18.404/6.840 Lecture 20

Last time:

- Games and Quantifiers

- Generalized Geography is PSPACE-complete
- Logspace: Land NL

Today: (Sipser §8.4)
- Review NLC P
- Review NL € SPACE(log? n)

- NL-completeness
- NL = coNL

Review: log space

Model: 2-tape TM with read-only input tape for defining sublinear space computation.

Defn: L =SPACE(logn)

NL = NSPACE(logn) () doesn’t count towards space used

Log space can represent a constant

input tape

§ read-only

number of pointers into the input.

Examples

1. {ww®|wez}elL)

\count cells used here

work tape

<«— O(logn) —

é read/write

@balfbagespaaspahhaby,s = -t = - $ input tape

2. PATH eNL

Nondeterministically select the nodes
of a path connecting s to t.

Work tape tracks tbherespamdingdecatnions
timetgaenpad pabb.

L = NL? Unsolved

Review: LEP

Theorem: LS P
Proof: Say M decides A in space O(logn).

Defn: A configuration for M on wis (g, p;, p,, t) where q is a state,
p,1 and p, are the tape head positions, and t is the work tape contents.

The number of such configurations is |Q|xnx0(logn)xd°1°8™ = 0(n*) for some k.
Therefore M runs in polynomial time. (‘pl
Conclusion: A € P q read-only input

b2

Review: NL € SPACE(log” n)

Theorem: NL € SPACE(log? n)
Proof: Savitch’s theorem works for log space

<« O(logn) —p
Each recursion level stores 1 config = 0 (logn) space.

Number of levels =logt = O(logn). QoW1+ W o
Total O (log? n) space.

(eCurse)

aabag,da---cab

* Qaccept "

Review: NLC P

Theorem: NLC P
Proof: Say NTM M decides A in space O(logn).

Defn: The configuration graph G, ,, for M on w has
nodes: all configurations for M on w

edges: edge from ¢; — ¢; if ¢; canyield ¢; in 1 step.

Claim: M accepts w iff the configuration graph Gy, ,,,
has a path from Cgpart t0 Caccept

Polynomial time algorithm T for A:
T =“Oninput w
1. Construct Gy, ,,. [polynomial size]
2. Accept if there is a path from Cgart tO Caccept:-
Reject if not.”

configuration graph Gy, ,,,

L=P? Unsolved

iff M acceptsw

NL-completeness

Check-in 20.1
If T is a log-space transducer that computes f, then
for inputs w of length n, how long can f(w) be?

(a) at most O(logn) (d) at most 20
(b) at most O(n) (e) any length n ead-only inbut

(c) at most polynomialinn £
T b read/write work

Defn: A log-space transducer is a TM with three tapes:

'\-O(logn)->
1. read-only input tape of sizen ,
2. read/write work tape of size 0(logn) write-only output
3. write-only output tape

2

Theorem: IfA < B and B €L then A €L
Proof: TM for A = “Oninput w

1. Compute f(w)

2. Run decider for B on f(w). Output same.”

A log-space transducer T computes a function f: ¥* - X*
if T on input w halts with f(w) on its output tape for all w.
Say that f is computable in log-space.

Defn: Ais |Og-Space reducible to B (A SL B) if A Sm B BUT we don’t have space to store f(W)
by a reduction function that is computable in log-space. So, (re-)compute symbols of f(w) as needed.
Check-in 20.1

PATH is NL-complete

Theorem: PATH is NL-complete
Proof: 1) PATH eNL v
2) ForallA €eNL, A <, PATH
Let A € NL be decided by NTM M in space O(logn).

[Modify M to erase work tape and move heads to left end upon accepting.] Guw

Give a log-space reduction f mapping A to PATH.

F(w) = (G, s,t) Flw) =
w € Aiff G hasapathfromstot
Here is a log-space transducer T to compute f in log-space.

read-only input
L w S 1. For all pairs ¢;, Cj of configurations of M on w.

[¢ T 6 2 read/write work 2. Output those pairs which are legal moves for M.

T = “oninput w

”

write-only output
= (C3,07),(C6,C22), -+) (Cstare = ***) (Caccept =

\<— O(logn) == 3 Output Cstart and Caccept-
|

2S5AT is NL-complete

Theorem: 2SAT is NL-complete
Proof: 1) Show 2SAT € NL good exercise
2) Show PATH <; 2SAT
Give log-space reduction f from PATH to 2SAT.

fUG,s,t) = ($)
For each node u in G put a variable x, in ¢.
For each edge (u, v) in G, put a clause (x,, = x;,) in ¢ [equivalent to (&, V x,,)].
In addition put the clauses (x5 V x5) and (x; = Xg) in ¢.

Show G has an path from s to t iff ¢ is unsatisfiable.

(=) Follow implications to get a contradiction.

(<) If G has no path from s to t, then assign all x,, TRUE where u is reachable from s,
and all other variables FALSE. That gives a satisfying assignment to ¢.

Straightforward to show f is computable in log-space.

8

NL = coNL (part 1/4)

Theorem (Immerman-Szelepcsényi): NL = coNL
Proof: Show PATH € NL

Defn: NTM M computes function f: Z* — X* if for all w
1) All branches of M on w halt with f(w) on the tape or reject.
2) Some branch of M on w does not reject. Check-in 20.2

YES, if G has a path from s to ¢ Consider the statements:
NO, if not (1) PATH € NL, and

Let path(G,s,t) = {
Let R = R(G, s) = {u| path(G, s, u) = YES} (2) Some NL-machine computes the path function.

Letc = c(G,s) = |R| What implications can we prove easily?
(@) (1) = (2)only

R = Reachable nodes (b) (2)— (1) only
c = # reachable

(c) Both implications

(d) Neither implication

Check-in 20.2

NL = coNL (part 2/4) —key idea

Theorem: If some NL-machine computes ¢, then some NL-machine computes path.
Proof: “Oninput (G, s, t)

1. Compute c

2. k<0

3. For each node u

4

Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length < m.

If fail, then reject.
If u = t, then output YES, else set k « k + 1.
(n) Skip u and continue.
. If k # c then reject.
. Output NO.” [found all ¢ reachable nodes and none were t}

NL = coNL (part 3/4)

__JYES, if G hasapath stot of length < d
Let path,(G,s,t) = {NO, if not
Let R; = R4(G,s) = {u| pathy(G,s,u) = YES}
Let cg = cq(G,s) = |Rq|

Theorem: If some NL-machine computes ¢4, then some NL-machine computes path,.
Proof: “Oninput (G, s, t)
1. Compute ¢4
2. k<0
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length < d.
If fail, then reject.
If u = t, then output YES, else set k <« k + 1.
(n) Skip u and continue.
5. If k # c,4 then reject.
6. Output NO” [found all ¢4 reachable nodes and none were t}

11

NL = coNL (part 4/4)

Theorem: If some NL-machine computes ¢4, then some NL-machine computes path;, 1.
Proof: “Oninput (G, s, t)
1. Compute c
2. k<0
3. For each node u
4. Nondeterministically go to (p) or (n)
(p) Nondeterministically pick a path from s to u of length < d.
If fail, then reject.
If u has an edge to t, then output YES, else set k <« k 4 1.
(n) Skip u and continue. Check-in 20.3

. If k # ¢4 then reject. Can we now show 2SAT is NL-complete?
. Output NO.” [found all ¢4 reachable nodes (a) No.
and none had an edge to t} (b) VYes.

Corollary: Some NL-machine computes ¢4, from cg. Yes: PATH <, PATH & PATH <, 25AT
So PATH <, 2SAT thus PATH <, 2SAT

Check-in 20.3

Quick review of today

Log-space reducibility
L = NL? question
PATH is NL-complete

2SAT is NL-complete
NL = coNL

MIT OpenCourseWare

18.404) / 18.4041) / 6.840) Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

