18.404/6.840 Lecture 23

Last time:

- EQRrgxt is EXPSPACE-complete
- Thus EQREXT E PSPACE

- Oracles and P versus NP

Today: (Sipser §10.2)

- Probabilistic computation
- The class BPP

- Branching programs

Probabilistic TMs

Defn: A probabilistic Turing machine (PTM) is a variant of a NTM
where each computation step has 1 or 2 possible choices.

deterministic coin flip step -
step each choice has 50% probability

computation tree
Pr[branch b] = 27% where b has k coin flips for M on w

Pr[M accepts w | = Z Pr[branch b |

b accepts

Pr[M rejectsw | =1 — Pr[M accepts w] branch b
Defn: For e = 0 say PTM M decides language A with error probability €
if for every w, Pr[M gives the wrong answer aboutw € A < €
iie, w€A->Pr[Mrejectsw]<e
wé&A—Pr[Macceptsw] < €.

The Class BPP

Defn: BPP = {A| some poly-time PTM decides A with errore = 1/5}

Amplification lemma: If M, is a poly-time PTM with error €; < 1/, then,
forany 0 < €, < 1/,, there is an equivalent poly-time PTM M, with error €,.

Can strengthen to make e, < 27Poly(m),

Proof idea: M, = “On inputw
1. Run M; on w for k times and output the majority response.”

Details: Calculation to obtain k and the improved error probability.

Significance: Can make the error probability so small it is negligible.

NP and BPP

Computation trees
for M onw

/ N\

Many accepting Few
rejecting

= 1 accepting

all rejecting Few accepting Many rejecting

Check-in 23.1

Which of these are known to be true?
Check all that apply.

(a) BPPis closed under union.

(b) BPP is closed under complement.
(c) P<S BPP

(d) BPP < PSPACE

Check-in 23.1

Example: Branching Programs

Defn: A branching program (BP) is a directed, acyclic (no cycles) graph that has
1. Query nodes labeled x; and having two outgoing edges labeled 0 and 1.

2. Two output nodes labeled 0 and 1 and having no outgoing edges.

3. A designated start node.

BP B with query nodes x4, ..., X,, describes a Boolean function f:{0,1}"™ — {0,1}:
Follow the path designated by the query nodes’ outgoing edges
from the start note until reach an output node.

Example: Forx; =1, x, =0, x3=1

BPs are equivalent if they describe the same Boolean function.
Defn: EQgp = {(B1, By)| B; and B, are equivalent BPs (written B; = B,) }

Theorem: E(Qgp is coNP-complete (on pset 6)

EQgp € BPP?
Instead, consider a restricted problem.

Read-once Branching Programs

Defn: A BP isread-once if it never queries a variable more than once

on any path from the start node to an output.

Defn: EQgogp = {{(B1, B»)| B; and B, are equivalent read-once BPs}

Theorem: EQgopp € BPP

Check-in 23.2

Assuming (as we will show) that EQrogp € BPP,

can we use that to show EQgp € BPP by converting
branching programs to read-once branching programs?

(a) Yes, thereis no need to re-read inputs.
(b) No, we cannot do that conversion in general.
(c) No, the conversion is possible but not in polynomial-time.

Not read-once

Check-in 23.2

EQrogp € BPP

Theorem: EQgopp € BPP
Proof attempt: Let M = “Oninput (B4, By)
1. Pick k random input assignments and evaluate B, and B, on each one.
2. If B; and B, ever disagree on those assignments then reject.
If they always agree on those assignments then accept.”

What k to chose?
If By = B, then they always agree so Pr[M accepts (By,B,)] =1
If B, £ B, then want Pr[M accepts (B, B,)] < 1/5

sowant Pr[M rejects (B{,B,)] = 2/5.

But B; and B, may disagree rarely, say in 1 of the 2™ possible assignments.
That would require exponentially many samples to have a good chance of
finding a disagreeing assignment and thus would require k > (3/3)2™.

But then this algorithm would use exponential time.

Try a different idea: Run B; and B, on non-Boolean inputs.

Boolean Labeling

Alternative way to view BP computation
Show by example: Inputis x; =0, x, =1, x3 =1
The BP follows its execution path.

Label all nodes and edges on the execution path with 1
and off the execution path with O.
Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

a1Va2Va3

Label edges from nodes Label nodes from incoming edges

Arithmetization Method

Method: Simulate A and VvV with + and X.

aANb - aXb = ab

a - (1-a)
avb - a+b-—ab

Replace Boolean labeling with arithmetical labeling
Inductive rules:
Start node labeled 1

a (lw Aix; \C%aaz vrags

Works because the BP is acyclic.
The execution path can enter a node
at most one time.

Non-Boolean Inputs

Use the arithmetized interpretation of the BP’s computation
to define its operation on non-Boolean inputs.
Example: x; =2, x, =3
Recall labeling rules:
a

01
a(l—x;) a x;
a, +a, +as

Check-in 23.3
What is the output for this branching program using
the arithmetized interpretationifx; =1, x, =y ?

(@) 1-v)
(b) (v+1)
DEN+En=-7 [9 Y

Check-in 23.3

Quick review of today

Defined probabilistic Turing machines

Defined the class BPP

Sketched the amplification lemma

Introduced branching programs and read-once branching programs

Started the proof that EQgogp € BPP

Introduced the arithmetization method

MIT OpenCourseWare

18.404) / 18.4041) / 6.840] Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

