
 

   
  

 
   

    
 

 
 

 

  

18.404/6.840 Lecture 23 

Last time: 
- !"#$%↑ is EXPSPACE-complete 
- Thus !"#$%↑ ∉ PSPACE 
- Oracles and P versus NP 

Today: (Sipser §10.2) 
- Probabilistic computation 
- The class BPP 
- Branching programs 
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Probabilistic TMs 

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM 
where each computation step has 1 or 2 possible choices. 

deterministic coin flip step -
step each choice has 50% probability 

Pr[ branch ! ] = 2&' where ! has ( coin flips 

Pr[ " accepts # ] = + Pr[ branch ! ] 

Pr[ " rejects # ] = 1 − Pr[ " accepts # ] 
b accepts 

computation tree 
for " on # 

branch ! 

Defn: For 7 ≥ 0 say PTM " decides language : with error probability 7 
if for every #, Pr[ " gives the wrong answer about # ∈ : ] ≤ 7 
i.e., # ∈ : → Pr[ " rejects # ] ≤ 7 

# ∉ : → Pr[ " accepts # ] ≤ 7. 
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Defn:  BPP = " some poly-time PTM decides " with error # = ⁄% & }

Amplification lemma: If '% is a poly-time PTM with error #% < ⁄% ) then, 
for any 0 < #) < ⁄% ), there is an equivalent poly-time PTM ') with error #).  
Can strengthen to make #) < 2−,-./ 0 . 

Proof idea:  ') = “On input 1
1.  Run '% on 1 for 2 times and output the majority response.”

Details:  Calculation to obtain 2 and the improved error probability. 

Significance:  Can make the error probability so small it is negligible.

The Class BPP
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NP and BPP

Computation trees 
for ! on "

" ∈ $

NP

≥ 1 accepting

Few accepting Many rejecting

BPP

Many accepting Few 
rejecting

all rejecting

" ∉ $

Check-in 23.1

Check-in 23.1
Which of these are known to be true?
Check all that apply.
(a) BPP is closed under union.
(b) BPP is closed under complement.
(c) P ⊆ BPP
(d) BPP ⊆ PSPACE
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Example:  Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has
1.  Query nodes labeled !" and having two outgoing edges labeled 0 and 1.
2.  Two output nodes labeled 0 and 1 and having no outgoing edges.
3.  A designated start node.

BP # with query nodes !$, … , !' describes a Boolean function (: 0,1 ' → {0,1}:
Follow the path designated by the query nodes’ outgoing edges 
from the start note until reach an output node.

Example:  For !$ = 1, !/ = 0, !0 = 1 we have ( 101 = 0 = output.

BPs are equivalent if they describe the same Boolean function.
Defn:  12BP = #$, #/ #$ and #/ are equivalent BPs (written #$ ≡ #/) } 

Theorem:  12BP is coNP-complete  (on pset 6)

12BP ∈ BPP ?  Unknown. That would imply NP ⊆ BPP and would be surprising!
Instead, consider a restricted problem.

!$

!0 !$ !/

!/ !0

0 1

0 1 0 1

0
1 0 1 0

1

0 1
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Read-once Branching Programs

Defn: A BP is read-once if it never queries a variable more than once 
on any path from the start node to an output. 

Defn:  !"ROBP = (), (+ () and (+ are equivalent read-once BPs}
Theorem:   !"ROBP ∈ BPP .)

./ .) .+

.+ ./

0 1

0 1 0 1

0
1 0 1 0

1

0 1

Not read-once

Check-in 23.2

Check-in 23.2
Assuming (as we will show) that !"ROBP ∈ BPP, 
can we use that to show !"BP ∈ BPP by converting 
branching programs to read-once branching programs?
(a) Yes, there is no need to re-read inputs.
(b) No, we cannot do that conversion in general.
(c) No, the conversion is possible but not in polynomial-time.
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!"ROBP ∈ BPP 

Theorem:   !"ROBP ∈ BPP 
Proof attempt:  Let ( = “On input *+, *-
1.  Pick . random input assignments and evaluate *+ and *- on each one.
2.  If *+ and *- ever disagree on those assignments then reject.

If they always agree on those assignments then accept.”

What . to chose?  
If *+ ≡ *- then they always agree so  Pr[ ( accepts *+, *- ] = 1
If *+ ≢ *- then want  Pr[ ( accepts *+, *- ]  ≤ ⁄+ 3

so want  Pr[ ( rejects *+, *- ]  ≥ ⁄- 3 .

But *+ and *- may disagree rarely, say in 1 of the 26 possible assignments.
That would require exponentially many samples to have a good chance of 
finding a disagreeing assignment and thus would require  . > ⁄- 3 26.
But then this algorithm would use exponential time.

Try a different idea:  Run *+ and *- on non-Boolean inputs.

8+0 1

0 1

*+
890 1

0 1

*-
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!"

!# !#

0 1

0 1

!$ !$

0
1 0

1

0
1 0

1

1

1

1

1

1

1

1

0

0

0
0

0

0

0
0

0

0

Boolean Labeling

Show by example:  Input is  !" = 0, !# = 1, !$ = 1
The BP follows its execution path.
Label all nodes and edges on the execution path with 1
and off the execution path with 0.
Output the label of the output node 1.

Alternative way to view BP computation

Obtain the labeling inductively by using these rules:

'

' ∧ !) ' ∧ !)
'"

'#
'$

'" ∨ '# ∨ '$

!)
0 1

Label edges from nodes Label nodes from incoming edges
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Arithmetization Method

Method:  Simulate ∧ and ∨ with + and ×.

%&
0 1

'

' (1 − %&) ' %&

',
'-

'.
', + '- + '.

%,

%- %-

0 1

0 1

%. %.

0
1 0

1

0
1 0

1

Replace Boolean labeling with arithmetical labeling
Inductive rules:
Start node labeled 1

' ∧ / → '×/ = '/
' → 1 − '

' ∨ / → ' + / − '/

Works because the BP is acyclic.
The execution path can enter a node 
at most one time. 

' ∧ %&' ∧ %& ', ∨ '- ∨ '.
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!"

!# !#

0 1

0 1

0 1 0
1

Non-Boolean Inputs
Use the arithmetized interpretation of the BP’s computation 
to define its operation on non-Boolean inputs. 

Example:  !" = 2, !# = 3 Output = −7

!(
0 1

)

) (1 − !() ) !(
)"

)#
)-

)" + )# + )-

1

−1 = 1 1 − 2 1 2 = 2

2

8 = 2 + 6

2 = −1 1 − 3

−3 = −1 3 2 3 = 6

2 1 − 3 = −4

−1

−3 + −4 = −7

Recall labeling rules:

Revised 4 for 56ROBP:  “On input ;", ;#
1.  Pick a random non-Boolean input assignment. 
2.  Evaluate ;" and ;# on that assignment.
3.  If ;" and ;# disagree then reject.

If they agree then accept.”

Correctness proof…   after Thanksgiving.

Check-in 23.3

Check-in 23.3
What is the output for this branching program using 
the arithmetized interpretation if !" = 1, !# = < ?
(a) (1 − <)
(b) (< + 1)
(c) <
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Quick review of today

1. Defined probabilistic Turing machines

2. Defined the class BPP

3. Sketched the amplification lemma

4. Introduced branching programs and read-once branching programs

5. Started the proof that !"ROBP ∈ BPP 

6. Introduced the arithmetization method
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