18.404/6.840 Lecture 24

Last time:

- Probabilistic computation

- The class BPP

- Branching programs

- Arithmetization

- Started showing !" gopp € BPP

Today: (Sipser §10.2)
- Finish I popp € BPP

Review: Probabilistic TMs and BPP

coin flip step
each choice has
50% probability

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM % /!\

where each computation step has 1 or 2 possible choices. deterministic
step

Defn: For! > 0say PTM $ decides language %with error probability !
if for every &, Pr[$ gives the wrong answer about & € %] <!.

Defn: BPP = {9 some poly-time PTM decides %with error! =/ } Check-in 24.1

4 Actually using a probabilistic algorithm
presupposes a source of randomness.
Can we use a standard pseudo-random
number generator (PRG) as the source?

0,
& €% & & % (@) Yes, but the result isn’t guaranteed.

(b) Yes, but it will run in exponential time.

Amplification lemma: 2~ /01(2)

\YETY Few Few \YETY

accepting rejecting accepting rejecting (C) No, a TM cannot implement a PRG.

(d) No, because that would show P = BPP.

Check-in 24.1

Review: Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has
1. Query nodes labeled x; and having two outgoing edges labeled 0 and 1.

2. Two output nodes labeled 0 and 1 and having no outgoing edges.

3. A designated start node.

Theorem: EQgy;is coNP-complete (on pset 6)

Defn: A BP is read-once if it never queries a variable more than once
on any path from the start node to an output.

Defn: EQqypp = {(By,B;)| By and B, are equivalent read-once BPs}

Theorem: EQypp € BPP

Proof idea: Run B, and B, on a randomly selected non-Boolean input
and accept if get same output.

Method: Use arithmetization (simulating A and V with + and X)

to define BP operation on non-Boolean inputs.

Boolean Labeling

Alternative way to view BP computation
Show by example: Inputis x; =0, x, =1, x3 =1
The BP follows its execution path.

Label all nodes and edges on the execution path with 1
and off the execution path with O.
Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

a1Va2Va3

@1 = output
Label outgoing edges from nodes Label nodes from incoming edges

Arithmetization Method

Method: Simulate A and V with + and X.
A >)=
T - (1 _l)
] V/ _) 1 +/ _ l/

Replace Boolean labeling with arithmetical labeling
Inductive rules:
Start node labeled 1

i ’ V'”__ \71_"..
Simulate V with 4+ because the BP is acyclic.

The execution path can enter a node
at most one time.

Non-Boolean Labeling

Use the arithmetized interpretation of the BP’s computation
to define its operation on non-Boolean inputs.

Example: 1w =2, 1, =13
Recall labeling rules:

)

) (=10
IESIESY

Algorithm sketch for 45 gogp: “Oninput (: «,: &)
1. Pick a random non-Boolean input assignment.
2. Evaluate: » and: 4 on that assignment.

3. If: » and : 4 disagree then reject.
If they agree then accept.”

More details and correctness proof to come.
First some algebra...

Roots of Polynomials

Let | (") =$og &+ $(" (4 $."8" 4 ...+ $¢ be a polynomial. _\
If, is some constantand ! (,) = 0 call, arootof!.

Polynomial Lemma: If! (") # 0 is polynomial of degree < 0 then! has < 0 roots.
Proof by induction (see text).

Corollary 1: If! (") and !« (") are both degree < 0 and ! # !«

then !'((,) =!+(,) for < 0 values, .

Proof: Let! =1, —1x.

Above holds for any field 4 (a field is a set with + and X operations that have typical properties).
We will use a finite field 44 with 7 elements where 7 is prime and +, X operate mod 7.

Corollary 2: If! (") # 0 has degree < 0 and we pick a random 8 € 4, then Pr[! (8) = 0] < &/s.
Proof: There are at most 0 roots out of 7 possibilities.

Theorem (Schwartz-Zippel): If! ("(,...,"~=) # 0 has degree < 0 in each " sand
we pick random §,...,8 € 44 then Pr[!(§,..,8)=0]< =&/,
Proof by induction (see text).

Symbolic Execution

Leave the ! ¢ as variables and obtain an expression in the ! ¢
for the output of the BP.
Recall +

labeling rules:
1

+(1 ="'y

(1-1.)

Exponents < 1 Assume read exactly once so that for each 3
1-1) L due to “read-once” (!g) or (1 —!g) appears in every row

' ' formof |= (1 —=1+) (X#)X(l—!,)(!.) o (I="19)
0 output | + (1) Cy))@=t) (o)
(1—1.)(1—1,) () =1y + () A=-tpa@-=-rH)ae¢) - (o)

N

I — (0 |
(1= 1)) » ¢ SO 0 A=1)0) -« (o) f7

a :_ !('!' ?g}!;)! 2 5_1 (?,!)ll()l()i#?) Corresponds to the TRUE rows in the

truth table of the Boolean function

= output

EQrogp € BPP

Algorithm for EQgogp = “On input (B, B,) [on variables xq, ..., X;y,]
1. Find a prime g = 3m.
. Pick a random non-Boolean input assignment r = 1y, ..., 1, where each r; € IF,.

2
3. Evaluate B; and B, on r by using arithmetization.
4. If B1 and B, agree on r then accept.

If they disagree then reject.” Check-in 24.2
If the BPs were not read-once, the polynomials might

Claim: (1) By = B, = Prip,(r) = p2(r) | =1 have exponents = 1. Where would the proof fail?

(2) By £ B, — Pr[pi(r) = p,(r)] < /3
Proof (1): If By = B, then they agree on all Boolean inputs.

Thus their functions have the same truth table. _ R
Thus their associated polynomials p; and p,, are identical. | (€} _Having p1 = p, implies p, and p; always agree

(a) By = B, implies they agree on all Boolean inputs
(b) Agreeing on all Boolean inputs implies p; = p,

Thus p; and p, always agree (even on non-Boolean inputs). p1 and p, each have the form:

(T—x1) (x2) (I—x3) (xg) - (1 —2xp)
Proof (2): If By # B, thenpy #p,sop =p; —p, # 0. + () () () (T=x) - ()

From Schwartz-Zippel, Pr[p; (1) = po (1)] S M™/g < ™am =13+ (x) A —x)A—x3) (x)) - ()
(Note thatd = 1.) :
+ (x) (x) (A—x3) (x0) - (xp)

Check-in 24.2

EQrogp € BPP

Algorithm for EQgogp = “On input (B, B,) [on variables xq, ..., X;y,]

1. Find a prime g = 3m.

. Pick a random non-Boolean input assignment r = 1y, ..., 1, where each r; € IF,.

2
3. Evaluate B; and B, on r by using arithmetization.
4. If B1 and B, agree on r then accept.

If they disagree then reject.”

Claim: (1) By =B, —» Pr[p;(r) =p,(r)] =1

(2) By # By, = Pripi(r) = p,(r)] < 1/5
Proof (1): If By = B, then they agree on all Boolean inputs.
Thus their functions have the same truth table.
Thus their associated polynomials p; and p, are identical.
Thus p; and p, always agree (even on non-Boolean inputs).

Proof (2): If By # B, thenp; # p,sop =p; —p, # 0.

Check-in 24.3

If p; and p, were exponentially large expressions,
would that be a problem for the time complexity?

(@) Yes, but luckily they are polynomial in size.

(b) No, because we can evaluate them without
writing them down.

p, and p, each have the form:
(T—2x1) () (—2x3) (xg) - (1—xp)
+ (1) (x2) (x3) (T—2x4) - (xp)

From Schwartz-Zippel, Pr[p; (1) = po (1)] S M™/g < ™am =13+ (x) A —x)A—x3) (x)) - ()

(Note thatd = 1.)

o) (o) (—xs) () o (o)

Check-in 24.3

Quick review of today

1. Simulated Read-once Branching Programs by polynomials
2. Gave probabilistic polynomial equality testing method

3. Showed!" popp € BPP

MIT OpenCourseWare

18.404) / 18.4041) / 6.840] Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

