18.404/6.840 Lecture 25

Last time:

- Schwartz-Zippel Theorem
- EQRropp € BPP

Today: (Sipser §10.4)

- Interactive Proof Systems

- The class IP

- Graph isomorphism problem
-coNP C IP (part1)

Interactive Proofs — Introduction

lllustration: Graph isomorphism testing
Defn: Undirected graphs G and H are isomorphic if they are identical except
for a permutation (rearrangement) of the nodes.

Interactive Proofs — Introduction

lllustration: Graph isomorphism testing
Defn: Undirected graphs G and H are isomorphic if they are identical except
for a permutation (rearrangement) of the nodes.

Defn: 1SO = {{G,H)| G and H are isomorphic graphs}
ISO € NP

ISO eP?

IS0 is NP-complete ?

ISO € NP ?

ISO € NP therefore a Prover can convince a poly-time Verifier that G and H are isomorphic (if true).

Even though ISO € NP is unknown,
a Prover can still convince a poly-time Verifier that G and H are not isomorphic (if true).

Requires interaction and a probabilistic Verifier.

Interactive Proofs — informal model

. .1.".._‘ Probabilistic
polynomial time TM
© Sesame Workshop. All rights reserved. This content

is excluded from our Creative Commons license. For
more information, see

Graduate Students = Prover (P)

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see

Professor wants to know if graphs G and H are isomorphic.
- He asks his Students to figure out the answer.
- But he doesn’t trust their answer. He must be convinced.

If the Students claim that ¢ and H are isomorphic,
they can give the isomorphism and convince him.

But what if they claim that G and H are not isomorphic?

- The Professor randomly and secretly picks G or H and
permutes it, then sends the result to the Students.

- If Students can identify which graph the Professor picked
reliably (repeat this 100 times), then he’s convinced.

4

https://ocw.mit.edu/fairuse
https://ocw.mit.edu/fairuse

Interactive Proofs — formal model

Two interacting parties
Verifier (V): Probabilistic polynomial time TM
Prover (P): Unlimited computational power

Both P and V see input w.
They exchange a polynomial number of polynomial-size messages.
Then V accepts or rejects.

Defn: Pr[(V & P) accepts w] = probability that V accepts when V interacts with P, given input w.

Defn: IP = {4| for some Vand P (This P is an “honest” prover)
wEA - Pr[(Ve P) acceptsw] = 2/,
w & A — foranyproverP Pr[(Ve P) acceptsw] < 1/;

Think of P as a “crooked” prover trying to make V accept when it shouldn’t.
An amplification lemma can improve the error probability from 1/5 to 1/2p01y(n)

)

ISO € IP

Theorem: ISO € IP

Proof: Protocol for V and (the honest) P on input (G, H)

1) Repeat twice:

2) VP Randomly choose G or H and permute to get K, then send K

3) P>V Compare K with G and H. Send “G” or “H” (V’s choice in step 2)
4) Vaccepts if P was correct both times. Otherwise V rejects.

Check-in 25.1

Suppose we change the model to allow the Prover access to the Verifier’s random choices.
Now consider the same protocol as described above. What language does it describe?

(a) {{G,H)| G # H}

(b) {(G,H)| G and H are not isomorphic }
(c) {{(G,H)| G and H are any two graphs }
(d) @

Check-in 25.1

Facts about IP — Checkin 25.2

Which of the following is true?
Check all that apply

a) NPCIP
b) BPP C IP
c) IP € PSPACE

Surprising Theorem: PSPACE € IP so IP = PSPACE

We will prove only a weaker statement: coNP € IP

#SAT problem

Defn: #SAT = {(¢, k)| Boolean formula ¢ has exactly k satisfying assignments}

Let #¢ = the number of satisfying assignments of Boolean formula ¢.
So #SAT = {(¢, k)| k = #¢}

Defn: Language B is NP-hard if A <p B for every A € NP.
(Note: B is NP-complete if B is NP-hard and B € NP.)

Theorem: #SAT is coNP-hard
Proof: Show SAT <p #SAT
fUp)) = (¢, 0)

To show coNP € IP we will show #SAT € IP

#SAT € IP — notation

#SAT = {(¢, k)| Boolean formula ¢ has exactly k satisfying assignments}
Theorem: #SAT € IP

Proof: First some notation. Assume ¢ has m variables x4, ..., X

Let $(0) be ¢ with x; = 0 (0 substituted for x;) O = FALSE and 1 = TRUE.
Let ¢(01) be ¢ with x; = 0 and x, = 1.
Let $(a; ...a;) be p withx; = ay, ..., x; = a; foray,...,a; € {0,1}. Check-in 25.3

Call ay, ..., a; presets. The remaining X;44, ..., Xp Stay as unset variables.| |f #¢ =9 and #¢(0) = 6 then
Let #¢ = the number of satisfying assignments of ¢. what do we know?

Let #¢(0) = the number of satisfying assignments of ¢(0). a) #¢p(1) =3 c) #p(00) <5
Let #¢(a, ... a;) = the number of satisfying assignments of ¢(a; ... a;) b) #¢4(1) = 15

d) none of these

Equivalently: #d¢(aq ... a;) = Z p(aq ... anm) 1. #¢(ay ..ay) =
Qi #p(aq...a;0) + #p(ay ...a;1)

€ {0,1}

2. #¢(ay ...am) = ¢(ay ... am)

Check-in 25.3

#SAT € IP — 15t attempt

Theorem: #SAT € |P
Proof: Protocol for V and (the honest) P on input (¢, k)
0) Psends #¢; V checks k = #¢
1) Psends #¢(0), #¢(1); Vchecks #¢ = #¢p(0) + #¢p (1)
2) Psends #¢(00), #¢p(01), #¢(10), #¢p(11); V checks #¢p(0) = #¢(00) + #¢p(01)
#p(1) = #¢(10) + #¢p(11)
m m-—1 m-—1

— — f \

m) Psends #¢(0-0), .., #(1--1); V checks #p(0 - 0) = #(0 - 00) + #p(0 - 01)

m V checks #p(1--1) = #¢(1--10) + #p(1 -
m +1) V checks #¢(0 - 0) = (0 --- 0)

- #¢(00) #¢p(01)

#p(1--1) =1 1) s

V accepts if all checks are correct. Otherwise V rejects. H#(0 - 0)
1

Problem: Exponential. How to fix? $(0---0)

) #¢(11)

.

H(1 -

D

D

k

2N

#¢(0) #¢(1)

#p(00) #(01) #p(10) #p(11)
7\ 7 +\ 7\ N\

#$(0---0) - #p(1---1)

¢(00) ¢(11)

ldea for fixing #SAT € IP protocol

k
I

#¢

#¢p(r1)

\— Non-Boolean assignments

(to the variables of ¢
#p(riry

| To be continued...

#p(ry 1)
I

¢(ry -+ i)

Quick review of today

Introduced the interactive proof system model
Defined the class IP

Showed IS0 € IP
Started showing #SAT € IP to prove that coNP C |P

MIT OpenCourseWare

18.404) / 18.4041) / 6.840) Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

