18.404/6.840 Lecture 22

Last time:
- Finished NL = coNL
- Time and Space Hierarchy Theorems

Today: (Sipser §9.2)
- A “natural” intractable problem
- Oracles and P versus NP

Review: Hierarchy Theorems

Theorems:
SPACE(O(f(n))) c SPACE(f(n)) for space constructible f.

TIME(o(f(n)/log(f(n)))) ¢ TIME(f (n)) for time constructible f.

Check-in 22.1

Which of these are known to be true?
Check all that apply.

(a) TIME(2™) & TIME(2™*1)
(b) TIME(2™) & TIME(22™)
(c) NTIME(n?) & PSPACE
(d) NP & PSPACE

Corollary: NL & PSPACE

Implies TQBF & NL because the polynomial-time reductions in
the proof that TQBF is PSPACE-complete can be done in log space.

Check-in 22.1

Exponential Complexity Classes

Defn: EXPTIME = U TIME (2("))

EXPSPACE = U SPACE (2("))
Time Hierarchy Theorem
; & ;
LS NLCS P S NP € PSPACE € EXPTIME € EXPSPACE

Space Hierarchy Theorem

Defn: B is EXPTIME-complete if
1) B € EXPTIME

2) Forall A € EXPTIME, A <p B
Same for EXPSPACE-complete

Theorem: If B is EXPTIME-complete then B & P intractable
Theorem: If B is EXPSPACE-complete then B & PSPACE (and B & P)

Next will exhibit an EXPSPACE-complete problem

A “Natural” Intractable Problem

Defn: EQgrpx = {(R4, Ry)| R, and R, are equivalent regular expressions}

Theorem: E(Qpgx € PSPACE

Proof: Later (if time) or exercise (uses Savitch’s theorem).
k

Notation: If R is a regular expression write R to mean RR -+ R (exponent is written in binary).
Defn: EQgrgxt = {{Ry, Ry)| R; and R, are equivalent regular expressions with exponentiation}

Theorem: E(Qgrgxt is EXPSPACE-complete

Proof: 1) EQggxt € EXPSPACE
2) If A € EXPSPACE then A Sp EQREXT

1) Given regular expressions with exponentiation R; and R,
expand the exponentiation by using repeated concatenation and then use EQgrgx € PSPACE.
The expansion is exponentially larger, so gives an EXPSPACE algorithm for EQrgx1.

2) Let A € EXPSPACE be decided by TM M in space 2(").

Give a polynomial-time reduction f mapping A to EQRrgx-

ShOWing A Sp EQREXT

Theorem: E(Qgrgxt is EXPSPACE-complete

Proof continued: Let A € EXPSPACE decided by TM M in space 2("k).
Give a polynomial-time reduction f mapping A to EQrgx1-

fw) = (R4, Ry)
w € A iff L(R,) = L(R,)

[Construct R, so that L(R;) = all strings except a rejecting computation history for M on W.]

Construct R, = A* (Ais the alphabet for computation histories, i.e., A=TUQ U {#}) v

Rl construction: Rl — Rbad—start U Rbad—move U Rbad—reject

Rejecting computation history for M on w:

— 2(F) > < () —_—)

[qOWI_WZ oooWn — oo — # cee s # see qre]ect cee

)

\ J \ \

J

Y Y

Cl = Cstart Creject

Check-in 22.2

Roughly estimate the size of
the rejecting computation
history for M on w.

(a) 2" (c) 22()
(b) 2(")

Check-in 22.2

A <p EQrext (Rpad-start)

[Construct R to generate all strings except a rejecting computation history for M on W]

Rl = Rbad—start U Rbad—move U Rbad—reject
Rejecting computation history for M on w:

— 2(F) > < — 20

(qqwiwa) o = = 4 - Greject]

Y I\)
Cl = Cstart

Creject SO — A_qu*

R i i — Sl = AA_W A*
bad—start generates all strings that do not start with Cgare = goWiwo == Wy, == St

Rpad-start = So U 51 U Sz U -+ U Sy U Spjanks U S 52 _ A A—WzA

Remember: A is the alphabet for computation histories, i.e., A=T U Q U {#})
Notation: A, = AU {&} (k)
— . n —
A_, = A without b Spane = AMH1A 2 ("+2)IA_HA*

Sp=A"A_, A*
Spoq = AVIA_ A

\

Y

7 _ .
A" = all strings of length 7 all strings of length n + 1 thru 20 _ 1

A7 = all strings of length 0 thru 7

A Sp EQREXT (Rbad—move &Rbad—reject)

Construct R, to generate all strings except a rejecting computation history for M on w.

Rl = Rbad—start U Rbad—move U Rbad—reject
Rejecting computation history for M on w:

— 2(F) > < () — 20
q0W1W2 ---Wn — e — # Y # cee # e qreject cee

\ N J \
Y Y Y

Cl = Cstart CZ Creject

Rpad-reject 8enerates all strings that do not contain g eject

_ *
Rbad—reject - A—q

reject

Rpad—move generates all strings that contain an illegal 2X3 neighborhood

(nk) —20) 2

~2 def A*

Rpad-move = U lA* abc A?

def]

illegal
a b ¢
d e f

Y

Cit1

Computation with Oracles

Let A be any language.
Defn: A TM M with oracle for A, written M4, is a TM equipped
with a “black box” that can answer queries “is x € A?” for free.

Example: A TM with an oracle for SAT can decide all B € NP in polynomial time.

Defn: P4 = {B| B is decidable in polynomial time with an oracle for A}
Thus NP € P47
NP = P54T? Probably No because coNP € pS4T

Defn: NP4 = {B| B is decidable in nondeterministic polynomial time with an oracle for A}
Recall MIN-FORMULA = {{¢)| ¢ is a minimal Boolean formula }

Example: MIN—FORMULA € NP4T

“On input (¢)

1. Guess shorter formula Y

2. Use SAT oracle to solve the coNP problem: ¢ and Y are equivalent

3. Accept if ¢ and Y are equivalent. Reject if not.”

Oracles and P versus NP

Theorem: There is an oracle 4 where P4 = NPA
Proof: Let A = TQBF

NPTQBF ¢ NPSPACE = PSPACE < PTCBF

Relevance to the P versus NP question

Recall: We showed EQgrgxt & PSPACE.
Could we show SAT €& P using a similar method?

Reason: Suppose YES.

The Hierarchy Theorems are proved by a diagonalization.

In this diagonalization, the TM D simulates some TM M.

If both TMs were oracle TMs D4 and M4 with the same oracle 4,
the simulation and the diagonalization would still work.
Therefore, if we could prove P #+ NP by a diagonalization,

we would also prove that P4 # NP4 for every oracle A.

But that is false!

Check-in 22.3

Which of these are known to be true?
Check all that apply.

(a) PSAT = pSAT

(b) NP34T = coNp34T

(c) MIN-FORMULA € PTOBF

(d) NPTQBF = coNPTQBF

Check-in 22.3

Quick review of today

Defined EXPTIME and EXPSPACE

Defined EXPTIME- and EXPSPACE-completeness

Showed EQgrgxt is EXPSPACE-complete and thus EQgrgxt & PSPACE
Defined oracle TMs

Showed P4 = NP for some oracle 4

Discussed relevance to the P vs NP question

EQpex € PSPACE

Theorem: E(Qgrx € PSPACE

Proof: Show EQgrry € NPSPACE
“Oninput (R, R,) [assume alphabet X]
1. Convert R; and R, to equivalent NFAs N; and N, having m; and m, states.
2. Nondeterministically guess the symbols of a string s of length 2™1% ™2 gnd
simulate N; and N, on s, storing only the current sets of states of N; and N,.
3. If they ever disagree on acceptance then accept.
4. If always agree on acceptance then reject.”

MIT OpenCourseWare

18.404) / 18.4041) / 6.840) Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

