

18.404/6.840 Lecture 4

Last time:
- Finite automata → regular expressions
- Proving languages aren’t regular
- Context free grammars

Today: (Sipser §2.2)
- Context free grammars (CFGs) – definition
- Context free languages (CFLs)
- Pushdown automata (PDA)
- Converting CFGs to PDAs

1

0 S 1

0 S 1

R
ε

0S1

00S11

00R11
0011

Context Free Grammars (CFGs)
#% Shorthand: S → 0S1

S → R S → 0S1 | R
R → ε R → ε

Recall that a CFG has terminals, variables, and rules.

Example of #% generating a string Grammars generate strings
1. Write down start variable Tree of S S Resulting

string
“parse tree”

2. Replace any variable according to a rule substitutions

Repeat until only terminals remain
3. Result is the generated string
4. !(#) is the language of all generated strings
5. We call !(#) a Context Free Language.

∈ ! #%
! #% = 0*1* , ≥ 0}

2

is called a derivati

for so

!
ution steps in !
on of - from ,.

me CFG !.

CFG – Formal Definition
Defn: A Context Free Grammar (CFG) ! is a 4-tuple (#, Σ, &, ')
finite set of variables
Σ finite set of terminal symbols
& finite set of rules (rule form: # → # ∪ Σ ∗)
' start variable

For ,, - ∈ # ∪ Σ ∗ write
Check-in 4.1

1) , ⇒ - if can go from , to - with one substitution step in Which of these are valid CFGs? ∗ 2) , ⇒ - if can go from , to - with some number of substit 90: B → 0B1 | ε 91: S → 0S | S1 , ⇒ ,0 ⇒ ,1 ⇒ ⋯ ⇒ ,3 = - B1 → 1B R → RR
If , = ' then it is a derivation of -. 0B → 0B

∗ a) 90 only 5 ! = 6 6 ∈ Σ∗ and ' ⇒ 6}
b) 91 only

Defn: 8 is a Context Free Language (CFL) if 8 = 5(!) c) Both 90 and 91
d) Neither

Check-in 4.1 3

Observe that the parse tree contains additional informatio

n,

mbiguously

∈ * '(
, (a+a)×a, a, a+a+a, etc.

E+T

T+T×F

F+F×a

a+a×a

E + T

T T × F

F F a

a a a

CFG – Example
'(Parse EE → E+T | T tree

T → T×F | F

F → (E) | a

! = {E, T, F}
Σ = {+, ×, (,), a}
$ = the 6 rules above Generates a+a×a % = E

such as the precedence of × over + .

If a string has two different parse trees then it is derived a
and we say that the grammar is ambiguous.

4

E Resulting
string

Check-in 4.2

How many reasonable distinct meanings
does the following English sentence have?

The boy saw the girl with the mirror.
(a) 1

(b) 2

(c) 3 or more

Check-in 4.2

Ambiguity

!"
E → E+T | T
T → T×F | F
F → (E) | a

!#
E → E+E | E×E | (E) | a

E

E EBoth !" and !# recognize the same language, i.e., $!" = $!# .
However !" is an unambiguous CFG and !# is ambiguous. E E

a + a × a

E E

E E

E
5

Pushdown Automata (PDA)
“head”

a b a b a … aFinite
input appears on a “tape” control

c Schematic diagram for DFA or NFA(pushdown) d stack Schematic diagram for PDA d

Operates like an NFA except can write-add or read-remove symbols
from the top of stack. push pop

Example: PDA for ! = 0$1$ & ≥ 0
1) Read 0s from input, push onto stack until read 1.
2) Read 1s from input, while popping 0s from stack.
3) Enter accept state if stack is empty. (note: acceptance only at end of input)

6

PDA – Formal Definition

Defn: A Pushdown Automaton (PDA) is a 6-tuple (", Σ, Γ, &, '0,))
Σ input alphabet
Γ stack alphabet
&: Q×Σ.×Γ. → 0("×Γ.) Accept if some thread is in the accept state

& ', a, c = 45, d , 47, e at the end of the input string.

Example: PDA for 9 = {;;ℛ| ; ∈ 0,1 ∗ } Sample input: 0 1 1 1 1 0

1) Read and push input symbols.
Nondeterministically either repeat or go to (2). The nondeterministic forks replicate the stack.

2) Read input symbols and pop stack symbols, compare.
If ever ≠ then thread rejects. This language requires nondeterminism.

Our PDA model is nondeterministic. 3) Enter accept state if stack is empty. (do in “software”)

7

Converting CFGs to PDAs
Theorem: If ! is a CFL then some PDA recognizes !
Proof: Convert !’s CFG to a PDA

…E → E+T | T PDA
T → …
F → … CFG

$% E → E+T | T
IDEA: PDA begins with starting variable and guesses substitutions. T → T×F | FIt keeps intermediate generated strings on stack. When done, compare with input.

F → (E) | aE E T T
Input: a + a × a+ + +

E ET T T
× E+T E + T
F

T+T×F T T × F
Problem! Access below the top of stack is cheating!

F+F×a F F a
Instead, only substitute variables when on the top of stack.

a+a×a a a aIf a terminal is on the top of stack, pop it and compare with input. Reject if ≠.

8

Converting CFGs to PDAs (contd)

Theorem: If ! is a CFL then some PDA recognizes !
Proof construction: Convert the CFG for ! to the following PDA.

1) Push the start symbol on the stack.

2) If the top of stack is

Variable: replace with right hand side of rule (nondet choice).

Terminal: pop it and match with next input symbol.

3) If the stack is empty, accept.

a + a × a
Example:

E E F T a + T T

+ + + + T ×

T T T T F

9

#$ E → E+T | T

T → T×F | F

F → (E) | a

E E

E+T E + T

T+T×F T T × F

F+F×a F F a

a+a×a a a a

Equivalence of CFGs and PDAs

Theorem: ! is a CFL iff* some PDA recognizes !
Done.
In book. You are responsible for knowing
it is true, but not for knowing the proof.

* “iff” = “if an only if” means the implication goes both ways.
So we need to prove both directions: forward (→) and reverse (←).

Check-in 4.3
Is every Regular Language also
a Context Free Language?

(a) Yes

(b) No

(c) Not sure Check-in 4.3

10

Regular
language

Context Free
language

Regular
languages

Recap

Recognizer

DFA or NFA

PDA

Context Free
languages

Generator

Regular
expression

Context Free
Grammar

11

Quick review of today

1. Defined Context Free Grammars (CFGs)
and Context Free Languages (CFLs)

2. Defined Pushdown Automata(PDAs)

3. Gave conversion of CFGs to PDAs.

12

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

