
 

  
    

   
  

   
    
   

 
   

18.404/6.840 Lecture 4 

Last time: 
- Finite automata → regular expressions 
- Proving languages aren’t regular 
- Context free grammars 

Today: (Sipser §2.2) 
- Context free grammars (CFGs) – definition 
- Context free languages (CFLs) 
- Pushdown automata (PDA) 
- Converting CFGs to PDAs 
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Context Free Grammars (CFGs) 
#% Shorthand: S → 0S1 

S → R S → 0S1 | R 
R → ε R → ε 

Recall that a CFG has terminals, variables, and rules. 

Example of #% generating a string Grammars generate strings 
1. Write down start variable Tree of S S Resulting 

string 
“parse tree” 

2. Replace any variable according to a rule substitutions 

Repeat until only terminals remain 
3. Result is the generated string 
4. !(#) is the language of all generated strings 
5. We call !(#) a Context Free Language. 

∈ ! #%
! #% = 0*1* , ≥ 0} 
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!
ution steps in !
on of - from ,. 

me CFG !. 

CFG – Formal Definition 
Defn: A Context Free Grammar (CFG) ! is a 4-tuple (#, Σ, &, ') 
# finite set of variables 
Σ finite set of terminal symbols 
& finite set of rules (rule form: # → # ∪ Σ ∗ )
' start variable 

For ,, - ∈ # ∪ Σ ∗ write 
Check-in 4.1 

1) , ⇒ - if can go from , to - with one substitution step in Which of these are valid CFGs? ∗ 2) , ⇒ - if can go from , to - with some number of substit 90: B → 0B1 | ε 91: S → 0S | S1 , ⇒ ,0 ⇒ ,1 ⇒ ⋯ ⇒ ,3 = - B1 → 1B R → RR 
If , = ' then it is a derivation of -. 0B → 0B 

∗ a) 90 only 5 ! = 6 6 ∈ Σ∗ and ' ⇒ 6} 
b) 91 only 

Defn: 8 is a Context Free Language (CFL) if 8 = 5(!) c) Both 90 and 91 
d) Neither 

Check-in 4.1 3 



Observe that the parse tree contains additional informatio 
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mbiguously

∈ * '(
, (a+a)×a, a, a+a+a, etc.

E+T

T+T×F

F+F×a

a+a×a

E + T

T T × F

F F a

a a a

CFG – Example 
'( Parse EE → E+T | T tree 

T → T×F | F 

F → ( E ) | a 

! = {E, T, F} 
Σ = {+, ×, (, ), a} 
$ = the 6 rules above Generates a+a×a % = E 

such as the precedence of × over + . 

If a string has two different parse trees then it is derived a 
and we say that the grammar is ambiguous. 

4 

E Resulting 
string 

Check-in 4.2 

How many reasonable distinct meanings 
does the following English sentence have? 

The boy saw the girl with the mirror. 
(a) 1 

(b) 2 

(c) 3 or more 

Check-in 4.2 



        
          

 

 

 

 

    

 
 
 
 

 
 

    

  

Ambiguity 

!" 
E → E+T | T 
T → T×F | F 
F → ( E ) | a 

!# 
E → E+E | E×E | ( E ) | a 

E 

E EBoth !" and !# recognize the same language, i.e., $ !" = $ !# . 
However !" is an unambiguous CFG and !# is ambiguous. E E 

a + a × a 

E E 

E E 

E 
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Pushdown Automata (PDA) 
“head” 

a b a b a … aFinite 
input appears on a “tape” control 

c Schematic diagram for DFA or NFA(pushdown) d stack Schematic diagram for PDA d 

Operates like an NFA except can write-add or read-remove symbols 
from the top of stack. push pop 

Example: PDA for ! = 0$1$ & ≥ 0 
1) Read 0s from input, push onto stack until read 1. 
2) Read 1s from input, while popping 0s from stack. 
3) Enter accept state if stack is empty. (note: acceptance only at end of input) 

6 



 

       
 
 

    
 
      

   
  

            

       
     

     

   
    

  

      
 

 

    

      

   

 

PDA – Formal Definition 

Defn: A Pushdown Automaton (PDA) is a 6-tuple (", Σ, Γ, &, '0, )) 
Σ input alphabet 
Γ stack alphabet 
&: Q×Σ.×Γ. → 0("×Γ.) Accept if some thread is in the accept state 

& ', a, c = 45, d , 47, e at the end of the input string. 

Example: PDA for 9 = {;;ℛ| ; ∈ 0,1 ∗ } Sample input: 0 1 1 1 1 0 

1) Read and push input symbols. 
Nondeterministically either repeat or go to (2). The nondeterministic forks replicate the stack. 

2) Read input symbols and pop stack symbols, compare. 
If ever ≠ then thread rejects. This language requires nondeterminism. 

Our PDA model is nondeterministic. 3) Enter accept state if stack is empty. (do in “software”) 
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Converting CFGs to PDAs 
Theorem: If ! is a CFL then some PDA recognizes ! 
Proof: Convert !’s CFG to a PDA 

…E → E+T | T PDA 
T → … 
F → … CFG 

$% E → E+T | T 
IDEA: PDA begins with starting variable and guesses substitutions. T → T×F | FIt keeps intermediate generated strings on stack. When done, compare with input. 

F → ( E ) | aE E T T 
Input: a + a × a+ + + 

E ET T T 
× E+T E +  T  
F 

T+T×F T T × F 
Problem! Access below the top of stack is cheating! 

F+F×a F F a
Instead, only substitute variables when on the top of stack. 

a+a×a a a aIf a terminal is on the top of stack, pop it and compare with input. Reject if ≠. 
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Converting CFGs to PDAs (contd) 

Theorem: If ! is a CFL then some PDA recognizes ! 
Proof construction:  Convert the CFG for ! to the following PDA. 

1) Push the start symbol on the stack. 

2) If the top of stack is 

Variable: replace with right hand side of rule (nondet choice). 

Terminal: pop it and match with next input symbol. 

3) If the stack is empty, accept. 

a + a × a
Example: 

E E F T a + T T 

+ + + + T × 

T T T T F 
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#$ E → E+T | T 

T → T×F | F 

F → ( E ) | a 

E E 

E+T E + T  

T+T×F T T × F 

F+F×a F F a 

a+a×a a a a 



           

      

           
         

   

 

 
 

  

 

  

Equivalence of CFGs and PDAs 

Theorem: ! is a CFL iff* some PDA recognizes ! 
Done. 
In book.  You are responsible for knowing 
it is true, but not for knowing the proof. 

* “iff” = “if an only if” means the implication goes both ways. 
So we need to prove both directions: forward (→) and reverse (←). 

Check-in 4.3 
Is every Regular Language also 
a Context Free Language? 

(a) Yes 

(b) No 

(c) Not sure Check-in 4.3 
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Regular 
language 

Context Free 
language 

Regular 
languages 

Recap 

Recognizer 

DFA or NFA 

PDA 

Context Free 
languages 

Generator 

Regular 
expression 

Context Free 
Grammar 
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Quick review of today 

1. Defined Context  Free Grammars (CFGs)  
and Context Free Languages (CFLs) 

2.  Defined Pushdown Automata(PDAs)  

3.  Gave conversion of  CFGs to PDAs.  
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