
 

   
 

 
 

   

    
  

  

  

  

  

18.404/6.840 Lecture 24 

Last time: 
- Probabilistic computation
- The class BPP
- Branching programs
- Arithmetization
- Started showing !" ROBP ∈ BPP

Today: (Sipser §10.2)
- Finish !" ROBP ∈ BPP
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Review: Probabilistic TMs and BPP 

coin flip step 

each choice has 

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM 

where each computation step has 1 or 2 possible choices. deterministic 

step 
50% probability 

Defn: For ! ≥ 0 say PTM $  decides language % with error probability !  
if for every & , Pr[ $  gives the wrong answer about & ∈ % ] ≤ ! . 

Defn: BPP = % some poly-time PTM decides % with error !  = +⁄,  } 
Check-in 24.1 
Actually using a probabilistic algorithm 

Amplification lemma: 2−. /01 2  presupposes a source of randomness. 

Can we use a standard pseudo-random 

number generator (PRG) as the source? 
& ∈ % & ∉ % (a) Yes, but the result isn’t guaranteed.

(b) Yes, but it will run in exponential time.
Many Few Few Many 

(c) No, a TM cannot implement a PRG. accepting rejecting accepting rejecting 

(d) No, because that would show P = BPP.

2 Check-in 24.1 



Review:  Branching Programs



       
    

     
  
       

    

      

        

      

 

  
 

 

  

 

 
  

      

 

  

 

  
 

   

Boolean Labeling 

Alternative way to view BP computation 
Show by example: Input is !" = 0, !# = 1, !$ = 1 
The BP follows its execution path.

!" 
1

Label all nodes and edges on the execution path with 1 
01 1 

0 and off the execution path with 0. 
Output the label of the output node 1. 

1 !# 1 !# 
0

0 Obtain the labeling inductively by using these rules: 0 1 0 1 
0 0 

0 1 ' 

0 1 ' ∧ !) ' ∧ !) '" ∨ '# ∨ '$

!$ !$ !)
1 '"

'#
'$1 0 

0 0 0 1 0 

0 1 = output 0 1 
Label outgoing edges from nodes Label nodes from incoming edges 

4 



Arithmetization Method

Method:  Simulate ∧ and ∨ with + and ×.

%&
0 1

'

' (1 − %&) ' %&

' ,
' -

' .

' , + ' - + ' .

%,

%- %-

0 1

0 1

%. %.

0
1 0

1

0
1 0

1

Replace Boolean labeling with arithmetical labeling
Inductive rules:
Start node labeled 1

' ∧ / → ' ×/ = '/
' → 1 − '

' ∨ / → ' + / − '/

Simulate ∨ with + because the BP is acyclic.
The execution path can enter a node 
at most one time. 

' ∧ %&' ∧ %& ' , ∨ ' - ∨ ' .
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! "

! # ! #

0 1

0 1

0 1 0
1

Non-Boolean Labeling
Use the arithmetized interpretation of the BP’s computation 
to define its operation on non-Boolean inputs. 
Example:  ! " = 2, ! # = 3 Output = −7

! (
0 1

)

) (1 − ! () ) ! (
) "

) #
) -

) " + ) # + ) -

1

−1 = 1 1 − 2 1 2 = 2

2

8 = 2 + 6

2 = −1 1 − 3

−3 = −1 3 2 3 = 6

2 1 − 3 = −4

−1

−3 + −4 = −7

Recall labeling rules:

Algorithm sketch for 45 ROBP:  “On input : " , : #
1.  Pick a random non-Boolean input assignment. 
2.  Evaluate : " and : # on that assignment.
3.  If : " and : # disagree then reject.

If they agree then accept.”

More details and correctness proof to come.  
First some algebra… 
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Roots of Polynomials
Let  ! " = $%" & + $( " &) ( + $* " &) * + ⋯+ $& be a polynomial.
If , is some constant and  ! , = 0 call , a root of ! .

Polynomial Lemma:  If ! " ≠ 0 is polynomial of degree ≤ 0 then ! has ≤ 0 roots.
Proof by induction (see text).

Corollary 1:  If ! ( (" ) and ! * (" ) are both degree ≤ 0 and ! ( ≠ ! *
then ! ( , = ! * (, ) for ≤ 0 values , .
Proof:  Let ! = ! ( − ! * .

Above holds for any field 4 (a field is a set with + and × operations that have typical properties).
We will use a finite field 46 with 7 elements where 7 is prime and +, × operate mod 7.

Corollary 2:   If ! " ≠ 0 has degree ≤ 0 and we pick a random 8 ∈ 46 , then Pr ! 8 = 0 ≤ ⁄& 6. 
Proof:  There are at most 0 roots out of 7 possibilities. 

Theorem (Schwartz-Zippel):  If ! " ( , … , "= ≠ 0 has degree ≤ 0 in each ">and
we pick random  8( , … , 8= ∈ 46 then  Pr ! 8( , … , 8= = 0 ≤ ⁄=& 6
Proof by induction (see text).

roots
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! "

! # ! #

0 1

0 1

0 1
0

1

Symbolic Execution
Leave the ! $ as variables and obtain an expression in the ! $
for the output of the BP. 

1

1 − ! " ! "

1 − ! " 1 − ! #
+ (! " ) ! #

(1 − ! " ) 1 − ! #

1 − ! " (x#)
(! " ) ! #

(! " ) 1 − ! #

1 − ! " x#
+ (! " ) 1 − ! #

! $
0 1

+

+(1 − ! $) +! $

+" +# +,

+" + +# + +,

Recall 
labeling rules:

1 − ! " ! "

= output

= 1 − ! " x# , 1 − ! , ! . ⋯ (1 − ! 0 )
+ ! " ! # ! , 1 − ! . ⋯ ! 0
+ ! " 1 − ! # 1 − ! , ! . ⋯ (! 0 )

⋮

+ ! " ! # 1 − ! , ! . ⋯ (! 0 )

form of 
output

Corresponds to the TRUE rows in the 
truth table of the Boolean function

Exponents ≤ 1
due to “read-once”

Assume read exactly once so that for each 3
(! $) or (1 − ! $) appears in every row 
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Algorithm for !"ROBP = “On input (), (+ [on variables ,), … , ,.]

1.  Find a prime / ≥ 32.

2.  Pick a random non-Boolean input assignment 3 = 3), … , 3. where each 34 ∈ 67. 

3.  Evaluate () and (+ on 3 by using arithmetization.

4.  If () and (+ agree on 3 then accept.
If they disagree then reject.”

Claim:  (1)  () ≡ (+ → Pr :) 3 = :+ 3 = 1
(2)  () ≢ (+ → Pr :) 3 = :+ 3 ≤ ⁄) ?

Proof (1):  If () ≡ (+ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials :) and :+ are identical. 

Thus :) and :+ always agree (even on non-Boolean inputs).

Proof (2):  If () ≢ (+ then :) ≠ :+ so : = :) − :+ ≠ 0.

From Schwartz-Zippel, Pr :) 3 = :+ 3 ≤ ⁄C. 7 ≤ ⁄. ?. = ⁄) ?.

(Note that D = 1.)   

!"ROBP ∈ BPP

:) and :+ each have the form:

1 − ,) ,+ 1 − ,? ,E ⋯ (1 − ,.)
+ ,) ,+ ,? 1 − ,E ⋯ ,.
+ ,) 1 − ,+ 1 − ,? ,E ⋯ (,.)

⋮
+ ,) ,+ 1 − ,? ,E ⋯ (,.)

,)
0 1

0 1

()
,E

0 1

0 1

(+

arithmetize

:) :+

Check-in 24.2

Check-in 24.2

If the BPs were not read-once, the polynomials might 

have exponents ≥ 1.  Where would the proof fail? 

(a) () ≡ (+ implies they agree on all Boolean inputs

(b) Agreeing on all Boolean inputs implies :) = :+
(c) Having :) = :+ implies :) and :+ always agree
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Algorithm for !"ROBP = “On input (), (+ [on variables ,), … , ,.]

1.  Find a prime / ≥ 32.

2.  Pick a random non-Boolean input assignment 3 = 3), … , 3. where each 34 ∈ 67. 

3.  Evaluate () and (+ on 3 by using arithmetization.

4.  If () and (+ agree on 3 then accept.
If they disagree then reject.”

Claim:  (1)  () ≡ (+ → Pr :) 3 = :+ 3 = 1
(2)  () ≢ (+ → Pr :) 3 = :+ 3 ≤ ⁄) ?

Proof (1):  If () ≡ (+ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials :) and :+ are identical. 

Thus :) and :+ always agree (even on non-Boolean inputs).

Proof (2):  If () ≢ (+ then :) ≠ :+ so : = :) − :+ ≠ 0.

From Schwartz-Zippel, Pr :) 3 = :+ 3 ≤ ⁄C. 7 ≤ ⁄. ?. = ⁄) ?.

(Note that D = 1.)   

!"ROBP ∈ BPP

:) and :+ each have the form:

1 − ,) ,+ 1 − ,? ,E ⋯ (1 − ,.)
+ ,) ,+ ,? 1 − ,E ⋯ ,.
+ ,) 1 − ,+ 1 − ,? ,E ⋯ (,.)

⋮
+ ,) ,+ 1 − ,? ,E ⋯ (,.)

,)
0 1

0 1

()
,E

0 1

0 1

(+

arithmetize

:) :+

Check-in 24.3

Check-in 24.3

If :) and :+ were exponentially large expressions, 

would that be a problem for the time complexity?

(a) Yes, but luckily they are polynomial in size.

(b) No, because we can evaluate them without 

writing them down.
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Quick review of today

1. Simulated Read-once Branching Programs by polynomials

2. Gave probabilistic polynomial equality testing method

3. Showed !" ROBP ∈ BPP 
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