

18.404/6.840 Lecture 2

Last time: (Sipser §1.1)
- Finite automata, regular languages
- Regular operations ∪,∘,∗
- Regular expressions
- Closure under ∪

Today: (Sipser §1.2 – §1.3)
- Nondeterminism
- Closure under ∘ and ∗
- Regular expressions → finite automata
Goal: Show finite automata equivalent to regular expressions

1

Problem Sets

- 35% of overall grade

- Problems are hard! Leave time to think about them.

- Writeups need to be clear and understandable, handwritten ok.
Level of detail in proofs comparable to lecture: focus on main ideas.
Don’t need to include minor details.

- Submit via gradescope (see Canvas) by 2:30pm Cambridge time.
Late submission accepted (on gradescope) until 11:59pm following day:
1 point (out of 10 points) per late problem penalty.

After that solutions are posted so not accepted without S3 excuse.

- Optional problems:
Don’t count towards grade except for A+.
Value to you (besides the challenge):
Recommendations, employment (future grading, TA, UROP)

- Problem Set 1 is due in one week.
2

Closure Properties for Regular Languages
Theorem: If !", !$ are regular languages, so is !"!$ (closure under ∘)
Recall proof attempt: Let &" = ()", Σ, +" , ," , -") recognize !"

&$ = ()$, Σ, +$, ,$, -$) recognize !$

Construct & = () , Σ , + , ,0, -) recognizing !"!$

&" &$

& should accept input 0
if 0 = 12 where

&" accepts 1 and &$ accepts 2.
&

0
1 2

Doesn’t work: Where to split 0?

Hold off. Need new concept.

3

 Nondeterminism doesn’t
correspond to a physical machine
we can build. However, it is useful

mathematically.

accept
reject

accept
reject

Nondeterministic Finite Automata
a a!1

b a,ε #1 #2 #3 #4

b

New features of nondeterminism:
- multiple paths possible (0, 1 or many at each step)
- ε-transition is a “free” move without reading input
- Accept input if some path leads to accept

Check-in 2.1
Example inputs:

What does !' do on input aab ? - ab
- aa (a) Accept
- aba (b) Reject
- abb (c) Both Accept and Reject Check-in 2.1

4

ac al tr sta sta a c p e n r t h p s t sta
e ab i t s ti s e o t n f a t te te u s nction

NFA – Formal Definition
!1

a a

#1 #2
b #3

a,ε #4

b

Defn: A nondeterministic finite automaton (NFA)
! is a 5-tuple ((, Σ, +, #0, -) Ways to think about nondeterminism:

Computational: Fork new parallel thread and
accept if any thread leads to an accept state.

- all same as before except +
Mathematical: Tree with branches. - +: (×Σε → 2 (= 4 4 ⊆ (}
Accept if any branch leads to an accept state. power set

Σ ∪ {ε} Magical: Guess at each nondeterministic step
- In the !7 example: + #7, a = {#7, #9} which way to go. Machine always makes the

+ #7, b = ∅ right guess that leads to accepting, if possible.

5

)) ∈ ((4, 2) for some 4 ∈ 1}

"
)8

)9

NFA

Check-in 2.2

If " has : states, how many
states does "′ have by this
construction?
(a) 2:
(b) :<

(c) 2=

Converting NFAs to DFAs
Theorem: If an NFA recognizes ! then ! is regular

Proof: Let NFA " = (%, Σ, (,)* , +) recognize !
Construct DFA "′ = (%′, Σ, (′,)*. , +′) recognizing !

(Ignore the ε-transitions, can easily modify to handle them)

IDEA: DFA "′ keeps track of the subset of possible states in NFA ".

"′ Construction of /′:
%′ = 0 %

{)8,)9} (. 1, 2 =
1 ∈ %′

)*. = {q*}
+′ = 1 ∈ %. 1 intersects +}

DFA
Check-in 2.2

6

Return to Closure Properties
Recall Theorem: If !", !$ are regular languages, so is !" ∪ !$

(The class of regular languages is closed under union)

New Proof (sketch): Given DFAs &" and &$ recognizing !" and !$

&$

&"

ε

ε

&

Construct NFA & recognizing !" ∪ !$

Nondeterminism
parallelism

vs
guessing

7

Closure under ∘ (concatenation)
Theorem: If "#, "% are regular languages, so is "#"%

Proof sketch: Given DFAs &# and &# recognizing "# and "%

Construct NFA & recognizing "#"%

&

&%&#

ε

ε & should accept input '
if ' =)* where

&# accepts) and &% accepts *.

' =) *

Nondeterministic &′ has the option
to jump to &% when &# accepts.

8

#′ should accept input %
if % = '(') … '+
where , ≥ 0 and # accepts each '/

% = '(') '0 '1

Closure under ∗ (star)
Theorem: If " is a regular language, so is "∗

Proof sketch: Given DFA # recognizing "
Construct NFA #′ recognizing "∗

#′

ε

ε
ε

Make sure #′ accepts ε

Check-in 2.3

If # has 2 states, how many states
does #′ have by this construction?
(a) 2
(b) 2 + 1
(c) 22

Check-in 2.3

9

Regular Expressions → NFA
Theorem: If " is a regular expr and # = % " then # is regular

Proof: Convert " to equivalent NFA &:

If " is atomic: Equivalent & is:
) Example: " =) for) ∈ Σ

Convert a ∪ ab ∗ to equivalent NFA " = ε aa:" = ∅ bb:
a ε b

If " is composite: ab:

a " = ". ∪ "/
a ∪ ab: ε

a ε b" = ". ∘ "/ Use closure constructions ε}∗ a ∪ ab ∗ : ε" = ". aεε a ε bε
10 ε

Quick review of today

1. Nondeterminist ic f inite automata (NFA)

2. Proved: NFA and DFA are equivalent in power

3. Proved: Class of regular languages is c losed under ∘,∗

4. Conversion of regular expressions to NFA

Check-in 2.4

Recitations start tomorrow online (same link as for lectures).
They are optional, unless you need more help.
You may attend any recitation(s).
Which do you think you’ll attend? (you may check several)
(a) 10:00 (b) 11:00 (c) 12:00
(d) 1:00 (e) 2:00 (f) I prefer a different time (please Check-in 2.4

post on piazza, but no promises)
11

MIT OpenCourseWare
https://ocw.mit.edu

18.404J / 18.4041J / 6.840J Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

