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Abstract

Identifying the optimal set of individuals to first receive information (‘seeds’)
in a social network is a widely-studied question in many settings, such as diffusion
of information, spread of microfinance programs, and adoption of new technolo-
gies. Numerous studies have proposed various network-centrality based heuristics
to choose seeds in a way that is likely to boost diffusion. Here we show that, for
the classic SIR model of diffusion and some of its generalizations, randomly seeding
s + x individuals can prompt a larger diffusion than optimally targeting the best
s individuals, for a small x. We prove our results for large classes of random net-
works, and verify them in several small, real-world networks. Our results identify
practically relevant settings under which collecting and analyzing network data to
boost diffusion is not cost-effective.
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1 Introduction

How to identify individuals who are the best ‘seeds’ for maximizing the spread of infor-

mation in a social network is a widely studied policy question in settings such as the

diffusion of brand awareness for products (Richardson and Domingos, 2002), the propa-

gation of microfinance programs (Banerjee et al., 2013), and the adoption of agricultural

technologies in developing economies (Beaman et al., 2019). Since this problem is known

to be computationally intractable (Kempe et al., 2003), a large body of theoretical and

empirical studies introduce heuristics such as ‘degree centrality,’ ‘eigenvector-centrality,’

‘diffusion-centrality,’ and ‘k-shell index’ as proxies for ranking candidate individuals to

target. While such heuristic approximations are computationally feasible, implementing

them requires knowledge of the network structure, which can be extremely costly to ac-

quire in field settings.1 This is part of the motivation for studies such as Banerjee et al.

(2019a) or Breza et al. (2020), which develop methods for identifying central nodes or

approximating the network structure without conducting a thorough census. Here, our

goal is not to identify the central individuals, but instead to quantify the value of doing

so. We are interested in questions such as: when is it important to target central indi-

viduals? What is the value of having access to the network information? And how does

this value compare with the cost of seeding?

The main contribution of this paper is to recast the benefit of following a network-

guided seeding heuristic in terms of the extra seeds required for a heuristic that ignores

the network structure to perform just as well. We show that for the widely studied

‘SIR’ model of diffusion and many of its extensions, seeding a slightly larger number

of individuals randomly may be more economical than network-guided targeting. In

particular, we prove that there are only two scenarios that the diffusion process can

follow. In one scenario, the diffusion reaches a non-negligible fraction of the population,

and the difference in the expected diffusion of the optimal seeding strategy and random

seeding is exponentially decaying in the number of extra seeds that the random seeding

strategy uses. Consequently, seeding a slightly larger number of individuals randomly can

prompt a larger diffusion than seeding by optimizing over the network structure. In the

second scenario, even the optimal seeding strategy diffuses to only a vanishing fraction

of the population, which means there is not much value in network targeting regardless

of the seeding strategy. Such results hold in simulations on real-world network data and

some diffusion models studied in the development economics literature.

In our model, we consider a population of n individuals (or nodes) who are connected

to each other through a social network. Individuals are either informed or uninformed

about some product. The information percolates in the network according to a variant

1Breza et al. (2020) estimate that conducting network surveys in 120 Indian villages would cost
approximately $190, 000 and take over eight months.
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of the ubiquitous Susceptible-Infected-Recovered (SIR) diffusion model. In this model,

individuals behave in a “mechanical” fashion. At time t = 0, all individuals (nodes) other

than a small group (seeds) selected by the policymaker are initially uninformed. Once

informed at time t, a node has one chance to speak to each of its uninformed neighbors.

This information sharing is successful with probability c independently for each neighbor,

in which case the corresponding neighbors become informed by time t+ 1. This cascade

of information continues until no new individual has the opportunity to become informed.

To quantify the value of network information in a policy-relevant way, we consider

the following thought experiment: Suppose in one setting, we have access to full network

data and unlimited computational power to optimally pick s individuals as initial seeds.

In the second setting, we ignore the network and simply pick s+x initial seeds uniformly

at random. For what value of x will random seeding inform as many individuals, in

expectation, as the optimal seeding?2

In fact, we compare random seeding to a ‘better than optimal’ strategy, in the follow-

ing sense. Suppose, in addition to the network structure, the policymaker has a perfect

forecast of who would successfully share information with whom. She then picks the

best s individuals to seed, equipped with this information. Comparing this ‘omniscient’

seeding with random seeding provides a generous upper bound for the value of network

information, because for all realizations, the omniscient strategy will perform at least as

well as the optimum, which itself performs better than computationally feasible heuristics.

Our main theorem shows that under one set of conditions, the difference in expected

fraction of informed individuals between the random seeding strategy with s + x seeds

and the omniscient strategy with s seeds vanishes exponentially in x. Thus, the random

seeding strategy with s + x seeds asymptotically performs as well as the omniscient

strategy with s seeds, for a small x. Precisely when those conditions fail, even the

omniscient seeding produces an expected diffusion that reaches only a vanishing fraction

of individuals.

This suggests learning the network is not valuable if seeding costs are small relative

to the costs of collecting and analyzing network data. A careful seeding strategy has the

potential of outstripping a random strategy with additional seeds only in the state of the

world where even the best strategy fails to reach a significant fraction of the population.

This theorem holds for the general Inhomogeneous Random Networks (IRN) model3,

which subsumes several well-known random network formation models as its special cases.

2This thought experiment is analogous to the famous comparison of auctions and negotiations in
Bulow and Klemperer (1994), and its generalization in Hartline and Roughgarden (2009). These results
address how many additional bidders have to participate in a second-price auction, which requires no
information on bidder valuations to implement, to generate as much revenue as an optimal auction with
n bidders.

3In this model, there is an arbitrary set of types for nodes and an agent of type i is connected to an
agent of type j with some probability pij . We do not impose any restrictions on these probabilities. We
explain this model in detail in Section 2.1.
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(a) Optimal seeding (b) Random seeding (c) Random seeding
with additional seeds

Figure 1: A simple intuition for the main result: Consider a star network with n leaves, for
some large n. Suppose an informed node passes information along to each of its neighbors
independently with probability 0.5. 1(a): With a single seed, diffusion is maximized by
picking the central node and in expectation n

2
of nodes will be informed. 1(b): Random

seeding with a single seed will pick a non-central node with high probability. This means
that half the time, diffusion ends immediately, and half the time, the central node becomes
informed by the randomly chosen seed. Expected diffusion is approximately n

4
, far below

what optimal seeding achieves. 1(c): Now consider a scenario with 1 < x � n seeds.
Random seeding will again pick x non-central nodes with high probability. However, the
probability that a central seed is informed is 1 − (1

2
)x, so expected diffusion is nearly

n
2
(1− (1

2
)x), which quickly converges to n

2
as x grows. For instance, random seeding with

5 additional seeds performs better than 97% of optimal seeding.

Thus, this result readily applies to simple Erdős-Rényi graphs (where any pair of nodes

is connected with the same probability), networks with homophily (where nodes are more

intensely connected to nodes with “similar” types), and networks with power-law degree

distribution (where some individuals are connected to a large fraction of the population).

How does random seeding work well even on networks with highly unequal degree

distributions, where it appears that informing one of the few highly central nodes can be

very important? The explanation is that random seeding is likely to seed connections of

those highly central nodes, precisely because they are highly connected. Therefore, cen-

tral individuals will become informed through their neighbors and broadcast information

throughout the network. Figure 1 provides a simple example for this intuition.

After presenting our asymptotic results, we turn to the question of whether similar

findings hold for small, real-world networks. We show through simulations that these

asymptotic theoretical results materialize in such networks. For the Indian village house-

hold networks of Banerjee et al. (2013), the Chinese village rice farmer networks of Cai

et al. (2015), and a small subnetwork of Facebook, we verify that random seeding com-

petes well with both typically proposed and omniscient targeting strategies. For instance,

in the Facebook subnetwork with 4039 nodes, if each node speaks to her neighbors with

probability 5%, random seeding with 5 seeds prompts a larger diffusion than all seed-

ing strategies—including the omniscient seeding—with one seed. A similar result holds

even for smaller networks: In an Indian village network with only 99 nodes, when each
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informed node on average speaks to two of her neighbors, random seeding with 3 extra

seeds beats omniscient seeding with one seed.

We next explore the robustness of our main theorem to alternative objectives, namely,

the variance and the speed of diffusion.

Variance in diffusion size is an important consideration for a risk-averse planner. A

careful targeting strategy may guarantee some baseline level of diffusion, while random

outreach strategies risk fizzling out. Our next result proves that this is not the case.

Variance of random seeding goes to zero at an exponential rate in the number of seeds.

In fact, our simulations on Indian village networks show that random seeding with four

extra seeds first-order stochastically dominates any seeding strategy with one seed.

Speed of diffusion is another important consideration when policymakers are con-

cerned with the rate of adoption, rather than just the eventual reach of a new product.

Indeed, insofar as imitation of neighbors’ technology is a driving force of local economic

growth, the speed of diffusion may be a primary concern.4 We consider a variant of the

diffusion model in which the diffusion process ends after T ≥ 1 periods and find the dif-

ferences between random and omniscient strategies can be larger than in an unbounded

diffusion model. Even in relatively homogeneous networks, random seeding strategy needs

an order log(n) times as many seeds as an omniscient strategy to perform just as well. In

networks with highly central nodes, the comparison is even less favorable. Consider again

the example of Figure 1. If the objective is to maximize diffusion only in the first period,

the optimal strategy seeds the center and reaches in expectation n
2

nodes. Random with

s + x seeds can only reach s + x + 1 nodes in one period (seeds and the center). One

period is not enough time for the random to outperform the optimum. More generally,

informing highly central nodes through their neighbors requires more time than diffusing

by informing them directly. Random seeding works well when there are multiple rounds

of communication.

Finally, we investigate the robustness of our results with respect to the model of

diffusion. Our simulations show that similar results hold for some of the more complex

models estimated in the development economics literature, which generalize the SIR

model in different ways. For example, for a version of the model of diffusion studied and

estimated in Banerjee et al. (2013), random seeding with 11 seeds performs nearly as well

as central seeding with 10. For the diffusion model and the farmer social networks in Cai

et al. (2015), random seeding with 6 seeds performs nearly as well as central seeding with

5. Our main result naturally goes through in the “game-theoretic” model of Sadler (2020).

In addition, the model we studied exhibits undirected relationships and communication.

We prove that our main result holds in a model of random directed relationships and

communication, so long as communication probabilities are symmetric.

4This has been theoretically studied in the growth literature, see (Alvarez et al., 2013; Perla and
Tonetti, 2014)
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Still, there are many diffusion models for which targeting central nodes can be valu-

able. Importantly, suppose central individuals communicate to their connections with

a higher probability (or more convincingly) than other people or listen to fewer friends

than they speak to. Then, it may be especially important to target such individuals.

Scenarios like these could be why some policymakers and firms are willing to pay a lot

to target “influentials.” In addition, if the product diffusion follows a threshold model,

where an agent is informed if sufficiently many of his neighbors are informed, random

seeding (even with a few extra seeds) may perform poorly.

Regardless of what is the true underlying diffusion model or network structure, our

framework suggests that the “extra number of seeds required for random seeding strategy

to reach (1−δ)% of a prescribed network-based heuristic” is a useful statistic for diffusion

and centrality studies to report. This number can be interpreted as the economic value

of careful targeting in a given setting. As an example, for δ = 0.05 and for Banerjee et al.

(2013) and Cai et al. (2015), this statistic is smaller than 3.

Related literature. Our paper is connected to the large body of literature around

influence maximization. This problem was originally motivated by product diffusion

and viral marketing. Domingos and Richardson (2001) is one of the firsts to introduce

the influence maximization problem in the context of viral marketing, and other papers

followed by documenting contagion in consumer networks.5 Kempe et al. (2003) formally

introduce the influence maximization problem. They consider two common diffusion

models and asks how difficult it is to generally solve for the optimal size k set of initial

targets when the objective is maximum contagion. They show that computing the optimal

set is NP-hard. Leskovec et al. (2007) take this problem to data and discover patterns of

influence by studying person-to-person recommendations for books and videos.

The computational complexity of this problem, on the one hand, and its practical

importance, on the other hand, led to developing algorithms for influence maximization

over networks in a wide range of disciplines. For examples in computer science and

operations research, see Chen et al. (2009); Goyal et al. (2011); Chen et al. (2016);

Wilder et al. (2017); in health-care, see Rice (2010); Rice et al. (2012); Kim et al. (2015);

Yadav et al. (2016); and in physics, see Kitsak et al. (2010); Chen et al. (2012). Watts

and Dodds (2007), like us, dispute the idea of targeting influentials, but in a conceptually

and methodologically different way. They use simulations, and consider a single seed to

compare different heuristics. In contrast, we theoretically quantify the value of network

information as the extra seeds required by random seeing to beat the exact optimum,

and identify conditions under which careful seeding may or may not matter.

Mechanisms for social learning and diffusion have long been recognized in the de-

5For a review of network studies in marketing and empirical work disambiguating network effects
from other confounds see Hill et al. (2006) and Iyengar et al. (2011).
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velopment economics (e.g., see Duflo and Saez (2003); Conley and Udry (2010); Dupas

(2014)).

The topic of the current paper is most related to a newer literature that studies how

network theoretic characteristics of learners and spreaders determine the extent of these

processes. Banerjee et al. (2013) pioneer this approach. They find that centrality of

initial seeds is strongly correlated with total eventual participation into a microfinance

program, and this correlation is not explained simply by the degree or demographic

characteristics of these nodes. Cai et al. (2015) also conduct a randomized experiment in

which they seed certain individuals in Chinese villages with information about a weather

insurance program and observe how take-up rates among neighbors vary with centrality

of the seeds. Beaman et al. (2019) study technological adoption by farmers as they vary

seeding rules over 200 independent village-networks in Malawi in an experimental setting.

Our theoretical model of diffusion pertains more to the diffusion processes observed in

Banerjee et al. (2013) and Cai et al. (2015) rather than Beaman et al. (2019), which finds

data more consistent with a threshold type diffusion model. While these papers find that

network theoretic seeding improves diffusion, we are interested in studying how quickly

additional outreach makes up for network-agnostic seeding.

Two more papers in this literature are of direct relevance: Kim et al. (2015) and

Banerjee et al. (2019b) conduct multiple RCTs to directly compare random seeding and

other targeting methods. Kim et al. (2015) compares random seeding with seeding a

nominated friend of a random individual and an individual with the most number of

ties. They find that targeting nominated friends increased adoption of the nutritional

intervention by 12.2% compared with random targeting. We note that our results confirm

that fixing the number of seeds random seeding may perform worse than other heuristics,

and thus this experiment is consistent with our theoretical findings.

Banerjee et al. (2019a) conduct two randomized control trials to compare random

seeding with “deliberately seeding” the network. In particular, they compare seeding

based on identifying “gossips” and seeding “trusted” individuals with seeding randomly,

all with six seeds. In their first experiment, they received on average 8.1 phone calls in

villages with random seeding, and 11.7 in villages with gossip seeding. In the second

experiment, they looked at the rate of vaccination as the outcome. They find that with

random seeds, 18.11 children attended and received at least one shot. In villages with

gossip-based seeding, this number was 23.

These findings are consistent with our results. As we argue and simulations confirm,

fixing the number of seeds, random seeding typically performs worse that network-guided

heuristics. Banerjee et al. (2019b) do not test how many extra seeds random needs

to compete with other heuristics.6 However, Banerjee et al. (2019b) consider one more

6We could try to guess the extra number of seeds needed for random seeding to beat other heuristics
in their second experiment. With six initial network-guided seeds, total diffusion is 23. With six random
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experiment in which SMS “blast” reminders are sent to 33% and 66% of village households

selected at random. They find that the SMS blasts did not lead to greater adoption than

targeted seeding. However, individuals in gossip-guided seeding were contacted by phone

and given regular personalized reminders, whereas random seeds were contacted through

SMS blasts. These incomparable modes of communication do not constitute a clean test

of the hypothesis that random seeding with a few extra seeds may perform well. Indeed,

as Banerjee et al. (2018) find, broadcasting information to a large group of people may

change the dynamics of information acquisition.

Of particular relevance is a game-theoretic diffusion model studied in Sadler (2020).

Here, agents hear information, update their beliefs about their network position in a

Bayesian fashion, and subsequently choose whether or not to adopt a product. Sadler

(2020) exploits percolation results to show if the diffusion process reaches a positive

fraction of the population, there will be a giant component of informed individuals. The

resulting diffusion process is similar to what we study here, and our results on seeding

would go through in this context. Indeed, our object of study is the comparison of seeding

strategies for any model that produces the patterns of transmission studied here, whether

these arise mechanically or from a game.

Finally, a theoretical literature in economics studies the optimal seeding problem

under various diffusion processes and competition in diffusion (Morris (2000); Galeotti

and Goyal (2009); Young (2009); Goyal et al. (2014); Bloch et al. (2014); Lim et al.

(2015); Mobius et al. (2015); Sadler (2020); Galeotti et al. (2017); Banerjee et al. (2018)).

Meanwhile, other papers describe game-theoretic foundations for the traditional measures

of centrality (e.g., Ballester et al. (2006); Bloch et al. (2016); Bloch (2016)) or role of

influential nodes (e.g., Galeotti and Goyal (2010)).

Organization of the paper. We introduce our diffusion and network models in Sec-

tion 2. In Section 3, we present our main theorem, as well as its many special cases.

We also present simulations on real-world networks. In Section 4, we study robustness

and limitations of the results. We consider alternative objectives (variance and speed of

diffusion) as well as alternative diffusion models. In Section 5, we discuss our results and

conclude.

seeds, total diffusion is 18.11. In the experiment, each random seed is inducing more than 3 households to
participate. Thus, if diffusion of random seeding was linearly increasing, 2 extra seeds would be enough
to perform better than the network-guided seeding. Conservatively, if each random seed only induces 2
households to participate (the seeded household plus one more household), then 3 extra seeds are enough
for random to surpass the network-guided strategy.
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2 Model

The set of agents or nodes are denoted by N = {1, 2, · · · , n}. Agents are connected in a

social network represented by a simple graph G = (N,E), where E is the set of unordered

pairs of agents and {i, j} ∈ E if agent i and agent j are neighbors. A node’s degree in G

is the number of its neighbors and |E(G)| denotes the number of edges in network G.

Diffusion process. Time passes in discrete periods t = {0, 1, 2, . . .}. An agent is either

informed or uninformed. Once an agent becomes informed, it remains informed forever

after. Initially, a subset A0 ∈ N of individuals are informed. Once informed at time t,

an agent has one chance to speak to each of its uninformed neighbors. We focus on the

case that an informed individual has only one chance to speak to her neighbors, but this

can be easily generalized to multiple chances. This information sharing is successful with

probability c independently for each neighbor, in which case the corresponding neighbors

become informed by time t + 1. Diffusion continues until no new individual has the

opportunity to become informed. Our main theorem is stated for this diffusion model.

In Section 4.1.2, we consider cases where all communication ceases after some T ≥ 1

periods. The case where T is finite is called a bounded diffusion process. Otherwise the

diffusion process is called unbounded.

There is an alternative contrived but useful way to think about the unbounded diffu-

sion: Suppose at time t, there is a coin flip for each link of the social network G, and with

probability c that link is maintained in the network. Let us call this new constructed

network the communication network and denote it by K(G) ⊆ G. The communication

network is a way to think about the set of all pairs of agents who will speak to each other,

once one of them becomes informed.

The diffusion process considered here is one in which communication is undirected.

In particular, the event that node i talks to j if informed is coupled with the event that

j talks to i if informed. Moving from undirected communication settings to directed

communication requires addressing some technical issues. We postpone the discussion of

this case to the Section 4.2.1, where we discuss under what conditions our results can be

extended to settings with directed communication.7

Importantly, the diffusion model studied here is a “mechanical” model in which indi-

viduals’ incentives are not explicitly considered. We focus on this model simply because

it is a workhorse model of the diffusion literature. We will discuss how our results alter

by considering other models of diffusion in Section 4.2.

Seeding strategies. A seeding strategy takes as input a network and a constant num-

ber of initial seeds s ≤ n and outputs a (random) set of s initial seeds to be informed at

7In addition, simulations of Appendix F and Appendix G consider models of directed communication.
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time t = 0. Formally, let Un be the set of all node-labeled networks on n nodes and let

[n] = {1, 2, . . . , n}. A seeding strategy is a set-valued (random) function f : Un×[n]→ 2N ,

with the property that |f(G, s)| = s.

We say seeding strategy f is feasible if for all networks G = (N,E) ∈ Un and

s ≤ |N | = n, f(G, s) and K(G) are independent. The communication network en-

codes the information of who would speak to whom, which is of course not available to a

policymaker a priori. A seeding strategy that does not satisfy this property uses the re-

alization of this information in determining the choice of seeds, and is therefore infeasible

to implement. While in practice a policymaker with no knowledge beyond the network

structure can only use feasible seeding strategies, infeasible strategies can be useful as

theoretical benchmarks. Let F be the space of feasible seeding strategies for graphs on

n nodes.

Goal. Let At(G, s, f) ⊆ N denote the (random) set of informed nodes at time 1 ≤ t ≤
T , as a function of the network G, number of seeds s, and the seeding strategy f .

Let h(G, s, f) = E[|AT (G, s, f)|] be the expected number of informed agents at the

end of the process. Here the expectation is taken over the diffusion process. Let H(f, s) =
1
n
EG∼Pn [h(G, s, f)], where Pn is a network formation process—a probability distribution

over all possible networks of size n. The function H measures the performance of a

seeding strategy by taking the strategy and number of seeds as inputs and producing the

expected fraction of informed agents as output, for a given network formation process.

The goal of the planner is to choose a seeding strategy f to maximize H(f, s).

Relevant seeding strategies. We denote the optimal seeding strategy by OPT. For a

fixed network, this strategy picks the set of s seeds that maximizes the expected diffusion,

with an arbitrary selection when there are multiple optimal candidates:

OPT(G, s) ∈ argmax
f∈F

h(G, s, f).

For a given network formation process, this strategy depends on Pn. For a given Pn,

OPT solves:

OPT(s) ∈ argmax
f∈F

H(f, s).

It is known that computing this strategy is NP-hard (Kempe et al., 2003). In practice,

instead, policymakers resort to heuristics such as seeding the s most central individuals

in the network, according to various measures of centrality.

Let RAND(s) be the strategy which picks s nodes uniformly at random in G. Imple-

menting this strategy does not require any information about the network structure. To

quantify the value of learning the network and identifying the optimal seeds, we would
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ideally like to compare the performances of OPT and RAND. Recall that OPT exploits

the full knowledge of the structure of the network and solves a computationally hard op-

timization problem, while RAND ignores any information about the network. Therefore,

the difference between these two can be interpreted as the value of network information

and analysis.

As noted earlier, however, computing OPT is an NP-complete problem. Instead,

we measure the difference between the performances of the omniscient seeding strategy

and RAND. The omniscient seeding strategy, denoted by OMN(s), is a strategy that for

every realization of the communication network picks s initial seeds to maximize diffusion.

Notice that this strategy is infeasible by construction because it knows who is going to

speak to whom, and it performs better than any feasible strategy for any realization of

the diffusion process. In particular, for any initial number of seeds s:

H(OMN, s) ≥ H(OPT, s) ≥ H(RAND, s)

Since for any realization of the diffusion process, OMN performs better than OPT,

comparing RAND and OMN provides an upper bound for the value of network informa-

tion and analysis.

2.1 Network Model: Inhomogeneous Random Networks

We now introduce the inhomogeneous random networks (IRN) model (Bollobás et al.,

2007). The IRN model is a general network model that subsumes several random network

models as special cases. In this model, there is a set of potential “types” and each agent

has a specific type. Any two individuals are connected with some exogenously given

probability that is a function of their types. This is a rich framework, as the set of

types can be arbitrarily general. For instance, in a college network, types can represent

major, cohort, gender, and race. Types can also represent the ages of individuals in

the population, their genders, occupations, or combinations thereof. We state our main

theorem for a general version of this network model with a finite type space. Then we

explore the consequences of this theorem by specializing the result to certain familiar

instances of the IRN model.

Fix some T = {1, 2, · · · , τ} as the set of different types of agents. Let ni denote the

number of agents of type i ∈ T . Define a kernel as any arbitrary symmetric function

κ : T 2 → (0, n], and let

pij(κ) =
1

n
κ(i, j).

Let p(κ) be a matrix with pij as its elements. Then, IRNn(p(κ)) is a random network

on n nodes, where an agent of type i is linked to an agent of type j with probability pij. Let

12



κij be the expected number of type j neighbors of an agent of type i. Let Tκ = [κij]i,j∈[n]

be the types matrix. Since κ(i, j) > 0 for all i and j, Tκ is a positive matrix. Therefore

by the Perron-Frobenius theorem, the spectral radius of Tκ is an eigenvalue of Tκ and

all other eigenvalues of Tκ have a strictly smaller absolute value. Therefore, the largest

eigenvalue ||Tκ|| can be computed as

||Tκ|| = sup
x:||x||2≤1

||Tκx||2,

where ||x||2 =
√∑τ

i=1 x
2
i .

The IRN model admits some classic network models as special cases:

Erdős-Rényi networks. In an Erdős-Rényi random network on a set N of nodes with

|N | = n, there is a link between a pair of agents (i, j) ∈ N2 with probability d/n,

independently of other agents and links. This structure is perhaps the simplest and most

widely used random network model. The average degree of nodes in this model is d.

Erdős-Rényi model is a special case of the IRN model we just described. T is a

singleton type space, and κ = d, so Tκ = [d], and ||Tκ|| = d.

The Islands-connections networks and homophily. The islands-connections model

of network formation captures the idea that people are more likely to be connected to

their own “type” of people—a feature that is referred to as homophily (see Jackson (2010),

Chapter 6). For instance, Stanford college students are more likely to be connected to

each other than to UC Berkeley college students. The islands model is another special

case of the IRN model. In this model, each type has the same number of agents and

an agent only distinguishes between agents of one’s own type and agents of a different

type. More precisely, an IRNn(p(κ)) is an islands network with parameters (m, din, dout)

if (1) there are m types of agents and their sizes are n/m for all types, (2) for two agents

i and j with the same type pij = din/n, and (3) for two agents i and j with different

types pij = dout/n. The matrix Tκ will have din/m in the diagonal entries and dout/m

elsewhere. Simple calculations show that ||Tκ|| = 1
m

(din + (m− 1)dout).

Chung-Lu networks and highly central nodes. We also consider the class of net-

works introduced in Chung and Lu (2002) which generalizes the Erdős-Rényi model by

supporting any degree distributions.

Fix a sequence w = (w1, . . . , wn) ∈ Rn
+. A Chung-Lu (undirected) network on n nodes,

CL(n,w), is generated by including each edge {i, j} independently with probability pij =

min(
wiwj∑
k wk

, 1). For the convenience of notation, we will assume that maxk(w
2
k) ≤

∑
k wk,

so we don’t have to take the maximum with 1. These two variations are known to be

equivalent asymptotically (see Van Der Hofstad (2016), Section 6.6).
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Simple calculation shows that the sequence of weights w = (w1, . . . , wn) is the same

as the sequence of expected node degrees. Thus, a Chung-Lu network can capture, for

example, a power-law degree distribution by using a parametric power-law functional

form for the weights. In particular, suppose that for all i,

wi = [1− F ]−1(i/n), where F (x) = 1− (d/x)b on [d,∞) with b > 1. (1)

This generates a network on n nodes with minimal expected degree d. The scale parameter

b determines the thickness of the right tail of the distribution F . As b grows, the tail

becomes thinner. We say a distribution has a power-law tail if the the mass of the

cumulative distribution function lying to the right of some large enough k is proportional

to k−τ . The degree distribution a Chung-Lu graph follows a power law for τ = b− 1, see

(Van Der Hofstad, 2016) for a more detailed discussion.

Chung-Lu model fits into the framework of the IRNs. However, since the support of

the degree distribution can be a continuous variable, the set of types is not necessarily

finite. Incorporating a continuum of types into the IRN model is straightforward, but

requires developing a measure-theoretic setup, which we do in the Appendix B.1.

3 Main Theorem

The resource constraint in the optimal seeding problem is the number of seeds. Therefore,

to quantify the value of network information in a policy-relevant way, we pose the fol-

lowing question: Fixing the number of seeds available to the omniscient seeding strategy,

how many additional seeds are required in order for random seeding to perform as well

as the omniscient?

We emphasize that our goal here is not to recommend random seeding as a seeding

strategy to be used in practice—in fact, there are cheap ways to perform better than

random. We study random seeding as a tractable theoretical benchmark that does not

require information about the social network. Of course, even random seeding requires

some information to be feasible; for instance, in the context of villages in developing

countries, the policymaker at least needs access to a list of all households in the village.

Let α = limn→∞H(OMN, 1) be the fraction of nodes informed by the omniscient

seeding with one seed. This constant is important in our analysis, as shown below in the

statement of the main theorem.

Theorem 1. Consider a sequence of IRNn(p(κ)). Let s be the number of seeds.

Then, if ||Tκ|| > 1/c, random seeding catches up to the omniscient seeding at an

exponential rate in the number of extra seeds, i.e., α > 0 and for any x,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.
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If ||Tκ|| < 1/c, then any seeding strategy diffuses to only a vanishing fraction of the

population:

lim
n→∞

H(OMN, s) = 0.

There is a lot to discuss about this theorem. It is clear that the essence of the theorem

is in the ||Tκ|| > 1/c condition. Also, the parameter α call for some discussions. It is

easier to discuss these once we clarify the role of each condition in the proof. Thus, we

first sketch the ideas of the proof. The formal proof can be found in Appendix A.

Proof overview of Theorem 1. Recall that the communication network K(G) ⊆ G

is a way to think about the set of all pairs of agents who will speak to each other,

once one of them becomes informed. We can consider the connected components of this

communication network to better understand the behavior of random and omniscient

seeding strategies. Note that in the SIR model, a node becomes informed if and only

if one of the nodes in its connected components in K is seeded. This implies that an

omniscient seeding strategy with s seeds would simply seed one node in each of the s

largest connected components of K. On the other hand, for each seed, the probability

that the random strategy informs a given component is proportional to the component’s

size. This gives us a method of computing the expected diffusion for each of the strategies,

once we are given the distribution of component sizes for a communication network.

When n is sufficiently large and ||Tκ|| > 1/c, by the phase transition results of the IRN

model (Bollobás et al., 2007), there exists a component in the communication network

which contains a constant α fraction of the total population, meaning that informing

one node in that component is enough to inform a constant fraction of the population

through information cascade. The remaining components of the communication network,

on the other hand, are vanishingly smalli.e., o(n)) in population size.

Therefore, the omniscient seeding strategy informs the constant size component with

only one seed. With the additional seeds, it picks the largest of the small components,

but with s seeds the total fraction of informed nodes cannot be more than o(n)s/n, which

is asymptotically 0. Thus, limn→∞H(OMN, s) = limn→∞H(OMN, 1) = α.

Similarly, as n → ∞, the expected diffusion of random seeding with s + x seeds is

α(1 − (1 − α)s+x). This is because it is enough for one of the random seeds to hit the

constant size component, and the other components are irrelevant. Therefore, the limit

ratio of random with s+ x seeds and omniscient with s seeds is 1− (1− α)s+x, where α

is the size of the constant size component.

On the other hand, when ||Tκ|| < 1/c, then size of even the largest component is

o(n), meaning that any informed agent only informs (directly or through a cascade) o(n)

other agents. Hence, the omniscient seeding strategy with s seeds can at most inform

o(n)s/n fraction of the population.
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The proof overview shows that the ||Tκ|| > 1/c condition is equivalent to having

a giant component with size α in the communication network, while its failure means

all components are (very) small. Clearly, as communication probability increases, the

condition is more likely to be satisfied. What the condition ||Tκ|| > 1/c implies about

network structure becomes clearer for the special cases of IRN networks considered in

Section 3.1 to Section 3.4.

A few remarks about the theorem worth pointing out:

On asymptotic results. Stating clean mathematical results for diffusion on random

networks is typically feasible only in the limit as n→∞. That is why our main theorem

is a limit result. One may question the relevance of this asymptotic result for small

networks, such as those in development economics studies. This is a valid concern, and

we address it in our simulations. We conduct a series of simulations in small networks.

The findings confirm that our theoretical result holds far from the limit. For example,

we show that for an Erdős-Rényi network with 100 nodes and when cd = 1.5 (where d

is the average degree), random with 3 extra seeds performs better than omniscient with

one seed.

On ||Tκ|| < 1/c regime. Our results show that in the regime where the limit fraction

of informed individuals is zero, random seeding with a few extra seeds cannot beat omni-

scient. As discussed in Section 3.5, in applications such as the microfinance diffusion in

Indian villages or weather insurance diffusion in Chinese villages, the diffusion is indeed

in the regime where a giant component emerges, so random seeding performs well.

Nonetheless, for most marketing campaigns on Twitter or Instagram, the fraction of

informed individuals is negligible relative to the size of these networks. Does it mean

that the ||Tκ|| < 1/c regime is the relevant regime for these networks? It depends. When

measuring the fraction of informed individuals, it is important to identify the ‘relevant’

network. An economics paper may go viral in Twitter in economists’ subnetwork, but

even if all economists are informed of the paper, the total diffusion is still a negligible

fraction of the Twitter network. Therefore, the virality should be evaluated with respect

to the agents for whom the information has relevance.

Having said that, we emphasize that limn→∞H(OMN, s) = 0 should not be read

literally when dealing with small networks. The omniscient strategy can indeed reach up

to an s × O(log(n)) many nodes, which may amount to a sizeable fraction of nodes in

small networks.

However, it is important to note that the omniscient seeding strategy is too strong

of a benchmark for the ||Tκ|| < 1/c regime, as it is able to precisely pick the largest

(of small) components. In practice, the fact that random cannot compete well with

omniscient does not necessarily mean that it cannot compete with typically used network-
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guided heuristics. In Appendix H, we conduct simulations on Erdős-Rényi networks and

Indian village networks and show that random seeding, while being far from omniscient,

competes well with typical seeding strategies even in this regime.

How many extra seeds? Suppose our goal is to ensure that the limit ratio between

RAND and OMN is at least 1− ε. Then, it must be that 1− (1−α)s+x > 1− ε, and thus,

having max(0, log(ε)
log(1−α)

− s) extra seeds is enough to guarantee that RAND performance

is at least 1− ε of the OMN.

The limitation on the number of seeds. In stating Theorem 1, we considered

any constant number of seeds s ≤ n. In particular, we did not allow the number of

seeds to grow with n. We can relax this requirement for the first part of the theorem,

when ||Tκ|| > 1/c. In this setting, the size of the second-largest component of any IRN

is O(log(n)), and thus even if s = o( n
log(n)

), the first part of the theorem holds. This is

because o( n
log(n)

)×O(log(n)) is o(n), and thus the fraction of extra nodes reached by OMN

is asymptotically zero. For the second part of the theorem, however, we cannot let s grow

faster than a constant in general since the exact sizes of the small components depend

on parameters. That said, we can relax the limitation on s for specific classes of IRNs.

For instance, for Erdős-Rényi random networks, we know that even if ||Tκ|| < 1/c, all

components are O(log(n))-sized, and thus if s = o( n
log(n)

), the second part of the theorem

holds.

We emphasize that the limitation on s is an artifact of using OMN as a bound,

which is at the end too strong of a benchmark. In fact, for commonly used seeding

strategies and the OPT strategy, our simulations suggest that flooding many individuals

with information makes a careful selection of initial seeds less valuable, and random has

an easier time catching up with network-guided strategies when s is large. As such,

having a constant number of seeds (and, as an extreme case, if s = 1) is a ‘worst-case’

scenario for random seeding.

3.1 Erdős-Rényi Networks

The next result follows immediately from Theorem 1 and the fact that ||Tκ|| = d for

Erdős-Rényi networks, as discussed in Section 2.1.

Corollary 1. Consider an Erdős-Rényi network on n nodes with average degree d. If

dc > 1, then for any s and x,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.
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If dc ≤ 1, then α = 0. Furthermore, for every s > 0,

lim
n→∞

H(OMN, s) = 0.

For Erdős-Rényi networks, the ||Tκ|| > 1/c condition translates into dc > 1. Intu-

itively, if this condition holds, then each informed individual (on average) talks to at least

one of their friends. Under this condition, random seeding catches up with the omniscient

seeding at an exponential rate. On the other hand, when dc ≤ 1, the fraction of informed

nodes even under the omniscient seeding strategy goes to zero as n→∞.

In addition, a known feature of Erdős-Rényi networks is that the (asymptotic) size

of their giant component (when cd > 1) can be implicitly calculated by solving for

1− α = e−cdα. Thus, we can easily calculate the rate by which the gap between random

and OMN closes. For instance, if cd = 1.5, then α ' 0.58. Thus, the performance

of random with 5 seeds is roughly 99% of the omniscient with one (or more) seeds. If

cd = 2, then α ' 0.8. Thus, the performance of random with 3 seeds is roughly 99% of

the omniscient with one (or more) seeds.

3.1.1 Small Erdős-Rényi networks and the exact optimum

Computing OPT is NP-hard in general. With only one seed, however, we can calculate

the exact OPT numerically, since there are only n possible options to consider. We

compute OPT for an ER network of size 100 with cd = 1.5 and find that random with

only two extra seeds beats the optimum with one seed. To beat omniscient, random

needs 4 extra seeds. Similar numbers are enough for random to catch up when cd = 2:

random needs 3 extra seeds to beat OMN and 2 extra seeds to beat OPT. These findings

show that the theoretical limit results quickly kick in.

3.2 Power-law Chung-Lu Networks

Several real-world networks are characterized by degree distributions with fat tails, in the

sense that they exhibit few nodes that have significantly greater degrees than others. For

example, Barabasi and Albert (1999) describe a variety of social networks, such as the

network of linked web pages or collaborating actors, exhibiting a power-law like degree

distribution on its right tail. Erdős-Rényi networks fail to capture this feature. Since

Chung-Lu power-law networks are special cases of the IRN model, Theorem 1 implies the

following corollary.

Corollary 2. Consider a power-law Chung-Lu network on n nodes with scale parameter

b and minimal expected degree d. If either (1) b ∈ (1, 2] or (2) b > 2 and cd > b−2
b−1

, then

for any s and x,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.
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If b > 2 and cd ≤ b−2
b−1

, then for every s,

lim
n→∞

H(OMN, s) = 0.

The corollary is proved in Appendix B.

Barabasi and Albert (1999) estimate the scale parameter for the tails of different real-

world network degree distributions and find this lies in the (1, 2] interval for most of their

examples. Corollary 2, therefore, means that precisely in the regime where the network

admits highly central agents, no further assumptions on communication probability are

needed to ensure that random with a few more seeds can beat the omniscient. This

raises the question of how random seeding—which is going to miss highly central nodes

with high probability—can compete with omniscient seeding. The intuition, as depicted

in Figure 1, is that random seeding is likely to pick neighbors of the highly connected

nodes, precisely because they are highly connected. Highly connected nodes, then, are

informed through their randomly seeded friends.

3.3 Networks with Homophily: The Island Model

The relationship between homophily and the conditions for the comparability between

random and optimal seeding is easiest to see in the context of the islands model of

networks, which is another special case of the IRNs. The next result follows immediately

from the calculation of ||Tκ|| for the Island model in Section 2.1 and Theorem 1.

Corollary 3. Consider an islands network model on n nodes with parameters (m, din, dout).

If 1
m

(din + (m− 1)dout) > 1/c, then for any x and s,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.

If 1
m

(din + (m− 1)dout) ≤ 1/c, then for every s,

lim
n→∞

H(OMN, s) = 0.

Note that the term 1
m

(din + (m − 1)dout) is simply the average degree of a node in

the islands model. Thus, the condition 1
m

(din + (m − 1)dout) > 1/c translates into the

requirement that on average informed agents speak to at least one of their friends.

It is instructive to investigate the relationship between homophily and the performance

of random seeding. The homophily measure for the islands network, as defined by Golub

and Jackson (2012), is given by

din − dout
din + (m− 1)dout

.
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We can see that the existence of significant homophily does not necessarily imply

that the condition of Corollary 3 is (or is not) satisfied. For instance, when dout = 0, so

there are no cross-group links and the network exhibits extremely homophily, the average

degree becomes din/m. If cdin
m

> 1, the result of our theorem still holds. On the other

hand, when din = dout and thus the network exhibits no homophily, spectral homophily is

0 and the average degree is din. Thus, the condition 1
m

(din+(m−1)dout) > 1/c translates

to din > 1/c. This illustrates that there is no immediate relationship between homophily

and the conditions required for random seeding to perform close to optimal.

3.4 Erdős-Rényi Networks with Clustering

In all of the network models considered so far, the probability that a node i is connected

to some node j is independent of whether they are both friends with k. In many real-

world networks, on the other hand, having a common friend increases the probability

of connection. We now present a simple network model that admits clustering to prove

that existence of this property—known as clustering—will not affect our results. Our

simulations of the next section show that even in real-world networks with significant

clustering, our results hold.

Here, we consider a network formation model that allows for higher clustering. Incor-

porating clustering into IRNs is technically challenging, and thus we state this last result

for a new model of network formation that includes clustering into a generalized version

of the Erdős-Rényi model.8 As in the model of Jackson and Rogers (2007), nodes meet

each other randomly at first and then make a few random friendships with the neighbors

of their initial neighbors, which can be thought of as a natural model of how clustered

relationships arise. To that end, we define a k-level random network in the following way.

Definition 1 (k-Level Random Network). Let φ = (λ, q1, . . . , qk) ∈ [0, 1]k+1. A k-level

network on n nodes, denoted Ln(φ), is constructed in two steps: first, sample a random

graph Gn from the family of Erdős-Rényi networks with n vertices and average degree

d. Second, include for every node, a link with one of its neighbors of neighbors with

probability 1−
√

1− q1, a link with one of its neighbors of a neighbor of a neighbor with

probability 1−
√

1− q2 and so on up to k.

An Erdős-Rényi network is a special case of a k-level random network for q1 = · · · =
qk = 0, while other values of qi allow for higher clustering coefficient. We refer to Gn in

the definition of k-level random graphs as the base random graph and d as the base-level

average degree.

8Even then, we cannot theoretically study this model for the case when the total diffusion size is
vanishingly small, and rely on simulations in that regime. See Appendix I for simulations.
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Corollary 4. Consider a k-level random network with base-level average degree d. If

cd > 1, then for any x and s,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.

We prove this Corollary in Appendix C.1.

This result suggests that even in networks with clustering, the gap between random

with x extra seeds and omniscient seeding is exponentially small in x.

3.5 Real-world Networks

None of the existing network formation models are perfect representations of the real-

world networks. They can match degree distributions, or even incorporate clustering,

but they cannot match all moments of the data. A curious reader may wonder whether

our results are robust with respect to the network formation models we considered here.

To address this concern, we now offer a (network formation) model-free perspective on

the main theorem. We simulate the diffusion model studied here on the microfinance

network data in Banerjee et al. (2013) as well as a subnetwork of Facebook, and compare

the performance of various seeding strategies.

The networks in Banerjee et al. (2013) have households as nodes, with edges repre-

senting some sort of relationship. For example, in one network, the edges represent that

members of the incident households go to temple, mosque or church together. In another

network, the edges represent the fact that members of one household have borrowed or

loaned money to those in the other or frequently give or take advice from the other,

and so on. While some of these relationships are directed, the graph will be taken to be

undirected. For information diffusion, it is not unreasonable to think that any sort of

contact creates an opportunity to speak about the topic at hand.

Simulations in Figure 2 compare the average performance of random, degree-central,

diffusion-central9, eigenvector-central, and omniscient seeding strategies on village net-

works, which includes an edge between two households whenever either party indicated

some contact with the other group of any form. Results are included for two different

values of communication probability c. In both cases, random with a few extra seeds can

compete well with network-guided seeding heuristics. For instance, when c = 0.1, random

with 5 seeds performs as well as degree- and diffusion-central seeding with two seeds, and

9Degree centrality is simply a ranking of nodes from those with the most neighbors to those with
the least. Diffusion centrality for each node in a graph with adjacency matrix g, diffusion probability q,
and T periods of communication is given by DC(g, q, T ) = [

∑T
t=1(qg)t] · 1 (Banerjee et al., 2013). At

T = 1, this measure ranks nodes simply by degree, and as T →∞, depending on whether q is larger or
smaller than the inverse of the largest eigenvalue of g, the vector of diffusion centralities converges to a
ranking proportional to Katz-Bonacich or eigenvector centrality respectively (these can be taken as the
definitions of the latter measures).
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Figure 2: A comparison of average diffusion for various seeding strategies (omniscient,
random, degree-, diffusion-, and eigenvector-central seeding) across ‘all inclusive networks’
in the village network data, for two different levels of communication probabilities.

better than omniscient with one seed. When c = 0.2, random with 5 seeds performs

better than all heuristics with an equal number of seeds, and better than omniscient with

one seed. We discuss the observation that, fixing the number of seeds, random beats

network-guided heuristics in Section 5.

Comparison to the OPT. With only one seed, we can calculate the exact OPT

numerically. We compute OPT for a sample Indian village network. Our simulations

show that when cd = 1.5, random with 3 extra seeds beats both OPT and OMN. When

cd = 2, meanwhile, random with 2 and 3 extra seeds beat OPT and OMN, respectively.

In our discussion of variance in Section 4.1.1, we show that random with 4 extra seeds

empirically first-order stochastically dominates both OPT and OMN with one seed.
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Figure 3: A comparison of average diffusion for various seeding strategies (omniscient,
random, degree-central, diffusion-central, and eigenvector-central seeding) in a subnet-
work of Facebook, for two different levels of communication probabilities..

Next, we replicate the comparison between diffusion strategies on a Facebook subnet-

work in Figure 3 to show that the patterns observed for the Indian village data roughly

bear out here as well. In comparison to the village data, the degree distribution for this

network exhibits a fatter right tail. As it can be seen, for both c = 0.02 or c = 0.05,

random seeding quickly catches up with network-guided seeding heuristics. For instance,

when c = 0.05, random seeding with 5 seeds beats omniscient seeding with one seed.

A virtue of random seeding. Simulations on Facebook network show that for 12 or

more seeds, random beats diffusion- and eigenvector-central seeding with an equal num-

ber of seeds. These simulations highlight a more general point that when the number

of available seeds is not too small, random seeding can perform better than centrality-

23



guided seeding heuristics. Centrality-guided seeding heuristics pick redundant agents,

who are likely to be part of the connected core of the network. Seeding those individuals

has decreasing marginal value. As the number of seeds increases, seeding an additional

individual in the giant component is less valuable than seeding individuals in small com-

ponents. Random seeding performs better because it is more likely to seed individuals in

the small components as well.

4 Robustness and Limitations

Here, we extend the comparison between seeding strategies beyond the expected value

of eventual diffusion. In particular, we see how random seeding compares to optimal

seeding when taking into account variance and speed of diffusion. We then investigate

the robustness of our results to alternative diffusion models.

4.1 Alternative Objective Functions

4.1.1 Variance of Random Seeding

In some settings, maximizing the expected diffusion might not be the only objective. One

reason for using network information and optimal seeding might be to guarantee some

baseline level. In this sense, the variance of the performance of a seeding strategy is

an important measure. Here we show that random seeding can compete with network-

guided heuristics not only in expected value, but also in variance. Recall that α =

limn→∞H(OMN, 1) is the limit fraction of informed agents under the omniscient seeding

strategy.

Proposition 1. Consider a sequence of IRNn(p(κ)). Let s be the number of seeds. Then

lim
n→∞

Var(H(RAND, s)) ≤ α2(1− α)s(1− (1− α)s).

We prove this proposition in Appendix E.

Proposition 1 shows that the variance of random seeding is exponentially small in the

number of extra seeds used. For instance, in diffusion in a large Erdős-Rényi network

with dc = 2, α ' 0.8, and thus the variance of random seeding is less than 0.0014.

Small networks and stochastic dominance. Proposition 1 proves that random

seeding as a small variance in large networks. We verify that the same thing holds in

small, real-world networks by conducting simulations on the Indian village networks. In

fact, our simulations show something even more powerful: random seeding with just a

few seeds more beats (first-order) stochastically dominates OPT and OMN, as shown

in Figure 4. Here, we simulate an SIR diffusion model with c = 0.15 on an Indian
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Figure 4: The empirical CDF of the percentage of informed nodes for various seeding
strategies in a sample Indian village network. Random with 3 seeds stochastically domi-
nates OPT with 1 seed and random with 5 seeds stochastically dominates OMN with 1
seed.

village network with 99 nodes and depict the CDF of the percentage of informed nodes

in different simulations. Random with only one seed performs poorly, but random with 2

additional seeds stochastically dominates OPT with one seed, and random with 4 extra

seeds stochastically dominates OMN with one seed.

4.1.2 Speed of Diffusion

Can random seeding compete with network-guided heuristics in speeds of diffusion? This

question addresses the economically salient concern that even if both seeding strategies

eventually reach the same diffusion level, network information allows policymakers to

significantly accelerate the speed with which the information spreads. As an example,

policymakers may be concerned with how quickly farmers adopt a new technology, so

that the developing economies may grow at faster rates.

To address this question, we now consider a bounded diffusion process, where the

diffusion stops after T periods. We then ask: can random seeding with extra seeds beat

OPT for any T? Figure 1 already shows that in general, the answer to this question is

no. In order for random to beat OPT in the star network example, the process should

continue for at least two periods. Thus, if a policymaker’s objective is to maximize the

extend of diffusion in one period (i.e., only those who are directly informed by seeds),

then random seeding has a hard time catching up.

Nonetheless, our theoretical result in this section shows that at least for Erdős-Rényi

networks (potentially with clustering), with O(log(n)) times additional seeds, random
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Figure 5: Average number of extra seeds required by random to outperform diffusion-
centrality seeding in Indian village networks (in of speed of diffusion). If objective is
diffusion in the first T=1 or T=2 periods, then extra seeds required is relatively high
(still less than 15), but once total outreach in the first T=3, T=4 or more periods is the
objective, less than 9 extra seeds is enough.

seeding competes with the omniscient seeding even in the speed of diffusion. For the

proof see Appendix C.2.

Proposition 2. Consider an Erdős-Rényi network on n nodes with constant average

degree d and a diffusion process with communication probability c that ends in T ≥ 1

periods. Then, with high probability, for every s,

H(RAND, 2T 3 log(n)s) ≥ H(OMN, s).

As described in the appendix, this bound straightforwardly extends to a model of

graphs with clustering inspired by Jackson and Rogers (2007), where friend of friends

and friend of friend of friends etc. are likely to be one’s direct neighbors as well. In this

sense, clustering does not change the performance comparison between omniscient and

random seeding in speed of diffusion.

For power-law networks, this result fails, since for T = 1, when only the first period

diffusion matters), it is clearly important to identify highly central nodes. Thus, extra

seeds required by random seeding to compete with network-guided heuristics in the speed

of diffusion depends crucially on the underlying network structure. We now investigate

this question in the context of Microfinance diffusion of Banerjee et al. (2013).
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(a) No vaccination (b) Optimal vaccination
of 1 agent

(c) Random vaccination
of several agents

Figure 6: Random strategy with a few additional individuals can perform poorly when
the goal is to ‘vaccinate’ individuals to halt the diffusion. Consider a star network with n
leaves, for some large n. Suppose some random individual gets infected with some disease
(the red node), and any infected node infects its neighbors with probability c = 0.5. The
goal is to vaccinate a single individual to minimize diffusion. 6(a): Without vaccination,
the central node will be infected with probability 0.5, and thus n

4
of agents get infected

in expectation. 6(b): Vaccinating the central node is optimal, as it stops the diffusion
completely. 6(c): Randomly vaccinating x = o(n) individuals picks the central node with
vanishing probability. The chance that the central node gets infected is around 50%, so
nearly (n−x)

4
of agents get infected in expectation.

Speed of diffusion in Microfinance. Figure 5 depicts the extra number of seeds

needed for random to beat diffusion-central seeding, simulating the microfinance diffusion

model on Indian village networks. We consider a bounded diffusion process, where the

diffusion stops after 1, 2, 3 or 4 periods. When the diffusion ends in T = 1 or T = 2

periods, the extra number of seeds required for random to beat diffusion centrality is

between 3 to 13, depending on the number of seeds. Note, in particular, that for T = 1

the number of extra seeds is increasing in s. As noted above, the linearly increasing

bound proved in Proposition 2 is for the worst-case scenario, when T = 1.

When T = 3 and T = 4, the extra number of seeds needed for random is always less

than 9 and 7, respectively.

4.1.3 Diffusion Minimization by Vaccination

Network information can be highly valuable when a policymaker wishes to minimize the

spread of some diffusion. This is a relevant point for the diffusion of fake news (or an

infections), where a policymaker wants to inform individuals that the news is fake (or to

vaccinate them) so that they stop spreading it.

To fix ideas, suppose some random individual is infected with a disease, and the

diffusion process is the diffusion model studied in this paper. A policymaker seeks to

‘vaccinate’ a group of individuals to minimize the extent of the diffusion. It is known

that it is important to pick the optimal individuals for vaccination (Bollobás and Riordan,

2004; Drakopoulos et al., 2016). In fact, we conjecture that the number of additional
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individuals that we need in order for random vaccination to beat the optimum can be

as large as a constant fraction of all agents. Figure 6 shows one such example. An

individual is randomly infected, and the goal is to vaccinate one individual to minimize

the size of diffusion. Optimal vaccination will choose the central node and the diffusion

stops. Random vaccination, even with a few extra seeds, is not going to pick the central

node, and thus performs poorly.

4.2 Alternative Diffusion Models

So far, our theoretical results focused on the undirected SIR model of diffusion, which is

used to study processes such as diffusion of information and ideas, rumors, or infectious

diseases. We focused on the SIR model since this is a workhorse model, studied and esti-

mated in several economic environments. We will now discuss some alternative diffusion

models under which our results will (or will not) hold.

4.2.1 Directed communication

The models considered so far exhibit undirected relationships and communications. In

particular, the event that node i talks to j if informed is coupled with the event that j

talks to i if informed. The assumption of undirected relationships and communication

may both be called into question. Indeed, it frequently happens in surveys that one

individual names another as a close friend, without the other declaring in kind. In

addition, even if relationships are undirected, it is not a foregone conclusion that just

because one agent would have informed a friend of some information, that the reverse

would have occurred had the latter party learned of the information first.

We will now consider a model of directed networks similar to Erdős-Renyi. D(n, d)

is a random directed network on n nodes in which directed edge (i, j) is drawn with

probability d
n
. In this setting, OMN observes a realization of the directed communication

network and chooses the best nodes to seed using this information.

Proposition 3. Consider a random directed network, D(n, d). If cd > 1, then for any x

and s,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.

If cd < 1, then for every s,

lim
n→∞

H(OMN, s) = 0.

Proof overview. The idea of using the communication network applies also to the case

of directed networks with directed communication. However, the nodes that ultimately

become informed are those for which a directed path exists from a seed. The analog of
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Figure 7: Above is an example communication network when communication is directed.
The outgoing edges represent the nodes that a given node would inform if given informa-
tion. The nodes within the dotted dashed circle represent the strongly connected giant
component. The orange nodes, if informed, disseminate information to the SGC. In this
example, OMN will choose to seed the upper right node, given a single seed. In the proof
of Proposition 3, we show that the size of the set of any cluster of orange nodes (paths
to the SGC) is o(log(n)) so that OMN cannot significantly outperform RAND.

the giant component is the unique strongly connected giant component (SGC), which the

random seeding strategy reliably hits.

The trouble in this case, however, is that a seed which ultimately informs the SGC

may not be a member of this component at all (see Figure 7). Consider such a node and

the length of the shortest path leading from this node into the SGC. If the path length is

long, an omniscient strategy would go choose this node as an entry point into informing

the nodes in the SGC. But a random seeding strategy with any number of seeds would

not hit such a node, other than through sheer luck. Results in Karp (1990) indicate that

such paths are o(
√
n) in length, which is too generous of an upper bound for our results

to hold. In Appendix D, we establish that these paths are in fact O(log(n)) in length,

and can therefore be safely ignored.

4.2.2 Models from development economics

The diffusion models used in Banerjee et al. (2013) and Cai et al. (2015) are more complex,

but still share the feature of the SIR model that an agent’s neighbors are “substitutes”,

in the sense that having one informed neighbor ensures with sufficiently high probability

that an agent will be subsequently informed. For instance, in Banerjee et al. (2013), once

an agent gets informed, she may or may not participate in the microfinance program, and

participants inform their neighbors with higher probability than non-participants. Cai

et al. (2015), on the other hand, consider a linear probability model, where the chance

that an agent gets informed is proportional to the number of its informed neighbors.
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Our basic insight goes through for all diffusion models discussed above. To show

this, we will consider the diffusion models and the social network data of Banerjee et al.

(2013) and Cai et al. (2015) and compare centrality-guided and random seeding strategies.

Simulations reported in Appendix F (for the Microfinance model) and Appendix G (for

the weather insurance model) show that the number of additional seeds required for

random to perform no worse than 95% of centrality-guided heuristics is small, typically

less than 3.

When the diffusion process is such that neighbors are “complements”, say when several

of an agent’s neighbors have to adopt a technology before he does the same, our results

may fail to hold. For instance, in the threshold type models of diffusion, agents will

only adopt a behavior if at least a certain number (or fraction) of their neighbors adopt,

so there are complementaries in the inputs of propagation. Beaman et al. (2019) study

technological adoption by farmers as they vary seeding rules in village-networks in Malawi

in an experimental setting. Their result suggests a threshold-type diffusion process,

although they observe little diffusion. Since random seeding is unlikely to inform multiple

neighbors of the same node, random seeding will fail to prompt any diffusion if thresholds

are uniformly high across all agents. This intuition has been subsequently formalized in

Jackson and Storms (2017). Typically, these models assume a uniform threshold across

agents. However, if thresholds are heterogeneous and sufficiently many agents have a

threshold of 1, then results similar to our main theorems may continue to hold.

4.2.3 Heterogeneous communication probabilities

In the IRN model, each pair of agents i and j are connected and communicate with

probability cκ(i, j), where c is the communication probability regardless of types. In

principle, we could instead consider a model where each type i agent communicates

with a type j agent with probability cij. Then, a type i individual is connected to and

speaks to a type j individual with probability cijκ(i, j). Note that in models such as the

SIR, connection probability (κ(i, j)) and communication probability (cij) play a similar.

Therefore, as long as cij = cji, we can simply define a new symmetric kernel function

κ′(i, j) = cijκ(i, j) and assume c = 1 is the communication probability for all types. This

then becomes a special case of our analysis.

Results will change, however, if we drop the symmetry assumption; that is, if cij 6= cji.

In some real-world settings, an individual might be valuable to target not because she is

central in the network, but because she is more “diffusive” or “persuasive.” Our model

abstracts from this asymmetry in persuasiveness. Consider the example of Figure 1.

Suppose the central agent talks to her neighbors with probability 0.5, but her neighbors

talk to her with probability 0.05, so the central node is more persuasive. Then, in order

for random to beat the strategy of seeding the central node, it needs 55 extra seeds.

Whether the symmetry assumption is plausible is context-dependent. It is likely a

30



more plausible one in village settings, where two people communicate when they meet or

call, and degree distributions are more concentrated than online social networks, where

highly connected individuals are typically more likely to communicate to their friends than

the reverse. It may also be a more plausible assumption for pure information diffusion

than settings where individuals are ‘learning’ from others.

5 Concluding Remarks

Our formulation for the value of network data can be generalized to settings different from

ours. In particular, consider a general network setting, where a research study aims to

identify optimal nodes of a network for maximizing diffusion for a given diffusion model.

The diffusion model could be the model studied in this paper or generalizations thereof, or

any other diffusion model of interest. Suppose the researchers identify a specific seeding

heuristic to perform well. These researchers can report the following statistic as a policy-

relevant quantity: How many extra seeds does the random seeding strategy need to be

within z% of their proposed strategy, for a small z?

For example, for the diffusion model of Banerjee et al. (2013) and with s = 10 initial

seeds, random seeding with 1 extra seed performs within 95% of their proposed strategy

(diffusion centrality), and for the weather insurance setting of Cai et al. (2015) with s = 5,

random seeding with 1 additional seed performs within 95% of their prescribed strategy

(eigenvector centrality).10 Additional numbers are reported in Table 1.

Whether seeding a few extra individuals is cheaper than collecting and analyzing net-

work data is, of course, context-specific. We quantified the value of network data by

comparing it to the number of extra seeds needed, precisely because policymakers are

better positioned to compare the costs of the two. However, it appears to us that poli-

cymakers would benefit a lot comparing these two methods—expanded outreach versus

network targeting—before spending resources to identify the optimal seeds.

10For microfinance diffusion, for instance, we measure the expected diffusion of seeding s top degree-
central agents, seed s+x agents randomly, and measure the expected diffusion for x ≥ 0 up to the point
that we find some x for which the latter performs within a desired range of the former.
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Extra seeds required by random to beat 95% of proposed heuristics
Model s (Number of

seeds)
x (Extra
seeds needed)

CENTRAL(s) RAND(s+x)

Microfinance 5 3 165 159
Microfinance 10 1 175 169
Weather 2 2 12 13
Weather 5 1 20 19

Table 1: Calculating the statistic of extra seeds required by random to beat a network-
guided heuristic for the Microfinance network of Banerjee et al. (2013) and the weather
insurance network of Cai et al. (2015).
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A Proof of Theorem 1

In this appendix, we prove Theorem 1.

Let us start with a lemma on the performance of RAND and OMN on the communi-

cation graph K(G) for an arbitrary G. We will be using this lemma multiple times:

Lemma 1. Let K = K(G) denote the communication graph of a given graph G. Denote

by CC the number of connected components of K, and Ci the size of the i’th largest

component in K. Then,

h(G, s,OMN) = E[

min{s,CC}∑
i=1

Ci] (2)

and

h(G, s,RAND) = E[
cc∑
i=1

Ci(1− (1− Ci
n

)s)] (3)
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Proof. The proof immediately follows the observation that in the SIR model a node

becomes informed, if and only if one of the nodes in its connected components in K is

seeded. In order to see equation (2), note that OMN maximizes the spread of the diffusion

by informing one agent from each of the largest s connected components. Equation (3)

captures the fact that the random policy hits a component with probability proportional

to its size.

Proof of Theorem 1. When ||Tκ|| > 1/c, as n→∞, by Theorems 3.1 and 3.12 (Bollobás

et al., 2007) on the sizes of connected components of a random graph in the IRN model,

there exists an α ∈ (0, 1] such that with high probability for graph κ(G), C1 = αn+ o(n)

and Ci ∈ O(log(n)) for all 2 ≤ i ≤ CC. Let Gn be a randomly realized network from

IRNn(p(κ)).

The combination of the above result with Lemma 1 implies that forGn, h(Gn, s,OMN) ≤
C1 + (s− 1)C2 = αn+O(log(n))s with high probability.

With s + x seeds, the probability that a node in the largest component is randomly

seeded converges in probability to (1 − (1 − α)s+x). Again, using Lemma 1, h(Gn, s +

x,RAND) ≥ C1(1− (1− C1
n

)s) ≥ αn(1− (1−α)s+x) + o(n), with high probability. Taking

expectations over the realizations of Gn:

H(RAND, s+ x)

H(OMN, s)
≥ αn(1− (1− α)s+x) + o(n)

αn+ o(n)
,

which is equal to (1− (1− α)s+x) as n→∞.

When ||Tκ|| < 1/c, then even C1 = o(n), so H(OMN, s) = o(n), which shows the

second part of the theorem.

B A General IRN model and Proof of Corollary 2

Unlike the definition that appears in the main body of the text, the Chung-Lu graph

considered here has infinitely many types. To extend phase transition results similar to

those used in Theorem 1, we need to modify the stated model of inhomogeneous random

graphs appropriately. The next subsection introduces the appropriate model.

B.1 Infinite Type IRNs

This section closely follows Van Der Hofstad (2016) to extend the IRN model to a setting

with potentially infinite type-space.

A ground space is a pair (T , µ), where T is a separable metric space and µ is a Borel

probability measure on T . The set T is the set of agent types and it can include finite

or infinite types of agents. The measure µ(A) denotes the proportion of agents having a

type in A, for A ∈ T in the limit as n grows, in a manner to be formalized now. A node
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space V is a triple (T , µ, (xn)n≥1) where (T , µ) is a ground space and, for each n ≥ 1, xn

is a random sequence (x1, x2, ..., xn) of n points of T , such that:

µn(A) = #{i : xi ∈ A}/n→ µ(A),

for every µ-continuity set A ∈ T .

A kernel κ : T 2 → [0,∞) is a symmetric (Borel) measurable function. For a fixed

kernel κ and n ∈ N, IRNn(p(κ)) is the random network on [n] = {1, 2, · · · , n}, where

each possible link ij, i, j ∈ [n] is present with probability

pij(κ) = pij =
( 1

n
κ(xi, xj)

)
∧ 1,

and links are present independently of each other. Note that this model allows for

type-specific correlations among agents. While the choice of a kernel is arbitrary, for

typical applications we want the graph to be “connected”. This motivates the following

definition. We say a kernel κ is reducible if there exists some A ⊆ T with 0 < µ(A) < 1

such that κ = 0 on A × (T \A) almost everywhere. The kernel is irreducible if it is

not reducible. Irreducibility means that the graph IRNn(p(κ)) cannot be split into two

graphs so that the probability of a link from one part to the other is zero. This is a

natural restriction, since if it fails, then the graph is split into two independent random

graphs, so we could have considered each of them separately.

We now define the notion of a regular kernel.

Definition 2 (Regular Kernels). A kernel κ is regular if it is irreducible and the following

conditions are satisfied:

1. κ is continuous on T 2 almost everywhere.

2.
∫∫
T 2 κ(x, y)µ(dx)µ(dy) <∞

3. 1
n
E[|E(IRNn(p(κ))|] = 1

2

∫∫
T 2 κ(x, y)µ(dx)µ(dy).

Similarly, a sequence (kn) of kernels is called regular with limit κ when xn → x and

yn → y imply that κn(xn, yn)→ κ(x, y), where κ is regular and:

1

n
E[|E(IRNn(p(κn))|]→ 1

2

∫∫
T 2

κ(x, y)µ(dx)µ(dy)

Conditions (1), (2), and (3) imply that the expected number of edges in the graph is

proportional to n, with the proportionality constant being equal to
∫∫
T 2 κ(x, y)µ(dx)µ(dy).

This ensures that the average degree per node “converges”.

Finally, let:

(Tκf)(x) =

∫
T
κ(x, y)f(y)µ(dy),
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for any measurable function f such that this integral is defined for (almost every) x ∈ T .

We can now define the key mathematical object:

||Tκ|| = sup{||Tκf ||2 : f ≥ 0, ||f ||2 ≤ 1}.

We are now ready to state a result from Van Der Hofstad (2016) that is useful in

extending Theorem 1 to infinite type spaces:

Theorem 2 (Van Der Hofstad (2016)). Let (κn) be a sequence of regular kernels with limit

κ, and let C1 denote the largest connected component of IRGn(p(κn)). Then |C1|/n→ α

for some α ∈ [0, 1]. Moreover, α > 0 if and only if ||Tκ|| > 1.

B.2 Proof of Corollary 2

In this section, we prove Corollary 2. Let CLn(n,wn) be the power-law Chung-Lu network

with scale parameter b and minimum expected degree d i.e., wni = [1− F ]−1(i/n), where

F (x) = 1− ( d
x
)b.

The first observation is that the probability that nodes i and j are connected in

K(CLn(w)) is

cpij = c
wni w

n
j∑

k w
n
k

=
(cwni )(cwnj )∑

k cw
n
k

=
w′i

nw′j
n∑

k w
′
k
n

where w′i
n = cwni . Second, [1− F ]−1(x) = d

x1/b
, so w′i

n = cwni = cd
(i/n)1/b

.

Therefore, K(CLn(w)) is also a power-law network with scale parameter b and mini-

mum expected degree cd. Equivalently, w′i
n = [1− F ′]−1(i/n), where F ′(x) = 1− ( cd

x
)b.

Let W ′ be a random variable with cumulative distribution function F ′ on [cd,∞).

W ′ follows a Pareto distribution with scale parameter b and the minimum support cd,

therefore E[W ′] = bcd
b−1

when b > 1 and infinity when b ≤ 1. Similarly E[W ′2] = b(cd)2

b−2

when b > 2 and infinity for b ≤ 2.

The rest of the proof follows easily along the same lines as the analysis of the connected

components of Chung-Lu graphs. The reader can also see Section 3.5.2 of Van Der Hofstad

(2020) for more details.

When b > 2, E[W ′] <∞, so Conditions (1)-(3) of Definition 2 hold. Therefore, kernels

κn(i/n, j/n) = npij =
w′

iw
′
j

1
n

∑
k w

′
k

are regular and have a limit κ(x, y) = [1 − F ′]−1(x)[1 −

F ′]−1(y)/E[W ′]. Furthermore, ||Tκ|| = E[W ′2]
E[W ′]

= cd(b−1)
(b−2)

. So, ||Tκ|| > 1 if and only

if cd > b−2
b−1

. Applying Theorem 2, we obtain that the largest connected component

of K(CLn(w)) is of linear size in n if and only if cd > b−2
b−1

. Theorem 3.17 of Van

Der Hofstad (2020) implies that the rest of the connected components are all of size o(n).

Now, applying Lemma 1, we can prove Corollary 2 in the case b > 2.

When b ∈ (1, 2), E[W ′2] = ∞. So, ||Tκ|| = ∞ or all non-negative values of c.

Therefore, the graph has a unique connected component with size linear in n. Lemma 1
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implies Corollary 2 for this case similarly.

C Clustering and Speed of Diffusion

This appendix shows that the main insight goes through for a model of networks with

clustering as stated in Corollary 4. We will subsequently prove Proposition 2.

C.1 Proof of Corollary 4

Let G be the k-level network and G1 its base graph. The base graph G1 is an Erdős-Rényi

network with n vertices and average degree d. Since cd > 1, with high probability, the

communication network K(G1) has a unique connected component C1 of size C1n+ o(n)

and the rest of its connected components C2, C3, · · · Ck are of size at most O(log(n)).

Now, note that by definition, K(G1) ⊂ K(G). Furthermore, the connected compo-

nents of K(G) are formed by merging connected components of K(G1) using edges of

level 2, 3, · · · k. By the symmetry of Erdős-Rényi networks, conditioned on components

C1, C2, · · · Ck, the probability that there is an edge in G1 between two components Ci and

Cj, for 1 ≤ i < j ≤ k depends only on the cardinality of these two subsets. Similarly, the

probability that two connected components of K(G1) have an edge of level 2 to k between

them depends only on their sizes too.

The above observation, along with straightforward calculations show that with high

probability K(G) has a unique giant component of size C
′
1n + o(n), where C

′
1 ≥ C1 and

the rest of the components are of size o(n). The rest of the proof follows from the proof

of Theorem 1.

C.2 Proof of Proposition 2

Suppose cd > 1. Then classic results in random graph theory (e.g. see Theorem 2.11 of

?) establish that Erdos-Renyi graphs with average degree cd converge in the local weak

sense to a Poisson branching process with mean offspring cd. Specifically, E[Nt(v)] is at

least (cd)T , where NT (v) is the number of vertices within distance T from v. That shows

that RAND can reach s(cd)T vertices in expectation.

For bounding the performance of OMN, we need to bound maxv∈K(G)(Nt(v)). For

that, we use Lemma 1 from ?, which in our setting implies that with high probability,

K(G) is such that, for every vertex v, |NT (v)| ≤ 2T 3 log(n)(cd)T . Therefore, OMN can

reach at most 2T 3 log(n)(cd)T s with s seeds.

For cd < 1, we can plug in the above bound for cd = 1 to get an upper bound

of 2T 3 log(n) on |NT (v)|. This observation implies that OMN cannot reach more than

2T 3 log(n)s vertices. Obviously RAND reaches at least s vertices with s seeds.
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Finally, note that for a k-level random network with a Erdos-Renyi random graph

with average degree d as a base, the maximum size of a t-neighborhood is no more than

the maximum size of tk-neighborhoods in the base random graph. Therefore, the largest

t−neighborhood in Ln(φ) is of size o(log(n)) as well.

D Directed Networks and Communication: Proof of

Proposition 3

Consider a model of directed networks similar to Erdős-Renyi: D(n, d) is a random di-

rected network on n nodes in which directed edge (i, j) is drawn with probability d
n
.

In this setting, OMN observes a realization of the directed communication network and

chooses the best nodes to seed using this information. A strongly connected component is

a subgraph for which there exists a directed path between any two member nodes. A rele-

vant concept for directed graphs is that of a strongly connected giant component, which is

a strongly connected component containing a linear fraction of the nodes, asymptotically.

We will follow the arguments of Karp (1990) to show Proposition 3.

Proof of Proposition 3. First we note three facts from Karp (1990).

1. Under the condition cd > 1, there exists a strongly connected giant component

(s.g.c.) with high probability.

2. If the s.g.c. contains Θn nodes, then dc(1−Θ) < 1.

3. Let f(n) be any superconstant that is also o(
√
n), and let R(v) be the vertices

reachable from any node v through some path. Then there exists a B > 0 such

that with high probability, |R(v)| ∈ [0, B log(n)] ∪ [Θn− f(n)
√
n,Θn+ f(n)

√
n].

From fact 3, we know that each trial of RAND gets at least Θn nodes with probability

Θ, whereas a single omnisciently chosen seed may reach up to Θn+ f(n)
√
n nodes. The

difference of f(n)
√
n is irrelevant for our result when s is a constant. So the combination

of the above three observations already proves Proposition 3.

We prove a stronger result for all s = o(n/ log(n)). Let C be the set of nodes reachable

from any vertex in the strongly connected component. We want to show that with high

probability, for every vertex v, |R(v) − C| = O(log n). If v is in C, we are done, so

suppose v /∈ C. If V is the set of nodes in the graph, it suffices to show that there are at

most O(log(n)) nodes in V − C for which there exists a path from v entirely consisting

of nodes not in C.

To see this, consider the subgraph consisting of nodes in V − C. The probability of

communication between any two nodes is at most pc, and |V −C| is at most (1−Θ)n+

f(n)
√
n by fact 3. By fact 2, there exists an ε > 0 such that dc(1 − Θ + ε) = dcΘ′ < 1.
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Figure 8: Above is an example communication network when communication is directed.
The outgoing edges represent the nodes that a given node would inform if given informa-
tion. The nodes within the dotted dashed circle represent the strongly connected giant
component. If any node is informed within the s.g.c., all nodes in the s.g.c. become
informed. Random seeding with enough seeds will land a seed in the s.g.c. with suffi-
ciently high probability. The orange nodes, if informed, also disseminate information to
the s.g.c. In particular, OMN might choose to seed the dark orange node, given a single
seed (and there could be many such useful entry points, though only one set of orange
nodes is pictured above). In the proof of Proposition 3, we want to show that the size
of the set of any cluster of orange nodes is o(log(n)) so that OMN cannot significantly
outperform RAND.

Therefore, the number of neighbors of a given node (within the subgraph in consideration)

is asymptotically dominated by Bin(Θ′n, dc). Using the Poisson approximation to the

binomial distribution, a standard result on bounding the population of a Galton-Watson

branching process, and the Chernoff bound, we get:

Pr(|R(v)| > k) ≤ e−k(t−dcΘ′(et−1))

for t of our choice. Since dcΘ′ < 1, t can be chosen small enough such that−k(t−dcΘ′(et−
1)) is strictly negative. When k = B log(n), for large enough B, we can apply the union

bound and show that Pr(|R1| > k) is vanishing, where R1 = maxv∈V−C |R(v)|.

An alternate model is one in which the original graph is undirected, but communi-

cation is directed. This is not altogether a superficial change from the D(n, d) model.

In particular, the probability that i communicate with j is correlated to the probability

j communicates with i, since communication is only possible if an edge existed between

the two nodes in the first place (in D(n, d), the directed edges exist with independent

probabilities, so there is no such correlation). In such a model, it can be shown that a

result analogous to 3 holds by similar arguments.
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E Proofs missing from Section 4.1.1

Proof of Proposition 1. Note that with s seeds, the probability that at least one belongs

to the giant component is pn = 1− (1−α)s + o(1). This follows since a giant component

exists with high probability. Since the remaining components are o(log(n)) with high

probability, random seeding reaches a fraction α nodes with probability pn and a fraction

o(1) with probability 1 − pn. The variance in the fraction of nodes reached is therefore

α2(1− pn)pn + o(1)→ α2((1− α)s)(1− (1− α)s).

F Simulations of microfinance diffusion model

Banerjee et al. (2013) study the following diffusion model: There is a piece of information

being spread about a program. Agents are in one of three states with respect to knowl-

edge of and participation into the program: uninformed, informed non-participants, and

informed participants. Each agent is a node in the network. Each period, every informed,

non-participating agent communicates information about the program with each of his

direct neighbors with an independent probability qN . Similarly, each informed partic-

ipant communicates information about the program with each of his direct neighbors

with an independent probability qP ≥ qN . The interpretation is that participants are

more likely to talk about the program than non-participants. All communication ceases

after T periods. For small T , this can be thought of as a crude way of imposing the

fact that people eventually stop talking about the program (although a model in which

each informed individual stops talking about the program T periods from the date she

was first informed better suits this interpretation). Upon becoming informed about the

program, a node makes an irrevocable decision to adopt with probability p. In the case

where qN = qP and T = ∞, the previous model becomes an instance of the SIR model

with k = ∞. In the case where k = 1, this is the independent cascade model Kempe

et al. (2003). The objective function for this diffusion process can be defined to be ei-

ther the expected number of nodes which are informed or the number of nodes which

participate–the authors of the microfinance paper use the latter measure.

To keep the focus on the model of diffusion , we simply model acceptance probabilities

as being constant across all nodes without taking into consideration demographics. This

gives the cleanest comparison between the seeding strategies based on two notions of

centrality. In the simulations, we use the probability of adoption of 0.24, which is the

observed in sample probability of adoption among initial seeds when this study was

carried out. In two different estimates, the authors of the microfinance study estimated

that participants spread information with probability 0.35 while non-participants spread

information with probability 0.05. In another specification, these parameters were found

to be 0.45 and 0.1 respectively. Appendix F shows the results of simulations for both
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Figure 9: This is an analogue of Figure 2 with the diffusion process specified in Banerjee
et al. (2013) rather than the model studied in this paper. As the number of seeds increases,
random seeding performs as well as the centrality-guided seedings.

Figure 10: Random seeding performs well relative to the other seeding strategies. More-
over, it performs better than the seeding guided by the diffusion centrality when the
number of seeds is more than 5.
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sets of parameter estimates. We include simulations for the sparser kerosene and rice

borrowing network in Figure F.

For simulations of Section 4.1.2, we use the same model and data, and vary T between

1 to 4. We conduct simulations on all village networks and take average among them to

calculate the extra number of seeds needed.

G Simulations of weather insurance diffusion model

In this section, we will evaluate the benefit of targeting in the setting studied by Cai

et al. (2015). The authors study diffusion of a new government offered weather insurance

take-up by rice farmers across various villages in China. To understand spill-over effects

in information and take-up decisions, the authors randomly choose injection points for

simple and intensive information sessions about the program. A social network survey

ask participants to list their 5 closest friends, yielding networks in which nodes have close

to identical out-degree, barring some instances of under reporting 11. They find that

an important channel through which take-up happens is by learning about the program

from friends. On the other hand, the purchase decisions of neighbors is not so relevant

to a farmer’s own decision, conditional on learning about the program. Finally, intensive

sessions are more effective than simple sessions in generating uptake.

The authors show these effects in reduced form regressions and without explicitly

laying out a model of diffusion. They find that if a strongly-linked 12 neighbor of an

untreated node learns about the program, this increases the chance of adoption for the

untreated node by 7.5%. If a weakly linked neighbor learns the same, the probability of

adoption goes up by 6%.

Since the authors do not explicitly describe a model of diffusion, we make some as-

sumptions about the process to interpret their results in back-of-the-envelope simulations.

We assume that the probability of adoption for untreated nodes who hear about the pro-

gram from their friends is 35%, the same as the treatment effect of the simple program.

This along with the coefficient of the regressions of fraction of informed friends on up-

take give us a 17% probability of communication occurring along a weak link and a 21%

probability of communication occurring along a strong link in any given period. Since

the channel of diffusion is information, we assume communication occurs each period

with the aforementioned probabilities (unlike our model in which communication ceases

for a node after a single period). Finally, we assume communication happens only two

periods, since only two rounds were studied in Cai et al. (2015). Note these are con-

servative assumptions in that they stack the performance of careful seeding algorithms

11The authors find that even without an explicit constraint on the number of reported friends, most
survey participants list 5 friends anyway.

12Two nodes i and j in a directed network are strongly linked if edges (i, j) and (j, i) are present in
the network. In the present setting, this means both farmers listed each other as friends in the survey.
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Figure 11: DEGREE seeding refers to seeding those with the highest degree, considering
the undirected version of the village network. RAND seeding only chooses out of those
villagers who participated in the social network survey, though they may name individuals
who have not been surveyed as neighbors. Finally EIG refers to eigenvector centrality
seeding. Note the average network size is 50 farmers.

against RAND—the latter, for example, does better when the assumed diffusion process

is unbounded.

We compare random seeding to degree seeding and seeding based on eigenvector cen-

trality13, two measures of centrality the authors suggest for targeting. Since all nodes

more or less report the same number of friends, variation in degree mostly arises from

variation in the number of friends that named the node in question as a friends. The

authors find that under a permissive specification, central nodes do not wield additional

influence over a given neighbor than less central counterparts. Therefore, in our simu-

lations, the benefit of seeding central nodes arises purely from their connection to more

immediate neighbors and paths to other nodes. The results of our simulations show

again in a different network and setting that the presence of network effects and positive

association between centrality and diffusion does not immediately imply that carefully

targeting nodes will make a large difference. Indeed one of the striking findings in Cai

et al. (2015) is that social learning is a powerful vehicle of information transmission–

strong enough that a policymaker may safely ignore minutiae of network structure.

13This is defined by the eigenvector of the largest eigenvalue of the adjacency matrix, ignoring direction
of edges.

45



Figure 12: Performance of different algorithms in Erdős-Rényi graphs, when cd = 0.5.

H Simulations of ||Tκ|| < 1/c regime in small net-

works

To check the behavior of OMN, random, and other seeding strategies when pd < 1, we

conducted some simulations on both Erdős-Rényi graphs (as your comment suggested)

as well as Indian village networks.

As Figure 12 shows, with 1000 nodes, random is overall very close to typically used

network-guided strategies. The OMN algorithm, however, performs unusually good. Even

then, starting from one seed, it can not reach more than 1.3% of the nodes. With 20

seeds, random can reach 4% of the nodes, typically used seeding strategies reach less than

6% of the nodes, while OMN reaches around 11% of the nodes.

When there are 10000 nodes, our limit results are seen much more cleanly. OMN with

1 seed can only reach 0.2% of the nodes. Even with 20 seeds, OMN cannot reach more

than 2.2% of the nodes. Again, random and typically used seeding heuristics cannot

reach more than 0.7% of the nodes, even with 20 seeds.

Figure 13 shows our simulation results for Indian village networks (where the average

size is just below 200). Because these networks are relatively small, OMN can indeed

reach a sizeable fraction of the network when it is given a lot of seeds. Thus, our limit
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Figure 13: Performance of different algorithms averaged over all Indian village networks,
when cd = 0.5.

result for this regime (that limn→∞H(OMN, s) = 0) clearly fails to hold. Even then,

random competes well with typically used heuristic algorithms.

These simulations illustrate two points about the ||Tκ|| < 1/c regime: (1) OMN is too

good of a benchmark for this setting, as it performs much better than not only random

seeding, but also than network-guided heuristics. (2) Random seeding (with a few extra

seeds) competes well with typically used heuristics even in this regime.

I Component Sizes in ER and k-Level Graphs

The top row of Figure 14 shows that for both ER and k-level random graphs, when we

are in the regime that the communication network is very sparse (hence the diffusion will

be unsuccessful), the sizes of the largest and second largest components of the networks

are very small essentially for all network sizes. For percolated k-level graphs, proving

that component sizes are order log(n) is analytically challenging. Simulations, however,

indicate that a similar result is true for such graphs

Figure 14 also shows that in the regime where ER and k-level graphs have a giant

component, the smaller component are O(log(n)) in size. While Corollary 4 keeps s fixed,

these simulations suggest that using similar arguments as in the proof of Corollary 1, one

can perhaps let s belong the class o( n
log(n)

).
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Figure 14: Size of largest and second largest components in ER and k-level graphs in
both regimes. The x- axis is the size of the network and y-axis is the sizes of components.
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