaminase (EC 2.6.1.52); PSF', phosphoserine 
phosphatase (EC 3.1.3.3); 3PG. 3-phosphoglycerate; 3PHPA, 3-phosphohydroxypyruvate; PSer, phos- 
phoserine. 

(PSTA) are treated as a "grouped reaction (i.e., a module in the sense defined in 
Section 5.12). As these enzymes operate at quasi-equilibrium, one can use the 
approximation famula (5.74) for the normalized elasticities of the module in- 
volving the two enzymes, 

where the subscript 1 + 2 refers to the lumped process consisting of reactions 
PGDH and PSTA. 

The quantity given in Eq. (5.175) is a n-elasticity because 3-phosphoglycerate 
is considered as an external metabolite here. As the average metabolite concen- 
trations in vitro were measured (LaBaume e t  al., 1987) and the equilibrium con- 
stants are known, the displacement from equilibrium can be calculated (Fell and 
Snell, 1988). The elasticities of phosphoserine phosphatase with respect to phos- 
phoserine and serine were computed by numerical differentiation of the enzyme 
rate law 

v = 
V,,, . PSefll + SerlK;)l(l + SerlK,) 

PSer + Km(l + SerlKi)l(l + SerlKJ 

proposed by Frieden (1964) for single-substrate enzymes in the presence of 
mixed-type modifiers. It is assumed that both the enzyme-substrate and enzyme- 
substrate-modifier complexes can yield the product and that all complex formation 
steps are at quasi-equilibrium. Nonlinear parameter fitting gives the parameter 
values K, = 0.089 mM, K, = 0.60 mM, and K; = 16.5 mM. 

The flux control coefficients can be obtained by Eq. (5.54), which implies in 
non-normalized form C

J 

= (K O)(K E)-'  in the case of no conservation relations. 
For the considered system, K = (1 so that 

where PSP stands for phosphoserine phosphatase. 
The flux-response coefficients to phosphoglycerate and serine are given by 

Fell and ~neil(1988) calculated flux control coefficients for serine metabolism, 
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using experimental values reported by LaBaume et al. (1987) for the metabolite 
concentrations in rabbit liver in vivo under starvation conditions (24 h-fasted 
animals) and 1 h after injection of glucose or ethanol or both. For starvation 
conditions, they obtained the normalized coefficients c+2 = 0.03 and C',, = 
0.97. For the situation after injection of ethanol, these control coefficients were 
computed to be G+, = 0.22 and C',,, = 0.78 and for the situation after injection 
of glucose and ethanol, c+2 = 0.46 and Gp = 0.54. c+2 is very small under 
starvation conditions, due to the fact that PGDH and PSTA are quasi-equilibrium 
enzymes. The control coefficient of phosphoserine phosphatase is high in the 
"standard" situation because its elasticity kith respect to its substrate phospho- 
serine is small, as this metabolite is well above the K, value [see the discussion 
of Eq. (5.101)]. A possible explanation of the values in the situations after the 
addition of glucose andlor ethanol considering the displacement from equilibrium, 
redox state, and saturation was given by Fell and Snell (1988). 

Although it is a widespread feature in metabolism that the first enzyme of a 
biosynthetic pathway exerts most flux control (see Savageau, 1976), the situation 
is different in the serine biosynthetic pathway, where the last enzyme is most rate- 
limiting. The very large control coefficient occurs, however, only under starvation 
conditions which are not the normal case. 

5.5. TIME-DEPENDENT CONTROL COEFFICIENTS 

In the preceding paragraphs, the time dependence of the system behavior after 
parameter perturbations was not studied. Metabolic control analysis was confined 
to steady states. Obviously, this restriction can be misleading upon interpretation 
of experimental results. In particular, it can be practically impossible to approach 
a steady state in reasonable times. In the present section, control analysis is ex- 
tended to time-dependent states in the neighborhood of a stable steady state. From 
general definitions of control coefficients, we derive a calculation procedure for 
the time-dependent control matrices as functions of the stoichiometry of the net- 
work and of the elasticities of the reactions. 

Suppose that SO is a stable steady-state solution of equation system (2.8) for a 
given parameter vector p0 and let us assume that for negative times p = p0 and 
S = So. At time zero, the parameter is perturbed and takes the value p for all 
positive times. For p close to pO, the solution S(t,p) of Eq. (2.8) can be approxi- 
mated by 

The time-dependent flux vector J(t,p) is defined by 
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c 

Forp close to f i  this flux vector can be approximated as 

with f' = v(SO,p). It follows from Eq. (2.8) that aslap is the matrix solution of 

with (aSlap)(t = O,pO) = 0. The matrices avlaS and avlap are calculated in the 
reference state (S0,p4. From Eq. (5.181) one derives 

Let us first assume that the rows of the stoichiometry matrix N are linearly 
independent. Then there are no conservation relationships for the metabolite con- 
centrations. Because the reference state is assumed to be stable, all the eigenvalues 
of the Jacobian M = N(av1aS) have negative real parts, so M is invertible. 

The formal solution of the linear differential equation system (5.183) reads 

with 

where I denotes the n X n identity matrix. A possible representation. of the 
exponential function entering this equation is 

where the elements of the diagonal matrix A depend on the eigenvalues li of the 
Jacobian M as follows: 

The columns of B are the corresponding eigenvectors. 
From Eqs. (5.184) and (5.185) one gets 
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with 

In the present case, the control matrices cS(t) and C'(t) are time-dependent op- 
erators which transform the initial perturbations 6v of the reaction rates into the 
concentration and flux variations 6S and 6J at time t, that is, 

The elements ck(t) and ck(t) of the matrices CS(t) and CJ(t) can be defined 
as the unscaled concentration control coefficients and flux control coefficients, 
respectively, at time t. They may be used to characterize the response of the system 
to parameter perturbations during the relaxation process. 

Because the eigenvalues of M have negative real parts, the matrix exp(Mt) 
approaches zero when t tends to infinity. Equations (5.186) and (5.190) then yield 

, the usual unscaled time-independent concentration and flux control matrices CS 
and CJ. 

[cf. Eqs. (5.13) and (5.14)]. Equations (5.186) and (5.190) show that the time- 
dependent control coefficients are fully determined by the stoichiometry of the 
reaction network and the elasticity coefficients; that is, the elements of the matrix 
E = avlaS calculated at the reference state. 

Ifp contains parameters p, acting specifically on individual reactions [cf. Eq. 
(5.4)], one derives from Eqs. (5.185) and (5.189) 

and 
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These formulas are directly related to the usual definitions of control coefficients 
(5.18), with the difference that they are time dependent. 

When the network is such that some linear combinations of metabolite con- 
centration are conserved, the rows of the stoichiometry matrix N are not linearly 
independent. In this case, one derives from formulas (3.10) and (5.190) that the 
time-dependent control matrices may be expressed as 

with 

av MO = NO-L, as 

where L and No are the link matrix and the reduced stoichiometry matrix defined 
in Eq. (3.7), respectively. 

It follows immediately from Eqs. (5.195a) and (5.195b) that the matrices of 
control coefficients fulfill the following relationships: 

and 

which generalize Eqs. (5.27a) and (5.27b) to the time-dependent case. 
Equation (5.197) means that the map of an initial perturbation of fluxes by a 

parameter change onto the flux change after a time t1 and the consecutive map of 
this flux change onto the flux change after another time span t2, which is mediated 
by all reactions, is equivalent to the map of the initial perturbation onto the flux 
change after t, + t2. Relationship (5.198) can be interpreted in the following way. 
An initial perturbation 6v of reaction rates has a direct effect on the fluxes as 
expressed by the identity matrix in Eq. (5.190) and leads, after a time tl, to a 
change of concentrations CS(tl)6v. This change also has an effect on the reaction 
rates, as expressed by premultiplication by E = avlaS. During another time span 
t2, both of these effects on the reaction rates lead to concentration changes which 
may be expressed by premultiplying CS(t2). These changes have to be added to 
the change CS(tl)6v already achieved at time t,. 

Summation and connectivity theorems can also be derived for the time-depen- 
dent control coefficients. Under consideration of Eq. (3.44), one can derive from 
Eqs. (5.195a) and (5.195b) that 
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where K again denotes the null-space matrix of the stoichiometry matrix. These 
equalities are the summation relationships for the time-dependent control matrices 
CS(t) and CJ(t). As a particular consequence, 

because the steady-state flux J satisfies the equality W = 0. 
By multiplying Eqs. (5.195a) and (5.195b) by (avIaS)L, one gets by the defi- 

nition of I@ 

av 
@(t) - L = L[exp@t) - I ] ,  (5.201a) a s  

' 
These formulas are the connectivity relationships for the time-dependent con- 

trol coefficients. Equations (5.199) and (5.201) reveal the interesting fact that time 
enters explicitly the connectivity theorems only. This means that the summation 
relationships (5.199), which have the same structure as Eqs. (5.44, are satisfied 
during the whole relaxation process, although the control coefficients may vary 
considerably. As for the connectivity theorems, one derives from Eq. (5.201) the 
usual theorems of time-independent control analysis [cf. Eq. (5.51)] in the limit 
of infinite time. If, however, the steady state is unstable (i.e., if the Jacobian matrix 
has at least one eigenvalue with a positive real part) the exponentials on the right- 
hand side of Eqs. (5.201a) and (5.201b) diverge as t tends to infinity. Thus, the 
time-independent connectivity theorems [Eq. (5.51)] have no meaning for unsta- 
ble steady states, although the derivation leading to those theorems in Section 
5.3.2 applies also to such states. A more detailed analysis can be found in the 
work of Heinrich and Reder (1991). 

It can be proved that, as in the time-independent case, the relations (5.201a) 
and (5.201b) are sufficient in number to calculate the control matrices from the 
stoichiometric and elasticity coefficients (see Section 5.3.3). 

Example. We consider the branched system depicted in Scheme 7 (Section 
3.2.4) with one internal metabolite and three reactions, as described by the stoi- 
chiometry matrix N = (1 - 1 - I)=. Admissible null-space vectors are kl and k2 
as given in Eq. (5.119). The system equation takes the form 
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Z 
We will calculate the time-dependent control coefficients C$*(t) and C;',(t) by 

using the summation and connectivity relationships (5.199) and (5.201), taking 
into account L = I (no conservation relationships). The Jacobian M contains 
only one element 

The summation relationships for the concentration control coefficients are 

CSI(~)  + C;z(t) = 0 ,  CSl(t) + CS3(t) = 0 (5.204a) 

and for the flux control coefficients 

The connectivity relationships read 

~ I ( ~ ) E I I  + &(t)&21 + c 3 ( t ) ~ 3 ~  = exp[(El1 - q1 - ~ ~ , ) t l  - 1 (5.205a) 

, and 

with j = 1,2,3. Solving these equations, one obtains 

and 
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A sensitivity analysis of time-dependent trajectories of metabolic systems has 
also been developed by Kohn et al. (1979) and Kohn and Chiang (1982, 1983). 
They studied the response coefficients to a parameter perturbation and derived 
equations similar to Eq. (5.183). However, they did not give general definitions 
of control coefficients and did not, therefore, obtain results such as the summation 
or connectivity theorems. 

5.6. ARE CONTROL COEFFICIENTS ALWAYS 
PARAMETER INDEPENDENT? 

5.6.1. Posing the Problem 
It has been shown in Section 5.2 that concentration control coefficients and 

flux control coefficients, defined by eqs. (5.25b) and (5.26b), respectively, are 
independent of the choice of the perturbation parameter. It has sometimes been 
questioned whether this general conclusion remains valid if the analysis of a 
metabolic system is based on the rates w of the elementary reactions of enzymes 
(instead of the rates v of the overall reactions) because the parameter dependence 
of the concentrations of enzyme intermediate complexes must then be taken into 
account in addition to that of free metabolites. It has been claimed that this prob- 
lem may be of particular importance for systems with conservation equations, 
because at the detailed level of description, they generally include also the con- 
centrations of enzyme-intermediate complexes Weder, 1986; Fell and Sauro, 
1990; Kholodenko et al., 1992, 1993b. 1995). Here, it may be expected that 
perturbation parameters which affect a certain enzyme specifically but differ in 
their effect on the enzyme-intermediate concentrations have effects on the free- 
substrate concentrations or fluxes which cannot be described by one and the same 
control coefficient of the given enzyme. Obviously, this situation does not meet 
with formal difficulties if control coefficients of elementary steps are considered 
and the concentrations of free enzymes as well as of enzyme-bound species are 
included into the vector S of metabolite concentrations. This follows from the 
fact that in the general treatment presented in Section 5.2 the character of the 
metabolites is not specified and that no distinction is made whether the reactions 
are elementary or not. However, problems may arise if one is interested in control 
coefficients of overall enzymic steps. To clarify this problem in quantitative terms, 
we consider the following examples. 

5.6.2. A System Without Conserved Moieties 
The system depicted in Scheme 13 consists of two enzymic reactions con- 

verting the substrate P, into the product P2 via the enzymesubstrate complexes 

EISl and E2Sl and the free intermediate S1. The concentrations PI and P2 are 
considered to be fixed. The rates of the elementary reactions of the enzymes Ej 
are denoted by wj, and wj,,. In the present case the reaction rates of the isolated 
enzymes vl and v2 are defined by fixed concentrations S1 and by quasi-steady- 
state values for EISl and E2Sl. 

First, we calculate the unscaled parameter elasticities avjlapj which enter the 
denominator in the definition (5.7) of unscaled control coefficients. We denote by 
pl  and p2 the kinetic parameters which affect specifically the reactions catalyzed 
by the first and the second enzyme, respectively. The quasi-steady-state conditions 
for EISl and E2Sl read wla = wlb and w, = wzb, respectively. 

Taking into account the two conservation relations for the enzyme species 

(j = 1,2), one derives for the parameter elasticities 

Implicit differentiation of the quasi-steady-state conditions for EiSl with respect 
to pl and p2, respectively, results in expressions for a ~ ~ s ~ l a ~ , ~ i h i c h  may be 
introduced into Eq. (5.208), to give 

with 

For the unscaled substrate elasticities E,, = av, IaS, and E,, = av21aSl, one obtains 
in a similar way 

Now we consider the steady state of the whole system where the concentration 
S, may vary depending on the kinetic parameters. This state is characterized by 
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the steady-state condition for S1, wlb = w,, in addition to the steady-state con- 
ditions for EjSl. Implicit differentiation of the steady-state conditions with respect 
to p,  and p2 gives the following expressions for the two concentration control 
coefficients 

It is seen that for the system depicted in Scheme 13 the control coefficients are 
independent of the special choice of the perturbation parameter and, further, that 
the summation theorem G1 + & = 0 is fulfilled. Taking into account relations 
(5.21 I), Eq. (5.212) may be rewritten as 

which is identical to expression (5.99) derived for the concentration control co- 
,efficients for a two-enzyme system by using steady-state rate equations for the 
individual enzymes. This means that in the present case the general conclusions 
of metabolic control analysis are not affected by the level of description (i.e., 
whether the system is analyzed using overall rate equations or on the basis of the 
elementary steps). 

5.6.3. A System with a Conserved Moiety 
The system depicted in Scheme 14 consists of reactions converting the metab- 

olites S,  and S2 in a cyclic manner. 

Sl 
\ Scheme 14 

For simplicity's sake it is assumed that only reaction 1 is described at the level 
of elementary reactions. The corresponding mechanism contains two steps de- 
scribed by the rates w, and w,. The overall velocity of reaction 2 is described by 
vz. In addition to the conservation equation for the enzyme species of reaction 1, 
there is another one which involves the concentrations of the free intermediates 
and of the enzyme-intermediate complex of the first reaction. It reads 
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From the quasieteady-state condition w, = wb for EISl one obtains 

with a = aw,laE, - aw,IaEISl and b = awbIaE1 - awbIaE1S1 In a manner 
similar to that in Section 5.6.2, the following expression for the parameter elas- 
ticity of the enzymic reaction is derived: 

The steady state of the whole system is characterized by the conditions v2 = 
w, and v2 = wb and by the conservation relationships El + EIS1 = E,,, and Eq. 
(5.214). Implicit differentiation of the steady-state conditions with respect to p ,  
results in the following expressions for the concentration control coefficients with 
respect to reaction 1 : 

with 

D = a a V 2 - a V 2 + %  + b a V 2 - 9 + -  
(asI as2 as) a a as, (5.217~) 

aw, aw, aw, av2 aw, av2 + - - - - - - - - 
as, as2 as, as2 as2 as1 

Analogously, for the concentration control coefficients of reaction 2, implicit dif- 
ferentiation of the steady-state conditions with respect top, yields 
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are invariant with respect to the transformation 

It is seen that the control coefficients of reaction 2 are independent of the 
special choice of the perturbation parameter whlch is in accord with the general 
statements made in Section 5.2. The situation is different for the control coeffi- with a scaling factor p. This transformation implies 
cients of reaction 1. Here, only the factor (a - b)lD is independent of the choice 
of the perturbation parameter p,, whereas, in the remaining terms, the derivatives 
of w, and wb with respect top, cannot, in general, be canceled. We may conclude, 
therefore, that the control coefficients of enzymes with enzyme-bound metabolites 
involved in conserved moieties are parameter dependent. However, it is seen from whereas all other quantities which enter Eqs. (5.217) and (5.218) remain unchan- 
Eqs. (5.217) and (5.218) that when p, affects w, specifically (dwbldp, = O), the ged. In the limit p -* 0, one obtains the control coefficients 
term aw,lap, cancels in the expression of GI and c,. In this case, the concen- 
tration control coefficients become independent of what parameter of reaction w, 
1s changed (e.g., k, or k-, if the expression w, = kaS1. El - k-,El& is used). 
Similarly, ~f p, affects wb specifically, the coefficients el and c, do not contain 
derivatives with respect to p, either, but they have, in general, different values 
from GI and c, in the former case. 

Moreover, a description of enzyme systems at the level of elementary rates which no longer contain any derivative with respect to parameters. Thus, the 
may lead to the fact that the summation theorems are violated. For example, from concentration control coefficients become independent of the choice of the per- 
Eqs. (5.217a) and (5.218a) one obtains turbation parameter in the case of very low enzyme concentrations. Moreover, it 

is seen from Eq. (5.224) that for p -* 0 the summation theorem for concentration 
control coefficients is fulfilled. 

The general conclusions derived in the present section remain valid if the total 
enzyme concentrations act as perturbation parameters (ET,, = p,). For the system 

which is generally nonzero, in contrast to the summation theorem for metabolite depicted in Scheme 14, for example, the quasi-steady-state condition for El& 

concentrahons. As a special case, one may deal with a parameter pi whose 
changes affect the rate constants of the elementary reactions by the same factor. 
Then one obtiuns pl.awalapl = w, and pl.awblapl = w,,. This implies, due to ~,(SI ,  EISI, EI(EISI.ET, I)) = WL,(&,EISI, EI(EISI.ET, ,)) 

the steady-state condition w, = w,, that the summation theorems are fulfilled. 
Now we use the additional assumption that the total enzyme concentration is 

with El(E1S1,ET,,) = ET,, - EIS1. Taking the derivative with respect to ETV1 yields 

negligibly small compared to the steady-state concentrations S1 and S,, that is, 

&,I << Sl, S2. 

Using the rate laws w, = kaSl .El - k-, EISl and wb = k&S1 - k-b S2-El, 
the solutions S, and S, resulting from the steady-state equations 
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These equations correspond to Eqs. (5.215) and (5.216), respectively, with the 
concentration El of thefree enzyme formally playing, on the right-hand sides of 
the equations, the role of the parameter. For the concentration control coefficients 
resulting from variations in total enzyme concentrations, one again obtains ex- 
pressions (5.217a) and (5.217b), wherep, must be replaced by El on their right- 
hand sides. 

The present results show that in systems where the total enzyme concentrations 
are comparable to the substrate concentrations and conservation relations involv- 
ing both substrates and enzyme-substrate complexes are present, both the indi- 
vidual control coefficients and their sum may depend on the specific way of 
perturbation (cf. Kholodenko et al., 1995). 

The analysis in this section is closely related to the modular approach to met- 
abolic control analysis (Section 5.12) where the subdivision of metabolic net- 
works into functional units is studied. Accordingly, similar conclusions concem- 
ing the role of conservation relations for the control coefficients are drawn in both 
approaches. 

5.6.4. A System Including Dynamic Channeling 
In Figure 2.1, a pathway is shown in which the conversion of a substrate P1 

to a product P2 proceeds both via a free intermediate, S,, and a complex EISIE, 
'involving the two sequential enzymes. The scheme involves six elementary steps 
with net velocities wj,,, w ~ , ~  and wj,, (see Fig. 2.1). This system is an example of 
a dynamically channeled pathway. The phenomenon of metabolic channeling will 
be commented on in more detail in Section 5.15. 

We now wish to show that the concentration control coefficients of the enzymes 
depend on the choice of the perturbation parameter, by choosing enzyme 1 as an 
example. For simplicity's sake, assume the elementary step Ib in the considered 
pathway to be irreversible (k-lb = 0). First, we consider a perturbation of the 
reaction rate, vl, of enzyme El in isolation, with the complex EISl being at quasi- 
steady-state. Differentiation of the Michaelis-Menten equation (2.20) yields 

Now we study perturbations of the steady state of the whole system and, in 
particular, effects on the concentration S1. Let w and S be the vectors of the six 
elementary reaction rates and of the six variable concentrations in the scheme. 
The response of steady-state concentrations to parameter changes can be written 
as 

*. 
[cf. Eq. (5.23)]. No and L are the reduced stoichiometry matrix and link matrix, 
respectively, of the detailed scheme consisting of elementary steps. Choosing a 
perturbation parameter specific to reaction 1, Eq. (5.230) implies 

because all other components of awlap are zero. L is a common factor resulting 
from Eqs. (5.230) and (5.231). Using w1 = klaP1 El - k- laEIS1, one obtains 
from Eq. (5.231), with kl, or k-l, as perturbation parameters, 

One can calculate the non-normalized control coefficient of reaction 1 over the 
concentration Sl alternatively as 

withp = L(kl,P1 + k- la + klb)2/(kl$l~,,l). These two coefficients are identical 
if, and only if, 

The left-hand side of this equation equals dEISlldr + wl,. As EISl is assumed 
to be at steady state, Eq. (5.234) holds true only if wlC = 0 (i.e., if no channeling 
occurs). Consequently, if the channel is operative, the value of the concentration 
control coefficient of reaction 1 depends on which perturbation parameter has 
been chosen. This is because changing the distribution of El among its subforms 
by altering a kinetic parameter influences the distribution of E, among its sub- 
forms, through the complex EIE,Sl. This effect is taken into account in the nu- 
merators of the control coefficients as given in Eq. (5.233). but not in the denom- 
inators, because the derivatives dvllak,, and a ~ ~ l d k - ~ ,  are taken for the enzyme 
considered in isolation. As the flux control coefficients can be calculated from 
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the concentration control coefficients, as given in Eq. (5.14), they are not inde- 
pendent of the perturbation parameter in the case of channeling (cf. Kholodenko 
et al., 1995). Note that unlike in the situation of moiety conservation considered 
in Section 5.6.3, in the situation of channeling even parameters of one and the 
same step give different results. 

5.7. NORMALIZED VERSUS NON-NORMALIZED 
COEFFICIENTS 

Upon derivation of the basic equations of metabolic control analysis in Sections 
5.2 and 5.3, we have mainly used non-normalized control and elasticity coeffi- 
cients, although control analysis was originally developed in terms of normalized 
coefficients. Generally speaking, mathematical operations with control coeffi- 
cients are easier if unscaled derivatives are used (see Mazat et al,, 1990; H e i ~ c h  
and Reder, 1991), whereas scaled coefficients are better suited for biochemical 
interpretation. Because the measured values of fluxes through different metabolic 
pathways and concentrations of different intermediates generally differ by several 
orders of magnitude, a quantitative measure of control should be given in terms 
of fractional changes. To some extent, however, it is still a matter of personal 
preference which type of coefficient is used. In what follows, we will discuss 
some advantages and drawbacks of the two methods of definition in more detail 
(see also Reder, 1988; Fell, 1992; S. Schuster and Heinrich, 1992). As in the 
present context the clear distinction between non-normalized and normalized con- 
trol coefficients is essential, we denote the latter ones by C,,,,. 

Rescaling of variables and parameters: In biochemistry, the term "flux" is 
mostly used in the sense of steady-state velocity of the formation (or degradation) 
of a specified metabolite. However, this interpretation may be ambiguous in sys- 
tems including reactions of higher molecularity. For example, the flux of glycol- 
ysis can be measured as the consumption rate of glucose or as the production rate 
of lactate (which differ by the factor 2) and the flux of NaC/K+-ATPase can be 
measured in terms of the Na+ transport, K+ transport or ATP consumption, all 
of them differing from each other. In contrast to non-normalized control coeffi- 
cients, the normalized coefficients have the favorable property of being invariant 
with respect to rescaling of fluxes. This can be shown in the following way, for 
systems of any complexity. Rescaling of reaction rates can be expressed by means 
of a diagonal matrix (dg.4) constructed from an arbitrary vector A not containing 
a zero, 

Similar transformation rules apply to steady-state fluxes and the derivatives of 

reaction rates with respect to parameters. Note the difference between rescaling 
of reaction rates and normalization of control coefficients. The former is related 
to the way thesates are registered, with those variables remaining having physical 
units, whereas the latter is a nondimensionalization. 

Equation (5.235) implies that the transformed matrix of non-normalized con- 
trol coefficients obtains as 

The normalization of +CJ has to be done by use of the transformed fluxes, 

+corn = (dg +J)-' +c'(dg +v). 

From these equations one obtains 

+Go"" = corn. 
This identity implies, for example, that the control on the glycolytic flux is in- 
dependent of whether this flux is identified with the consumption rate of glucose 
or with the production rate of lactate, provided that normalized coefficients are 
used. 

It is reasonable to postulate that the control coefficients should be invariant to 
changes of the units of fluxes and concentrations. A change of the flux unit is 
expressed by Eq. (5.235) with all the components of the vector A being equal to 
each other. A similar equation can be written to express a rescaling of concentra- 
tions. It is easy to see that the normalized control coefficients have the favorable 
property to be independent of such rescaling. However, it follows from Eq. (5.236) 
that a change of flux units (i.e., all the components of the vector A are identical) 
does not affect the non-normalized flux control coefficients either (i.e., +C' = 
c). Unscaled concentration control coefficients have the same dimension as time. 
So they are independent of the choice of the concentration unit. Yet, they are not 
invariant to a different rescaling of the particular reaction rates. 

Similar considerations apply if knowledge of the exact reaction mechanism of 
some of the reactions is incomplete, in that only the ratios of the stoichiometric 
coefficients are known. Any rescaling of the columns of the stoicbiometry matrix 
must be accompanied with a reciprocal rescaling of the fluxes, as is seen from 
the steady-state equation (2.9). Because this rescaling of fluxes is expressed by 
Eq. (5.235), we again obtain Eq. (5.238) and a similar equation for concentration 
control coefficients. Thus, the normalized control coefficients are invariant to 
rescaling of the stoichiometric coefficients of the particular reactions. 

Note that rescaling the perturbation parameters has neither an effect on the 
normalized nor on the non-normalized control coefficients, because these param- 
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eters enter both the numerator and denominator in the definition equation. x- 
Elasticities are invariant to rescaling of parameters in their scaled form, but in 
their unscaled form, they are not. 

Extent of necessary knowledge: As for elasticities, it is worth mentioning that 
normalized coefficients are sometimes available even if the non-normalized co- 
efficients are not. This is, in particular, the case if the substrate concentration is 
well below the Michaelis constant. In this situation, the normalized elasticity ts 

is virtually equal to unity [cf. Eq. (5.68)]. Similar considerations apply for the 
parameter elasticities. For example, the normalized elasticity coefficient of the 
enzyme concentration (aE = alnvlalnE) is always unity provided that the reaction 
rate v depends linearly on E. Furthermore, in contrast to their unscaled counter- 
parts, normalized elasticities have the favorable property of becoming independent 
of the kinetic parameters in the case of near-equilibrium reactions (see Section 
5.4.1). 

Interpretation: Another advantage of normalization arises from the observation 
that many substrates and inhibitors have in vivo concentrations comparable with 
the corresponding Michaelis constants respectively inhibition constants [Lowry 
and Passonneau (1964); for theoretical explanations by evolutionary arguments 
cf. Section 6.1 as well as the works of Crowley (1975). Cornish-Bowden (1976a), 
and Wilhelm et al. (1994)l. On the basis of Michaelis-Menten kinetics, small 
changes in substrate concentrations and in enzyme activities are approximately 
related as 

Under the assumption that a certain ratio SIK,, is typical for most enzymes, 
knowledge of the relative concentration change (which may result from the nor- 
malized- concentration control coefficients) allows conclusions about the relative 
changes of reaction rates. In contrast, knowledge of the absolute concentration 
changes (which may result from the non-normalized coefficients) only allows 
conclusions concerning the absolute change of the reaction rate if, in addition, 
the reference state as well as the enzyme parameters Kms and V, are known. 
Similar conclusions can be drawn for the action of inhibitors or activators as far 
as the half-saturation constants for inhibition and activation, respectively, are com- 
parable to the corresponding in vivo concentrations of effectors. One may argue, 
in a sense, that usage of the scaled coefficients reflects biochemical reality better 
than unscaled coefficients in that the evolutionary matching of average in vivo 
concentrations and the corresponding half-saturation constants are taken into ac- 
count. 

Singularifies: As every relative quantity, the normalized control and elasticity 
coefficients have the drawback of having singularities if the quantity entering the 

definition in the denominator equals zero. As for flux control coefficients, one 
can distinguish the two following cases: (a) some flux is zero, but it is susceptible 
to control by some other reaction; (b) some flux is zero and remains zero when 
any parameter specific to any other reaction is changed. 

An example for case (a) is provided by Scheme 7 (Section 3.2.4), for which 
there are special kinetic parameter values so that the steady-state flux through one 
reaction is zero (for example, J3). As soon as some kinetic parameter of reaction 
1 or 2 is slightly changed, J3 is no longer zero, so that both the reactions 1 and 
2 affect the flux through the third reaction. Whereas the corresponding unscaled 
flux control coefficients have finite values, the normalized ones are infinitely large 
due to division by J3. SO one may conclude that in the neighborhood of singu- 
larities, the normalized control coefficients can be very large even if the absolute 
flux and concentration changes are small. 

An example for case (b) obtains if in Scheme 7, one of the external metabolites 
(e.g., P3), is replaced by an infernal metabolite, that is, by a substance with variable 
concentration. Reaction 3 is then detailed balanced in every steady state of the 
system and its flux cannot, therefore, be influenced by any reaction. The non- 
normalized flux control coefficients expressing the control exerted by reactions 1 
or 2, which are not detailed balanced, on flux J3 are zero, whereas the correspond- 
ing logarithmic coefficients are indeterminate. 

As for concentration control coefficients, singularities need not be considered 
because for thermodynamic reasons, no substance participating in at least one 
reaction can be zero in steady states. 

There may arise the misleading situation that a quantity entering the definition 
of some normalized coefficient in the numerator is zero, so that a nonzero unscaled 
coefficient can have a zero normalized counterpart. This difficulty arises, for ex- 
ample, for response coefficients and elasticities when artificial inhibitors with zero 
reference concentration are employed in experiment. 

It is interesting that several favorable properties of normalized flux control 
coefficients are retained if normalizations other than that given by Eq. (5.34b) are 
used. Using, instead of the flux vector J, any arbitrary vector k from the null- 
space, one can define the matrix 

corm = (dg k) - W(dg k). 

Whereas the flux vector J often is not known, a vector k can easily be computed 
from the stoichiometry matrix. Due to the generalized summation theorem 
(5.44b), the coefficients defined by Eq. (5.240) satisfy the traditional summation 
theorem (5.43). Furthermore, these coefficients have, like the coefficients nor- 
malized by the flux vector, the property of being invariant to a different scaling 
of the columns of the stoichiometry matrix, as this is accompanied with a recip- 
rocal rescaling of the components of any vector k. Normalization according to 
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eters enter both the numerator and denominator in the definition equation. x- 
Elasticities are invariant to rescaling of parameters in their scaled form, but in 
their unscaled form, they are not. 

Extent of necessary knowledge: As for elasticities, it is worth mentioning that 
normalized coefficients are sometimes available even if the non-normalized co- 
efficients are not. This is, in particular, the case if the substrate concentration is 
well below the Michaelis constant. In this situation, the normalized elasticity es 
is virtually equal to unity [cf. Eq. (5.68)]. Similar considerations apply for the 
parameter elasticities. For example, the normalized elasticity coefficient of the 
enzyme concentration (% = alnvlalnE) is always unity provided that the reaction 
rate v depends linearly on E. Furthermore, in contrast to their unscaled counter- 
parts, normalized elasticities have the favorable property of becoming independent 
of the kinetic parameters in the case of near-equilibrium reactions (see Section 
5.4.1). 

Interpretation: Another advantage of normalization arises from the observation 
that many substrates and inhibitors have in vivo concentrations comparable with 
the corresponding Michaelis constants respectively inhibition constants Lowry 
and Passonneau (1964); for theoretical explanations by evolutionary arguments 
cf. Section 6.1 as well as the works of Crowley (1975), Cornish-Bowden (1976a), 
and Wilhelm et al. (1994)l. On the basis of Michaelis-Menten kinetics, small 
changes in substrate concentrations and in enzyme activities are approximately 
related as 

Under the assumption that a certain ratio SIK, is typical for most enzymes, 
knowledge of the relative concentration change (which may result from the nor- 
malized concentration control coefficients) allows conclusions about the relative 
changes of reaction rates. In contrast, knowledge of the absolute concentration 
changes (which may result from the non-normalized coefficients) only allows 
conclusions concerning the absolute change of the reaction rate if, in addition, 
the reference state as well as the enzyme parameters K, and V,,, are known. 
Similar conclusions can be drawn for the action of inhibitors or activators as far 
as the half-saturation constants for inhibition and activation, respectively, are com- 
parable to the corresponding in vivo concentrations of effectors. One may argue, 
in a sense, that usage of the scaled coefficients reflects biochemical reality better 
than unscaled coefficients in that the evolutionary matching of average in vivo 
concentrations and the corresponding half-saturation constants are taken into ac- 
count. 

Singularities: As every relative quantity, the normalized control and elasticity 
coefficients have the drawback of having singularities if the quantity entering the 

definition in the denominator equals zero. As for flux control coefficients, one 
can distinguish the two following cases: (a) some flux is zero, but it is susceptible 
to control by some @er reaction; @) some flux is zero and remains zero when 
any parameter specific to any other reaction is changed. 

An example for case (a) is provided by Scheme 7 (Section 3.2.4), for which 
there are special kinetic parameter values so that the steady-state flux through one 
reaction is zero (for example, J3). As soon as some kinetic parameter of reaction 
1 or 2 is slightly changed, J3 is no longer zero, so that both the reactions 1 and 
2 affect the flux through the thud reaction. Whereas the corresponding unscaled 
flux control coefficients have finite values, the normalized ones are infinitely large 
due to division by J3. SO one may conclude that in the neighborhood of singu- 
larities, the normalized control coefficients can be very large even if the absolute 
flux and concentration changes are small. 

An example for case @) obtains if in Scheme 7, one of the external metabolites 
(e.g., P3), is replaced by an internal metabolite, that is, by a substance with variable 
concentration. Reaction 3 is then detailed balanced in every steady state of the 
system and its flux cannot, therefore, be influenced by any reaction. The non- 
normalized flux control coefficients expressing the control exerted by reactions 1 
or 2, which are not detailed balanced, on flux J3 are zero, whereas the correspond- 
ing logarithmic coefficients are indeterminate. 

As for concentration control coefficients, singularities need not be considered 
because for thermodynamic reasons, no substance participating in at least one 
reaction can be zero in steady states. 

There may arise the misleading situation that a quantity entering the definition 
of some normalized coefficient in the numerator is zero, so that a nonzero unscaled 
coefficient can have a zero normalized counterpart. This difficulty arises, for ex- 
ample, for response coefficients and elasticities when artificial inhibitors with zero 
reference concentration are employed in experiment. 

It is interesting that several favorable properties of normalized flux control 
coefficients are retained if normalizations other than that given by Eq. (5.34b) are 
used. Using, instead of the flux vector J, any arbitrary vector k from the null- 
space, one can define the matrix 

Go, = (dg  k )  - 'C'(dg k ) .  (5.240) 

Whereas the flux vector J often is not known, a vector k can easily be computed 
from the stoichiometry matrix. Due to the generalized summation theorem 
(5.44b). the coefficients defined by Eq. (5.240) satisfy the traditional summation 
theorem (5.43). Furthermore, these coefficients have, like the coefficients nor- 
malized by the flux vector, the property of being invariant to a different scaling 
of the columns of the stoichiometry matrix, as this is accompanied with a recip- 
rocal rescaling of the components of any vector k. Normalization according to 
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Eq. (5.240) may be of interest in situations where the usual normalization by 
steady-state fluxes entails singularities. 

5.8. ANALYSIS IN TERMS OF VARIABLES OTHER 
THAN CONCENTRATIONS AND mums 

5.8.1. General Analysis 
Control coefficients had originally been defined to quantify the rate limitation 

and concentration control at steady state. Later on, the concept was extended to 
the control of other quantities such as transition times, cell volume, and the trans- 
membrane potential. Sometimes concentrations and fluxes are not the only im- 
portant variables for describing a biochemical system. For example, models of 
oxidative phosphorylation in mitochondria (Westerhoff and Van Dam, 1987; 
Brand et al., 1988; Hafner et al., 1990) often include the proton-motive force, 
&+, rather than the proton concentrations in the cytosol and the mitochondrial 
matrix, as state variables. Sometimes, concentration ratios such as ATP/ADP 
(Westerhoff and Van Dam, 1987) or acetyl-CoAKoA (Quant, 1993) are consid- 
ered. 

'In the analysis presented in Sections 5.1-5.4, a tacit distinction has been made 
between variables which describe the state of the metabolic network and a set of 
variables of which the response to parameter perturbations has been studied. The 
former have been the set of concentrations, S, and the latter the sets of concen- 
trations and fluxes, S and J .  In a general treatment, a vector, X, of generalized 
state variables, and a vector, Y, of generalized response variables can be defined. 
Both sets may include concentrations, concentration ratios, reaction affinities, 
energy charge, proton-motive force, transmembrane potential, and so on. In con- 
trast, steady-state fluxes and transient times characterizing the time necessary to 
reach a steady state can be taken as response variables, but not as state variables, 
because they depend on system parameters. As the name suggests, state variables 
characterize the state of the system, which need not be a stationary state. They 
do not directly depend on any parameters. The response variables [output vari- 
ables in the terminology of Cornish-Bowden and Chdenas (1993)l can be written 
as functions of the state variables and the system parameters: 

We denote the numbers of components of X by r. For this analysis, we assume 
that the reaction rates can be written as functions of X andp [i.e., v = v(X,p)]. 
The state variables may be subject to rn independent side constraints, 

Examples of such side constraints are the conservation relations (3.3) and Eq. 
(5.168), which links the proton-motive force to the inner and outer proton con- 
centrations and the transmembrane potential. 

Provided that the vector X contains sufficient information so that v can be 
expressed in terms of X and p, the steady-state equation (2.9) for the concentra- 
tions requires, as only rank(N) equations in this matrix equation are linearly in- 
dependent, 

Because this equation together with the side constraints (5.242) determines the 
values of the state variables X at steady state, we can conclude that rn = r - 
rankm), which means that introducing an extra state variable implies imposing 
an extra side constraint. Total differentiation of Eq. (5.243) with respect to vector 
p yields 

av av ax N O-  + NO-- = 0. 
ap ax ap 

Due to the side constraints (5.242), the vector X can be partitioned into a 
subvector X, of independent variables and a subvector Xb of dependent variables, 
similar to the vector S in Eq. (3.8). These subvectors involve rank(N) components 
and ( - rank(N) components, respectively. Note that the dependencies between 
these variables need not be linear, at variance with the dependencies between S, 
and Sb in conservation relations. 

Equation (5.242) can be rewritten in vector form, 

Total differentiation of Eq. (5.245) with respect to X, gives 

The matrix ag/aXb is square because the number of dependent variables equals 
the number of constraints. Moreover, this matrix is nonsingular because the con- 
straints are assumed to be independent. Therefore, Eq. (5.246) yields 
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which gives 

where 
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Some particular cases deserve special mention. When interested in the control on 
Equahon (5.244) reads, in more detail, the state variables X,, one can simplify Eq. (5.254) to 

av av ax ax, NO- + NO---- = 0, 
ap axax, ap 

as X does not depend on p directly. Often, Y can be written as a function of X 
and the reaction rates v, 

y = Y K  V(X,p)). 

with axlax, given by Eq. (5.248). The derivatives avlaX play the role of elastic- An example is provided by the transient times defined by Easterby (1981), which 
ities. will be dealt with in Section 5.8.4. From Eq. (5.256), we obtain 

One can now define a matrix of unscaled coefficients expressing the control 
on the variables 5: 

where the symbol I, means that the derivative is taken at constant v. This gives, 
due to Eqs. (5.250), (5.251), and (5.253), 

wherep is an r-dimensional subvector of the parameter vector used In Eq. (5.243) 
for which (avlap) is nonsingular. Here, the total differentiation sign dlQ is used 
because not only the direct effect ofp on Y but also the indirect effect via X must 
be taken into account. In the definition of the flux control coefficients, the dis- 
tinction between partial and total derivative is not necessary because different In particular, if Y equals the flux vector J, we have 
symbols for isolated rates, v = v(S,p), and steady-state fluxes, J = J@) are used 
[cf. Eq. (5.8b)l. 

From Eqs. (5.241) and (5.250), one derives 

If, in addition, X = S, Eq. (5.259) coincides with Eq. (5.26b). 
Note that if the response variables Y depend only on the state variables, X, or 

on the reaction rates, v, the control matrix CY does not depend on the special 
choice of the parameter vectorp [cf. Eqs. (5.255) and (5.258)]. In contrast, if Y 
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additionally depends on p directly, the control coefficients do depend on this 
choice. 

Unijied summation and connectivity theorems: Postmultiplying Eq. (5.254) by 
the null-space matrix K, we obtain, due to Eq. (3.44), 

Equations (5.264) and (5.265) are generalizations of the summation and connec- 
tivity theorems, respectively, for any response variable that depends on v and X 
only [cf. Eq. (5.256& In particular, the summation and connectivity theorems for 
concentration control coefficients and flux control coefficients result from the 
above equations by obvious substitutions. 

This equation can be regarded as a unified summation theorem. Postmultiplication 
of Eq. (5.254) by (avlax)(aXlax~ gives, owing to Eq. (5.253), 

which is a unified connectivity theorem. The notion "unified" refers to the fact 
that both for the summation theorem and the connectivity theorem, only one 
equation need be written instead of separate equations for concentration control, 
flux control, and possible other quantities. 

If Y = X, Eq. (5.260) simplifies to 

This equation is a generalization of the summation theorem (5.44a) for any gen- 
eralized state variable. 

When Y depends on p only via v, as indicated in Eq. (5.256), we have 

??'=El +dY 
ax ax, av ax' 

Note that the derivative on the left-hand side of Eq. (5.263b) is taken at constant 
p. Therefore, Eq. (5.260) yields 

Moreover, Eq. (5.261) gives 

av ax cy-- = -- 
axax, ax, a Y I  ax, 

ax 

5.8.2. Concentration Ratios and Free-Energy Differences 
as State Variables 

This section is devoted to further illustration of the general analysis presented 
in the previous section. Consider first the situation that in a given system two 
concentrations enter a conservation relation of the form S, + S2 = const. S, and 
S2 may stand, for example, for NAD and NADH, respectively. In this situation, it 
is usual practice in biochemistry to interpret experimental results in terms of the 
concentration ratio X, = Sl/S2 (see Hofmeyr et al., 1986; Quant, 1993). It is then 
possible to replace the concentration vector S by a vector 

The elasticity avklaXl = avkla(S,lS2) is taken at constant S1 + S2 and the elasticity 
avklaX2 = avkla(SI + S2) at constant ratio S,/S,. 

The unified connectivity theorem (5.265) impIies, with Y = J, 

for the flux control coefficients. The right-hand side is zero because the partial 
derivative of J with respect to X vanishes. Equation (5.267) can be simplified to 

This connectivity theorem has also been given by Hofmeyr et al. (1986). Equation 
(5.268) holds m e  only if the elasticities with respect to the concentration ratio 
are determined with the sum of the two concentrations kept constant. It also 
applies when Xl is defined as ln(Sl/S2), which is relevant for an interpretation in 
terms of free energy (see below). 

The above calculations are of particular importance for reaction systems in- 
volving cofactor pairs such as ATPIADP or NAD(P)MAD(P)H. In the case that 
Sl = NAD and S2 = NADH, it is easy to see that Eq. (5.268) implies, for the 
normalized coefficients, the following connectivity relation: 
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According to Eq. (3.76), the entropy production rate is a linear function of the 
steady-state fluxes J,  because for given external conditions, the coefficients In($) 
are fixed. This en+ls a direct relation between the flux control coefficients and 

where is the elasticity of reaction k with respect to the NADNADH the control coefficients for entropy production rate. For the unscaled coefficients, 
ratio. To calculate this elasticity, one can represent NAD and NADH in terms of 
the NADNADH ratio and the conservation sum, NAD + NADH. One obtams 

r 

.&, . NADH - h m H .  NAD Cp = R 2 q{ In($). 
e"NAD/NADH = NAD + NADH ' 

,= 1 

A similar elasticity can be calculated with respect to the acetyl-CoA/CoA ratio This equation may be rewritten as follows: 

(Quant, 1993). 
Related elasticities were defined with respect to molar free-energy differences 

of reactions (Westerhoff et al., 1983; Westerhoff and Van Dam, 1987), 

It shows that control of entropy production is closely related to control of all 
independent fluxes. Although our aim is here primarily to give an example of the 
general treatment presented in Section 5.8.1, we note that Eq. (5.275) may be a 

A relevant example is the electrochemical potential difference for protons (proton- starting point for optimization analysis concerning thermodynamic efficiencies 
motive force), A,LH, across mitochondrial or other membranes [cf. Eq. (5.168)l. (Kedem and Caplan, 1965; Stucki et al., 1983). 
Such elasticities have been used in various studies (Brand et al., 1988; Hafner et From Eqs. (3.76) and (5.44b) it follows that the control coefficients for entropy 
al., 1990; S. Schuster et al., 1993a). production fulfill the generalized summation theorem 

In a mathematically rigorous notation, one should indicate what quantities 
remain constant when the derivative avklaAGJ is calculated. This depends on what 
variables other than AG, are included in the vector X. The difficulty arises from 
the fact that reaction rates cannot, in general, be written as functions of the free- 
energy differences only (see Section 2.2.3). For example, elasticities with respect 

where the k,, denote the elements of the null-space matrix K. Note that the term 
to &-H depend on what other variables are kept constant (HA, H;, A Y ) .  

in parentheses in Eq. (5.276) also enters the generalized Wegscheider condition 

5.8.3. Entropy Production as a Response Variable 
A thermodynamically relevant response variable is the total entropy production 5.8.4. Control of Transient Times 

of metabol~c pathways, a, defined by Eq. (3.74). In analogy to Eq. (5.16) one 
As outlined in Section 4.1, an agreed definition for transient times only exists may define unscaled control coefficients for the entropy production rate as 

for isolated reactions obeying first-order kinetics [Eq. (4.1)]. Another definition, follows: 
which takes into account the systemic interactions, is based on the eigenvalues of 
the Jacobian matrix [cf. Eq. (4.6)]. There are several approaches to define average 

60  = P 6 v ,  
relaxation times. However, alI of these definitions are applicable only under very 
special conditions. For control analysis two different definitions of transient times 

where the vector Cu contains the elements have been used primarily. 

aOlapk c a  - - 
t - 1. Easterby considered an unbranched reaction sequence (see Scheme 11, Section 

avklapk ' 5.4.3.1) where the input and output reactions are assumed to be irreversible (Eas- 
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terby, 1981). Initiating the reactions at t = 0 with initial metabolite concentrations Eq. (5.279) results in Eq. (4.1) when applied to a single monomolecular reaction, 
Si(0) = 0 and P,(O) = 0, the condition of mass conservation leads to because the relaxation process may then be described by only one exponential 

For the case that the system involves conservation relations, definition (5.279) 
only applies if the perturbations do not violate these relations. 

where it is assumed that the rate v, = klPl of the input reaction is constant. Because For the calculation of the transient times r = (T,, . . . ,T, , )~ defined in Eq. 

the output reaction is irreversible, the concentrations Si may attain a stationary state (5.279), the following general procedure may be applied. With 6S = 

for t + m. With Si = const. Eq. (5.277) defines in a (t,P,) diagram a seaight line (6Sl, . . . ,6s,JT, integration of Eq. (2.82) yields 
which intersects the time axis at t = r with 

1 " n 

T = - ~ s i = ~ t i .  
J j-1 j=l 

and under consideration of Eq. (5.280), 
s is called the "overall transient time" of the pathway. In Eq. (5.278), J = v, has 
been taken into account. According to definition (5.278), T characterizes the time 
needed to generate the steady-state conceneations. ti = SiN is the eansient time 
of intermediate Si. A generalization of this definition for the case of unbranched 
reaction chains with some steps having non-unitary stoichiometries was given by 
Melhdez-Hevia et 01. (1990). In eq. (5.278). the sum of concentrations has then 
to be replaced by a linear combination with the coefficients being products of Partial integration on the left-hand side of the equation 

stoichiometric coefficients. 
2. A more general definition of the average transient time for a metabolite Si is 

yields, due to lim [tGS(t)] = 0 

- A  = MB, 

From Eqs. (5.28Ib) and (5.282b) the vectorsA and B and, therefore, the vector 

Asi(t)l, = A$', lim A&(t) = 0 of the transient times 7 = (B,IAl, . . . , B,,/A,)~ can be calculated from the initial 
I-rn perturbations 6s' and the Jacobi matrix M without explicit knowledge of the 

relaxation function 6Si(t). With M = N avlaS, one obtains 
(Heinrich and Rapoport, 1975). If the perturbations are sufficiently small, the func- 
tions A&(t) = 6Si(t) are determined by the linear approximations (2.82) of the 
system equations (2.8). An advantage of expression (5.279) compared with defi- 
nition (5.278) is that it applies not only to unbranched chains with a constant input 
but to the intermediate concentrations of any reaction network. It has been applied 
also in the theory of tracer kinetics (Gitterman and Weiss, 1994). in the analysis 
of metabolic channeling (Heinrich and S. Schuster, 1991) and in other fields of 

These equations have been derived for the case of no conservation relations. If 

with 
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the system does involve such relations, Eqs. (5.283a) and (5.283b) include the 
link matrix L. 

Using definitions (5.278) or (5.279), control coefficients for the transient time 
ti of a metabolite Si may be calculated in the following way: 

where p, denotes any reaction-specific perturbation parameter. The control co- 
efficients C,' of the "overall transient time" are defined similarly. 

Using definition (5.278) the problem of transient-time control is closely related 
to that of fluxes and metabolite concentrations (see MelBndez-Hevia et al., 1990). 
With ti = SilJ, one obtains 

This equation implies, under consideration of Eqs. (5.37a), (5.37b) and (5.284), 

where Ci;, denotes the normalized transient-time control coefficients of metabolite 
Si. Analogously, one gets for the control coefficients of the overall transient time 

Substitution of Eqs. (5.278) and (5.284) into expression (5.287) gives 

On the basis of definition (5.279) the normalized control coefficients for the 
transient time of a metabolite Si is given by the expression 
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Easterby's definition of transient times, one gets under, consideration of sum- 
mation theorems for concentrations and fluxes [cf. Eqs. (5.42) and (5.43)], - 

which are the summation theorems for the transient times of individual metabo- 
lites and for the overall transient time, respectively ( H e i ~ c h  and Rapoport, 1975). 
These theorems, which can also be derived from the unified summation theorem 
(5.260), express the fact that an activation of all enzymes by the same fractional 
amount (which is equivalent to a division of the time scale by this factor) reduces 
all transient times by this factor. This fact holds true for all time-independent 
variables with dimension of time (Acerenza and Kacser, 1990). 

Now it is shown that the control coefficients derived from the alternative def- 
inition (5.279) of transient times also fulfill the summation theorem (5.290) as 
long as the perturbation parameters are reaction-specific and enter the rate equa- 
tion v(S,p) as multipliers, t'lat is, 

Differentiation of Eq. (5.281b) with respect to the perturbation parameters yields, 
with the Jacobian M = N(avIaS), 

In this equation, mixed second derivatives of the reaction rates with respect to 
metabolite concentrations and kinetic parameters appear (cf. the second-order 
approach to metabolic control analysis in Section 5.9). However, from Eq. (5.291), 
the following simplification results: 

a2v, avk a ln B, lapk a ln A, lapk c; = - - - -- - -- 
a In ~ ~ l a p ~  a In vk/apk' a ~ k  pk as,' 

Summation theorems: From Eqs. (5.286) and (5.287), which are derived from One gets from Eq. (5.292) 
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av a~ 
(dgp)-' + N - -  = 0. as ap 

Postmultiplication of this equation by the parameter vectorp yields 

av av a~ 
N- A  + N - - p  = 0, as as ap 

and because M = N dvldS is assumed to be invertible, 

aA JlnA. - p  = - A  or 2-= - 1 ,  
JP k=l a lnpk 

In a similar way, one derives, by differentiation of Eq. (5.282b) 

aA av av JB 
- - p  = N- B  + N - - p  

JP as as ap 

and with Eq. (5.296), 

aB JlnB -2B = - p  or 2 -d= -2 .  
JP k= l  a lnpk 

Together with Eq. (5.289), Eqs. (5.296) and (5.298) lead directly to the summation 
theorem (5.290). 

Connectiviv theorems: Using Eq. (5.287), the connectivity theorems for the 
fluxes and metabolite concentrations imply connectivity relationships for the 
transient-time control coefficients which read, for unbranched chains, 

(Melkndez-Hevia et al., 1990). 
We will now show that the connectivity theorems for the transient times are 

special cases of the unified connectivity theorem derived in Section 5.8.1. Ac- 
cording to Eq. (5.278), the overall transient time is expressed as a function of the 
metabolite concentrations and the flux in a reference steady state. As the kinetic 
parameters do not enter expression (5.278) in an explicit manner, the unified 
connectivity theorem assumes the form given in Eq. (5.265) with Y = z and X 
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= S = (S,, . . . , S,JT. From Eqs. (5.265) and (5.278), one obtains, for the unscaled 
coefficients, 

e 

;;cxi!3= -a?= -1 
k = ,  asi as, J '  (5.300) 

Introducing normalized coefficients (i.e., C,'vk/z -+ C i )  and by taking into account 
the steady-state condition vk = J, relation (5.300) can easily be transformed into 
the connectivity theorem (5.299b). In a similar way, Eq. (5.299a) for the transient- 
time control coefficients of individual metabolite concentrations can be derived 
from the unified connectivity theorem (5.265). 

For unbranched reaction chains with no dosteric regulations, Eq. (5.299b) 
simplifies to 

because the rate of any reaction depends on its substrate and product only. With 
tii < 0, t j+l, j  > 0 [cf. assumption (5.104)], it follows immediately from Eq. 
(5.301) that: 

(a) if Cj' > 0 ,  then 

(b) if C; < 0 ,  then 

This result and the summation theorem (5.290b) imply that the transient-time 
control coefficient of the last enzyme will always be negative (Melkndez-Hevia 
et al., 1990). 

Let us consider the most simple case that in Scheme 11 (Section 5.4.3.1) all 
reactions are irreversible and may be described by first-order kinetic equations. 
Then, the steady-state concentrations and the steady-state flux are determined by 

and the concentration control coefficients and flux control coefficients turn out 
to be 
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Introducing this into Eq. (5.287) yields 

A comparison of Eqs. (5.304b) and (5.305) shows that reactions which have 
a low or even vanishing influence on steady-state fluxes may exert a strong control 
on transient times and vice versa. Furthermore, it is easily verified that the co- 
efficients given in Eq. (5.305) fulfill the summation relationship (5.290b). 

5.8.5 Control of Oscillations 
The possibility of periodic time-dependent changes of enzymic systems has 

always been a central point in the mathematical analysis of metabolic processes 
(see also Section 2.4). Despite the fact that for many systems the physiological 
role of the observed oscillations is still unclear, it has sometimes been argued that 
the cellular response toward oscillations is governed by their frequencies rather 
than by their amplitudes or by the mean levels of oscillating concentrations (Rapp 
et al., 1981; Rapp, 1987; Bemdge, 1989; Goldbeter and Li, 1989; Goldbeter et 
al., 1990). 

It seems to be worth generalizing the concept of control coefficients to oscil- 
lating systems in order to characterize, for example, the role of the individual 
reactions in determining the frequency of the observed oscillations. Such a gen- 
eralization, however, meets with several difficulties, outlined below. The theory 
of control of oscillations, in the sense of metabolic control analysis, is far from 
being elaborate, and we will give some basic ideas only. 

As a first step toward a control analysis of oscillating processes, one might, 
therefore, define control coefficients characterizing the effect of changes in en- 
zyme activities on the frequency f or the period T of oscillations. A direct appli- 
cation of the usual definitions (5.3) or (5.5) of control coefficients is hindered by 
the problem that there is no well-defined time-independent reference state for the 
activity vj of step j which enters the denominators of these equations. In contrast, 
this problem does not arise for response coefficients which may be defined in the 
following way: 
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.L1 

(Markus and Hess, 1990; Baconnier et aL, 1993; Westerhoff et aL, 1996), where 

i p, denotes a parameter, for example the enzyme concentration of reaction j. In 
principle, it is also possible to define response coefficients for the amplitudes A, 

1 of oscillating variables, notably concentrations S,(t), in the following way (Ba- 
r connier et a l ,  1993): 

In the case that the kinetic parameters pj enter the rate equations in a linear 
manner, the normalized response coefficients for oscillations fulfill summation 
relationships which may be rationalized as follows. Let us compare the time- 
dependent changes of two oscillating systems A and B starting with the same 
initial conditions. Concerning the kinetic parameters, we assume thatp: = AP;' 
for j = 1, . . . , r. Because the system equations depend in a linear manner on the 
rates vj [cf. Eq. (2.8)], a change of the parameters pj by a common factor A results 
merely in a change of the time scale. In system B, the same motions take place 
as in system A but faster (A > 1) or slower (A < 1). In particular, one obtains, 
for the frequency, 

and for the amplitudes of oscillating concentrations, 

Differentiation of these equations with respect to A yields, for A = 1, 

[see Acerenza et al., 1989; Acerenca and Kacser, 1990) as well as the derivation 
of the relationships (5.50a) and (5.50b) in Section 5.3.11. 

As an example we consider the two-component model which has been pro- 
posed by Higgins (1964) and Selkov (1968) for the explanation of glycolytic 



A = - e ~ ~ e ~ ~  - 811e32 + e12e3, + e,,e,, - E ~ ~ E ~ ~  
(5.3 18) 

with EG = avj/dq.. For the system depicted in Scheme 5 (Section 2.4.2). one has 
El 1 = ElZ = E31 = 0 and Eq. (5.3 18) simplifies to 

with So = const. The only steady state obtains as 

Equation (2.122) implies that this state is unstable for 

Let us consider oscillations obtained for parameter values at kz = Grit (i.e., 
near the Hopf bifurcation). There, one obtains with Eq. (2.121) the following 
estimate for the oscillation frequency 

whereas the amplitudes Ai of the oscillating concentrations Si are vanishingly 
small. From Eq. (5.314), one derives, for the normalized response coefficients of 
the frequency, 

a lnf -- alnf 1 alnf 1 -- - -- 
a h  k, - 'I alnk, - 2' alnk, 2' 

which means that a stimulation of reactions 1 or 2 will result in an increase, and 
a stimulation of reaction 3 in a decrease of oscillation frequency. It is seen that 
the response coefficients fulfill the summation relationship (5.310a). According 
to Eq. (5.306b), the response coefficients of the period T sum up to - 1, which 
is in accord with the summation relationship for the control coefficients of tran- 
sient times given in Eq. (5.290). 

In a more general treatment, one may consider the frequencies of oscillations 
in unbranched two-component systems described by the differential equations 

Taking into account that the elasticitiesare dependent on the steady-state con- 
centrations of S, and S,, one derives for the response coefficients for the frequency 

From this equation, one may conclude that the response coefficients of frequencies 
for oscillations observed near a Hopf bifurcation may be expressed by coefficients 
characterizing the control of steady states; that is, first-order and second-order 
elasticity coefficients avjlaSi, azvjla~,a~,, and azvjlaSkaki as well as the first-order 
response coefficients for steady-state concentrations (aSilakj). For more details 
concerning the second-order elasticities see Section 5.9. 

For parameter combinations within the interior of the instability region oscil- 
lations with finite amplitudes for the concentrations Si may be obtained. There, 
explicit solutions cannot be obtained for the frequency nor for the amplitudes, so 
that response coefficients should be calculated numerically. 

5.9. A SECOND-ORDER APPROACH 

Owing to definition (5.16), control coefficients describe the response of the system 
variables to infinitesimally small rate perturbations. In this sense, they characterize 
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oscillations (see Section 2.4.2). With y = 2 and v ,  = k,P,, the system equations 
(2.1 19a) and (2.119b) assume the form 

with So = const. The only steady state obtains as 

Equation (2.122) implies that this state is unstable for 

Let us consider oscillations obtained for parameter values at k, (i.e., 

near the Hopf bifurcation). There, one obtains with Eq. (2.121) the following 
estimate for the oscillation frequency 

whereas the amplitudes Ai of the oscillating concentrations Si are vanishingly 
small. From Eq. (5.314), one derives, for the normalized response coefficients of 
the frequency, 

which means that a stimulation of reactions 1 or 2 will result in an increase, and 
a stimulation of reaction 3 in a decrease of oscillation frequency. It is seen that 
the response coefficients fulfill the summation relationship (5.310a). According 
to Eq. (5.306b), the response coefficients of the period T sum up to - 1, which 
is in accord with the summation relationship for the control coefficients of tran- 
sient times given in Eq. (5.290). 

In a more general treatment, one may consider the frequencies of oscillations 
in unbranched two-component systems described by the differential equations 

The determinant A and, therefore, the frequency f may be expressed by the un- 
scaled elasticities in the following way: 

with cij = dvildS,. For the system depicted in Scheme 5 (Section 2.4.2), one has 
811 = 812 = 831 = 0 and Eq. (5.318) simplifies to 

av, av3 
A = &21&32 = -- as ,  as,  

Taking into account that the elasticities'are dependent on the steady-state con- 
centrations of S ,  and S2, one derives for the response coefficients for the frequency 

a in f = kj ( a2v2 + -- a2v2 a s ,  + -- a2v2 as ,  
a ln kj h 2 ,  a s ,  akj as: akj as ,  as ,  a h  

kj a2v3 + a2v3 a s ,  
+ % 3) + -(- 2e3, as,  a h  a s ,  as,  a h  a$ akj 

From this equation, one may conclude that the response coefficients of frequencies 
for oscillations observed near a Hopf bifurcation may be expressed by coefficients 
characterizing the control of steady states; that is, first-order and second-order 
elasticity coefficients dvjldSi, d2v,ld~,aSk, and d2vjldsdki as well as the first-order 
response coefficients for steady-state concentrations (dSildkj). For more details 
concerning the second-order elasticities see Section 5.9. 

For parameter combinations within the interior of the instability region oscil- 
lations with finite amplitudes for the concentrations Si may be obtained. There, 
explicit solutions cannot be obtained for the frequency nor for the amplitudes, so 
that response coefficients should be calculated numerically. 

5.9. A SECOND-ORDER APPROACH 

Owing to definition (5.16), control coefficients describe the response of the system 
variables to infinitesimally small rate perturbations. In this sense, they characterize 
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local systemic properties of a biochemical network in the vicinity of a stable 
steady state. Elasticities are also sometimes referred to as local properties, because 
they characterize single enzymes rather than the whole system. To avoid confu- 
sion, one should prefer the term component property in the context of elasticities 
(cf. Liao and Delgado, 1993). 

As regulation of enzymes by effectors can cause substantial changes of their 
activities, it may be questioned to what extent the effects of relevant parameter 
perturbations can be described by the linear approximation (5.15). Apart from 
being of theoretical interest this problem is related to practical applications such 
as genetic engineering in biotechnology for which metabolic control analysis has 
been suggested as a useful tool (Westerhoff and Kell, 1987; Galazzo and Bailey, 
1990; Fell, 1992). 

The question of to what extent an enzyme controls a flux may also be analyzed 
in the way that one asks what happens when the enzyme is completely inhibited. 
Whether or not the flux under consideration is then still present can be decided 
by analyzing the zero and nonzero entries in the null-space matrix. It may occur 
that an enzyme has a high flux control coefficient, although it is not necessary 
for that flux because a parallel route bypassing the enzyme exists. Such an analysis 
can, however, only provide qualitative assertions. 

In the present section we wish to analyze how metabolic control analysis can 
b

e 

extended to give more accurate predictions for the changes of the system 
variables than the simple linear approximation for finite parameter perturbations. 
The starting point is the power series expansion (5.9). We now focus on the 
quadratic approximation which takes into account the second-order derivatives of 
the system variables with respect to the kinetic parameters. The concentration and 
flux changes after perturbations of the parameter vector is approximated by 

It has been shown in Section 5.2 that the first-order terms aSlap and aJlap can 
be obtained by implicit differentiation of the steady-state equation (2.9) with 
results given in Eqs. (5.11) and (5.12). In a similar way, the second-order terms 
are obtained by differentiating Eqs. (2.9) and (5.8) twice with respect to the 
parameters. By consideration of Eqs. (5.13) and (5.14), this results, after some 
algebra, in the following expressions: 
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d2vi 

and 

fora = 1 ,..., n a n d b =  1 , . . . ,  r. 
If only reaction-specific parameters are considered, certain sums in Eqs. 

(5.322) and (5.323) can be reduced to one term by taking into account aviIapO = 
0 for i # a. The second-order terms can be written in the following compact 
notation: 

where the vectors 62S, 62J, 6&v, 6gpv and 6;pv have the following components: 

with 

being the concentration change in the linear approximation. 
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In addition to the quantities of the linear theory, the second-order response 
coefficients (5.322) and (5.323) contain the following second derivatives of the 
individual rates: 

a2v. 
&.. = --i. . second-order &-elasticities, " asj ask 

a2v. xi@ = -. . second-order x-elasticities, 
ap, ap8 

and 

a2v. 
(& - = --2: mixed second-order E - x-elasticities. (5.327~) 

asj ap, 

Hence, the local characterization of the individual rates has to be extended to the 
second-order elasticity coefficients in order to determine the response of the sys- 
tem variables to parameter perturbations in the quadratic approximation. Because 
of the occurrence of mixed derivatives of the reaction rates with respect to me- 
tabolite concentrations, a general definition of parameter-independent second- 
order control coefficients is impossible. In particular, the parameter perturbations 
cqnot be replaced by the rate perturbations as independent variables in Eqs. 
(5.321a) and (5.321b). Therefore, the perturbation parameters do not merely play 
a technical role as in the linear theory (see Section 5.2). Another interesting 
feature of the second-order terms is that they contain, besides derivatives char- 
acterizing the influence of a single reaction on a steady-state variable, mixed 
derivatives also (e.g., a2~,lap,apg, where pa and pg may belong to different rate 
equations). The effects of simultaneous perturbations of several rates are thus not 
simply approximated as the sum of the individual effects as in the case of the 
linear theory. In this sense the nonlinear terms in the expansions (5.321a) and 
(5.321b) reflect a fundamental characteristic of the underlying expressions for S 
and J; namely they are nonlinear functions of the kinetic parameters even in the 
simplest case of linear rate laws. [See also Eq. (5.88) for the steady-state flux of 
an unbranched chain under nonsaturating conditions.] 

A first discussion of Eqs. (5.322) and (5.323) becomes easier when reaction- 
specific perturbation parameters are considered, which enter the rate laws linearly, 

It turns out that, under this condition, one can introduce the rate perturbations 
instead of the parameter perturbations as independent variables. For example, with 
Eqs. (5.327) and (5.328), the second-order response coefficients for the flux sim- 
plify to 
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The following definition of second-order flux control coefficients is appropriate: 

With avalapa = valp, one derives from Eq. (5.329) 

Similar equations are obtained for the second-order concentration control coef- 
ficients. The coefficients (5.331) are independent of the special choice of the 
(linear) perturbation parameter. Hence, Eqs. (5.321a) and (5.321b) can be written 
in the form 

where the changes of the steady-state variables are related to perturbations of the 
individual reaction rates rather than of parameters. 

For the second-order control coefficients, summation theorems exist similar to 
those of the linear theory. Denoting by k, and kd two vectors in the null-space 
matrix, one obtains from Eq. (5.331) 
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With the summation theorems of the linear theory [Eqs. (5.44a) and (5.44b)], it 
follows immediately that 
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sible to compare the accuracy of the linear and quadratic approximation using the 
formula 

Extending the analysis to second-order perturbations of the metabolite concen- 
trations, one can show that 

(Hofer and Heinrich, 1993). The summation relationships for the second-order 
control coefficients for -metabolite concentrations and fluxes thus have the same 
form, in contrast to the coefficients of the linear theory. 

Example. We investigate the second-order approximation for flux control for 
the unbranched metabolic chain, which has been analyzed using the linear theory 
in Section 5.4.3.1. With the rate equations (5.85) the second-order elasticity co- 
efficients eijlr vanish and expression (5.331) simplifies to 

The index i in Eq. (5.336) may be omitted, because in the present case there is 
only one steady-state flux (J = vj = vk) Furthermore, for an unbranched chain, 
normalized and non-normalized control coefficients are equal (see Sections 
5.4.3.1 and 5.7) and Eq. (5.336) turns into 

As the first-order flux control coefficients are confined to the range between zero 
and unity, the second-order coefficients fulfill the relations 

For an unbranched chain with linear rate equations the flux change dl resulting 
from a perturbation of a reaction may be fully expressed by the first-order flux 
control coefficients [cf. Eq. (5.931. In the present case it is therefore easily pos- 

where 'I.' denotes the relative error of the approximations. With the linear ap- 
proximation 

and the second-order approximation 

one gets with Eqs. (5.95) and (5.339) 

A large linear flux control coefficient of the perturbed reaction implies small 
relative errors of both approximations. mote that in the limiting case = 1, 
Eq. (5.95) predicts that dl = CJvk becomes exact for any finite perturbation 
Av?] Far < 1, in a certain range of rate perturbations the quadratic approxi- 
mation is more accurate than the linear one, whereas the opposite holds for large 
rate changes (due to the rapid divergence of the quadratic terms for large Avh. 
According to Eqs. (5.342) and (5.343), rate perturbations which lead to a given 
(permissible) error t j  are related as follows: 

This equation shows that the second-order approximation is more accurate up to 
an error of 100%. The treatment has been applied also to metabolic chains with 
saturation kinetics as well as to a model of glycolysis (Hofer and Heinrich, 1993). 

Dealing with the effects of large changes in enzyme activities on the fluxes 
Small and,Kacser (1993) introduced a deviation inden in the following way: 
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where Av, = vk(pf + Apk) - vk@f) represents the effect of a finite parameter 
perturbation on the activity of an isolated reaction, and A J  the resulting change 
of the steady-state activity. For normalization the enzyme activity vk and the flux 
J for the new parameter value pf + Apk are used. 

As shown above, in the case of unbranched reaction chains with linear kinetics, 
the effect of parameter perturbations may be evaluated analytically for arbitrary 
rate perturbations. Applying the concept of deviation index to such systems, one 
obtains, with formulas (5.95) and (5.343, 

This equation means that for this special case, the deviation index equals the 
control coefficient at the reference state for any parameter perturbation. Further- 
more, with formula (5.93, one may calculate the ratio of the steady-state fluxes 
for the perturbed state and the reference state. If it is assumed that the rate of 
reaction k is changed by a factor ,u [i.e., Avk = (D - l)v&, one obtains, for the 
ampl$cation factor; 

where f' denotes the flux at the reference state. The results expressed by formulas 
(5.346) and (5.347) underline the general conclusion made in Section 5.4.3.1 that 
the steady-state properties of an unbranched chain with linear kinetics are char- 
acterized completely by the first-order control coefficients in a reference state. 
Obviously, a similar conclusion cannot be drawn for systems with nonlinear ki- 
netic equations. Here, the effect of finite parameter changes has to be calculated 
using a kinetic model. The second-order approach presented above may be useful 
if the finite changes are not too large. 

5.10. METABOLIC REGULATION FROM THE 
VIEWPOINT OF CONTROL ANALYSIS 

5.10.1. Coresponse Coefficients 
In the introduction to Chapter 5 it has been discussed that, in the framework 

of metabolic control analysis, the term control is used merely in its descriptive 
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sense, which means that control coefficients describe the effect of a parameter 
perturbation on metabolite concentrations or fluxes, irrespective of whether or not 
this parameter actudly changes under physiological conditions. The question of 
whether metabolic control analysis may provide quantities specifically character- 
izing the regulation of metabolic systems arises. It has often been stressed that 
regulation is related to the teleonomic response of biological systems to external 
and internal signals. Therefore, a regulation analysis must take into account the 
biological function of a given metabolic pathway (e.g., the synthesis of ATP in 
glycolysis or oxidative phosphorylation, the synthesis of amino acids in the cor- 

: responding pathways, etc.). Furthermore, it seems to be necessary to quantify 
certain regulative properties of metabolic systems such as homeostasis. 

A clue to the quantification of regulation may be the distinction between the 
effect of parameters on steady-state variables and the correlation between changes 
of two steady-state variables (Hofmeyr et al., 1993). 

Concerning the action of external signals, the problem can be tackled within 
the framework of traditional metabolic control analysis. The effect of external 
inhibitors or activators or the effect of changed enzyme concentrations may be 
quantified by response coefficients [cf. Eqs. (5.28) and (5.29)]. The problem of 
whether it is possible to characterize in an adequate way the effect of internal 
regulators, such as substances which exert feedback inhibitions arises (Hofmeyr 
and Cornish-Bowden, 1991,1993; Kahn and Westerhoff, 1993a, 1993b; Hofmeyr 
et al., 1993). Using metabolic control analysis, one is confronted with the con- 
ceptual difficulty that after perturbation of concentrations of internal metabolites 

S(t) = So for t < 0, S(t) = So + 6S(t) for t 2 0,  6S(O) = 6S0 (5.348) 

the system will generally relax to the original steady state, which means that 
eventually the total effects of the perturbation on the system variables vanish as 
long as the considered reference steady state is asymptotically stable. We will 
show below that some problems of regulation (in p&i&lar, thd quantification of 
the effect of internal regulators) may be tackled within the framework of metabolic 
control analysis. 

To arrive at a more complete description of the response of internal variables 
after perturbations of parameters, Hofmeyr et al. (1993) introduced normalized 
coresponse coefficients in the following way: 

which characterize the concomitant change in two steady-state concentrations Si 
and Sj resulting from a perturbation of a parameter p,. Analogously, coresponse 
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coefficients can be defined for two fluxes or for one concentration and one flux 
or for two other steady-state variables. Experimentally, coresponse coefficients 
may be calculated from the slopes of the tangents in a plot of one internal variable 
versus another variable, obtained by variation of a parameter. 

If reaction-specific perturbation parameters are considered, Eq. (5.349) sim- 
plifies to 

where the left-hand superscript k denotes the number of the perturbed reaction. 
Similarly, non-normalized coresponse coefficients may be defined by replacing, 
in Eqs. (5.349) and (5.350), the normalized x-elasticities and the control coeffi- 
cients by their non-normalized counterparts. 

Concerning the homeostatic property observed in many metabolic pathways, 
a system may be considered to be effectively regulated if strong changes of fluxes 
are accompanied by low variations of the metabolite concentrations, that is, if the 
coresponse coefficients kOS,'~f a reaction k whose reaction rate may change under 
physiological conditions have small absolute values (Hofmeyr and Cornish- 
Bowden, 1991). 

Example. In Section 5.4.3.1. it has been shown that for the unbranched chain 
with feedback inhibition (Scheme 6) the effect of perturbations of the consump- 
tion rate v,+, on the steady-state flux J and the end-product concentration S, may 
be characterized by the following control coefficients: 

where the elasticity c , ,  describes the strength of the feedback inhibition. From 
this, one obtains for the coresponse coefficient of the end-product concentration 
and the steady-state flux at perturbations of reaction n + 1, 

As expected an effective regulation, t'+'Os"-'l << 1, results when the feedback 
inhibition is strong, Ic,,,I >> 1. 

It is worth mentioning that coresponse coefficients of metabolite concentra- 
tions are related to the "crossover theorem" which dates back to the very begin- 

ning of the mathematical analysis of metabolic networks (Chance et al., 1955, 
1958; Holmes, 1959; Higgins, 1965) and which has been used to identify inter- 
action sites with oqer effectors. In its simplest form, this theorem can be stated 
in the following way: The variations of the concentrations of the metabolites 
upstream and downstream an enzyme which is injluenced by an effector have 
drfferent signs. Accordingly, when in an unbranched sequence, a reaction k is the 
target of an effector and the corresponding coresponse coefficient is negative, 

then this reaction is located in between the metabolites Si and Sj [cf. Eq. (5.109)l. 
It should be noted, however, that there are severe limitations to the crossover 
theorem if it is applied to more complex pathways. It has been shown that in 
systems with conserved quantities and in other more complex situations, the in- 
teraction with an external effector does not always produce a crossover at the 
affected enzyme and that "pseudo-crossovers" may also occur at unaffected en- 
zymes (Heinrich and Rapoport, 1974b). 

5.10.2. Fluctuations of Internal Variables Versus 
Parameter Perturbations 

Perturbations of internal variables generally have a nonvanishing effect atfinite 
times. We now show that the time-dependent responses 6S(t) for 0 5 t < m after 
perturbations defined by Eq. (234) can be mimicked by responses taking place 
after parameter perturbations (see Kahn and Westerhoff, 1993a). 

Perturbations of concentrations: After small perturbations 6s' in the neigh- 
borhood of a steady state, the dynamics of the system is governed by the linearized 
equations 

With the initial conditions given in Eq. (5.348), this has the solution 

For  the definition of the exponential function for matrices, cf. Eqs. (2.85) and 
(5.187).1 To characterize the time-dependent effect of fluctuations of internal var- 
iables, Kahn and Westerhoff (1993a) introduced the response function 
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8Srcsp = 6S(t)  - 6S0 = [exp(Mt) - 1 1 6 9  Introducing this into Eqs. (5.360) and (5.361) gives, by consideration of M = 

with 

6SrcsPl,_o = 0, 6S(t)  = [exp(Mt) - r]6s0, 

6S"P11,, = - 6s'. 

For the time-dependent flux response 6J(t) after small perturbations of metab- 
olite concentrations, one obtains with J = v(S(t),p) in the linear approximation Comparison of Eqs. (5.364a) and (5.364b) with Eqs. (5.356) and (5.358), respec- 

av av 
6Jmp(t) = 6S(t)  = - exp(Mt)GS', as 

where Eq. (5.355) has been taken into account. In particular, 5.10.3. Internal Response Coefficients 
av 

6J"PI,,  , = 6l' = - 6S0, A further quantity which may characterize metabolic regulation is the internal 
as response coefficient introduced by Hofmeyr and Cornish-Bowden (1993) as well 

as Kahn and Westerhoff (1993a): 6JrcspIl+, = 0. 

Parameter perturbations: According to Eqs. (5.185) and (5.186), perturbations 
of parameters will result in changes in the metabolite concentrations described 
by the functions 

The corresponding flux changes are The individual terns of the sums in Eq. (5.365) have a structure which is very 
similar to that of the terns which enter the response coefficients for parameter 
perturbations [Eqs. (5.28) and (5.29)]. Both are products of control coefficients 
and elasticity coefficients. However, in definitions (5.365a) and (5.365b) of the 
internal response coefficients, the parameter elasticities are replaced by elasticities 

[cf. Eqs. (5.189) and (5.190)]. Now we choose special parameter perturbations with respect to concentrations of internal metabolites. Therefore, it seems appro- 
which cause the same immediate changes in the reaction rates for t = 0 as the priate to assume that % and 8. are related to the effect of a perturbation of a 
perturbations 6S" considered in Eq. (5.355). concentration Sj on a metabolite concentration Si and a flux Ji, respectively. More- 

over, the individual terms and '% may be considered as partial internal 
av av response coefficients (Kholodenko, 1990) quantifying the contributions of differ- 

6v0 = - 6 p  = - 6 9 .  
ap aS ent regulatory routes to the total response. Previously, these terns have been called 

Choosing the set of parameters in such a way that the matrix avlap is invertible, 
one obtains In analogy to Eqs. (5.31) and (5.32), which are valid for parameter perturba- 

tions, one'obtains with Eqs. (5.365) and (5.357b) 

6SmP = p t j s o  = cs&p = -&yo 
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for the response after perturbations of metabolite concentrations, and with Eq. 
(5.359b), 

&fmp = @&So = C%89' = 0, The nonvanishing response of Si after perturbations 6$' may be considered as a 
result of the homeostatic effect of regulatory loops in such a way that Si eventually 
reaches the same concentration as before the perturbation. From Eq. (5.371) fol- where the matrices nds and ndJ contain the internal response coefficients defined 

in Eq. (5.365) as elements. Applying Eqs. (5.366) and (5.367) to perturbations 
6 e  # 0, 6,$ = 0 (i # J]  leads to the relations 

k= l k =  l 

The term k ~ i i  may serve as a quantitative measure of the extent to which a certain 
reaction k counteracts the initial perturbation 6$'. Correspondingly, 'Hii has been 
called homeostatic strength (Kahn and Westerhoff, 1993a). 

5.10.4. Rephrasing the Basic Equations of Metabolic 
Control Analysis in Terms of Coresponse 
Coefficients and Internal Response Coefficients 

It has been shown by Hofmeyr et al. (1993) that the basic equations of met- 
abolic control may be rewritten in terms of coresponse coefficients and internal 

the'response of a metabolic system toward perturbations of internal variables (see 
Westerhoff and Chen, 1984). In the case that the system involves conserved quan- 

response coefficients. As outlined in Section 5.3.3, the summation and connec- 

tities, a similar reasoning applies, provided that the perturbations do not violate tivity relationships (5.44) and (5.51) may be used to calculate all the control 
coefficients in terms of elasticities [cf. Eq. (5.54)]. 

the conservation relationships. 
For a further discussion of Eq. (5.368) we consider first the case i # j. A Let us define an (r x r) diagonal matrix Ai whose elements are nonzero control 

coefficients. Possible representations for Ai are 
vanishing response of a metabolite Si after a perturbation 6,$ means that within 
the sum (5.368) the individual terms 'I?; which characterize the response via 
different reactions k cancel each other. 

It is worth distinguishing a situation where the sum of all positive partial 
response coefficients kI?u is high from that where this sum is low. Grouping to- 
gether positive and negative partial response coefficients, respectively, Eq. (5.368) where the elements of the vectors and Cf are the r flux control coefficients of 

, Ji and the r concentration control coefficients of Si, respectively. Another possi- may be rewritten as follows: bility would be that Ai consists of a mixture of j flux control coefficients and 
r - j concentration control coefficients. 

Because the number of columns of the first matrix and the number of rows of 

For the name regulatory potential of the concentration response has been 
proposed (Hofmeyr and Cornish-Bowden, 1993). An analogous equation is ob- 
tained for the regulatory potential of the flux response if in Eq. (5.370) the su- 
perscript S is replaced by J .  

For i = j, one obtains from Eq. (5.368) 
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under the simplification that the system has no conserved quantities. It is easy to 
see that the elements of the matrices C'A; and c'A;' are coresponse coeffi- 
cients, whereas the matrix A,& contains the internal response coefficients. 

Example. For the reaction system depicted in Scheme 10 (Section 5.3.4) one 
obtains, with A, consisting of flux control coefficients, 

where it has been taken into account that cj = cj for the unbranched reaction 
chain depicted in Scheme 10. Furthermore, 
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Bowden and Hofmeyr, 1994). Therefore, the set of coresponse coefficients dif- 
ferent from each other can considerably be reduced. 

Traditionally, c o n w  coefficients have been determined in two different ways. 
One possibility is based on Eqs. (5.25b) and (5.26b) or on the summation and 
connectivity theorems and requires knowledge of the elasticities. The second 
method starts from the definitions of control coefficients and requires experimen- 
tal determination of the dependence of steady-state variables and isolated reaction 
rates on a chosen parameter. In experimental practice, it is sometimes difficult to 
measure these dependences or the elasticities. Coresponse analysis paves the way 
to a third possibility of determining control coefficients, based on Eq. (5.374), 
which is equivalent to 

and 

When K is chosen as indicated in Eq. (3.47), it contains the identity matrix. 
Therefore, a submatrix of the left-hand side of Eq. (5.377) consists of explicit 

and control coefficients. They can be computed if the right-hand side of Eq. (5.377) 
is known. This requires determination of coresponse coefficients, which is feasible 
in experiment without measuring the fractional change in the perturbation param- 
eter (e.g., enzyme activity). All that is required is to be able to modulate each 
enzyme activity around its normal value and measure the steady-state flux and 
concentration changes; knowledge of actual enzyme activities is unnecessary. L ~ ~ ~ ~ ~ ~ ~ ,  if the diagonal matrix A, contains concentration control coefficients 
With inhibitor studies, it is only necessary to know that the inhibitor acts on one 
particular enzyme, rather than to know the type of inhibitor or its concentration. 
Coresponse coefficients are obtained by plotting appropriate combinations of 
fluxes and concentrations against one another and, from that, control coefficients 
and response coefficients (and hence, also elasticities) can be calculated by use 
of Eq. (5.377). This procedure is presented in more detail in Cornish-Bowden and 

c~A;' = (1 1). 

5.11. CONTROL WITHIN AND BETWEEN SUBSYSTEMS 

It is frequently appropriate to group the body of enzyme data into classes corre- 
sponding to subsystems of the biochemical network. This is particularly useful At first glance, introduction of coresponse coefficients as new variables may 

seem to be because they are simply combined of existing quantibs when the network consists of several parts that interact in a restricted way, in that 
and represent a large number of additional variables. However, it has been ob- many elasticities are zero or that there is no mass flow between these parts. Ex- 
served that the ratio of control Coefficients in response to a modulation of a amples are provided by cascades involving hierarchies of regulatory proteins mod- 
specific reaction is often independent of the choice of this reaction (Cornish- ifying each other [e.g., the glutaxnine synthetase cascade (cf. Chock et al., 1980)j 
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and by the well-known hierarchic organization of genetic and metabolic processes 
in the living cell (cf. Scheme 15). 

Kahn and Westerhoff (1991) presented an approach to cope with the control 
of regulatory cascades. The basic idea is to calculate control coefficients for the 
particular levels of the hierarchy in terms of the elasticities within the levels and 
then to determine the control coefficients of the whole system from the intrinsic 
control coefficients of the subsystems and the elasticities describing the regulatory 
interactions between these. 

We start from a decomposition of the reaction system into subsystems, which 
is represented by a partitioning of the stoichiometry matrix into blocks, 

with Nit being the stoichiometry matrix of the ith subsystem and Nu (i # j) 
reflecting the involvement of the reactions belonging to subsystem j in the pro- 
duction or degradation of the species in subsystem i. p denotes the number of 
subsystems. Note that the number of rows in the arrangement of submatrices in 
Eq. (5.378) equals the number of columns because, for any given decomposition, 
each substance and each reaction uniquely belong to one subsystem. 

Consider, for example, the reaction system shown in Figure 5.12A. It repre- 
sents two pathways interconnected by a cycle involving the substances S1 and S3. 
For example, S1 might be an enzyme. In that case, it would be sensible to simplify 
the scheme as shown in Figure 5.12B, where the broken arrow signifies the cat- 
alytic effect on the production of S1. Idenwing the two pathways with two 
subsystems, we can partition the complete stoichiometry matrix as 

A necessary condition for the present approach is that there be no net mass 
flow between the subsystems in steady state. This is, for example, the case for 
the levels of mRNA and enzymes in Scheme 15. This condition can be written 
as a block-diagonalization of the null-space matrix K, as expressed by Eq. (3.48). 
For example, for the scheme shown in Figure 5.12A, the corresponding null- 
space matrix can be partitioned as 

Figure 5.12 Simple example of a two-level system. (A) detailed scheme, (B) simplified repre- 
sentation. 

K =  0 KI K -  0 - (.. 0  i : :I 1  . 

O i l  
O i l  

A second condition for the present approach is that the link matrix L be de- 
composable into diagonal blocks, possibly after rearrangement of its rows, 

This means that each subsystem has separate conservation relations; that is, there 
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are no conservation relations linking different subsystems. With this structure of 
L, the equation N = LP [Eq. (3.7)] implies the equations 

Note that for a given reaction system, there may be different ways of decom- 
position into subsystems that fulfill the two conditions (3.48) and (5.381). in 
particular if there are no conservation relations (i.e., L = I). One should pref- 
erably choose such a decomposition that the subsystems can be investigated sep- 
arately in experiment. For the exemplifying scheme in Figure 5.12A, condition 
(5.381) is trivially fulfilled because it does not involve any conservation relations. 
Another decomposition is obtained by including S, into subsystem 1 instead of 
subsystem 2. 

The elasticity matrix E can be partitioned into blocks according to the decom- 
position of the system: 

One assumes that each subsystem reaches an asymptotically stable steady state 
when all concentrations in the other subsystems are clamped. For such steady 
states, one can define intrinsic control coefficients of subsystem i and can assem- 
ble them into matrices c('"') and C;('"')'). Their elements reflect the control be- 
havior of subsystem i when the state of the other systems is kept constant. The 
corresponding stoichiomehy matrix is Ni+ 

The decompositions (3.48) and (5.381) imply Eq. (5.382) and 

Therefore, the summation and connectivity theorems for the intrinsic coefficients 
can, in analogy to Eq. (5.54), be written as 

The Ki and Li are the null-space matrices and link matrices, respectively, of the 
subsystems, which are identical to the diagonal blocks in Eqs. (3.48) and (5.381). 
This leads to 

From Eqs. (5.382) and (5.384). it follows that NiKi = 0. Therefore, one can 
show by a similar reasoning as used in Section 5.3.3 that 

Substitution of Eq. (5.387) into Eq. (5.386) yields 

Now we consider the situation that no subsystems are clamped; that is, all 
concentrations in the network are allowed to attain a new steady state after pa- 
rameter perturbation. Instead of the intrinsic control coefficients, we should now 
use the control matrices of the whole system, which can, according to the decom- 
position of the system, be partitioned as 

Due to the decompositions (3.48) and (5.381), the summation and connectivity 
relationships (5.44) and (5.51) imply the block summation theorems 

and the block connectivity theorems 

c&$j = { 0 i f i f j  
-Lj if i = j, 
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x Ck~eLj = 0. 
k 

withi,j  = 1 ,..., p. 
It is of interest to inquire what information can be derived from the stoichi- 

omem matrices of the subsystems, N,,, only (i.e., by neglecting the stoichiometric 
interactions between the subsystems). This question arises because it has been 
invoked that there be no mass flow between different blocks at steady state. Let 
us define a stoichiometry matrix, fi, of a stoichiometrically disconnected system 
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within the subsystems (zii), whereas the latter also contain the elasticities express- 
ing the cross-effects between subsystems (zij for i # j3. 

Kahn and Wesmhoff (1991) treated the control analysis of subsystems by 
considering, from the very beginning, stoichiometrically disconnected systems, 
that is, stoichiometry matrices of the form (5.392). Because of Eq. (5.394), all 
results derived by Kahn and Westerhoff (1991) for systems satisfying condition 
(5.392) are thus valid also for systems fulfilling conditions (3.48) and (5.381). 
They are weaker than Eq. (5.392) because when K and L are block-diagonaliz- 
able, N need not be. 

One of their results is the "Block Composition Theorem," consisting of the 
following relationships: 

(i.e., fiii = Nii and fiij = 0 for any i # j). Similar relations then hold among the 
reduced matrices fiO and NO. Note that the elasticity matrix is to remain the same 
upon replacement of N by fi. Applying Eqs. (5.25b) and (5.26b) gives the control 
coefficients of the stoichiometrically disconnected reaction system 

In these equations, the link matrix L of the original system can be used, because 
the new matrix fi has the same link matrix L due to the decomposability condition 
(5.381). Because the same null-space matrix K as for the original system can be 
chosen [due to condition (3.48)], Eqs. (5.393a) and (5.393b) lead, by postmulti- 
plication by K and EL to the same block summation and connectivity theorems 
as belonging to the original system [Eqs. (5.390) and (5.391)]. As was shown in 
Section 5.3.3, the control coefficients are uniquely determined by the theorems. 
Consequently, we have 

Thus, we have arrived at the interesting result that under the decomposability 
conditions (3.48) and (5.381). the control coefficients of the original system and 
the stoichiometrically disconnected system are the same. 

Note that Eqs. (5.388a), (5.388b) and (5.393a), (5.393b) differ in that the 
former only contain a subset of the elasticities, namely those expressing the effects 

These equations relate the control coefficients of the whole system to the intrinsic 
control coefficients of the subsystems. In the case i = j, Eqs. (5.395) and (5.396) 
express the fact that the control exerted by the reactions of a subsystem on this 
subsystem itself is composed in an additive way of the intrinsic control within 
this subsystem and the indirect effects via all other subsystems. If i # j, Eqs. 
(5.395) and (5.396) state that the control by some subsystem on another is again 
the sum of all the effects via all subsystems. 

Note the difference between Eqs. (5.395a) and (5.395b) and likewise between 
Eqs. (5.396a) and (5.396b). It appears that the multiplication of control coeffi- 
cients and intrinsic control coefficients shows certain commutativity properties, 
which are probably linked with the property of control matrices to be projection 
matrices (cf. Section 5.3.4). 

As mentioned earlier, the goal of the approach dealt with in this section is to 
determine the control properties of a metabolic system from the intrinsic control 
coefficients and the elasticities describing the regulatory interactions between sub- 
systems. This has been achieved until now only for systems with certain archi- 
tectures in terms of their subsystems, whereas Eqs. (5.395) and (5.396) hold for 
systems of any structure. For example, generalized cascades (convergent, diver- 
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gent, or nested) can be treated. These cascades have the property that their sub- 
systems can be numbered in such a way that the concentrations of subsystem j 
only affect reactions in subsystems i with i 2 j [i.e., zkj = 0 for any k < j (no 
feedback)]. For systems of this property, the control matrices can be computed as 

C; = 0 for i < j, 

where the sum runs over all regulatory loops, L(i j), connecting module j to mod- 
ule i, and Y stands for either S or J. The proof of this Generalized Cascade Control 
Theorem was given by Kahn and Westerhoff (1991). 

Equation (5.397) means that in the absence of feedback, the internal control 
behavior of each subsystem is unaffected by external regulatory interactions. 
Equation (5.398) expresses the fact that no reaction is able to control any con- 
centration or flux in a subsystem upstream in the hierarchy. Control in the down- 
stream direction proceeds via all routes of regulatory effects [Eq. (5.399)]. 

Moreover, Kahn and Westerhoff (1991) derived formulas analogous to Eqs. 
(5.397)45.399) for linear cascades in which one subsystem may regulate a sub- 
system higher in the hierarchy by feedback. 

5.12. MODULAR APPROACH 

5.12.1. Overall Elasticities 

One usually discerns functional units in cell metabolism, such as amino acid 
synthesis, protein synthesis, and protein degradation, or cytosol and mitochon- 
drion. Accordingly, it is desirable to cany out metabolic control analysis in terms 
of control features of these functional subunits (i.e., at a higher level of organi- 
zation), rather than to discuss control only in terms of kinetic properties of the 
individual enzymes. For example, one could try to explain the control of the 
intracellular glucose concentration as being the result of the elasticities of glucose 
uptake and glycolysis (and possibly gluconeogenesis) versus glucose, instead of 
discussing such control in terms of all the contributions of all enzymes involved. 
Moreover, it should be acknowledged that for large biochemical networks, the 
structural and kinetic data characterizing the interior of the functional units rep- 
resent a huge amount of information, which often is not readily measurable or 
even if so, is difficult to handle. 
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In this section, an approach is outlined in which metabolic systems are decom- 
posed into subsystems, some of which are incompletely observable in the sense 
that the stoichiometric structure within these subsystems is not fully known and/ 
or not all of the elasticities are measurable. This approach differs from the de- 
composition method set out in Section 5.1 1, where all subsystems are assumed 
to be completely observable. 

A situation where a decomposition into functional subunits is sensible is mi- 
tochondrial oxidative phosphorylation. For this system, a solution was devised 
which groups all the reactions involved into three parts: those connected with 
respiration and generating proton-motive force (&-H+ ), those connected with syn- 
thesis of extramitochondrial ATP using the force beH+,  and the proton leak (Wes- 
terhoff et al., 1983). The control of mitochondrial respiration was described as 
divided over these three units. In this way, control of oxidative phosphorylation 
could be understood in terms of regulatory interactions between three modules, 
the internal regulations of which were not completely known. Note that also in 
Section 5.4.5, we used a similar approach by grouping all the enzymes of the 
respiratory chain into one unit. 

Control coefficients of enzyme sequences had been defined already by Hein- 
rich and Rapoport (1973,1974a) and later by Fell and Snell(1988); Kacser (1983) 
elaborated the idea for branched metabolic pathways. More recently, the approach 
has been extended and renamed the top-down approach (Brown et al., 1990; 
Hafner et al., 1990; Quant, 1993). All of these approaches are limited to cases in 
which any two subunits into which one divides metabolism are linked by only 
one flux. This drawback was eliminated in a recent further development of the 
modular approach (S. Schuster et al., 1993a), which is outlined in the following. 

In view of the above-mentioned fact that the elasticities of many enzymes are 
. ~ 

not available, the first step in the modular approach is the decomposition of the 
metabolic network under study into modules of two types. Modules of type I 
(black boxes) are subsystems for which we are only able to observe the reactions 
that link those subsystems with their surroundings but not internal reactions and 
metabolites. Type-II modules are subsystems subject to explicit observation. The 
modular partitioning may or may not correspond to a spatial decomposition into 
compartments. The question of under what conditions we are able to determine 
the control properties of modules I and II arises. 

To begin with, we consider a decomposition of a network into one module of 
type I and one module of type II (Figure 5.13). 

The reactions can be classified into three types: reactions proceeding inside of 
module I, reactions bridging the two modules, and reactions internal to subsystem 
II. Reactions connecting module I with the surroundings of the whole system can 
formally be included in the set of bridging reactions (cf. Figure 5.1 3). According 
to this decomposition, the stoichiometry matrix can be partitioned as 
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module I1 

module I 

Figure 5.13 Schematic representation of a modular decomposition of a metabolic network. Re- 
actions within module I (dotted mows) are not necessarily observable, whereas reactions in module 
I1 an& the reactions bridging the two modules (index B) are. 

and, accordingly, the concentration vector S = (SI,Sn)T and rate vector v = 
(v,,v~,v,)~. The matrix of non-normalized elasticities can be decomposed as 

The following calculations will show that one can determine certain control 
properties without knowledge of the internal details of module I, that is, the 
elasticity submatrices q I ,  and E,, and the stoichiometry matrices NLI 
and NISB. These quantities will not enter the final results concerning the overall 
control coefficients. In contrast, the bridging reactions are assumed to be observ- 
able, in the sense that their response to changes in S, can be measured. This flux 
response is meant to imply that the black-box module can attain a new steady state 
while the concentrations in the observable module are clamped. The respective 
elasticities are to be called overall elasticities and to be gathered in a matrix 
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The asterisk superscript refers to the situation in which the black-box module is 
allowed to attain a steady state on its own. It is important to distinguish the 
definition of overall elasticities from that of intrinsic control coefficients (see 
Section 5.11). Indeed, in both cases the surroundings of the subsystem are 
clamped, but in the former case, an activity of an internal reaction is changed, 
whereas in the latter case, a concentration outside of the subsystem is altered. 

Consider, by way of example, the mitochondria and cytosol of a cell as mod- 
ules I and 11, respectively.   he response coefficients *&,,= can then be measured 
experimentally by resuspending the mitochondria in a sufficiently large incubation 
medium, where the substances of interest thus have concentrations independent 
of the reactions within the black-box module. By changing experimentally these 
concentrations and measuring concomitantly the fluxes linking the mitochondria 
with their surroundings (e.g. the rate of oxygen consumption) gives the above- 
mentioned overall elasticities. 

Another relevant situation is when the black-box module is a fast subsystem, 
that is, if it gains steady state much faster than the entire system. In this situation, 
*&,,, expresses the response of the black-box module toward changes in S,, with 
the response measured in a time scale long enough to allow the black-box module 
to reach a new stationary state but short enough so that Sn has not yet relaxed to 
the original values. 

Because at the steady state of the black-box module, input and output fluxes 
of this subsystem must balance each other, the bridging fluxes are usually linearly 
interdependent. This dependence can be expressed by a matrix Q, such that 

where *vR is a vector of linearly independent bridging fluxes. The matrix Q can, 
in principle, be obtained by a null-space analysis of the submatrix (NISI N1,, 0) 
corresponding to module I. As this information may not, however, be available, 
it is assumed that Q can be determined by observation from the outside (e.g., by 
determining the balance of atom groups entering and leaving module I). 

Consider, for example, a branched reaction scheme as shown in Figure 5.14A. 
Let S1 be identified as the black-box module, and the three adjacent reactions as 
bridging reactions. Because at the steady state of the black-box module, the flux 
Jl is the sum of J2 and J3, only two of these fluxes are linearly independent. So 
it makes sense to redraw the scheme as depicted in Figure 5.14B. 
- We may take *v2 and *v3 as independent fluxes, so that Eq. (5.403) reads 
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A) 
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system derived by Heinrich et al. (1977). The reaction rates *vR can be regarded 
from two different viewpoints. They play the role of "isolated" reaction rates, in 
the sense that the black-box module may be looked upon as a superreaction 
embedded in a larger metabolic system. If, on the other hand, the black-box 
module is regarded as a system on its own (with S, clamped), *vR plays the role 
of a steady-state flux vector. 

Differentiation of Eq, (5.406) with respect to S, yields 

As substances in the black-box module are not converted by reactions in the 
observable module (N1,, = O), the elasticities E,,, are made up of effector influ- 
ences of S1 on v,. 

Because of Eq. (5.403), the matrix of overall elasticities, *E~,,, pertaining to 
the reduced bridging fluxes, is linked with *tB,, by 

As the matrix Q and the elasticities *E,,, are assumed to be known, the same 
holds for *E,,,. 

Figure 5.14 Lumping of bridging fluxes in a simple branched reaction chain. (A) Complete 
scheme; (B) simplified scheme. The arrows crossing module I in scheme B correspond to the nuU- 
space vectors (1 1 O)T and (1 0 [cf. Eqs. (5.119) and (5.404)] and signify degrees of freedom in 
flux of module I. 

The lumped bridging fluxes as well as the fluxes in the observable module are 
functions of p, SI and S,. The assumption that the black-box module subsists in 
a steady state on its own implies that S1 is a function of S,, so that the observable 
fluxes can be written as 

The functions *vR = *vR(S,,p) represent overall rate laws of module I. An ex- 
ample is provided by the overall rate law of the hexokinase-phosphofructokinase 

5.12.2. Overall Control Coefficients 
Letp, be a vector of parameters for which the matrix avnlap, is a nonsingular 

square matrix. The matrices of non-normalized control coefficients expressing the 
control exerted by the processes in the observable module can be defined as 

In a straightforward analogy, coefficients expressing the control exerted by the 
lumped bridging reactions can be defined as, 
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The asterisk superscript in Eqs. (5.410a)-(5.410~) refers to the fact that we deal 
with overall control coefficients. Here, the components of *vR play the role of 
"isolated" reaction rates corresponding to the different degrees of freedom of 
module I. p, denotes a vector of parameters affecting the reduced bridging fluxes 
only. Importantly, when there are effector influences from within the black-box 
module acting on the observable module, changes in the parameters pertaining to 
module I generally affect, via SI, the rates *v,, even if S, is clamped. Thus, it 
may occur that no parameter vectorp, can be found that affects *vR but not *v,. 
This would make it difficult to employ definition (5.410). One way of coping 
with this problem is by choosing the parameter vectorp, in such a way that any 
changes in this vector do not alter SI. In this way, however, the favorable property 
of control coefficients to be independent of the special choice of the perturbation 
parameter could not be guaranteed (see Sections 5.2 and 5.6). Therefore, we prefer 
to impose the condition that the black-box module does not exert effector influ- 
enCes on module II, 

If, in a given scheme, such influences occur, one can often draw a more explicit 
reaction scheme in which the effector influences are represented as bridging re- 
actions, so that condition (5.411) is fulfilled. 

It is worth noting that at variance with the widely used definitions of control 
coefficients (5.3) and (5.5). the matrices in the denominators in Eq. (5.410) are 
not normally diagonal, because for a given parametrization it is not, in general, 
possible to find parameters influencing the components of *vR specifically. This 
fact does not, however, restrict the applicability of these definitions, as long as 
the matrices in question are nonsingular (see Reder, 1988). 

The overall control properties of a metabolic system can be calculated in terms 
of the overall elasticity properties of its modules. Due to Eq. (5.403), the steady- 
state condition for the observable module reads 

N,,,Q 'v, + N,, 'v, = 0. (5.412) 

Differentiation of this equation with respect to any parameter vectorp yields, due 
to Eqs. (5.407) and (5.41 I), 
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The asterisk for the term *E,,, can be dropped because of Eq. (5.407) and con- 
dition (5.41 1). 

In order to solve Eq. (5.413) for aS,lap, one has to reduce the matrix 
NU,,Q*&,,n + N,,,*E,,~ = 0 to a nonsingular square matrix. This is achieved 
by considering the conservation relations imposed on the concentrations S,. In 
analogy to Eq. (3.7), we reduce the stoichiometry matrix of module II [cf. Q. 
(5.400)] to its linearly independent rows, 

In what follows, we show that there must be no conservation relations linking 
concentrations inside the black-box module with concentrations inside the ob- 
servable module in order that "parameter-independent" overall control coefficients 
can be defined. 

Let Cl and C, denote respectively the ranks of the submatrices (NISI NISB 0) and 
(0 Nu,, Nu,,) [cf. Eq. (5.400)]. After a straightforward decomposition of the 
concentration vectors into independent variables, the conservation relations of the 
black-box module I and module II taken separately can be written as 

The steady-state equation for the black-box module reads 

The assumption that the black-box module can attain a stable steady state on its 
own implies not only that Eq. (5.416) has a solution for SI, but also that the real 
parts of all eigenvalues of the Jacobian matrix NBI N& O ) ( ~ V / ~ S ~ ) L ~ , ~  be negative. 
So this matrix must have full rank, cl. This ensures that Eq. (5.416) (which en- 
compasses CI independent equations) and Eq. (5.415a) are, in general, sufficient 
to express the steady-state concentrations SI and, hence, the fluxes *vR as functions 
of Sn andp. 

The number of independent equations contained in Eq. (5.412) equals b. 
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Together with the dim(Sd - &, independent conservation relations contained in 
Eq. (5.415b), Eq. (5.412) determines the stationary concentrations Sn. 

Connecting the two modules does not change the conservation relations within 
the modules but may add conservation relations involving both modules. In al- 
gebraic terms, the linear dependencies between the rows of submatrices remain 
valid if the submatrices are combined. Linear dependencies between the rows of 
the whole matrix may arise in addition. Hence, 

In the case that relation (5.417) is fulfilled as a strict inequality, the equation 
system (5.412), (5.415), and (5.416) is overdetermined and has, in general, no 
solution for SI and SU. From this reasoning, we conclude that we should impose 
the condition 

that is, there should be no conservation relations linking the two modules. Equa- 
tions (5.413), (5.414), and (5.418) can be combined to obtain 

The matrix *M is the Jacobian matrix of the observable module taking into ac- 
count that the black-box module attains a new steady state after a change of a 
concentration in the former module. 

Specifying p ,  consecutively, to be a vector of parameters only affecting the 
bridging reactions and a vector of parameters only acting on reactions in the 
observable module, we can derive the concentration control coefficients defined 
in eqs (5.409a) and (5.410a) from Eq. (5.419), 

To obtain the flux control coefficients, we differentiate the equations JR@) = 
*vR@,SI1) and Ju@) = *v&,Sn) with respect top. By Eq. (5.419), one obtains 
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The normalized overall control coefficients are obtained in a straightforward 
way, 

and similarly for the other overall coefficients. 
Now we have derived expressions for control coefficients in terms of quantities 

assumed to be known. These results show that one is able to determine a consid- 
erable number of control properties even without knowing the internal details of 
the black-box module. These control properties include the control coefficients 
related to the observable module and the overall coefficients expressing the control 
exerted by the degrees of freedom of the black-box module on the fluxes of the 
bridging reactions and on the variables of the observable module. The information 
of the inside of the black-box module that is relevant for determining these control 
properties is fully represented by the overall elasticity coefficients *E,,, and ma- 
trix Q, which expresses the linear dependencies between the bridging fluxes. 

It is worth noting that, because formulas (5.421b), (5.422b), and (5.423b) do 
not contain the pararnetersp, used in the definitions of overall control coefficients, 
these coefficients have the favorable property of not depending on the choice of 
the perturbation parameter. This is, however, only true under conditions (5.41 1) 
and (5.418). 

Overall control coefficients fulfill summation and connectivity theorems sim- 
ilar to the theorems presented in Section 5.3. For example, Eqs. (5.421a) and 
(5.421b) imply the summation theorem 

A connectivity relationship reads 

A comparison of these theorems with those of traditional metabolic control 
analysis [Eqs. (5.42), (5.43) and (5.51)] shows that there exist relations among 
overall control coefficients and the usual control coefficients pertaining to module 
I. When module I is, for example, an unbranched pathway, its overall control 
coefficient with respect to any concentration or flux is simply the sum of the 
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respective particular control coefficients of the reactions inside module I (cf. 
Brown et al., 1990). 

A frequently occurring situation is when the fluxes through all lumped bridging 
reactions are changed by the same fractional amount, a (e.g., by changing the 
number of mitochondria in a suspension): 

ti 1n 'vKk = a for any k. (5.427) 

In that situation, the control exerted by the black-box module as a whole can, due 
to Eq. (5.424), be expressed as the sum of all normalized overall control coeffi- 
cients belonging to this module: 

where the sum runs over all the degrees of freedom of module I. 
In the above treatment, we assumed that the system under study only involves 

one black-box module. The approach can readily be generalized to cases with 
several black-box modules. Then the problem arises that the modular approach 
requires that on determining the overall elasticities of some black-box module, 
the metabolites in all other black-box units have to attain steady state as well. 
This might be difficult to achieve in experiment. This problem can be circum- 
vented by confining the black-box modules so that there are no effector interac- 
tions between them. A more detailed analysis is given in S. Schuster et al. (1 993a). 

Examples of overall control coefficients have, in fact, been given in some of 
the previous sections, in particular the control coefficients pertaining to the HK- 
PFK system (Section 5.4.4) and to the subsystem consisting of 3-phosphoglycer- 
ate dehydrogenase and phosphoserine transaminase (Section 5.4.6). 

Enzymic reactions as composed of elementary steps can often be treated as 
steady-state modules in the sense defined above, as was done in Section 5.6. 
Therefore, the modular approach may be considered as a generalization of the 
control analysis set out in Sections 5.1-5.3. Conventional control coefficients are 
then identical to the overall control coefficients pertaining to the catalytic cycle 
of an enzyme. 

Application of the modular approach to single enzymes is particularly useful 
when applying it to slipping enzymes (i.e., enzymes that catalyse distinct pro- 
cesses which are incompletely coupled). Examples are provided by the various 
H+-ATJ?ases and NdK-AVases and the enzymes involved in the respiratory 
chain. When treating a slipping enzyme as a black box, the coupled portion (such 
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as ATJ? synthesis) and uncoupled portion (slip) can be taken as reduced bridging 
fluxes, and appropriate overall control coefficients can be calculated. 

1C 

5.13. FLUX CONTROL INSUSCEPTIBILITY 

As pointed out in the sections on stoichiometric analysis (Chapter 3), an important 
step in metabolic modeling is to determine invariant properties by only using 
those parameters that are relatively constant and are known to a satisfactory ac- 
curacy. This information may concern stoichiometry, separation of time constants, 
thermodynamic properties, and patterns of nonstoichiometric effector interac- 
tions, and is, in most cases, easier to obtain than the exact values of elasticities. 
As for control analysis, this implies that the values of control coefficients some- 
times cannot be calculated. One may, however, attempt to make qualitative state- 
ments about the conk01 structure on the basis of incomplete knowledge about the 
elasticities. For example, one may analyze which fluxes are insusceptible to con- 
trol by which reactions, that is, which flux control coefficients are always zero, 
irrespective of the special values of kinetic parameters. 

Knowledge of the effector interactions together with information about what 
substrates and products of reactions enter the kinetic equations can be compiled 
in a qualitative elasticity matrix, the elements of which are defined by 

q" = 0 if Jvj/JS, = 0 for any admissible steady-state vector S 
E otherwise. (5.429) 

E is used as a mathematical symbol which stands for a variable that can adopt 
different values rather than to be always equal to zero. Equation (5.429) means 
that the qualitative elasticity &Ya' is zero if, and only if, Si does not enter the rate 
law vj(S). This condition can be fulfilled in one of the following cases: 

(a) The metabolite Si does not participate in reaction Rj (i.e., nii = 0) 
(b) The respective enzyme is saturated with Si 
(c) h e  reaction is irreversible in the direction of formation of S,. 

In all three cases, Si must not influence reaction Rj as a catalyst or effector, that 
is, in a way that is not reflected in the stoichiometry matrix. 

The matrix &qua' is an example of what is called in mathematics a structured 
matrix, which has fixed zeros in certain locations and arbitrary elements in the 
remaining locations (see Wonham, 1974; Shields and Pearson, 1976). In the anal- 
ysis of structured matrices, the concept of rank has to be generalized. One defines 
the generic rank of &qua' as the maximum rank which can be achieved as a function 
of the variable elements in an (ordinary) matrix E that has zeros at the same 
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locations as ~ 9 " ~ .  The generic rank of any structured matrix can be determined 
by an algorithm given by Shields and Pearson (1976). 

The incomplete knowledge of kinetic parameters can be taken into account by 
considering classes of reaction systems, ~(N,E'@), having the same stoichiometry 
matrix N and the same qualitative elasticity matrix E'@. Let r denote the set of 
all reactions, Rj (j = 1, . . . ,r) of any system belonging to E. 

Recent results concerning zero flux control can be phrased in various theorems. 
The proofs were given in S. Schuster and R. Schuster (1992) on the basis of the 
generalized mass-action kinetics (2.15). 

Theorem 5A. If one $u control coeflcient is zero for all reaction systems be- 
longing to a given class ~(N,E'@), then each reaction network belonging to $ 
can be subdivided into two subsystems rl and r2, in such a way that the subsystem 
rl of reactions is not controlled by the reactions belonging to the subsystem r2, 

= 0 for all R, E T,, R, € r2. (5.430a) 

For systems of more than two reactions, this implies that when one reaction 
R, is insusceptible to flux control by another reaction Rj, which is to say that the 
control coefficient is zero irrespective of the values of kinetic parameters, then 
more flux control coefficients than just are zero. 

Now we decompose v, N and No according to a given partition of r, 

Let 

Note that the decomposition into subsystems differs from that used in Sections 
5.11 and 5.12 in that here the set of reactions is subdivided into two classes, 
whereas no grouping of the substances is made. 

Theorem 5B. For a given class E(N,E~"), a necessary and suficient condition 
for a subsystem TI not to be susceptible t o $ u  control by the remaining subsystem 
is 
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Note that upon qltiplication of a structured matrix and an ordinary matrix, 
as carried out in Eq. (5.433), a structured matrix arises. 

Theorem 5C. For a given class 6(N,~q"') with all reactions being reversible, a 
necessary condition for a subsystem rl not to be susceptible to fIwc control by 
the remaining subsystem is: The null-space matrix K can be chosen to be block- 
diagonal, with the diagonal blocks corresponding to the subsystems T1 and T2. 

As the fluxes in strictly detailed balanced subnetworks are always zero when 
the whole system is at steady state (see Section 3.3), it is clear that these subnet- 
works are not susceptible to flux control. This assertion can be proved by Theorem 
5B. 

Now we assume that all strictly detailed balanced reactions have been detected 
and excluded from the further analysis. 

Theorem 5D. In the absence of strictly detailed balanced reactions, some sub- 
system r1 is insusceptible t o $ u  control by the reactions of the subsystem T2 
with r1 and r2 fuljilling Eqs. (5.430~)-(5.430~) ij and only ij the following 
conditions are satisfied: 

0 1 )  The same condition I& in Theorem 5C. 
0 2 )  The link matrix L can be rearranged to give 

with L, being the matrix expressing the conservation relations of T I .  

for any i,j with Rj E r, and i > a, where a is the nuniber of rows of L,. 

Condition (D2) excludes any influence of subnetwork r2 on T, via conser- 
vation relations which involve metabolites of both the subnetworks. Condition 
(D3) guarantees that changes in kinetic parameters of subsystem T2 do not influ- 
ence the fluxes in r1 by effector influences. 

The above results enable us to decide, for reaction systems of any complexity, 
what fluxes cannot be controlled by what reactions. After having constructed, by 
the algorithm given in S. Schuster and R. Schuster (1991), the representation of 
K with the maximum number of diagonal blocks, one cancels all rows of K that 
correspond to strictly detailed balanced reactions. Now all combinations of the 
remaining diagonal blocks into two submatrices have to be examined as for con- 
ditions (D2) and (D3). 



270 Metabolic Control Analysis 

Decomposability of the null-space matrix applies, in particular, to hierarchic 
reaction systems characteristic to living cells. An example is provided by the 
system shown in Scheme 15 (Section 5.1 1) representing the hierarchic organi- 
zation of cellular processes. To demonstrate the applicability of the method to 
hierarchical systems, we again consider the simple two-level system shown in 
Figure 5.12B. S, and S2 may stand, for instance, for an mRNA species and a 
protein, respectively. The dashed mow signifies a catalytic influence. Conditions 
0 1 )  and 0 2 )  are fulfilled with rl and r2 corresponding to the upper and lower 
level in the scheme of Figure 5.12, respectively. If, and only if, S2 does not 
influence the reactions involving S1 nonstoichiometrically (e.g., if there is no 
feedback from the protein to gene expression), then condition @3) is fulfilled 
and there is no upstream control in the hierarchy (see also Westerhoff et al., 1990; 
Kahn and Westerhoff, 1991). 

It is an intriguing question whether Theorem 5D still applies if hierarchic 
systems are studied at a more detailed level, by including some or all of the 
elementary reactions of enzyme action. By way of example, we consider the 
system shown in Figure 5.12A. The stoichiometry matrix of this more detailed 
scheme, which is given in Eq. (5.379), is not block-diagonal. However, both 
matrices K and L (the latter being the 3 X 3 identity matrix) can be chosen to be 
block-diagonal [cf. Eq. (5.380)]. Thus, conditions (Dl) and (D2) are fulfilled 
irrespective of the way of description of such a type of hierarchic system. 

Another class of hierarchic schemes are the interconvertible enzyme cascades 
(see Chock et al., 1980; Goldbeter and Koshland Jr., 1984; Chdenas and Comish- 
Bowden, 1989). A bicyclic system is presented schematically in Figure 5.15A. 
S, and S2 stand for two forms of a protein catalyzing the transformation (e.g., by 

Figure 5.15 Example of a bicyclic system. 8 Simplified scheme; (B) detailed scheme. 
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phosphorylation and dephosphorylation) of another protein, with the forms Sg 
and S4 

This scheme may sepresent the glutamine synthetase cascade in E. coli (Chock 
et al., 1980) or any two cycles within the glycogen phosphorylase-glycogen syn- 
thase system. In the latter instance, only one activatory loop is operative. 

The stoichiometry matrix corresponding to Figure 5.15A is block-diagonal. 
According to whether or not S, is an effector of reaction &, the qualitative elas- 
ticity matrix reads 

E E O O  

.q- = (. 0 E  E  0 E  .) E  

E O E E  

E E O O  

p* = (& O E E E *  E  0 .) 
O O E E  

respectively. If the bottom cycle is chosen as subsystem r2 ,  both of the matrices 
given in Eqs. (5.436) fulfill condition @3). Therefore, 

for any set of kinetic parameter values. This reaction scheme is an example of a 
cascade without feedback, as studied in Section 5.1 1. Therefore, Eq. (5.437) also 
follows from Eq. (5.398). On the other hand, Eq. (5.398) can be derived from 
Theorem 5D. 

When reaction 3 in the enzyme cascade is split up into two elementary steps, 
as shown in Figure 5.15B, the null-space matrix can be chosen to be block- 
diagonal but the link matrix cannot. One may conclude that for hierarchic systems 
where the different levels are formed by moiety-conserved cycles (e.g. in the case 
of enzyme cascades), the values of control coefficients depend on the way of 
description (see also Fell and Sauro, 1990; Kholodenko et al., 1993b). 

Consider a simplified scheme of threonine synthesis in E. coli (see Gottschalk, 
1986), as depicted in Figure 4.3. Aspartate, ATP, ADP, lysine, methionhe, and 
the nicotinamide cofactors are treated as external metabolites. The reaction in 
which aspartate is phosphorylated is catalyzed by three enzymes: aspartokinase 
I, 11, and III. This reaction and the homoserine kinase reaction are known to be 
practically irreversible. The aspartokinase I and homoserine dehydrogenase ac- 
tivities are camed in E. coli by a bifunctional protein. Both of these activities are 
in most strains inhibited by threonine (Patte et al., 1966). Furthermore, threonine 
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inhibits homoserine kinase (ThBze et al., 1974). Neglecting further regulatory 
loops, we can write the qualitative elasticity matrix as 

O O O O E  

E E O O O  

(5.438) 

O E O O O  

O O E O O  

where reactions are numbered as indicated in the legend to Figure 4.3, and the 
internal metabolites are numbered as follows: AspP, 1; ASA, 2; HSer, 3; HSerP, 
4; Thr, 5. We take the aspartate semialdehyde dehydrogenase reaction (Rz) as 
subsystem Tz. Because the whole network does not involve any conservation 
relations, the link matrix is an identity matrix. The generic rank of the matrix 
product E?" L equals 4, whereas rank(N) = 5 and c2 = 1. Therefore, condition 
(5.433) is fulfilled. Similarly, this condition is satisfied for a decomposition with 
the threonine synthase reaction constituting subsystem Tz. Consequently, the flux 
of threonine synthesis is insusceptible to flux control by aspartate semialdehyde 
dehydrogenase and threonine synthase, Cs2 = 0 (k Z 2) and C& = 0 (k Z 5), 
due to Theorem 5B. Moreover, it can be concluded, with the help of the equation 
Nc = 0, which follows from Eq. (5.26b), that these reactions do not control 
their own steady-state fluxes either (Ci2 = 0 and C& = 0). This is in accord 
with simulations by Rdis et al. (1993). 

Consider the hypothetical situation (which might occur in mutant strains) that 
there are no side pathways leading to lysine and methionine and no feedback 
exerted by threonine. By determining the matrix ~ q " "  L for this case, one derives 
that all flux control coefficients with respect to reactions behind the aspartokinase 
reaction are zero. This is in line with the results for unbranched chains involving 
irreversible reactions (Section 5.4.3.1). 

Suppose now that the feedback loops are operative. Then all reactions between 
aspartate 4-phosphate and threonine exhibit zero flux control coefficients. Includ- 
ing now the branches leading to lysine and methionine, we arrive at our above 
result, which can be generalized in that all reactions between an irreversible step 
and a metabolite acting as a feedback inhibitor, except those situated behind 
branching points, are not able to control any flux (cf. Eq. (5.112)). 

An analysis of the structure of control insusceptibility of the reaction scheme 
of glycolysis including the phosphoglucomutase reaction and fructose-bisphos- 
phate cycle can be found in the work of S. Schuster and R. Schuster (1992). 

The above results on flux control insusceptibility are valid not only for infin- 
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1 itesimally small parameter perturbations but also for large changes. In fact, inte- r gration of Eq. (5.16b) gives zero if C' is always zero irrespective of the parameter 
I values. 

In the situation that some enzyme E, is saturated with its substrate [case (b) in 
I the above classification], the reactions upstream this enzyme usually have very 
i low flux control coefficients. When they are inhibited to a large extent, the point 

will eventually be reached where the substrate of E, drops below the Michaelis 
constant of E,, so that the control coefficients become nonzero. This gives rise to 
a threshold phenomenon in the effect of inhibition on a flux (Letelher et al., 1994). 

A frequent situation in biochemical systems is that some reactions are very 
fast, so that they subsist at quasi-equilibrium. As was pointed out for unbranched 
chains in Section 5.4.3.1, quasi-equilibrium reactions exert very weak flux control. 
This statement can be generalized for system of any complexity, by again using 
the connectivity theorem (5.51b). Another substantiation might be based on The- 
orem 5B and a rescaling of elasticities. In the limit of infinitely fast reactions, 
such rescaling brings about that some elements of E ~ L  tend to zero, which changes 
the generic rank of E ~ U "  L. 

5.14. CONTROL EXERTED BY ELEMENTARY STEPS 
IN ENZYME CATALYSIS 

In the modular approach, metabolic control analysis was generalized by consid- 
ering functional units containing several enzymes. Another generalization may 
be achieved by going further into the details of the particular enzymic reactions. 
Elementary steps of enzyme catalysis (such as substrate-enzyme binding or isom- 
erization of enzyme-substrate complexes) rather than overall enzymatic reactions 
are then the basic entities. Such an approach may answer the question of whether 
a particular step of an enzyme can be rate-limiting to the rate of that enzyme 
(Ray, 1983; Brown and Cooper, 1993; Kholodenko et al., 1994). 

The flux control coefficients pertaining to elementary steps in an enzyme 
scheme can be defined by 

where wj stands for the rate of the jth elementary step. When the enzyme is 
embedded in a reaction network and the control over steady-state fluxes is con- 
sidered, v has to be replaced in Eq. (5.439) by Jk. Analogously, concentration 
control coefficients are defined. They can be given not only for the free metab- 
olites but also for enzyme intermediates. The parameter pj, which enters Eq. 
(5.439) will usually be a rate constant of an elementary step, k+j or k-j. 

An alternative definition of control coefficients pertaining to single enzymes 
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refers to particular rate constants rather than to particular elementary steps (Brown 
and Cooper, 1993; Kholodenko et al., 1994). In our terminology, these quantities 
are response coefficients, 

because they belong to the class defined by Eqs. (5.11) and (5.12). 
As pointed out in Section 5.6.2, the control coefficients have the property 

of being independent of the choice of the perturbation parameter. This will now 
be illustrated for the catalytic Scheme 1 (Section 2.2.2), with the substrate con- 
centration S, = S and product concentration S2 = P. 

For the net rates of the two steps, we have 

For the quasi-steady-state of the enzyme (w, = w2), with the conservation re- 
lation E + ES = E,, one derives 

For the enzyme rate, one obtains the reversible Michaelis-Menten kinetics in 
terms of elementary rate constants, 

[cf. Eq. (2.20)]. The unscaled flux control coefficient of the first step, for example, 
can be calculated as 
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Straightforward differentiation of Eqs. (5.441) and (5.443) yields 

This leads to 

Using k-, as a perturbation parameter, we have 

So we obtain the same expression for C1; as in Eq. (5.447). 
In a similar way, by using either of the perturbation parameters and k-2, 

one obtains for the control coefficient of the second step, 

Note that the response coefficients defined in Eq. (5.440), which may easily 
be calculated for the considered example from Eqs. (5.446) and (5.449), do not 
have the property of being independent of the choice of perturbation parameter. 

The elementary rate constants are linked with the equilibrium constant, q, of 
the overall reaction by the Haldane relation [cf. Eq. (2.26) and the relations be- 
tween phenomenological and elementary parameters given in Eqs. (2.21) and 
(2.22)]. For the enzyme depicted in Scheme 1, this relation reads 

Because the equilibrium constant is independent of the catalytic properties of the 
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enzyme, one may argue that only those perturbations are allowed for which the 
equilibrium constant remains constant. This may be taken into account by the 
condition that changes in kl are always accompanied with opposite changes in 
k- ,. We then have 

Equations (5.453) and (5.452) yield the same expression for as given in Eq. 
(5.447). Accordingly, the Haldane relation need not be considered when control 
coefficients are calculated. This point is of practical relevance because changes 
of the equilibrium constant can actually occur in practice, owing to changes in 
temperature, for example. 

Response coefficients with respect to temperature can be written as 

where Cy are the control coefficients of the elementary steps with respect to any 
steady-state variable Y and niVT are the scaled elasticities of the elementary steps 
with respect to temperature. Moreover, the rate constants k t i  may incorporate 
concentrations of external metabolites or ions such as H+. Changes in pH then 
change the (apparent) equilibrium constant. 

Because the calculations in Section 5.3 also apply to the control coefficients 
pertaining to elementary steps, the flux control coefficients of these steps sum up 
to unity and the concentration control coefficients sum up to zero. For example, 
the sum of the flux control coefficients calculated in Eqs. (5.447) and (5.450) 
equals unity. As the velocities of elementary steps are usually linear functions of 
the rate constants, the response coefficients RL, also satisfy summation thwrems 
very similar to the thwrems derived in Section 5.3, 

as can be proven as follows. For any elementary step i, the reaction velocity can 
be written as wi = wi+ - w;, where the two terms are proportional to the 
corresponding elementary rate constants. Thus, we have 
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,e 

The response coefficients can be expressed as 

Equations (5.456) and (5.457) and the summation theorems for control coeffi- 
cients of elementary steps imply relations (5.455a) and (5.455b). 

Response coefficients can also be defined to refer to particular elementary steps 
rather than to particular rate constants, by keeping constant the equilibrium con- 
stants of the elementary steps upon differentiation (Ray, 1983; Brown and Cooper, 
1994; Kholodenko et al., 1994). Because the reaction rates are then proportional 
to the perturbation parameters, the response coefficients so defined and the control 
coefficients of elementary steps are identical. 

Brown and Cooper (1993) also defined coefficients expressing the effect of 
changes in elemen& rate constants on the maximal activity, V,, and Michaelis 
constant, K,. However, these are no control coefficients in the sense of metabolic 
control analysis, because V, and K, are no steady-state variables. 

Computation of control coefficients for elementary steps of triose phosphate 
isomerase (EC 5.3.1 .I), carbarnate kinase (EC 2.7.2.2) and lactate dehydrogenase 
(EC 1.1.1.27) from literature values of the rate constants shows that these enzymes 
do not have unique rate-limiting steps, but flux control is shared by several steps 
and varies with substrate, product, and effector concentrations (Brown and 
Cooper, 1993). 

As the rates of elementary steps are linear functions of enzyme intermediate 
levels and rate constants, there &numerous simple relations between these quan- 
tities and the control coefficients with respect to rate constants or elementary steps 
(Brown and Cooper, 1994). These relations can be used to determine control 
coefficients from measurement of enzyme intermediates rather than of rate con- 
stants. 

To illustrate an interrelation between the concentrations of enzyme forms and 
the response coefficients referring to rate constants, one may calculate the coef- 
ficients Rl- ,  and RL for Scheme 1 (Section 2.2.2), by differentiating Eq. (5.443). 
This gives, for the sum of these coefficients, 

Comparison with Eq. (5.442) shows that 
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This is a special case of a general relation found and proven by Kholodeuko et 
al. (1994). which states that the sum of the control coefficients referring to the 
rate constants of the processes leading away from (consuming) any enzyme sub- 
form is equal to the concentration of that subform divided by the total enzyme 
concentration, 

where the sum runs over all elementary rates flowing away from E,. The basic 
idea of the proof is to consider a hypothetical increase of the concentration Ek by 
a factor 1 and a simultaneous decrease of all the rate constants pertaining to the 
unidirectional rates utilizing the intermediate E,, by the same factor, 1 (Kholo- 
denko et al., 1994). Then all the rates of the elementary steps remain unchanged, 
and so does the overall enzyme rate. Thus, we have 

from which Eq. (5.460) follows immediately. 

5.15. CONTROL ANALYSIS OF 
METABOLIC CHANNELING 

Besides homologous enzyme-enzyme interactions (monomer4igomer associa- 
tions), heterologous enzyme complexes (i.e., associations of different enzymes) 
have frequently been detected, in particular in tissues with very high enzyme 
concentrations (Srivastava and Bernhard, 1986; Srere, 1987). Various experimen- 
tal data make it very likely that metabolic intermediates are directly transferred 
between the enzymes in these heterologous complexes. This phenomenon is called 
metabolic channeling (for a review, see Ov6di, 1991). However, whether this 
mechanism actually occurs and how important it is still remains in dispute (Gut- 
freund and Chock, 1991; Wu et al., 1991; Giersch, 1991). 

The assembly of enzymes can be transient (reversible, dynamic) or permanent 
(irreversible, static). In static complexes, the catalytic units may be linked non- 
covalently (multienzyme aggregates) or covalently (multifunctional proteins). Ex- 
amples are fatty acid synthase (see Wakil et al., 1983) and the aspartokinase 
Vhomoserine dehydrogenase complex in E. coli (see Gottschalk, 1986), respec- 

tively. The latter protein is interesting in that it does not catalyze sequential, 
neighboring reactions as is normally the case in static enzyme complexes, but the 
first and third reactions of the threonine pathway. There is no sharp conceptual 
distinction between the phenomena of static channeling and microcompartrnen- 
tation. The latter term is often used when multienzyme complexes or enzyme 
arrays attached to membranes or to the cytoskeleton constitute a microenviron- 
ment reducing diffusion lengths (see Friedrich, 1984; Welch et al., 1988; Gellerich 
et al., 1994). 

In dynamic channels, the enzymes consecutively associate and dissociate in a 
way that the metabolic intermediates are "handed over" without the necessity of 
being released into the aqueous medium. An example of a two-enzyme system 
with dynamic channeling is shown in Figure 2.1. It is generally accepted that 
most metabolic channels are not perfect, that is, the individual, nonassociated 
enzymes are also catalytically active, so that unbound intermediates occur (S, in 
Figure 2.1). It has also been suggested that channels might be leaky (i.e., inter- 
mediates may escape into the aqueous medium). In the example shown, leakiness 
would imply an additional dissociation step from the complex EISIE, to El& 
and S1. 

From the viewpoint of metabolic control analysis, a static enzyme complex 
catalyzing several sequential reactions can be treated by considering it as one 
enzyme catalyzing one overall reaction. Elasticities, control coefficients, and re- 
sponse coefficients for the complex as a whole can be determined. However, 
things become difficult if the channel is not perfect. As soon as (catalytically 
active) free enzymes are present in the bulk phase, the pathway flux is a compli- 
cated superposition of direct transfer and reactions in the bulk phase. Elasticities 
of the direct-transfer reaction are then difficult to measure because both the en- 
zyme complex and the free enzymes are present, whereas elasticities are defined 
for the situation in which the considered reaction proceeds in isolation. The same 
problem arises for dynamic channels. Therefore, the conceptual distinction be- 
tween an isolated enzyme and the same enzyme embedded in a pathway takes on 
a new aspect when channeling is operative. The fact that a system is more than 
the sum of its constituents is even more relevant here than for unchanneled path- 
ways. 

Clearly, in channeled metabolic systems, there is no longer a one-to-one cor- 
respondence between enzymes and reactions. Therefore, a clear distinction should 
be made between control coefficients of reactions and response coefficients with 
respect to enzyme concentrations. As was shown in Section 5.6.4, the control 
coefficients of reactions are not unique in the case of dynamic channeling, because 
they depend on the choice of the perturbation parameter. In contrast, the response 
coefficients with respect to enzyme concentrations are uniquely defined. There- 
fore, the attempt made by Sauro and Kacser (1990) to apply the general response 
equation (5.28) to heterologous enzyme-enzyme interactions is contestable. 
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It has been shown that the sum of response coefficients for pathway flux with 
respect to enzyme concentrations exceeds unity when dynamic channeling occurs 
(Kholodenko and Westerhoff, 1993; Sauro, 1994). It may therefore be sensible to 
define the response coefficient pertaining to the channel as unity minus this sum. 

A possible way of analyzing the control of channeled systems is by considering 
the elementary steps of enzyme catalysis, extending the analysis of Section 5.14 
(Kholodenko and Westerhoff, 1993). Total enzyme concentrations, ET, cannot be 
used as perturbation parameters for defining control coefficients at this detailed 
level of description. This follows from the fact that they are conservation quan- 
tities influencing several elementary steps. Furthermore, the rate of an isolated 
elementary step, w, cannot be expressed as a unique function of total enzyme 
concentration, because w depends on the distribution of ET among the particular 
enzyme intermediates. 

As was explained in Sections 5.2 and 5.14, the general definitions (5.3) and 
(5.5) of control coefficients can also be used for elementary steps. These coeffi- 
cients per se are not of much practical use though, because particular elementary 
steps are hardly accessible experimentally. To express the overall control exerted 
by an enzyme, E ,  Kholodenko and Westerhoff (1993) introduced the impact- 
control coeficient as the sum of the control coefficients of all elementary steps 
that are directly affected by enzyme E ,  

where Xi is the set of all Ei-dependent processes. This coefficient, in a sense, 
evaluates the total impact enzyme Ei has on the steady-state variable Y. A process 
is called Ei-dependent if its rate depends on the concentrations of the free form 
of the enzyme E, or of a complex that involves Ei. In mathematically rigorous 
terms, a process k is Ei dependent if there is an enzyme subform E"~ such that 

where ETi is the total concentration of enzyme Ei. 
Another important quantity expressing the effect of an enzyme Ei is clearly 

the response coefficient R:~,, , which refers to changes in the total concentration 
Ex,.  Kholodenko et al. (1993b) showed that the impact-control coefficient 
*P~i l  can be expressed as the sum of the response coefficient Ri,., and terms 
referring to channeling and conservation relations involving both enzymic species 
and free intermediates. For proving this relation, they considered a hypothetical 
perturbation of a given steady state so that 

(i) Every concentration involved in the catalytic cycle of a given enzyme E, is in- 
creased by a factor 2, which implies that the concentrations of all enzymes forming 
complexes with<E, are also increased 

(ii) The rate constants of all Erdependent processes are decreased by the same factor 
A. By these changes, the total concentxation of Ei attains a new value, 

The new total concentrations of all enzymes that form complexes with Ei amounts 
to 

where Ej:PmP is the total concentration of all complexes involving both Ei and Ej 
before the perturbation. Equation (5.465) is only valid under the assumption that 
every enzyme may occur in any complex no more than once (i.e., homologous 
complexes are excluded). 

The considered perturbation also changes conservation sums, T,, that include 
not only enzymic species ESUb involving Ei but also free metabolites, S ,  if such 
conservation cycles exist. These conservation sums can be decomposed into a 
part, p, containing free metabolites and a part, vb, involving enzyme sub- 
forms. The perturbed conservation sums can then be written as 

To find, in an algebraic way, those conservation quantities Tk affected by 
changes in the subforms of E,, stoichiometric analysis can be helpful; for example, 
by block-diagonalizing the link matrix L. 

All of the rates wk of E,-dependent processes are homogeneous functions of 
first order of the concentrations of subforms of enzyme E,, because we exclude 
diierization and oligomerization of E,. They are also homogeneous functions of 
the rate constants at fixed equilibrium constants of the elementary steps. There- 
fore, all the rates remain unchanged after the above-mentioned increase in the 
concentrations of the subforms of enzyme E, and decrease in the corresponding 
rate constants (i.e., aJaL = 0). 

Because the steady-state fluxes are functions of the kinetic parameters and the 
conservation quantities, one can write, by using the chain rule of differentiation, 
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where the index k refers to all the elementary steps belonging to enzyme Ei (k E 
Xi). Taking the derivatives at 1 = 1, we have, for the rate constants, 

and for the conservation relations, due to Eqs. (5.465) and (5.466), 

Because of Eq. (5.468), the first sum on the left-hand side of Eq. (5.467) equals, 
apart from its sign, the sum of the of all Ei-dependent processes. By definition 
(5.462). this sum equals the impact-control coefficient of enzyme E,. Therefore, 
Eqs. (5.467)-(5.469) give 

Kholodenko et al. (1993a, 1993b) drew the conclusion that channeled path- 
ways can be more sensitive to regulatory signals than "ideal" ones, because the 
impact-control coefficient is increased by the two sums on the right-hand side of 
Eq. (5.470). Indeed, the sum over j refers to enzyme-enzyme interactions as is 
typical for channeling, but the and the sum over 1 in Eq. (5.470) for the 
channeled pathway generally are not the same as those for a comparable non- 
channeled pathway. Importantly, the impact-control coefficient coincides with the 
response coefficient of enzyme Ei if this enzyme is not involved in channeling, 
nor in moiety-conserved cycles of metabolites. 

It remains questionable, though, whether the concept of impact-control coef- 
ficient is appropriate to describe the control exerted by an enzyme in the situation 
of metabolic channeling. Changing all  Erdependent processes by the same frac- 
tional amount seems to be impossible in experiment. The evaluation of the sums 
on the right-hand side of Eq. (5.470) is also problematic. Going down to the level 
of elementary steps bears the difficulty that the exact number and interconnections 
of these steps are often unknown. 

What is desirable is to define and calculate control coefficients of biochemi- 
cally meaningful and accessible processes, such as a channeled route as a whole. 
For example, in Figure 2.1, it would be interesting to have separate control co- 
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efficients pertaining to the reactions catalyzed by El, E2, and the E,E2 complex. 
This is, however, difficult because the denominator in the definitions of control 
coefficients (3.3) anQ(3.5) refers to isolated reactions, whereas the reaction cat- 
alyzed by the E1E2 complex cannot be studied in isolation in the case of imperfect 
channels. It would be a challenge for the modular approach to metabolic control 
analysis (see Section 5.12) to cope with metabolic channeling. 

5.16. COMPARISON OF METABOLIC CONTROL 
ANALYSIS AND POWER-LAW FORMALISM 

Metabolic control analysis is a kind of sensitivity analysis dealing with the effect 
of perturbations of reaction rates on steady-state variables. Another type of sen- 
sitivity analysis based on the power-law approach (cf. Section 2.2.4) was pre- 
sented by Savageau (1976; see also Savageau et al., 1987b) and applied recently 
to a model of the tricarboxylic acid cycle (Shiraishi and Savageau, 1993). It makes 
use of the favorable feature that the power-law rate laws may be transformed into 
linear equations in the logarithmic concentration space [cf. Eqs. (2.75) and (2.76)]. 
On the systemic level, however, one anives at linear equation systems only if a 
method called aggregation of flux is employed (Savageau et al., 1987a). In that 
method, rate laws for those processes tending to produce a given substance Si are 
first combined to give an aggregate rate, v&. Similarly, the kinetic functions of 
those processes that consume a given substance are summed to give a separate 
aggregate rate, v& (see Figure 5.16). Instead of the balance equations (2.7), the 
equations 

is then used as basis for the system description. The power-law expressions for 
the aggregate rates are obtained in a similar way as was explained in Section 2.2.4 
for isolated reactions. Accordingly, each of the kinetic constants ai and pi as well 
as each of the kinetic orders gij and hU now represents the properties of several, 
aggregated enzymic reactions rather than of only one reaction. At steady state, 
all time derivatives of concentrations are zero, so that Eq. (5.471) can be trans- 
formed to 

This can be written in matrix notation as 
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where the matrix A and the vector b contain the following elements: 

As the equation system (5.473) is linear in the logarithmic concentrations, it can 
be treated analytically. However, a number of drawbacks of applying the power- 
law approach combined with the flux aggregation method should be mentioned. 

The method of flux aggregation generates a reaction scheme to which no mean- 
ingful stoichiometry matrix can be attached (cf. Figure 5.16). 

If the rank of matrix A equals n, the solution to the equation system (5.473) 
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is unique. Otherwise, this equation system is solvable if the rank of the matrix A 
equals the rank of the augmented matrix (av, b,) (cf. Moms, 1992). One then 
obtains a continuous wanifold of solutions. Therefore, the occurrence of isolated 
multiple steady states with nonzero concentrations cannot be described by the 
power-law approximation and aggregation of flux, whereas other nonlinear ap- 
proaches can cope with multistationarity (cf. Section 2.3.3). As this phenomenon 
plays an important role in biology, the advantage of analytical solvability of the 
steady-state equations appears not to be very valuable. 

Another problem arises when conservation relations or other side constraints 
are present. As was shown in Section 3.3, the steady state(s) then cannot be 
calculated from the rate laws alone, but the conservation quantities must be used 
in the calculation also. To make the power-law approach uniform, Savageau et 
al. (1987a) proposed writing constraints among concentrations in the form of 
power functions as well. 

For example, the conservation relation ADP + ATP = A = const. would be 
written in the power-law approximation as 

where 

Fig 5.16 Scheme of a reaction system illuswating the method of flux aggregation. (A) Original 
scheme; (B) "aggregate" scheme. The sums indicate which reactions of the original scheme have 
been lumped to give the aggregate reactions (thick arrows in B). Note that the aggregate scheme 
cannot be interpreted as a coherent pathway because the rate of degradation of any metabolite does 
not occur as the rate of production of another compound and vice versa. 

The superscript 0 refers to the reference state of the approximation. Equation 
(5.475) can be derived by expanding the equation lnATP = ln(A - ADP) = 
ln(A - exp(1nADP)) into a Taylor series and only considering the terms Linear 
in (InADP - I M P " ) .  

In the case that constraints are linear conservation relations (as for the above 
example concerning the conservation of adenine nucleotides), this approach 
makes things unnecessarily complicated. More importantly, mass conservation is 
only fulfilled in the reference state, whereas for sensitivity analysis, deviations 
from the reference state must be studied. Furthermore, whereas conservation re- 
lations are a direct consequence of the linear dependencies among balance equa- 
tions, the side constraints approximated by power laws are not, in general, con- 
sistent with the approximate system equations (5.471). 

Another drawback is that the method of aggregation of flux entails a ques- 
tionable reduction in the number of degrees of freedom of the system at steady 
state, because the stoichiometric relationships are no longer reflected in the system 
equations (5.471). This concerns, for example, the different possibilities of dis- 
tribution of flux over the branches in the system (cf. Chapter 3). It is worth 
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mentioning that the aggregation method used in the modular approach of meta- 
bolic control analysis (Section 5.12) differs from that underlying Eq. (5.471) 
because in the former, the number of degrees of freedom in flux and the stoichi- 
ometric mass balances are maintained. 

It has often been claimed that the kinetic orders gv and he [cf. Eqs. (2.74a,b)] 
be equivalent to the elasticities defined in Eq. (5.36a) (Savageau et al., 1987b; 
Cascante et al., 1989a; Sombas and Savageau, 1989b). Indeed, we have 

but ~ 4 , ~  and v& have different meanings than vi in Eq. (5.36a). Because of the 
method of aggregation of fluxes, they represent aggregate rates of formation and 
degradation of a substance Si, whereas vi in metabolic control analysis denotes 
the net velocity of some reaction, which combines forward and reverse rates of 
one reaction. Each elasticity e corresponds to one enzymic reaction, whereas each 
of the coefficients gv and hv generally corresponds to several reactions, which 
have been aggregated. 

Furthermore, taking logarithmic derivatives in Eq. (5.477a) and (5.477b) is a 
necessary consequence of the power-law formalism, in which rate laws are ap- 
proximated ad hoc by power functions. In contrast, metabolic control analysis is 
not necessarily based on logarithmic derivatives. One can also use direct deriva- 
tives, as in Eq. (5.19). Whether or not normalized quantities are employed is only 
a question of interpretation (cf. Section 5.7). 

Under the condition that matrix A is nonsingular, Eq. (5.473) can be solved 
for lnS to give 

This equation allows one to calculate sensitivities of concentrations with respect 
to rate constants, 
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e 

Here we have replaced the symbol S(.) used for sensitivities in the original work 
(Savageau, 1976; Savageau et al., 1987b) by o(.), in order to avoid confusion 
with the symbol for concentrations. By Eq. (5.478), one obtains 

These sensitivities bear a certain analogy to the normalized concentration con- 
trol coefficients defined in Eq. (5.5). However, the two quantities are not identical, 
because the sensitivities o refer to perturbations of the rate constants of aggregate 
fluxes, whereas control coefficients in metabolic control analysis usually char- 
acterize the effect of perturbations of individual enzymes. 

The differences between the sensitivities o and control coefficients become 
even more obvious by considering the summation theorem derived by Savageau 
et al. (1987b): 

This theorem is not equivalent to the summation theorem (5.42), because each 
term o(Si,Bj) + o(Si,aj) is zero on its own, so that this equation does not properly 
reflect the contribution of all reactions in the control of the concentration S,. This 
is because the particular equations constituting Eq. (5.47 1) are not coupled with 
each other via the rate constants ai and p,. Therefore, an equal fractional increase 
of only one pair of rate constants, ai and pi, leaves the steady state of all Sj 
unchanged. In contrast, the summation theorem (5.42) is related to the situation 
that all rate constants of the system are changed by the same fractional amount. 
This discrepancy is due to the flux aggregation method, which decouples the 
'metabolites. It is no longer considered that consumption of some substance co- 
incides with formation of another (see Figure 5.16). It is an oversimplification to 
treat the rate constants ai and Pi (and likewise the kinetic orders) to be independent 
of the other rate constants aj and 4. This was acknowledged by Sombas and 
Savageau (1989a) but was not taken into account in their general formalism. 

Sensitivities of rates with respect to rate constants have also been defined. 
Because at steady state the total flux feeding into a substance equals the total flux 
consuming this substance, such sensitivities are, in the flux aggregation approach, 
only meaningful when defined for unidirectional rates. From Eq. (5.471), one 
obtains 
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(5.483) 
k= I 

a ln v& n 

d ~ . & ~ , i . B ~ )  = 
" = gik"(sk,/$) , (5.484) 

alnp, 

and similar equations for S(v&,pj). Summation of Eqs. (5.483) and (5.485) over 
j yields 

because of Eq. (5.481). At variance with the summation theorem (5.43) of met- 
abolic control analysis, exactly one term of the sum (5.485) equals unity, and all 
others are zero. 

Starting from the equation 

and using Eqs. (5.474), (5.479), and (5.480), the relation 

can be derived. For the sensitivities of rates, one can deduce 

Although Eqs. (5.487) and (5.488) exhibit a certain formal analogy to the con- 
nectivity theorems (5.53a) and (5.53b), respectively, they are not identical to the 
latter, nor generalized versions, as the coefficients have a meaning different from 
the coefficients in metabolic control analysis. For a further discussion on the role 
of the theorems in both approaches, see the work of Cornish-Bowden (1989). 

Power-law approaches have been used not only for sensitivity analysis but also 
for simulation of biochemical systems far from a chosen reference state (Shiraishi 
and Savageau, 1993; Torres, 1994). The criticism put forward above concerning 
small deviations from the reference state is all the more valid for such simulations. 

5.17. COMPUTATIONAL ASPECTS 

It is an important achievement of metabolic control analysis to have provided a 
means to quantify the control properties of enzymic reactions embedded in ar- 
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bitrarily complex metabolic networks. In the previous sections on applications, 
we selected simple examples and concentrated on analytical solutions for didactic 
reasons. For complex metabolic networks, the treatment by "pencil and paper" 
soon becomes impossible, although the basic equations of metabolic control anal- 
ysis are linear. 

A number of powerful computer programs performing calculations in meta- 
bolic control analysis on IBM-PC compatibles and to some extent also on UNIX 
computers have been developed (Hofmeyr and Van der Menve, 1986; Cornish- 
Bowden and Hofmeyr, 1991; Letellier et al., 1991; Sauro and Fell, 1991; Sauro, 
1993; Mendes, 1993; Thomas and Fell, 1993; Ehlde and Zacchi, 1993). 

The program CONTROL developed by Letellier et al. (1991) uses the matrix 
formalism of metabolic control analysis as introduced by Reder (1988). The pro- 
gram is written in Turbo-Pascal and offers two submenus. The first serves to 
calculate the values of all (normalized or non-normalized) flux control coefficients 
and concentration control coefficients of a metabolic network from the elasticity I 

coefficients, the values of which must be put in together with the stoichiometry 
matrix of the network. Information about the rate laws thus enters the computation I 

only via the elasticities. In the second submenu, the link matrix and null-space 
matrix are calculated in the form given in eqs. (3.7) and (3.47), respectively. The 
generalized summation theorems (5.44) and connectivity theorems (5.51) are dis- < 

l1 

played in a form with these matrices specified but the control and elasticity co- 
efficients unspecified (given as symbols). 

The program package SCAMP (Sauro and Fell, 1991; Sauro, 1993) running 
under MS-DOS and on the Atari is a control analysis program and, moreover, a 
general metabolic simulator. It can be used to make time-dependent simulations 
by numerically integrating systems of ordinary differential equations. SCAMP 
also has options to detect and analyze steady states. It makes the conservation 
relations and all the coefficients defined in metabolic control analysis available. 
Rate laws can be defined by the user or chosen from a database. The program 
works by reading an ASCII file of instructions (a command file) detailing the 
model in a specific command language. The structure of the metabolic network 
must be given in the form of reaction equations (such as $glucose-Sl for the 
transformation of glucose treated as an external metabolite into an internal me- I 
tabolite S,). SCAMP then translates the command file into an intermediate code 
that is executed by a run-time interpreter. It is able to generate the stoichiometry I !  

matrix and the governing differential equations from the reaction equations and I! 

rate laws. The user can select to have some or all control coefficients calculated 
by numerical modulation or by the matrix method outlined in Section 5.2, and to 

I 
have elasticities calculated by modulation or by symbolic differentiation. For both I 

simulations and steady-state analysis, additional quantities can be monitored, for 
example the sum of some control coefficients, or other user-defined quantities or 
functions. Predefined changes to parameters, for example, after a certain time of 



290 Metabolic Control Analysis 

simulation, can be made by iflthen functions. A routine for graphical output is 
included. 

The program MetaModel (~ornish-Bowden and Hofmeyr, 1991) running on 
IBM-PC compatibles serves similar purposes as the package SCAMP, but it is 
menu-operated and therefore more user-friendly. The user is not obliged to learn 
a specific command language. However, it does not include as many facilities to 
calculate arbitrary quantities as SCAMP. All rate laws except for a predefined, 
"minimal" Michaelis-Menten kinetics must be defined by the user. For steady- 
state calculations, conservation equations have also to be indicated by the user so 
that the input is somewhat redundant. 

The program GEPASI (Mendes, 1993) is also menu-operated, taking advantage 
of the front-end facilities of MS-Windows, such as menus, dialogue boxes, push 
buttons, and the help engine. The reactions can be endowed with rate laws chosen 
from a menu or defined by the user. The input of the values of kinetic parameters 
is done in a window separate from that for the input of structural data because 
one is likely to input many different sets of pa&eters for the same reaction 
scheme. As in SCAMP, the algorithm used for the integration of the ordinary 
differential equations is the LSODA (Petzold, 1983), which automatically detects 
whether or not the system is stiff and uses an appropriate method accordingly. 
Concentrations, fluxes, elasticities, control coefficients, and response coefficients 
can be calculated. They can conveniently be plotted versus time or in a two- or 
three-dimensional phase space, whereby the program GNUPLOT is used. Results 
can also be written in an output file. 

Thomas and Fell (1993) presented the C program MetaCon (under MS-DOS), 
which is, in essence, an automation of a matrix method developed by Fell and 
coworkers (Fell and Sauro, 1985; Sauro et al., 1987; Small and Fell, 1989). In 
the present book, we review that matrix method only in part (on discussing the 
branch-point relationships in Section 5.4.3.2), because it is equivalent to the 
method developed by Reder (1988) (cf. Section 5.2) This equivalence was dem- 
onstrated by Thomas and Fell (1993) themselves. 

The input of the reaction scheme in MetaCon proceeds in a similar way as in 
SCAMP, by parsing (reading) an input file and creating the corresponding stoi- 
chiometry matrix. The elasticities are written in the input file as values or symbolic 
expressions. MetaCon allows a combination of symbolic (algebraic) and numeric 
information in a much more extended way than other programs. Depending on 
the amount of data that can be provided as input, the (normalized) control coef- 
ficients can evaluate to a number or can be expressed as algebraic expressions 
containing enzyme-kinetic constants, equilibrium constants, fluxes, and so forth. 
A unique feature of MetaCon is a routine to calculate the sensitivities of control 
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concentrations, the sensitivities of the control coefficients to these can also be 
determined. Knowledge about the effect of deviations in the values of these quan- 
tities on control coefficients is particularly valuable when they are inaccurately 
known. The program uses formulas derived by Small and Fell (1990) and Thomas 
and Fell (1994) to calculate these sensitivities. MetaCon includes some tests for 
model validity and integrity. For example, it allows one to check whether all 
columns of the stoichiometry matrix contain at least one nonzero entry, and to 
check whether the rank of N is smaller than the number of reactions, which is a 
necessary condition for a nontrivial steady state to exist. The program also pro- 
duces a message if the null-space matrix contains a row of zeros, which would 
then correspond to a strictly detailed balanced reaction (see Section 3.3.2). 

All programs mentioned in this section are in the public domain. The packages 
SCAMP, MetaModel, GEPASI, and MetaCon are continuously updated and are 
available at an ftp server on the Internet (address 161.73.104.10, directory pub1 
software). 

It is worth noting that the approaches presented in Sections 5.8-5.15 are also 
amenable to automation on computer, which opens interesting programming tasks 
in the future. 

coefficients with respect to all elasticities, fluxes, and metabolite concentrations 
when they appear in the expressions for the control coefficients. In addition, if 
the elasticities are, in turn, defined in terms of kinetic constants and metabolite 



Application of Optimization 
Methods and the Interrelation 
with Evolution 

In the preceding sections, our interest was focused on the mathematical descrip- 
tion of the behavior of variables of metabolic systems, that is, concentrations of 
pathway intermediates and fluxes, either in stationary states or in time-dependent 
states. Other quantities such as the kinetic constants of enzymes or the stoichio- 
metric coefficients which define the topology of enzymic networks are considered 
as given parameters (i.e., they are inputs of the models). Any explanation for the 
observed values was not attempted. For traditional simulation models as well as 
in the context of metabolic control analysis, this distinction between variables 
and parameters is reasonable. Variations in the concentrations or fluxes may be 
experimentally observed in short time intervals, whereas the topology of the net- 
works and the kinetic properties may change only very slowly or are even fixed 
during the life span of an organism. 

In the present chapter we draw attention to the fact that, in contrast to chemical 
systems of an inanimate nature, biochemical systems of living cells are the out- 
come of evolution. In the light of the Darwinian theory one may state for bio- 
chemical systems that during evolution (i) new types of reactions were recruited 
by the cells leading to an increase in the complexity of biological organization 
and (ii) existing enzymic systems have adapted to environmental conditions. Both 
processes have been driven by mutation and natural selection. It seems, therefore, 
plausible to assume that contemporary metabolic systems have developed by step- 
wise improvement of their functioning. 

Obviously, it would be a formidable task to follow in detail the origination 
and further development of metabolism during billions of years where living 
conditions have permanently changed and from which only few traces exist. On 
the other hand, it may be worth trying to explain the structural features of con- 
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1; 

temporary enzymic reaction systems on the basis of optimization principles. Cer- 
tainly, evolution did not lead to a "global optimal state," but it is an experimental 
fact that mutations er other changes in the structure of present-day metabolism 
lead in most cases to a worse functioning of the cells (cf. Belfiore, 1980). The 
concept of optimization is also relevant in the design and improvement of bio- 
reactors. 

A crucial point is to formulate appropriate performance functions whose max- 
imum (or minimum) values might correspond to the outcome of the evolution of 
cellular metabolism. In the literature, the following optimization principles are 
considered: (a) maximization of reaction rates and steady-state fluxes, (b) mini- 
mization of the concentrations of metabolic intermediates, (c) minimization of 
transient times (for a review, cf. Heinrich et al., 1991). Investigations concerning 
optimal stoichiometries (MelBndez-Hevia and Isidoro, 1985; MelBndez-Hevia and 
Torres, 1988; MelBndez-Hevia et al,, 1994) and maximization of thermodynamic 
efficiencies (Stucki, 1980) have also been implemented. Because many properties 
of cellular reaction systems may influence the fitness of the whole organism, the 
optimization problem may be considered as a multiobjective one. 

In the following quantitative treatments we assume that during evolution of 
cellular metabolism, some state function @ was maximized by variations of the 
system parameters, 

(6. la) 

Minimization problems may be transformed into such a maximization principle 1 1 
by considering - @ = max. The parameters may enter the performance function 
@ directly or via parameter-dependent concentrations or fluxes so that Eq. (6.la) 
may be written in more detail as i 

1 

In optimization studies concerning metabolic systems, one has to take into 
account certain constraints which may be of different type. First, there are a 
number of physical constraints limiting the range of variations of kinetic param- 
eters, for example, for the following reasons: (a) any parameter configuration has 
to meet the thermodynamic equilibrium condition which is independent of the 
properties of the catalyst, (b) there are upper limits for the elementary rate con- 
stants due to physico-chemical constraints, for example, diffusional limitations, 
and (c) the stoichiometry of metabolic systems has to fulfill certain physical re- 
quirements such as mass conservation. Second, there are biological constraints 
which are often called costfunctions (Reich, 1983; Rosen, 1986) and which are 
more difficult to express in clear-cut mathematical terms. Various cost functions 
possibly relevant for the evolutionary optimization of metabolism have been pro- 
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posed: (a) the total enzyme content of a cell or a given pathway and (b) the total 
energy utilization (Reich, 1983; Stucki, 1980; Heinrich et al., 1987). Mathemat- 
ically, these types of constraints may often be taken into account by the use of 
the method of Lagrange multipliers, that is, by considering the extremum prop- 
erties of the function 

where dk are the Lagrange multipliers and xk = xk@) denote the parameter- 
dependent cost functions, the values of which are prescribed to beX:. 

Studies have been made on the optimum properties of single enzymes as well 
as on the mutual interdependence of the enzymes within metabolic pathways. The 
inclusion of systemic properties into optimization analysis may lead to consid- 
erable mathematical difficulties arising from the nonlinearities in the system equa- 
tions for metabolic networks. 

Taking into account not only one but several optimization principles leads to 
a multicriteria optimization problem 

where the various performance functions may be gathered in a vector @ = 
(@,, . . . , Dm). Obviously, the situation may occur that the principles contradict 
each other, which means that the optimal state is characterized by a trade-off 
between different performance functions. The role of trade-offs in the evolution- 
ary adaptation of biochemical networks has been stressed also by several other 
authors (Majewski and Domach, 1985, 1990a; LiljenstrSm and Blomberg, 1987). 

Multicriteria optimization is related to the concept of semiordered sets. Tra- 
ditional optimization approaches in biology start from the assumption that bio- 
logical systems could be compared according to a total ordering, that is, for any 
two systems X and Y, exactly one of the relations "greater than," "less than," and 
"equal to" holds true. Here, "greater than" means that X is better fit than Y so 
that X will survive when competing with Y. However, there are many instances 
where biological systems cannot be compared in this way, in particular, if two 
systems under study do not interfere at all with each other. Moreover, two systems 
cannot be compared when the ranking in fitness varies with circumstances. 

It appears that four different relations should be distinguished, 

where the latter relation signifies that X cannot be compared with Y. Upon inclu- 
sion of the plausible axiom of transitivity, 
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( x > Y , y > z ) + x > z ,  (6.5) 

relations (6.4) give rise to a semiordering structure (cf. Rdei,  1967). 
The possible relevance of multicriteria optimization principles in biology also 

follows from the fact that they often give rise to connected or disconnected man- 
ifolds of solutions. These could account for the rather large variation of biochem- 
ical data found in organisms of different species and even of one and the same 
species. Disconnected solution sets show a conspicuous correspondence with the 
fact that two given biological species are not generally connected by a continuous 
line of intermediary forms. 

The adequacy of optimization approaches depends essentially on the formu- 
lation of appropriate objective functions used to evaluate the fitness of a biological 
system. Generally, it seems to be difficult to derive the objective functions from 
more fundamental principles, such as the laws of physics. Accordingly, it is ap- 
propriate to derive them from heuristic arguments, and their validity should be 
judged by comparing theoretically predicted optimum properties with those of 
real systems. For the optimization of metabolic conversions in bioreactors, the 
proper choice of the objective functions is less problematic, because they are 
related to the specific goal of the biotechnological process. 

6.1. OPTIMIZATION OF THE CATALYTIC PROPERTIES 
OF SINGLE ENZYMES 

6.1.1. Basic Assumptions 
It has often been stressed that evolutionary pressure on the enzyme function 

was mainly directed toward maximization of catalytic activity, 

v = max (6.6) 

(Fersht, 1974; Crowley, 1975; Albery and Knowles, 1976a, 1976b; Comish- 
Bowden, 1976a; Brocklehurst, 1977; Heinrich and Hoffmann, 1991; Pettersson, 
1992). This hypothesis is strongly supported by the fact that the rates of enzy- 
matically catalyzed reactions are typically 10~-10'~-fold higher than those of the 
corresponding uncatalyzed reactions (cf. Voet and Voet, 1990). Obviously, such 
high reaction rates may only be achieved if the kinetic properties of the enzymes 
fulfill certain requirements. It has been stated, for example, that enzymes with 
optimal catalytic activity are characterized by Michaelis constants close to the 
concentrations of their substrates in viva (Hochachka and Somero, 1973; Comish- 
Bowden, 1976a). Other authors came to the conclusion that the K, values tend 
to be large relative to the respective substrate concentrations (e.g., Crowley, 1975). 



296 Application of Optimization Methodr and the Interrelation with Evolution Optimization of the Catalytic Properties of Single Enrymes 297 

These early studies were mainly based on the most simple enzyme mechanism 
depicted in Scheme 1 (Section 2.2.2), with the special assumption that the release 
of product from the enzyme-intermediate complex (step 2) is irreversible. 

In the following, we consider an enzymatic reaction which involves two re- 
versible binding processes of the substrate S and product P to the enzyme E and 
a reversible transformation of two enzyme-intermediate complexes (Scheme 2 in 
Section 2.2.2; in the present chapter, the substrate and product are denoted as S 
and P, respectively). The kinetic properties of the enzyme may be described on 
the basis of Eq. (2.20) which involves the phenomenological parameters K,, and 
K, (here denoted by Kms and K,), Vi and V; . Evolutionary variations of these 
parameters are interrelated due to their dependence on the rate constants k k i  of 
the elementary steps [Eqs. (2.27a)-(2.27d)l and, in particular, due to the Haldane 
relation ViK&V;Kms = q = const. [Eq. (2.26)]. Therefore, the analysis of 
evolutionary optimization of the catalytic properties of enzymes on the basis of 
the principle (6.6) should focus first on variations of the k k i  values. Thereafter, 
conclusions concerning optimal values of K,,, and V, may be derived. 

The steady-state reaction rate for the enzymatic process depicted in Scheme 2 
may be expressed as 

with the thermodynamic equilibrium constant 

and the denominator 

We are interested in those values of the elementary rate constants maximizing the 
absolute value Ivl of the reaction rate under the constraints of fixed values of the 
concentrations of the reactants and of the equilibrium constant q. Without loss of 
generality, it is assumed that q 2 1. For q < 1, the optimal rate constants may 
be obtained from the solution derived for q > 1 by the transformations v + - v 
and q llq, and by interchanging the meaning of the symbols k ,  and k-3 ,  k -  

and k,, k, and kL2, as well as of S and P. According to Eq. (6.7) the reaction rate 
v is a homogeneous function of first degree of the elementary rate constants k , ,  
that is % 

with an arbitrary value of a > 0. For that reason, the rate v could be increased in 
an unlimited way when no constraints for the rate constants of the elementary 
reactions are imposed. According to quantum-mechanical and diffusional con- 
straints, it is reasonable to take into account upper bounds on the individual rate 
constants upon optimizing the reaction rate, that is, 

Due to Eq. (6.8) and condition (6.9), states of maximal activity have the property 
that one or more kinetic constants assume their maximal values. Because for q 
= const., the numerator in Eq. (6.7a) is independent of the rate constants, optimal 
states are characterized by those values of the rate constants minimizing the de- 
nominator D. 

For the mechanism depicted in Scheme 2, three groups of kinetic constants 
may be distinguished: (a) the second-order rate constants kl and k - ,  character- 
izing the binding of the substrate and product, respectively, to the enzyme, (b) 
the first-order rate constants k2 and k-2  characterizing the isomerization step, and 
(c) the first-order rate constants k - I  and k, characterizing the dissociation of 
reactants from enzyme-intermediate complexes. Accordingly, we consider three 
different upper limits for the rate constants 

(6.1 Ob) 

(6.10~) 

These conditions indicate that no distinction is made for the allowed ranges of 
the rate constants belonging to the same group. 

In all what follows, dimensionless values for the rate constants k k i ,  the con- 
centrations S and P as well as for the enzymic activity v will be used. In order to 
avoid new symbols we simply redefine the previously used quantities, 
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Using normalized rate constants, condition (6.9) assumes the form 

To simplify the mathematical treatment, we conline ourselves to the special 
case k&,, = 1; that is, no distinction is made between the upper bounds for the 
two different types of first-order rate constants. Then, by using the normalized 
quantities, the rate equation keeps the form (6.7) except that the factor E, is 
omitted (for a more general treatment, cf. Heinrich and HofFmann, 1991). 

6.1.2. Optimal Values of Elementary Rate Constants 
Examination of Eq. (2.28), of which Eq. (6.7) is a special case for r = 3, 

shows that the forward rate constants k, enter the denominator only together with 
k-, and k-(,- ,, in the form k,l(k-,k-(,- ,,), whereas all k-, enter the denominator 
also in the forn llk-, (note the cyclic notation k-3 = k-,). This gives rise to 
the following. 

Theorem 6A. For ordered enzyme reaction mechanisms, a state with nonmaximal 
values of k, and k-, or k, and k-(, - ,, cannot be optimal. 

This theorem follows from the fact that such a state can be improved by in- 
creasing k, and k-, or k, and k-(i- ,, by the same factor. This change affects neither 
the equilibrium constant nor the terns kil(k-ik-(i- but decreases the terns 11 
k-, in the denominator of Eq. (2.28). For three-step mechanisms, 10 different 
optimal solutions Lj are therefore possible for a given value of q 2 1: 

(a) Three solutions with a submaximal value of one backward rate constant, 

@) Three solutions with submaximal values of two backward rate constants, 

(c) Three solutions with submaximal values of one backward rate constant and one 
forward rate constant, 

L,: kl, k-l < 1; Lg: k2, k-3 < 1; L9: k3, kel < 1 (6.13~) 

(d) One solution with all backward rate constants being submaximal, 
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The denominators 9 in Eq. (6.7) for the various solutions Lj may be expressed 
in terns of S, P, q, and the respective submaximal rate constants given in Eqs. 
(6.13a146.13d). For example, 

and 

All kinetic constants which, for given Dj, do not enter relations (6.13146.16) 
assume their maximal values for the indicated solutions; that is, their normalized 
values are equal to unity. 

Under consideration of the interrelations among kinetic parameters due to the 
fixed equilibrium constant [e.g., Eqs. (6.15b) and (6.16b)], it is seen that the 
denominators D, to Dl, may attain local minima with respect to variations of the 
kinetic parameters involved. For example, after elimination of k3 in Eq. (6.15a) 
by Eq. (6.15b), D, becomes minimum for values of k- that fulfill the condition 

From this equation, one derives 

2(S + P) 
k-I = JT. k3 = Jm. (6.18) 

In a similar way, one may determine the kinetic constants which minimize the 
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denominators D4, . . . D8. The results are listed in Table 6.1 where the rows L, 
contain the parameters which minimize Di. The local minimum of Dlo is deter- 
mined by the conditions 

These equations may be transformed into the equation system 

After solving the fourth-order equation (6.20a), the rate constants kL2 and k- ,  
can be obtained from Eq. (6.20b) and the equation k- ,  = (qk-lk-,)-' .  

As is seen from Table 6.1, the optimal solutions Lj (j 2 4) depend on the 
conc,entrations S and P. Therefore, conditions (6.12) impose various constraints 
on the allowed (S,P) values, depending on the type of the soldon. For example, 
solution L9 given in Eq. (6.18) only exists if 

and solution Llo determined by Eq. (6.20) only exists if 

Inequalities (6.21) and (6.22) and analogous relations for the solutions L4, . . . , 
L, define, within the space of reactant concentrations, different subregions where 
the solutions L, (4 5 j 5 10) lead to rate constants fulfilling condition (6.12). 
The solutions L1, b, and L, are independent of S and P and are, therefore, 
possible for all reactant concentrations. Some of these regions will overlap. There- 

Table 6.1 Optimal Solutions for the Rate Constants for the Enzymic Reaction 
Depicted in Scheme 2 as Functions of the Concentration of the Product for q 2 1 

solution k, k I k2 k-2 k3 k-3  

fore, to make the solutions Lj unique functions of the reactant concentrations, one 
has to determine for given (S, P) values that solution which gives the highest 
enzymic activity. This may be achieved by introducing the optimal rate constants 
for Lj (Table 6.1) into the corresponding expressions Dj and by comparing the 
resulting minimal denominators Bi' For j 5 9 the minimal denominators dj are 
listed in Table 6.2. The determination of Blo requires numerical solution of Eq. 
(6.20). 

In this way one arrives at a unique subdivision of the (S, P)-plane into sub- 
regions R, such that within region R, solution L, a p e s .  In Figure 6.1 these 
subregions are depicted for q = 2. From the results hsted in Table 6.1 one may 
derive that the optimal values of the rate constants change continuously as the 
values of S and P vary even if a boundary between neighboring regions R, is 
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Table 6.2 Denominators D of the Kinetic Equation (6.7) Corresponding to the 
Optimal Solutions L, for j = 1, . . . ,9 

Solution fits. P) 

crossed. From Table 6.1 and Figure 6.1, the following properties of the optimal 
solhtions may be derived: 

(a) At very low substrate and product concentrations, optimal enzymic activity is 
achieved by improving the binding of S and P to the enzyme (solution Lg: high 
(S, P)-afiniry solution). 

(b) When the substrate is present at a high concentration, it is weakly bound to the 
enzyme in the optimal state (solution L,: low S-a#nity solution). An analogous 
statement applies to the product (solution L,: low P-afinity solution). 

(c) k2 is always maximum, except for region R, where the reaction proceeds back- 
ward. 

(d) At variance with previous assumptions (e.g., Albery and Knowles, 1976a. 1976b) 
optimal enzymic activity is not compulsorily achieved by maximal values of the 
second-order rate constants. As for k,  this is the case for L, and as  for k - ,  for 
L3. L4, L6. J-a, and L,o. 

(e) Independent of the equilibrium constant q of the overall reaction, the intern1 
equilibrium constant qin, = kJk-,  equals unity for solutions Ll, k, L,, and Lg. 
q,, G 1 is valid for all near-equilibrium enzymes. 

The optimal values for the elementary rate constants are not only functions of 
S and P but they also depend on the equilibrium constant q. For q -t 1, solutions 
L,, k, and L, become identical, whereas the regions &, R5, &, and Rlo disappear. 

Figure 6.1 Subdivision of the (S, P)-plane into subregions Ri corresponding to the 10 solutions 
for optimal rate constanls of the reversible three-step kinetic mechanism depicted in Scheme 2 for q 
= 2. The vertices PI, Pz, and P, of the central region R,,, have the coordinates (llqZ, llq), (29 - 1, 
1). and (1. q), respectively. Along the dotted line, qS = P holds. 

Therefore, the case q = 1 is fully characterized by solution L, (kTi  = 1) and the 
solutions L,, L,, and Lg (cf. Figure 6.2). Region Rlo, which is determined by 
conditions (6.22a)-(6.22~), increases strongly in size with increasing values of 
the equilibrium constant q. One may conclude that for irreversible reactions (q -t 
m) solution Llo becomes valid for all positive values of S and P. According to the 
central location of region Rlo within the space of reactant concentrations, the 
corresponding solution Ll0 has been called the central solution (Wilhelm et al., 
1994). 

For the reactant concentrations S = P = 1 which always belong to region 
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state each of the three catalytic steps contributes equally to the equilibrium con- 
stant q. 

It is important tqnote that the existence of 10 different solutions Lj is a direct 
consequence of the fact that upper limits are not only introduced for the second- 
order rate constants but also for the first-order rate constants [cf. Eq. (6.10)]. This 
may be seen as follows. In the limit k,  = k,,, + m, for finite values of the second- 
order rate constant kb one gets infinitesimally small values of the normalized 
reactant concentrations (cf. Eq. (6.1 lb)). Accordingly, only one solution, namely 
L,, applies as S + P < 1/29 [cf. Eq. (6.21a)l. In terms of non-normdized quan- 
tities, solution L, reads 

From these equations, it follows that for fixed non-normalized reactant concen- 
trations the limit k, = k,,, + m will lead to infinite values of the first-order rate 
constants k - , ,  k, and k2, k-,, whereas the second-order rate constants kl and k - ,  
remain finite. Taking into account the rate equation (6.7) for solution L, [Eq. 
(6.18)], one obtains, with D9 from Table 6.2, in the limit k, = k, + m, 

Figure 6.2 Subdivision of the (S, P)-plane into subregions Ri corresponding to the optimal 
solutions for the rate constants of the reversible three-step kinetic mechanism depicted in Scheme 2 
for q = 1. Subregions I&. RS, and % degenerate to the broken lines, where P = 1, S = 1, and 1 + 
S = 2P, respectively. R,, degenerates to the point S = P = 1. The optimal solutions for regions R,, 
R,, and R, (combined to region b) a e  identical. 

R,,, the fourth-order equation (6.20a) can be solved analytically. One obtains the 
two real solutions k -  = l/q and k - ,  = - 1, and the two complex solutions 
t-, = (- 112 2 i &),&As only the positive real solution is relevant, we 
conclude, with the help of Eqs. (6.16b) and (6.20b). 

This solution shows some correspondence to that proposed by Stackhouse et al. 
(1985). In their descending staircase model, it was suggested that in the optimal 

This expression is identical with the formula proposed by Albery and Knowles 
(1976a, 1976b) and Pettersson (1989) for the rate equation of a perfect catalyst. 
However, in addition to solution L,, we have derived another nine solutions which 
are to be considered as not less "perfect" if the normalized reactant concentrations 
S and P are not small compared to 1/29. 

The procedure for calculating kinetic parameters in states of maximal activity 
outlined above may be generalized to enzymic reactions involving arbitrary num- 
bers of elementary steps (Wilhelm et al., 1994). For example, using the rate 
equation (2.28) one obtains for an ordered uni-uni reaction with n elementary 
steps the following high-affinity solution 
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(k, = k-, = kki = 1, i = 2, . . . , n - 1) which is a generalization of solution 
L9 obtained for n = 3. The general solution for S = P = 1 reads 

k i =  1, i =  1 , . . . ,  n. (6.27) 

Other generalizations concern enzymic reactions with more than one substrate or 
product (Wiielrn et al., 1994). For example, for a bi-uni reaction where the 
enzyme catalyzes the interconversion of two substrates S, and S2 into one product 
P by an ordered four-step mechanism, optimization of the elementary rate con- 
stants results, according to Theorem 6A, in 31 different solutions. Most remark- 
ably, one obtains also in this case a central solution characterized by maximal 
values for all forward rate constants and submaximal values for all backward rate 
constants. In the space of the reactant concentrations S,, S2, and P, this central 
solution for bi-uni reactions applies in a three-dimensional central region which 
has the topology of a tetrahedron and which increases in size with increasing 
values of the thermodynamic equilibrium constant q (cf. the property of the central 
region Rlo for the three-step mechanism of uni-uni reactions). 

Example. Let us consider the hydrolysis of pyrophosphate to inorganic phos- 
phate, that is, the reaction PPi + Pi + Pi which is catalyzed by the enzyme 
inorganic pyrophosphatase (EC 3.6.1.1). The detailed catalytic mechanism with 
four reaction steps and the participation of magnesium is depicted in Figure 6.3. 

The following first-order and second-order rate constants of the elementary 
steps have been reported (Baykov et al., 1990, 1993): 

Figure 6.3 Reaction scheme of inorganic pyrophosphatase. 

Optimization of the Catalytic Properties of Single E w m e s  307 

C. 

The equilibrium constant corresponding to these data reads 

Let us assume, for simplicity's sake, that the highest value in the group of the 
first-order rate constants (b,&,k4,k-,,k-2) and the highest value in the group of 
the second-order rate constants (kl,k-3,k-4) approximately represent in each case 
the upper bound for the rate constants (i.e., k~~X,, ,oI  = k4 and k E o l  = k,). 
Normalization of the data given in Eqs. (6.28a) and (6.28b) leads to 

with a normalized equilibrium constant q = 1.28 X lo7. For such a high equi- 
librium constant, the model predicts optimal elementary rate constants which 
belong to the central solution for the four-step mechanism where all forward rate 
constants are maximal, and all backward rate constants assume submaximal val- 
ues. Because in Eqs. (6.30a) and (6.30b) all normalized forward rate constants 
are close to unity and all normalized backward rate constants are much smaller, 
the data given in Eqs. (6.30a) and (6.30b) correspond rather well to the theoretical 
expectations. Furthermore, the internal rate constants of the catalytic step amounts 
to qint = b/ke2 = 4.94 which is much smaller than the normalized thermody- 
namic equilibrium constant q (q*,/q = 3.86 X This supports the hypoth- 
esis that the internal equilibrium constants of enzyme catalyzed reactions are close 
to unity [see above and the works of Burbaum et al. (1989), Pettersson (1991), 
and Wilhelm et al. (1994)l. One may conclude, therefore, that the kinetic design 
of pyrophosphatase has been selected with respect to flux maximization. 

6.1.3. Optimal Michaelis Constants 
The kinetic equation (6.7) may be rewritten in the form of the reversible Mi- 

chaelis-Menten equation given in Eq. (2.20). The relations (2.27~) and (2.27d) 
for the Michaelis constants remain valid using normalized quantities if these con- 
stants are scaled in the same way as the reactant concentrations [cf. Eq. (6.1 lb)]. 
Optimal values for these phenomenological parameters are obtained by introduc- 
ing kki  from Table 6.1 into expressions (2.27~) and (2.27d). For simplicity's sake 
we consider only the Michaelis constants for two special cases: 
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(a) Case S = P = 1: For these values of the normalized reactant concentrations, 
solution L,, applies and from expressions (2.27~) and (2.27d) one obtains with 
Eq. (6.23) 

and from that 

From these relations it follows that for solution L,, higher equilibrium constants 
imply lower Kms and higher K, values. Using S = P = 1, one derives with Eqs. 
(6.31a) and (6.31b) 

Relations (6.33a) and (6.33~) bear the interesting fact that the optimal Michaelis 
constant Kms of the substrate is of the same order of magnitude as the substrate 
concentration S, irrespective of the equilibrium constant q. This is not the case for 
the relation between K, and P, at least for the considered solution (L,,). 

(b) Case q = 1: As outlined above, this case is fully characterized by solutions I-.,, 
Lg and L, as well as L, = L, = b. Using the expressions listed in Table 6.1 
one gets with Eqs. (2.27~) and (2.27d) 

Equations (6.34)-(6.37) give a strong support of the hypothesis that higher re- 
actant concentrations imply higher Michaelis constants. Let us first consider so- 
lution Lg which for q = l applies for 2(S + P) < l .  In this concentration range, 
Kms and K, are monotonic increasing functions of the reactant concentrations. 
In particular, in the limiting case S,P -' 0 one obtains Kms,K, -' 0. On the other 
hand, solutions L, and L8 which are applicable for high substrate concentrations 
and high product concentrations, respectively, have high Kms and K, values [cf. 
Eqs. (6.35) and (6.36)]. For all solutions the following relations hold: 

The results given in Eqs. (6.3946.37) may be visualized in a space with the 
Michaelis constants as coordinates (Figure 6.4). 

The solutions Lj (i 5 6, j = 10) are represented by the point (Kms = 1, K, 
= I), whereas solutions L,, L8, and Lg are represented by lines. It is seen that 
solution Lg which is valid for low concentrations of S and P is characterized by 
low values of both Kms and K,. Solutions L, and L8 applicable for high con- 
centrations of S and P are characterized by high values of Kms and K,, respec- 
tively. 

6.2. OPTIMIZATION OF MULTIENZYME SYSTEMS 

6.2.1. Maximization of Steady-State Flux 
The maximization of catalytic efficiencies as studied for single enzymes re- 

mains relevant also in the context of enzymic networks. Here, the diiculty arises 
that the concentrations of the intermediates (i.e., the substrates and products of 
the participating enzymes) are not fixed but depend on the kinetic parameters, 
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(5.88)]. If each reaction is described by a three-step mechanism as depicted in 
Scheme 2 (Section 2.2.2), one obtains with Eqs. (2.27a)-(2.27d) 

where Ej denotes the concentration of the enzyme catalyzing reaction j. k,i j  are 
the rate constants of the elementary reactions of enzyme Ej. As is often done 
(Albery and Knowles, 1976a, 1976b), we introduce apparent second-order rate 
constants K~ and K - ~ ,  SO that Eqs. (6.39a) and (6.39b) can be written as 

To distinguish between the contributions of the enzyme concentration and the 
(intrinsic) second-order rate constants to the catalytic efficiency of the particular 
enzymes, we first consider a reference state where all enzyme concentrations are 
equal, Ej = E. For this state, the characteristic times read [cf. Eq. (4.1)] 

Figure 6.4 Michaelis constants Kms and Kd in optimal states of the three-step mechanism 
depicted in Scheme 2 for q = 1 according to Eqs. (6.34)-(6.37). The point K& = KmP = 1 char- 
acterizes the solutions L, to L, and L,,. 

which have changed during biological evolution. Moreover, due to the nonline- 
arity of most rate equations, the mathematical treatment is hampered by the fact 
that there are generally no explicit expressions for the parameter dependence of 
the performance function @. This holds true even for unbranched chains (Scheme 
11, Section 5.4.3.1), if they include saturable enzymes. The calculation of kinetic 
parameters in states of maximal steady-state activity (J = max) could be based 
on Eq. (5.82). With Sn+l  = P2 = const. one arrives at an implicit nonlinear 
equation, which cannot, in general, be solved for J [see comments on Eqs. (5.82) 
and (5.83)]. For simplicity's sake we here consider only the case of nonsaturated 
enzymes where J may be expressed analytically as a function of the first-order 
rate constants k+j  and k - ]  of the participating reactions [cf. Eqs. (5.85) and 

In other states, with the enzyme concentrations Ej,  the characteristic times are 

With the equilibrium constants 

it follows from Eqs. (6.40)-(6.43) that 

Equation (5.88) for the steady-state flux may be rewritten in terms of the 
relaxation times, with the help of Eq. (6.44), 
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In the following, we are interested in those enzyme concentrations maximizing 
the steady-state flux J under the constraint 

which expresses the fact that the total enzyme concentration for a metabolic path- 
way is limited by the capacity of the living cell to synthesize proteins (Waley, 
1964). Because expression (6.45) is a homogeneous function of first degree of 
the enzyme concentrations, their total must equal Em, in optimal states. Using the 
method of Lagrange multipliers, the spectrum of optimal enzyme concentrations 
is determined by the condition 

a 
aEj [ C:, )] aJ A  = 0. - J - A  E m - E l O 1  = - -  

aEj 

Introducing expression (6.45) into Eq. (6.47) yields 
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In Figure 6.5 theZoptimal enzyme concentrations are depicted as functions of 
the positions j and the equilibrium constant q according to formula (6.50). It is 
clearly seen that for q > 1 the enzyme concentrations decrease monotonically 
toward the end of the chain. This decrease is the stronger the higher the equilib- 
rium constant is. In the limiting case q = 1, Eq. (6.50) describes a uniform 
distribution Ej = Eto,lr. 

Inserting the distribution (6.48) into Eq. (6.45), one arrives at an expression 
for the optimal flux which reads (also in the general case that the equilibrium 
constants are not equal to each other) 

From this equation, in the limits qj -t m and qj -t 1 one derives 

For the special case of three enzymes, a similar equation had been derived by 
Waley (1964). Equation (6.48) leads to the conclusion that the concentrations of 
slow enzymes (i.e., of enzymes with long characteristic times Q in the reference 
state) are in states of maximal steady-state activity generally higher than those of 
fast enzymes. In other words, poor catalysts should be present in high concentra- 
tions. However, the optimal distribution of enzyme concentrations also depends 
on the equilibrium constants. In the special case that all the enzymes have the 
same catalytic efficiency (i.e., .Sj = f), Eq. (6.48) predicts for all qj > 1 a mon- 
otonic decrease of the enzyme concentrations from the beginning toward the end 
of the chain. If all the enzymes have the same intrinsic properties (q = f, qj = 
q), one derives from Eq. (6.48) the relation 

Introducing this relation into the condition of fixed total enzyme concentration, 
with the formula of geometric progressions one obtains 

Figure 6.5 Optimal enzyme concentrations qlE, ,  for an unbranched reaction chain with r = 
n + 1 = 10 in states of maximal steady-state flux as functions of the equilibrium constants for the 
case qi = q, rj = 3, according to Eq. (6.50) 
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under the constraint of fixed total enzyme concentration (Em, = const.) is math- 
ematically equivalent to the problem of minimizing the total enzyme concentra- 
tion at fixed steadyrstate flux (Heinrich et aL, 1987; Brown, 1991). In the latter 
case, the method of Lagrange multipliers leads to the variational equation 

In Figure 6.6, the optimal flux is represented as a function of the equilibrium 
constant and the chain length. From Eq. (6.51) for the special case qj = q and 
Eq. (6.52), one may conclude that for 1 5 q < m the optimal flux decreases with 
increasing chain length (cf. Figure 6.6). This decrease is the stronger the lower 
the equilibrium constant is, as long as q > I. 

In the present case, where the reactions are described by linear rate equations, 
the optimal distribution of enzyme concentrations is independent of concentra- 
tions P, and P2 of the initial substrate and the end product, respectively, of the 
pathway. This is no longer the case if saturation kinetics of the individual enzymes 
is taken into account (cf. Heinrich et al., 1987; Heinrich and Hoffmann, 1991). 

It is worth mentioning that optimization of the steady-state flux (J = max) 

0 . 6  

0.4 

Jnom 
0 .  

0 .  

which may be transformed into Eq. (6.47) by choosing 1' = 111. Therefore, the 
solution of Eq. (6.53) leads to the enzyme distribution of optimal enzyme con- 
centrations as given in Eq. (6.48). 

Now we show that there is a close relation between flux maximization and the 
extremal properties of other quantities. 

Maximization of total entropy production: For the unbranched chain, the en- 
tropy production reads 

where Aj denotes the affinity of reaction j [cf. Eq. (2.16)]. As P, and P2 as well 
as all % are considered to be constant, the principles J = max and o = max are, 
for unbranched chains, equivalent to each other. The principle of maximal entropy 
production (i.e., the establishment of system states far from thermodynamic equi- 
librium) was suggested to play an important role in the evolution of biochemical 
systems (Nicolis and Prigogine, 1977, pp. 4 4 2 4 5 ) .  

Maximization of growth rate: The cellular growth rate can be expressed as 

where V denotes the cellular volume (Kacser and Beeby, 1984). To apply the 
principle G = max, one may again consider the unbranched chain depicted in 
Scheme 11 (Section 5.4.3.1) by taking into account that enzymes are not only the 
catalysts of metabolic systems but also some of their net products. In a simple 
model, one may assume a proportionality between the rate of enzyme production 
and the steady-state flux J, that is, dE,,ldt J. Neglecting the synthesis of struc- 
tural proteins and using the assumption that the cell volume is proportional to the 
protein content of the cell, the growth rate may be expressed as 

Figure 6.6 Optimal steady-state Aux of an unbranched reaction chain as a function of the chain 
length and the equilibrium constant q, = q of the participating reactions for the case f, = f ,  P2 = 

0 according to Eq. (6.51). The figure shows the normalized optimal flux J,,, = J . E ~ I E ~ ~ P , .  
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The effect of changes in the profile of enzyme concentrations along the pathway 
on the growth rate is described by the variational equation 

The optimal distribution of the enzyme concentrations is determined by aGIaEj 
= 0, that is, by 

As this condition is equivalent to Eq. (6.47), the enzyme distribution maximizing 
the exponential growth rate and that maximizing the steady-state flux under the 
constraint of fixed total enzyme concentration are the same (see also Reich, 1983, 
1985). 

The problem of identifying optimal enzyme concentrations bears some rela- 
tionship to metabolic control analysis which may be seen as follows. From Eq. 
(6.47) one derives 

the total solute concentration should be low enough in order to allow sufficiently 
fast diffusion. For all cells having no cell wall, an additional constraint for con- 
centrations results frpm the fact that these cells must be in osmotic equilibrium 
with the extracellular medium. This constraint could not be fulfilled if the nu- 
merous intracellular substances had too large concentrations. The fact that enzyme 
concentrations are usually very low in comparison with their substrates might also 
be rationalized by solvation and osmotic pressure arguments, although the met- 
abolic effort needed for enzyme synthesis is probably the limiting factor (cf. 
Brown, 1991). 

Let us again consider the unbranched pathway depicted in Scheme 11 (Section 
5.4.3.1). It is easy to see that these osmotic conditions are not always fulfilled for 
a distribution of enzyme concentrations as given in Eq. (6.48). If all equilibrium 
constants are greater than unity and all 5 are of the same order of magnitude, the 
decrease of the optimal enzyme concentrations toward the end of the chain will 
result in a strong accumulation of intermediate concentrations. In particular, one 
derives from Eq. (6.48) that in the limit qj + a one obtains E, = Em, and Ej + 

0 for j r 2, which implies infinite steady-state concentrations Si. Besides an upper 
limit for the total enzyme concentration, one may, therefore, take into account an 
upper limit for the total concentration of intermediates, that is, 

which implies 

due to the summation theorem of flux control coefficients [cf. Eq. (5.43)]. This 
relation means that in states of maximal steady-state activity the normalized con- 
trol coefficients and the optimal enzyme concentrations in unbranched path- 
ways show the same distribution (see also Heinrich and Holzhiitter, 1985; Brown, 
1991). 

6.2.2. Influence of Osmotic Constraints and Minimization 
of Intermediate Concentrations 

In the context of evolutionary optimization of metabolic pathways considera- 
tions about the limited solvent capacity and the osmotic balance of living cells 
may play an important role (Atkinson, 1969; Savageau, 1976; Heinrich et aL, 
1987; S. Schuster and Heinrich, 1991). Because most molecules in the living cell 
contain polar groups or are electrically charged, they fix cell water by hydration. 
In view of the huge number of different substances in the cell, it was argued that 

Q represents the total osmolarity of the pathway under the assumption that all 
osmotic coefficients are equal to unity. Using this condition in the form of an 
equality constraint the variational equation for the determination of optimal en- 
zyme concentrations reads 

with the Lagrange multipliers A, and &. Although solutions of this equation can 
generally be found only numerically (Heinrich et al., 1987), treatment of the limit 
qj + a is rather easy. In this case, Eq. (6.44) implies 

Therefore, the steady-state flux and the sum of the steady-state concentrations 
may be expressed as 
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respectively. The optimal enzyme concentrations are determined by the following 
variational equation: 

which contains only the Lagrange multiplier for the osmotic constraint because 
the condition of fixed total enzyme concentration may be taken into account by 
the relation 

From these equations, one derives for j 2 2 

This equation implies that 

Ej = a& for j 2 2. (6.68) 

Once again one may conclude that poor catalysts with long characteristic times 
Z should be present in high concentrations [cf. Eq. (6.48)]. After determining the 
common factor a as well as E, by the two constraints, one arrives eventually at 
the following optimal distribution for the enzyme concentrations: 

with 

Equations (6.69a) and (6.69b) may be considerably simplified when all the en- 
zymes have the same intrinsic properties (3 = z). Then, one obtains 

t 

Equations (6.69) and (6.70) indicate that osmotic constraints may have a strong 
influence on the optimal distribution of enzyme concentrations. In the case qj + 

m, for example, vanishing enzyme concentrations are excluded for finite values 
of SZO. Nevertheless, the former result for the case without osmotic constraints 
(El + E,,, E, + 0, j 2 2) may be derived from Eq. (6.69) in the limit Q0 + a. 

Furthermore, in the present case the optimal enzyme concentrations depend on 
the concentration PI of the pathway substrate. From Eqs. (6.69a) and (6.69b), it 
is easy to see that for 

I 

the concentrations 4 with j r 2 become even higher than the concentration of I 
the first enzyme. 1 

The solution of the variational equation (6.62) for the optimal distribution of 
enzyme concentration is identical to that obtained from ~ 

which results from the extremum principle SZ = min under the constraints E,, 
= const. and J = P = const. 

Let us now consider the principle SZ = min in a more qualitative way and 
without the constraint Em, = const. For a given metabolic pathway it is relatively 

I 
easy to distinguish between biologically important substances which must be 

11 
present in certain amounts (e.g., storage metabolites and structural components) 1 1  

and metabolites which serve only as reaction intermediates. Evolutionary pressure 
is likely to diminish only the levels of these intermediates (see Srivastava and 

;I 
i 1 

Bernhard, 1986; Ovhdi, 1991 ; Mendes et al., 19%). This leads to the extremum 
principle I 

I/ 

SZ = giSi = min, 
i = l  
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where, in an extension of Eq. (6.61), arbitrary osmotic coefficients gi are consid- 
ered, which are positive functions of the metabolite concentrations. The following 
assumptions are made: 

> 0, 
as, 

Condition (6.74a) is obviously satisfied for ideal solutions, where gi = 1. It is 
generally also fulfilled for dilute, nonideal solutions (cf. Moelwyn-Hughes, 1964). 
The reaction system should be delimited in such a way that all "biologically 
important" substances are external metabolites, so that they do not enter the sum 
in relation (6.73). 

We again restrict the analysis to steady states, so that J = P = const. is 
included as a side condition to the minimization problem (6.73). Further plausible 
side conditions are to fix the concentrations of external metabolites and the equi- 
librium constants of reactions. The rate laws are supposed to be comprised in the 
generalized mass-action kinetics (2.15). 

Let us again consider unbranched reaction chains as represented in Scheme 
11 (Section 5.4.3.1). Without loss of generality, we can assume that the external 
pools and equilibrium constants have such values that the steady-state flux is 
positive. With the help of the generalized rate equation (2.15), the steady-state 
flux can be written as 

(So = Pi and S,+, = PJ. In order that this flux is positive, the following in- 
equalities have to be fulfilled: 

This implies the condition 

The case that the concentration values lie on the boundary of the admissible region 
[i.e., that equality in one of the relations (6.76b) applies], occurs if, and only if, 
a reaction j is in quasi-equilibrium, that is, if IJIFjk+jl << 1. Considering inequal- 
ities (6.76a) consecutively for j = r backward up to j = 1, one derives that all 
Si are simultaneously minimized if all reactions but the first are very fast. In this 
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state, the sum given in relation (6.73) is minimized also because this quantity is 
a monotonic increasing function of all concentrations Si, due to relation (6.74a). 
Therefore, the solution of the optimization problem reads 

where only the kinetic parameters of the first enzyme depend on the concentra- 
tions of the external parameters. This result shows some correspondence to the 
result expressed in relation (6.69) which states that for very low SZO, the concen- 
tration El of the first enzyme becomes lower than the concentrations of all other 
enzymes Ej 0 2 2). Furthermore, it is in agreement with the frequently observed 
feature that the first step of a pathway is a nonequilibrium reaction (Savageau, 
1976; Easterby, 198 1 ; Dibrov et al., 1982). 

Also for branched pathways of monomolecular reactions, the solutions to the 
minimization problem under study have the property generally not to depend on 
the details of the functions gi(Si), provided that condition (6.74) is satisfied. They 
depend, however, on the concentrations of external metabolites. The solutions are 
characterized by the fact that all reactions attain quasi-equilibrium except for 
reactions behind initial substrates of the system and one reaction behind each 
ramification point (see H e i ~ c h  et al., 1991). 

The extremum principle (6.73) can be rephrased as a multicriteria minimization 
problem, 

which is a vector-optimization problem because the S, can be gathered in a vector, 
S. For the concepts and methods of multicriteria optimization, the reader is re- 
ferred to the works of Zeleny (1974) and Sawaragi et al. (1985). For the present 
case a nondominated solution (also called a compromise solution), S*, to the I 
problem (6.78) has the property that there is no other concentration vector for 

I which no concentration is higher and at least one concentration is smaller then in 
S*. It can be shown that the set of all nondominated solutions to the multicriteria 
minimization problem (6.78) coincides with the set of solutions to the minimi- 
zation problem (6.73) for all positive functions g,(S,) fulfilling condition (6.74a) 
(S. Schuster and H e i ~ c h ,  1991). The most important conclusion one can draw 
from this optimization study is which reactions are at quasi-equilibrium. Because 
for reasons of monotonicity the solution is always situated on the boundary of 
the admissible region for concentrations, where some reactions are infinitely fast, 
the optimal state is always characterized by a distinct decomposition of the net- 
work into near-equilibrium and nonequilibriurn reactions. 

The outlined treatment was also applied to systems of more complex stoichi- 
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ometry, including a model of glycolysis, the pentose monophosphate shunt, and 
the glutathione system in human erythrocytes (S. Schuster et al., 1991). The 
solution set is then composed of four faces of the concentration polyhedron. AU 
of these faces have in common that the enzymes hexokinase and 2,3-bisphos- 
phoglycerate phosphatase are slow, which is in accordance with reality. 

6.2.3. Minimization of Transient Times 
A necessary condition for the occurrence of steady states is their stability. 

However, this property may not suffice for the maintenance of such states under 
the influence of permanent larger fluctuations. In addition to stability, rapid re- 
laxation toward the original steady state after fluctuations or to new steady states 
after changes in the environmental conditions is thus of importance for the bio- 
logical function of a metabolic pathway (Rosen, 1967; Majewski and Domach, 
1985). Accordingly, the minimization of transient times can be postulated as an 
optimality criterion relevant in biological evolution. 

Using definition (5.278) for transient times, Cleland (1979) studied the mini- 
mization principle 

s = min (6.79) 

subject to the condition that the total mass concentration, M, of the pathway 
enzymes is bounded above, 

M = 2 p~~ 5 hP = const. (6.80) 
i 

with pJ denoting the molar mass of the jth enzyme. The side condition (6.80) 
proposed also by Kuchel(1985) may be more realistic than relation (6.46) because 
it takes into account that the metabolic effort necessary for the synthesis of a 
protein is more closely related to its mass concentration than to its molar con- 
centration. It would be straightforward to replace, in the maximization of flux 
(Section 6.2.1), side condition (6.46) by relation (6.80). 

We now consider the optimization principle (6.79) for an unbranched reaction 
chain and assume that the reactions are irreversible and that the enzymes operate 
in the linear region. Furthermore, the turnover numbers kcat are considered to be 
all equal, so that V,+/y+ = E,IEJ. Due to J = S,-Iy+/q, Eq. (5.278) then 
simplifies to 
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T 

Note that the sum in Eq. (6.81) runs from 2 to r = n + 1, because the first 
enzyme does not affect the total transient time when the concentration of the 
pathway substrate is constant. Accordingly, the first enzyme may be omitted in 
the cost function (6.80). Equation (6.81) shows that the transient time is a mon- 
otonic decreasing function of all enzyme concentrations. Therefore, in the side 
condition (6.80), the equality sign applies for optimal states. The optimal param- 
eter distribution can be found by the equation 

where 1 denotes a Lagrangian multiplier. This gives 

Taking into account the side condition (6.80), one obtains 

This result shows that enzymes with hi h molar masses should have small con- 
centrations, with the relationship Ej = h. Moreover, poorly binding enzymes 
must be present in high amounts to achieve a short transient time of the pathway. 
Equation (6.84) was first derived by Cleland (1979), who dealt with the question 
of under what conditions coupled enzyme assays attain the steady state very 
rapidly and only require small amounts of enzymes. 

The optimization principle (6.79) subject to the constraint (6.80) is equivalent 
to the principle of minimizing the total mass concentration of the enzymes, M, 
with the side condition z = z0 = const. (Kuchel, 1985). The solution of that 
problem again leads to Eq. (6.83), while instead of Eq. (6.84), the following 
formula is obtained: 

In the minimization of transient times, it is also sensible to compare systems with 
the same steady-state flux. This leads to the side condition J = const. It pertains 
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to situations where the flux is determined by the biological function the reaction 
chain fulfills. The minimization problem (6.79) can then even be solved in the 
case that al l  reactions but the first are reversible. Owing to the equation .r = 52/ 
J m. (5.278)], the extremum principle (6.79) is then equivalent to the minimi- 
zation of intermediate concentrations. Conversely, with the side condition 8 = 
const., it gives the same solutions as the maximization of flux under that side 
condition (cf. Section 6.2.2). 

States of minimal transient times for unbranched reaction chains with revers- 
ible reactions have also been calculated on the basis of definition (5.279) instead 
of definition (5.278) (S. Schuster and Heinrich, 1987). Applying Eqs. (5.283a) 
and (5.283b), one derives, after some algebra, for the transient time of the last 
intermediate, S,, in unbranched chains after perturbation of the concentration S,, 

where it is assumed that the first reaction is irreversible. The quantityrf) may be 
regarded as the propagation time of a perturbation of the ath intermediate to the 
end of the chain. The minimization principle 

was investigated under the constraint of constant flux. As it was assumed that the 
first reaction were irreversible, the steady-state flux reads J = k,P,. One obtains 
the solution k, = P,IJ, ki -* for all i > a, and arbitrary rate constants for the 
reactions with 1 < j 5 a. If, in addition, the side condition 8 = const. is imposed, 
a similar solution obtains, where the rate constants for the reactions from 1 to a 
have to be chosen so as to satisfy the condition of fixed total osmolarity (see S. 
Schuster and Heinrich, 1987). 

As outlined in Section 4.1, an alternative approach to comprehend relaxation 
processes is on the basis of the eigenvalues of the Jacobian. When the system is 
stable, all eigenvalues have negative real pms, and the long-term behavior is 
determined by that eigenvalue the real p m  of which has the smallest absolute 
value. Denoting this eigenvalue by A*, we can consider [-Re@*)]-' as a char- 
acteristic time of the pathway. It is therefore sensible to study the extremum 
principle 

- Re(l*) = max. (6.88) 

For nonlinear systems, A* is a complicated function of the kinetic parameters, 
which cannot normally be given in closed form. Qualitative assertions about the 
solutions can nevertheless be made if only the side condition that all fluxes in the 

system are fixed is included, so that the steady-state condition is satisfied. Re@*) 
can then tend to minus infinity, namely in all situations where rank(N) reactions 
reach quasi-equilibrium, whereas the remaining r - rank(N) reactions have such 
parameters that the independent fluxes attain the prescribed values. In such situ- 
ations, any intermediate is connected by a chain of fast reactions with an external 
metabolite, so that fluctuations can be propagated very fast to the outside of the 
system (S. Schuster, 1989). For example, in unbranched reactions chains, all re- 
actions but one have to be at quasi-equilibrium in order to maximize -Re@*), 
so that r different solution arise. If, in addition, the side condition of fixed total 
osmolarity is included, optimal solutions can only be calculated numerically. One 
obtains optimal states where two adjacent reactions are slow and the others are 
very fast (S. Schuster and Heinrich, 1987). 

Summarizing the above results, we can state that minimization of transient 
times without side conditions limiting the enzyme concentrations generally gives 
rise to pronounced time hierarchy (i.e., to a distinct separation of slow and fast 
reactions). Some reactions remain slow to meet the constraint of fixed fluxes. 
Time hierarchy is actually a ubiquitous phenomenon in living cells (cf. Chapter 
4). Accordingly, the extremum principles studied above may be wellsuited to 
account for this phenomenon. 

6.3. OPTIMAL STOICHIOMETRIES 

In the previous sections of this chapter the optimization of kinetic parameters has 
been considered. It leads to maximal reaction rates or to minimal values of tran- 
sition times and of total osmolarity of metabolic systems. It may be argued that 
this kind of evolutionary optimization was nothing else than a fine-tuning which 
guaranteed the efficient interplay of enzymes within the pathways whose basic 
structure had evolved in a much earlier stage of evolution. The question arises of 
whether the special topology of enzymatic systems expressed by the molecular 
interactions may also be described as a result of an evolutionary optimization 
process. We are far from understanding in detail the origination of the different 
metabolic pathways observed in contemporary living cells. However, biochemists 
have rather clear ideas concerning the temporal order of the emergence of the 
main biochemical pathways (cf. Wald, 1964; Hochachka and Somero, 1973; 
Holms, 1986). The main assumption is that there was a close mutual interaction 
between the evolution of the metabolic machinery and the composition of the 
earth's atmosphere. It is generally believed that life started when molecular ox- 
ygen was still absent in the atmosphere. Accordingly, anaemic fermentation (i.e., 
glycolysis) was the first source of metabolic energy and, in a sense, fermentation 
has played, until the present stage of evolution, the central role in metabolism. 
Besides the production of two ATP molecules per one molecule of glucose de- 



326 Application of Optimization Methodr and the Interrelation with Evolution 

graded, alcoholic fermentation yields two molecules of carbon dioxide whose 
concentration probably had also been very low in the early atmosphere. The 
second big achievement in the evolution of metabolism may have been the estab- 
lishment of the hexosemonophosphate pathway which is also able to take place 
under anaerobic conditions. It produces NADPH which may be used for the re- 
ductive synthesis of organic compounds from glucose, under participation of ATP 
derived from glycolysis, and it is also accompanied by the release of carbon 
dioxide. After this stage, photosynthesis became possible, where the energy of 
sunlight is used to produce glucose from water and carbon dioxide. The basic 
steps of this process resemble those of the hexosemonophosphate pathway run- 
ning in reverse order. Most importantly, photosynthesis involves the release of 
molecular oxygen into the atmosphere. This paved the way for the development 
of cellular respiration, that is, the complete oxidation of glucose by molecular 
oxygen to carbon dioxide and water via the citric acid cycle. In combination with 
oxidative phosphorylation, 38 molecules of ATP may be synthesized from ADP 
and inorganic phosphate by the degradation of one molecule of glucose. Respi- 
ration is thus much more efficient than anaerobic fermentation. 

On a more detailed level, the problem of the development of specific molecular 
interactions, as expressed by the stoichiometry of present-day metabolism, was 
probably closely related to that of the optimization of kinetic properties of en- 
zymes. It was proposed that the evolution of metabolic pathways had involved 
the specialization of a smaller set of enzymes with less developed regulatory 
mechanisms and a much broader substrate specificity than the enzymes of present- 
day metabolism (Ycas, 1974; Jensen, 1976; Kacser and Beeby, 1984). Such di- 
versity may be regarded as necessary to make a metabolic system possible despite 
the limited gene content of primitive cells. Probably, the translation process itself 
evolved from a less accurate mechanism. 

The investigation of optimal stoichiometries is of importance not only for the 
understanding of biological evolution but also for optimization studies in bio- 
technology. For example, the computer-aided detection of elementary modes and 
the generation of alternative biosynthetic routes can be of significant value in the 
improvement of biotechnological procedures (cf. Mavrovouniotis et al., 1990). 
For theoretical concepts in evolutionary biotechnology, see Eigen and Gardiner 
(1984) and P. Schuster (1995). 

6.3.1. Optimal Properties of the Pentose 
Phosphate Pathway 

The relation between optimal kinetic and stoichiometric properties has been 
stressed in the pioneering work of Meltndez-Hevia and Isidoro (1985) (see also 
Melkndez-Hevia and Torres, 1988; Meltndez-Hevia et al., 1994). Analyzing the 
stoichiometric structure of the nonoxidative phase of the pentose phosphate path- 
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way, they came to the conclusion that the reduction of the number of reaction 
steps in the transformation of an initial substrate S into an end product P may be 
considered as ageneral principle of evolutionary optimization of metabolic path- 
ways. In fact, as has been shown in Section 6.2.1, the optimal flux through an 
unbranched chain of reactions will decrease with the increasing number of inter- 
mediate products if the total amount of available enzyme is limited [cf. Eq. (6.52)]. 
Concerning the pentose phosphate pathway, the question of whether Nature man- 
aged the conversion of six pentoses into five hexoses in a minimum number of 
reaction steps was raised. 

For the solution of this problem, a game of combinatorial optimization obeying 
the following r$es was proposed (Meltndez-Hevia and Isidoro, 1985): (a) The 
various sugars are only characterized by the numbers of their carbon atoms; @) 
at the beginning there are six sugars containing five carbons each; (c) each reaction 
step involves the transfer of two carbons [transketolase reaction (EC 2.2.1.1)] or 
three carbons [transaldolase (EC 2.2.1.2) or aldolase (EC 4.1.2.13) reactions] from 
one sugar to another; (d) any compound cannot contain less than three carbons; 
(e) the goal is to produce five sugars with six carbons each by a minimum number 
of steps. 

The optimal strategy for this game is shown in Table 6.3. Idenwing steps IA, 
lB, 3A, and 3B with the reactions of transketolase, steps 2A and 2B with the 
reactions of transaldolase, and step 4 with fructose-1,6-bisphosphate aldolase, it 
is seen that the solution given in Table 6.3 is exactly the same as the sequence of 
reactions taking place in the nonoxidative phase of this pathway (Figure 6.7) 
(Horecker et al., 1954; Wood and Katz, 1958). 

A similar optimization procedure has been applied to the nomeductive phase 
of the Calvin cycle (Melkndez-Hevia, 1990). Here the goal is the to convert 12 
sugars with 3 carbons into 6 of 5 carbons and 1 of 6 carbons. It has been shown 
that the simplest combinatorial solution of this problem is identical to the actual 
reaction sequence in the Calvin cycle. 

6.3.2. Optimal Location of ATP-Consuming and 
ATP-Producing Reactions in Glycolysis 

In Section 5.4.4, we have dealt with glycolysis by confining ourselves to its 
control properties. Now we try to gain some further insight into this pathway by 
consideration of evolutionary optimization principles. A remarkable feature of the 
stoichiometry of glycolysis is that it involves ATP-comuming reactions, despite 
the fact that its main biological function consists in the production of ATI! It is, 
furthermore, striking that the two ATP-consuming reactions, hexokinase (HK) 
and phosphofructokinase (PEK), are located in the upper part, whereas the two 
ATP-producing reactions, phosphoglycerate kinase (PGK) and pyruvate kinase 
(PK), belong to the lower part of this pathway (cf. Figure 3.1). Certainly, there 
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Table 6.3 Optimal Strategy of  the "Combinatorid Game" Proposed by Melhdez- 
Hevia and Isidoro (1985) for the Explanation of  the Stoichiornetry of  the Nonoxidative 
Phase of  the ~ e n t o s e  Phosphate pathway 

Sugar Molecules - 
Step 1 2 3 4 5 6 Step 

5 5 5 5 5 5 
'".. /" 

1A TKl ,,.. .. 
3 7 5 

. ,', 

2 A  T A  
,,/ ... 

6 4 5 
. I 

3 A  TK2 
,, .. 

6 6 3 

,/' 
, . 

6 6 3 3 6 6 
... , ,/' 

4 Ald 4 
\. .. 

6 6 0 6 6 6 

are various constraints concerning the chemical possibilities of converting glucose 
into lactate, which are in favor of this special stoichiometric design. Beyond, it 
seems worthwhile to consider also the possible kinetic advantages of such a dis- 
tribution of ATP-consuming and ATP-producing steps. Accordingly, we deal with 
the kinetic effect of changes in the number and location of ATP-consuming and 
ATP-producing reactions on the energy yield of glycolysis. 

To allow general conclusions we do not incorporate too many details of pres- 

Figure 6.7 Reaction scheme of the nonoxidative part of the pentose phosphate pathway. ~ b b r e -  
viations: TA. mansaldolase; TK,, msketolase 1; m, msketolase 2; Ald, aldolase; Ery4P. eryth- 
rose-4-phosphate; F6P. fructosedphosphate; FP,, fructose-1.6-bisphosphate; GAP, glyceraldehyde- 
3-phosphate; R5P, ribose-5-phosphate; Sed7P, seduhephdose-7-phosphate; Xyl5P, xylulose- 
5-phosphate. 

ent-day glycolysis. We start with the analysis of an unbranched pathway and 
consider, thereafter, the effect of branching as observed in glycolysis at the al- 
dolase reaction. Further chemical constraints which may have been important 
during development of the structural design of glycolysis are neglected. 
Our analysis is based on Eq. (5.88) which determines the steady-state flux J 

I 

through an unbranched chain of r reactions as depicted in Scheme 11 (Section 
5.4.3.1). This formula may be applied also for chains with bimolecular reactions 
involving cofactors, if they are considered as external reactants. In this case, one 
has to replace the kinetic constants k, and k- ,  by apparent first-order rate constants 
ki and f;- ,  which are obtained as products of the corresponding second-order rate 
constants ici and K - ,  and the concentrations of those external reactants partici- 
pating in the corresponding reaction steps. Throughout this section, we will con- 
sider the concentration of free inorganic phosphate to be constant and incorporate 
it into the rate constants. 

We denote the ATP-producing sites as P-sites and the ATP-consuming sites as 
C-sites, cf. Figure 6.8. Both types of reactions are called coupling sites. Reactions 
which are involved neither in ATP production nor in ATP consumption are de- 
noted as 0-sites. The coupling sites are described by the following rate equations 
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Am ADP 

s b l  u+ s i - P  

Am ADP 

s b l  u + s i - P  

Figure 6.8 Scheme representing the possible replacement of 0-sites (left) by C-sites or P-sites 
(right) according to the possibilities that (i) the composition of substrates and products remains un- 
changed, whereby a phosphate takes part as a reactant (case i.a) or product (case i,b) in the 0-site; 
&a) introduction of a C-site implies addition of a phosphate group to the reaction product; and (ii,b) 
introduction of a P-site implies removal of a phosphate group from the product. 
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Denoting by a and b the number of C-sites and P-sites, respectively, the ATP- 
production rate is related to the glycolytic flux in the following way: 

To idenm the optimal structural design according to the principle JAp = max, 
the kinetic properties of chains with different numbers and different locations of 
coupling sites are compared. Clearly, the first step cannot produce ATP and the 
final step cannot be a C-site, due to the composition of glucose and lactate. For 
simplicity's sake, no further restrictions concerning the allowed number and dis- 
tribution of coupling sites are made, except for a + b 5 r. 

Concerning the replacement of one type of reaction site by another type, two 
situations can be distinguished. (i) When the composition of all intermediates is 
considered to be fixed, an 0-site can only be replaced by a C-site (case i,a) if it 
is linked with phosphorylation anyway, and by a P-site (case i,b) if it is a de- 
phosphorylation step. (ii) A second possibility is to allow changes in the com- 
position of the intermediates, which makes possible to compare alternative paths 
of a given overall transformation. This means that introduction of a C-site (case 
ii,a) or a P-site (case ii,b) brings about that the substrate or the product of the 
reaction differs from that at the corresponding 0-site by one phosphate group 
(see Figure 6.8). For example, the glyceraldehyde-phosphate dehydrogenase r e  
action, in which a phosphate takes part as a reactant, is an 0-site according to 
case (i,a). The 2.3-bisphosphoglycerate phosphatase is an 0-site according to case 
(i,b). The phosphoglucoisomerase and triose-phosphate isomerase reactions are 
examples of 0-sites according to case (ii,b). 

Coupling of the ith reaction to ATP consumption or ATP production will 
change the thermodynamic properties. For the equilibrium constant of the un- 
coupled reaction, q,, we have qi = kilk+ The equilibrium constant of the coupled 
reaction reads q! = K ~ / K - ?  When possibility (i) mentioned above is considered 
for the replacement of 0-sites, qj and qi are related to each other by 

where k = 4.4. denotes the equilibrium constants for the interconversion 
of ADP into ATP, which is actually an apparent equilibrium constant because the 
concentration of inorganic phosphate is considered constant. A relation similar to 
(6.91) also applies to possibility (ii), with the transformation factor, k, now de- 
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pending not only on the free-energy differences of ADP and ATP but also on the 
free-energy differences between the phosphorylated and unphosphorylated sub- 
strate or product. Because part of the free-energy of ATP goes into the phospho- 
rylated sugar, R will be closer to unity than in case (i). For example, the standard 
free-energy difference, A@, between glucose-6-phosphate and glucose is 14 W 
mole, and A@ between ADP and ATP is about -30 Wmole [depending on 
various factors such as pH and the magnesium concentration, cf. Gnaiger and 
Wyss (1994)l. 

By necessity, changes in the equilibrium constants as given in Eq. (6.91) are 
brought about by changes in the forward and backward rate constants. We use 
the following relations between the first-order rate constants of the uncoupled 
reactions and the apparent first-order rate constants of the coupled reactions, 

where for C-sites, ISi = K,ATP, IF-,ADP, and for P-sites, Li = K~ADP,  = 

K,,ATP. In these equations we neglect the possible dependencies of the factors 
a,, and PI,, on the special properties of reaction i. 

The combination of Eqs. (6.91) and (6.92) leads to 

. ADP 
a$, = a& = K = K- 

ATP 

Physiological values of the concentration ratio ADPIATP are in the range 0.1-0.3 
in various cells and organelles. Therefore, it follows from Eq. (6.93) that not only 
R but also K is much smaller than unity. 

We use the plausible assumption that coupling of a reaction to a highly exer- 
gonic reaction increases reaction rate, whereas coupling to an endergonic reaction 
slows down the reaction. Accordingly, 

Thermodynamically, a chain with a C-sites and b P-sites may be characterized 
by the overall affinity 
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Q =  I I q i .  (6.95b) 
i = l  

Z 

which depends on the number but not on the location of C-, 0-,  and P-sites in 
the chain. Because K < 1, the overall affinity decreases as the excess number, d 
= b - a,  of ATP-producing sites increases. The glycolytic flux is positive as 
long as the overall affinity is positive, which is fulfilled for 

The maximal excess number d,, of ATP-producing sites may be expressed by 
standard free-energy changes. If P1 = P2, one obtains the maximal excess number 
as the ratio of the standard free-energy change of the uncoupled interconversion 
of glucose into two molecules of lactate and the standard free-energy change of 
ATP hydrolysis, 

With AG;,,, = - 197 Wmole and AG&. = - 30.5 kJlmole (Lehninger, 1982), 
one derives &, = 6.5. 

The main conclusions concerning the optimal kinetic properties of ATP-pro- 
ducing reaction chains may be derived from the following two theorems. 

Theorem 6B. (1) The replacement of an 0-site by a C-site (i.e., a + a + 1) at 
any reaction increases the glycolytic rate J.  (2) The replacement of an 0-site by 
a P-site (i.e., b + b + 1) decreases J. 

This theorem points to the kinetic effects of a change of the number of coupling 
sites. The kinetic effects of a variation of the location of coupling sites at fixed 
numbers a and b are described by 

Theorem 6C. J as well as JATP are increasedfirst by an exchange of a P-site at 
reaction i for an 0-site at reaction m with i < m and second by an exchange of 
a C-site at reaction j for an 0-site at reaction m with m < j, provided that the 
a f i i t y  A and the excess number d of ATP-producing sites are positive. 

We now prove these theorems under the simplification that a, = a, = a and 
Dl = P2 = P. The extension to the general case is straightforward. 

Proof of Theorem 6B. Let us consider the replacement of an 0-site by a C-site 
at reaction i (Part 1 of Theorem 6B). According to Eqs. (5.88) and (6.91)-(6.93), 
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the flux J(Oi) with an 0-site at reaction i and the flux J(Ci) with a C-site at reaction 
i read, respectively, 

r 

where Q,, = qm. Strictly speaking, Eq. (6.98) applies to the situation that all 
m=j 

reactions are 0-sites. They can, however, also be applied to the case a,b > 0 
when all earlier replacements have already been taken into account by including 
the values K, a, and /3 in the values of (apparent) kinetic and equilibrium constants. 
From Eqs. (6.98) and (6.99) it follows directly that J(Ci) > J(Oi) if and only if 

Condition (6.100) holds true under consideration of relation (6.94) which com- 
pletes the proof. Part 2 of Theorem 6B can be proved in an analogous way. 

Proof of Theorem 6C. For fixed numbers of P- and C-sites, the numerator of 
Eq. (5.88) is independent of the distribution of these sites along the chain. To 
investigate the influence of the location of P-sites on J and JAm (first statement 
of Theorem 6C), we compare, therefore, the denominators D of Eq. (5.88) for 
the following two situations: (a) P-site at reaction i and 0-site at reaction m 
[denominator D(P,,O,)] and (b) 0-site at reaction i and P-site at reaction m [de  
nominator D(O,P,,J] where in both cases i < m. One obtains 

From Eqs. (6.101a) and (6.101b) it follows that 
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where condition (6.94) has been taken into account. For a positive overall affinity 
A, Eq. (6.102) implies J(Oi,P,,J > J(Pi,Om) and for b - a > 0, JAw(Oi,Pm) > 
JAm(P,,Om) also, which completes the proof. The second statement of Theorem 
6C can be proved in an analogous way. 

It follows from Theorem 6C that JAm becomes maximum when a l l  P-sites are 
located at the lower end of the chain and all C-sites are locatid at the upper end 
of the chain. According to Eq. (5.88), the optimal ATP-production rate reads, 
therefore, 

J d a ,  b)  = * ( p I p - ~  it q j  - PZ 
j=  1  

) (6.103a) 

with 

r - b  
Qj. Do = Kb 2 -I, 

j = a + l  kj 

Using Eqs. (6.103a)-(6.103d) it is now shown that an optimum for the ATP- 
production rate JAW is not only obtained by proper localization of C- and P-sites 
at the two ends of the chain but also by variation of their numbers a and b. We 
consider the special case of equal values for all thermodynamic equilibrium con- 
stants and all forward and backward rate constants of the uncoupled reactions 
(i.e., qi = q, ki = k, k-i = Wq). With these conditions, expressions (6.103b)- 
(6.103d) permit explicit evaluation by means of the formula for geometric pro- 
gressions. One obtains 
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Figures 6.9A and 6.9B show the glycolytic rate J and the ATP-production rate 
JAv, respectively, as functions of the number of coupling sites for a chain with 
10 reactions for special values of the thermodynamic parameters Q and K as well 
as of the coupling parameters a and P. The c w e s  are calculated on the basis of 
Eqs. (6.90), (6.103a) and (6.104a)-(6.104~). The starting points of the curves at 
low b values are given by the condition that we only consider chains where the 
number of C-sites does not exceed the number of P-sites (i.e., b 2 a). The end 
points at high b values are determined by the limited total number of sites (i.e., 
a + b 5 r). More rigorously, one should take into account that the total numbers 
of steps where substrates are phosphorylated and dephosphorylated must be equal. 
This leads, with b 2 a, to the condition a + b + (b - a) = 2b 5 r, because b 
- a is the number of 0-sites (i.e., sites where inorganic phosphate can be incor- 
porated). 

As is seen in Figure 6.9A, the glycolytic rate Jdecreases for all possible values 
of a monotonically with the number b of P-sites. This property follows directly 
from Theorem 6B, Part 2. For low values of a (a < 2) the flux J may become 
negative at very high numbers of P-sites (b - a > dm) [cf. Eq. (6.96)]. For 
small values of b with b > a, the flux J is rather insensitive to variations of b. 
This is in accordance with the result that for qi > 1, flux control in unbranched 
chains is mainly exerted by the first enzymic steps, that is, a change of the kinetic 
properties of reactions at the end of the chain (resulting from the incorporation 
of P-sites) has little effect on the steady-state flux (cf. Section 5.4.3.1). The ATP- 
production rate JAn shown in Figure 6.9B displays a maximum at variations of 
the number b of P-sites as long as the number a of C-sites is not too high. This 
is explained by the fact that the two factors in Eq. (6.90), b - a and J,  change 
in opposite directions upon variation of b. In particular, the increase of JAp results 
from the insensitivity of J to variations of b for low b values. At higher values of 
b, the decrease of J overcompensates the increase of b. The flux J shown in Figure 
6.9A increases with the number a of ATP-consuming sites at the upper end of 
the chain. This results from Theorem 6B, Part 1. This effect is most pronounced 
at the transition from a = 0 to a = 1 which makes the lirst reaction quasi- 
irreversible due to K << 1. Because steps behind quasi-irreversible reactions in 
unbranched chains exert minor flux control, further replacement of 0-sites by C- 
sites at subsequent reactions yields less effect. Upon transition from a = 0 to a 
= 1, the ATP-production rate as a function of b retains the property of exhibiting 
a maximum. This maximum is higher for a = 1 (located at b = 5 at the chosen 
parameter values) than for a = 0 (b = 4). 

The curves shown in Figures 6.9A and 6.9B are calculated for Q = lo3 and 
K = 0.3455. According to Eq. (6.96), these parameter values correspond to a 
realistic value of d,, = 6.5. However, the standard free-energy changes listed 
below Eq. (6.97) result in a much higher overall equilibrium constant Q and in a 
much lower equilibrium constant K for the synthesis of ATP from ADP and 
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Figure 6.9 Glycolytic rate J (A) and ATP-production rate JAm @) as  functions of the number 
b of P-sites located at the end of the chain for various values of the number a of C-sites at the upper 
end of the chain for r = n + 1 = 10. Parameter values: Q = lo3; K = 0.3455; a = f l  = KOS;  P, 
= P, = 1. The thermodynamic limit according to Eq. (6.96) is 4, = 6.5. The thick lines connect 
points for the same excess number of P-sites (d = 4). 
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inorganic phosphate. In a plot of the ATP-production rate for veq high values of 
Q and such values of K that again dm, = 6.5, it can be seen that Jm retains the 
property of exhibiting a maximum with the variation of the number b of P-sites 
(Heinrich et al., 1996). For different values a # 0, the maxima with respect to 
variation of b are virtually the same and are much higher than for a = 0. One 
may conclude, therefore, that for realistic values of thermodynamic parameters, 
one ATP-consuming site at the first step of the chain would be sufficient to guar- 
antee high ATP production. However, the existence of two ATP-consuming sites 
at the upper end of glycolysis (which is not less optimal thermodynamically than 
the case a = 1) may be explained on the basis of the chemical fact that two 
phosphate groups are necessary for a "symmetric pathway" in the degradation of 
the triose phosphates in the lower part of glycolysis (see below). 

Effect of branching: In the above analysis, the fact that real glycolysis is char- 
acterized by a splitting of C, compounds into two C, compounds at the aldolase 
reaction has been neglected. To introduce this feature the branching model de- 
picted in Figure 6.10 may be considered. There, a splitting of the compound S, 
into the compounds S,,, and Sz+l occurs at the step m + 1. The latter two 
compounds can be interconverted in an isomerization reaction. 

According to the results derived for the unbranched chain, it is meaningful to 
assume that all C-sites may be located only in the upper part of the chain (reactions 
1 tq m) and all P-sites only in the lower part of the chain (reactions m + 2 to r 
= n + 1). The steady state of the chain is characterized by J2 = 2Jl, where J, 
and J2 are the steady-state fluxes of reactions 1 to m + 1 and m + 2 to n + 1, 
respectively. Therefore, we now have d = 2b - a for the excess number. Due 
to the fact that reaction m + 1 is bimolecular in the backward direction, a quad- 
ratic equation results for the glycolytic flux. By solving this equation, one can 
express the glycolytic flux and the ATP-production flux as functions of a and b 
(Heinrich et al., 1996). Note that only even numbers a of C-sites may be consid- 
ered because otherwise the degradation pathways of S,+ , and Sz+ could not be 
the same. It turns out that the conclusions concerning the optimal number of ATP- - - 
consuming and ATP-producing steps derived for the linear model remain valid 

potential P-sites 

Figure 6.10 Branched reaction scheme representing potential ATP-producing pathways. 
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upon consideration of branching. In particular, replacement of an 0-site by a C- 
site in the first part of the chain results in an increase of the ATP-production rate. 
One may conclude that there is no essential kinetic difference in the linear and 
branching models with respect to the efficiency of ATP production. However, the 
branched system seems to be more effective from a chemical point of view. For 
example, an excess number d = 2 as observed in glycolysis can be realized in 
the branched model with a = 2 and b = 2, whereas in the linear model, there 
are the possibilities a = 1, b = 3 and a = 2, b = 4, that is, in the linear model 
in each case more ATP-producing reactions are necessary then in the branching 
model. 

The main result of the present investigation is that the optimization of kinetic 
properties favors pathways where the first steps are exergonic or coupled to ex- 
ergonic processes (as ATP hydrolysis) and the subsequent steps are endergonic 
or coupled to endergonic processes (as ATP production). This result is in accor- 
dance not only with glycolysis but also with other metabolic systems. For ex- 
ample, the citric acid cycle starts with two exergonic reactions: (a) the citrate 
synthase reaction (EC 4.1.3.7) which involves hydrolysis of the energy-rich 
thioester bond of Acetyl-CoA and (b) the isocitrate dehydrogenase (EC 1.1.1.42). 
The subsequent reactions yield the energy-rich compound GTP and the redox 
equivalents NADH and FADH2. The last reaction of the cycle, the malate dehy- 
drogenase reaction (EC 1.1.1.37), is veq endergonic. Another example is glu- 
coneogenesis, which starts by circumventing the pymvate kinase step by two 
steps: the pymvate carboxylase (EC 6.4.1.1) and the phosphoenolpyruvate car- 
boxykinase (EC 4.1.1.32) which both involve hydrolysis of either ATP or GTP. 
Similarly, the fatty acid oxidation is initiated by the fatty acid activation in an 
ATP-dependent acylation reaction to form fatty acyl-CoA. Further fatty acid ox- 
idation yields NADH and FADH, which are reoxidized through oxidative phos- 
phorylation to form ATP. 

Coupling of the first step in glycolysis to ATP consumption, which is favorable 
with respect to enhancement of ATP-production rate, makes this step quasi-irre- 
versible. In this situation, the flux control coefficients of all subsequent reactions 
are virtually zero, as has been shown in Section 5.4.3.1. This would imply the 
problem that regulation by the demand for the end product would not be effective. 
This may be the reason why contemporary glycolysis and other pathways are 
characterized by a large number of internal regulators (enzyme activation or in- 
hibition by substances other than substrates or products) which allow that also 
other reactions exert flux control. For example, in glycolysis inhibition of the 
hexokinase by glucose 6-phosphate and (in erythrocytes) by 2,3-bisphosphogly- 
cerate leads to nonvanishing control coefficients of the enzymes located down- 
stream of hexokinase despite the fact that the hexokinase-reaction is quasi-irre- 
versible (cf. Section 5.4.4). 

In our analysis, we have neglected feedback loops. One may expect, however, 
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that the incorporation of such mechanisms would have a similar effect as the 
product inhibition resulting from reversible reactions. Because we have used, in 
Figure 6.9, a value for the overall equilibrium constants, Q, that is lower than the 
real value, we have taken into account a certain degree of reversibility. It is worth 
mentioning that incorporation of variable concentrations of ATP and ADP and of 
nonglycolytic ATP-consuming processes would give rise to further feedback ef- 
fects, which result from stoichiometric coupling (cf. Section 5.4.4.3). 

In future studies, it would also be worth combining the analysis of the stoi- 
chiometric design with the optimization of kinetic parameters (e.g., enzyme con- 
centrations) as presented in Section 6.2. 

6.3.3. Concluding Remarks 
The theoretical investigation of optimal stoichiometries of metabolic pathways 

is still at the very beginning. Probably, the problem may be tackled in the future 
by application of mathematical methods developed in theoretical chemistry for 
predicting the conceivable existence of chemical objects for a given collection of 
atoms as well as for generating reaction pathways by computers (Bauer et al., 
1988). 

Furthermore, the methods outlined in Chapter 3 may be useful for solving 
problems in the evolutionary optimization of the stoichiometry of metabolic path- 
ways. A given distribution of steady-state fluxes may be considered as a linear 
superposition of fundamental flux modes which are independent of the kinetic 
details of the participating reactions; that is, they exclusively reflect the stoichi- 
ometric properties of the pathway. These are the basis vectors k of the null-space 
of the stoichiometry matrix N or, more specifically, the elementary modes of a 
pathway (see Section 3.2.4). The dimension of this null-space is closely related 
to the number of branches of a metabolic network and may be used, therefore, to 
characterize the number of different metabolic functions of the network. For ex- 
ample, an unbranched pathway, as depicted in Scheme 11 (Section 5.4.3.1), is 
characterized by only one k vector [k = (1, . . . , I)=] which is in line with the 
fact that there is only one steady-state flux and only one end product, independent 
of the total number r of participating reactions. In other words, for unbranched 
chains the number, f, of metabolic functions equals one Cf = 1). In contrast, a 
branched pathway as depicted in Scheme 7 (Section 3.2.4) is characterized by 
two basis vectors kl and k2 and accordingly by two independent steady-state fluxes 
which may be independently regulated by variation of the kinetic parameters. 
This dimension of the null-space is invariant against changes of the number of 
reactions participating in the three branches of the given reaction scheme. There- 
fore, one may attribute to the given scheme of reactions two different metabolic 
functions Cf = 2). Extending this consideration to more complex networks, one 
may argue that, due to the limited enzyme content of a cell, evolution was char- 
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acterized by an increasing number of metabolic functions relative to the total 
number of reactions. This would lead to the optimization principle 

For any metabolic pathway a good estimate for the number of different met- 
abolic functions could be obtained from the rank of the stoichiometric matrix 
using the formula f = r - rank(N), as f equals the number of different basis 
vectors of the null-space. From this it follows thatf, which may characterize the 
degree offunctionalization of metabolic networks, is bounded between zero and 
unity (0 5 f 5 1). Another possibility is to define f as the number of elementary 
modes, which in a sense may also serve as a measure of the number of different 
functions. However, in the usual case that the number of elementary modes is 
greater than the dimension of the null-space, they are linearly dependent and 
cannot, hence, be regulated independently. 

Whereas it is rather easy to calculate f for systems of moderate complexity, 
the dimension of the null-space for large networks existing in real cells is still 
unknown. In view of the proposed principle (6.105) it would be an intriguing task 
to derive, in a first step, an estimate forf of living cells by calculating the di- 
mension of the null-space of stoichiometry matrices on a large scale, by taking 
into account as many reactions as possible from the biochemical transformations 
documented in the literature. 
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