
 

   
 

 
   

   
 

  
 

 

   

  
    

 

18.404/6.840 Lecture 18 

Last time: 
- Space complexity 
- SPACE ! " , NSPACE ! " , PSPACE, NPSPACE 
- Relationship with TIME classes 

Today: (Sipser §8.3) 
- Review $%&&'(DFA ∈ PSPACE 
- Savitch’s Theorem: NSPACE ! " ⊆ SPACE !. " 

- PSPACE-completeness 
- /012 is PSPACE-complete 
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Review: SPACE Complexity 

Defn: Let !: ℕ → ℕ where ! % ≥ %. Say TM ' runs in space !(%) if ' 
always halts and uses at most !(%) tape cells on all inputs of length %. 

An NTM ' runs in space !(%) if all branches halt and each branch uses at 
most !(%) tape cells on all inputs of length %. 

SPACE ! % = {,| some 1-tape TM decides , in space . ! % } 
NSPACE ! % = {,| some 1-tape NTM decides , in space . ! % } 
PSPACE = ⋃1 SPACE(%1) “polynomial space” 
NPSPACE = ⋃1 NSPACE(%1) “nondeterministic polynomial space” 

Today: PSPACE = NPSPACE 
Or possibly: P = NP = coNP = PSPACE 
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PSPACE 
= NPSPACE 

coNP NP 

P 



   
  

          
             

     

   
     
    

          
       
   

    

   
     

 
   

  

   

    

          

        
    

    

 
 

  
 

 

           

 
    

 

 

 

 

  

    
  

 

 

 

 

 

AAABAAADAABAAAACAABBAAAZAAAA

Review: !"##$%DFA ∈ PSPACE 
Theorem: !"##$%DFA ∈ SPACE(+,) 
Proof: Write . 

/ 0 if there’s a ladder from . to 0 of length ≤ 2. 
Here’s a recursive procedure to solve the bounded DFA ladder problem: 

3456#$#-!"##$%DFA = 3, ., 0, 2 3 a DFA and . 
/ 0 by a ladder in !(3)} 

3-! = “On input 3, ., 0, 2 Let : = . = |0|. 
1.  For 2 = 1, accept if ., 0 ∈ !(3) and differ in ≤ 1 place, else reject. 
2.  For 2 > 1, repeat for each > ∈ !(3) of length |.| 
3. Recursively test . 

//, > and > 
//, 0 [division rounds up] 

4. Accept both accept. 
5. Reject [if all fail].” 

Σ BTest 3, ., 0 ∈ !"##$%DFA with 3-! procedure on input 3, ., 0, @ for @ = 

2 

⁄/ , 

⁄/ , 

⁄/ G 

⁄/ G 

Space analysis: 
Each recursive level uses space 4 + (to record >). 
Recursion depth is log @ = 4 : = 4(+). 3−! 

Total space used is 4(+,). 
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WORK 

recurse AAAAAAABAAACAAADAAAZAABAAABBBOOK 

AAAAAAABAAACAAADAAAZAABAAABBABLE 

AAAAAAABAAACAAADAAAZAABAAABBCALLrecurse 

PLAY 

>. 0 > 
AAAB AABBAAACAAAD AAAZAABA AAAAAABBABLEAAAA AABAAAADBOOKAAAZ AAABAAAC CALL 



    
           

        

     

     
        
       

        
           
      

         

   
        

 

    
 

      

 
 

    

 

    

  

 
 

  
 

 

 

     
   

      
 

 
   

 

 

recurse 

recurse 

PSPACE = NPSPACE 

Savitch’s Theorem: For ! ≥ ", NSPACE ! ⊆ SPACE !%" " " 
Proof: Convert NTM & to equivalent TM ', only squaring the space used. 

+
For configurations () and (* of &, write () (* if can get from () to (* in ≤ - steps. 

+
Give recursive algorithm to test () (*: 

+ 
= “On input (), (*, - [goal is to check () (*] 

!(") 

˽ … ˽GH8I ⋯ 8F ' 
1.  If - = 1, check directly by using &’s program and answer accordingly. 
2.  If - > 1, repeat for all configurations (234 that use !(") space. 

3. Recursively test () 
+/% 

(234 and (234 
+/% 

(* 
4. If both are true, accept. If not, continue. 

aabaGPda⋯cab
5. Reject if haven’t yet accepted.” 

=
Test if & accepts 8 by testing (9:;<: (;>>?@: where A = number of configurations 

= B ×! " ×DE F 

Number of levels = log A = R ! " . Total R !% space. 
Each recursion level stores 1 config = R ! " space. 

" 
⋯ Gaccept ⋯ 
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Why % and not %'%()* when defining PSPACE-complete?
- Reductions should be “weaker” than the class. Otherwise all
problems in the class would be reducible to each other, and then 
all problems in the class would be complete.

Theorem: +,!- is PSPACE-complete

PSPACE-completeness 

Defn: ! is PSPACE-complete if 
1) ! ∈ PSPACE 
2) For all # ∈ PSPACE, # ≤% ! 

If ! is PSPACE-complete and ! ∈ P then P = PSPACE. 

Check-in 18.1 
Knowing that +,!- is PSPACE-complete, 
what can we conclude if +,!- ∈ NP? 
Check all that apply. 
(a) P = PSPACE 
(b) NP = PSPACE 
(c) P = NP 
(d) NP = coNP 
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PSPACE-complete 

NP-complete 

PSPACE = 
NPSPACE 

NPP 

Think of complete problems as the “hardest” 
in their associated class. 

Check-in 18.1 



       

   

   

        

  

       

      

    

           

  

          

           

 

   

  
  

 
  

    
   

  
  

    
  

    

!"#$ is PSPACE-complete 

Recall: !"#$ = & & is a QBF that is TRUE} 
Examples: &( = ∀* ∃, * ∨ , ∧ * ∨ , ∈ !"#$ [TRUE]

&0 = ∃, ∀* * ∨ , ∧ * ∨ , ∉ !"#$ [FALSE] 

Theorem: !"#$ is PSPACE-complete 

Proof: 1) !"#$ ∈ PSPACE •
2)   For all 2 ∈ PSPACE, 2 ≤4 !"#$ 

Let 2 ∈ PSPACE be decided by TM 5 in space 67 . 

Give a polynomial-time reduction 8 mapping 2 to !"#$.

8: Σ∗ → QBFs 

8 = = 〈&?,A〉 
= ∈ 2 iff &?,A is TRUE 

Plan: Design &?,A to “say” 5 accepts =. &?,A simulates 5 on =. 
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Constructing !",$: 1st try 
% on & 

Recall: A tableau for % on & represents 
a computation history for % on & 
when % accepts &. 
Rows of that tableau are configurations. 

% runs in space 45, its tableau has: 
- 45 columns (max size of a configuration)

-8- 6 rows (max number of steps) 

Constructing !",$. Try Cook-Levin method. 
Then !",$ will be as big as tableau. 

-8But that is exponential: 45×6 .
Too big! •
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Tableau for % on &
'( &) &* &+ ⋯ &-
a '. &* ⋯

⋯ 'accept ⋯

˽   … ˽

45

6(-8)
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%& '( ') '* ⋯ ',

a % ') ⋯

⋯ %accept ⋯

˽ … ˽

34

5(,7)

Tableau for ^ on '

Check-in 18.2 
Why shouldn’t we be surprised 
that this construction fails? 

(a) We can’t define a QBF by 
using recursion. 

(b) It doesn’t use ∀ anywhere. 

(c) We know that `abc ∉ P. 

hide → Constructing !",$: 2nd try 

For configs 9: and 9; construct !<=, <>, ? which “says” 9: 
?
9; recursively. 

!<=, <>, ? = ∃9BCD !<=, <EFG, ?/) ∧ !<EFG, <>, ?/) 

∃L(, L), ⋯ , 9M 
as in Cook-Levin 

∃9BCD ! , , ?/J ∧ ! , , ?/J ∃9BCD ! , , ?/J ∧ ! , , ?/J 

⋮ 
! , , ( defined as in Cook-Levin ⋮ ∃9BCD[! , , ?/O ⋯ ] 

Size analysis: !",$ = !<UVWXV, <WYYZ[V, \ Each recursive level doubles number of QBFs. 
7] = 5 , Number of levels is log 5 ,

7 = T 34 . 

→ Size is exponential. •

8 
Check-in 18.2 



  

 
    

      

   

 

  

 

 
     

  

            

        

   

 

 

      
 

 

 
 

  

     

Constructing !",$: 3rd try 

!34, 35, 6 = ∃89:; !34, 3<=>, 6/2 ∧ !3<=>, 35, 6/2 

, , J

Check-in 18.3 
Would this construction still work if N were 
nondeterministic? 

(a) Yes. 

(b) No. 

∀(K ∈ L) M∀ 8B, 8C ∈ 8E, 89:; , 89:;, 8F !3G, 3H, 6/2 
is equivalent to 

⋮ ∀K K ∈ L M
!",$ = !3OPQRP, 3QSSTUP, V ! defined as in Cook-Levin 

/
W = - . 

Size analysis: 
Each recursive level adds %('() to the QBF. 

Number of levels is log - ./ 
= % '( . 

→ Size is % '2( •'(×'( = % 

9 Check-in 18.3 



   

  

 

  

   

 

Quick review of today 

1. !"##$%DFA ∈ PSPACE 

2. Savitch’s Theorem: NSPACE * + ⊆ SPACE *- + 

3. ./01 is PSPACE-complete 
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