18.404/6.840 Lecture 18

Last time:

- Space complexity

- SPACE(f(n)), NSPACE(f(n)), PSPACE, NPSPACE
- Relationship with TIME classes

Today: (Sipser §8.3)

- Review LADDERpps € PSPACE

- Savitch’s Theorem: NSPACE(f(n)) = SPACE(f2(n))
- PSPACE-completeness

- TQBF is PSPACE-complete

Review: SPACE Complexity

Defn: Let f: N - N where f(n) = n. Say TM M runs in space f(n) if M
always halts and uses at most f (n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at
most f(n) tape cells on all inputs of length n.

SPACE(f(n)) = {B| some 1-tape TM decides B in space O(f(n))} _ |\P1|SDFS>|A>§EE
NSPACE(f (n)) = {B| some 1-tape NTM decides B in space O(f(n))}

PSPACE = U, SPACE(n*) “polynomial space”
NPSPACE = Uy NSPACE(n*) “nondeterministic polynomial space”

Today: PSPACE = NPSPACE
Or possibly: { P = NP =coNP = PSPACE

P

Review: LADDERg, € PSPACE

Theorem: LADDERpg, € SPACE(n?)
b

Proof: Write u — v if there’s a ladder from u to v of length < b.
Here’s a recursive procedure to solve the bounded DFA ladder problem:

b
BOUNDED-LADDERpgs = {(B,u,v,b)| B aDFAand u — v by aladder in L(B)}

B-L = “Oninput (B,u,v,b) Let m = |u| = |v|.
. For b =1, accept if u,v € L(B) and differin < 1 place, else reject.

. For b > 1, repeat for each w € L(B) of length |u]|
b/2 b/2
Recursively test u — w and w — v [division rounds up]

Accept both accept.
. Reject [if all fail].”

recurse <

recurse <

Test (B, u, v) € LADDERpgs with B-L procedure on input (B, u, v, t) for t = |Z|™

Space analysis:
Each recursive level uses space O(n) (to record w).

Recursion depthislogt = 0(m) = 0(n). B-L
Total space used is 0(n?).

PSPACE = NPSPACE

Savitch’s Theorem: For f(n) = n, NSPACE(f(n)) < SPACE(f?%(n))
Proof: Convert NTM N to equivalent TM M, only squaring the space used.

b
For configurations ¢; and c¢; of N, write ¢; — ¢; if can get from ¢; to ¢; in < b steps.

b
Give recursive algorithm to test ¢; — ¢;:

b
= “Oninput ¢;, Cj» b [goalisto check ¢; — cj]

. If b = 1, check directly by using N’s program and answer accordingly.

. If b > 1, repeat for all configurations cy,iq that use f(n) space.

. b/2 b/2
Recursively test ¢; —— Cmig and Cpig — ¢j

If both are true, accept. If not, continue.

. Reject if haven’t yet accepted.”
t

Test if N accepts w by testing Cstart — Caccept Where t = number of configurations
= |Q|xf (n)xd/™

Each recursion level stores 1 config = O(f(n)) space. QIxf ()

Number of levels =logt = O(f(n)). Total O(fz(n)) space.

4

rec\)fse S

recurse

aabag,da---cab

* Qaccept "

PSPACE-completeness

Defn: B is PSPACE-complete if
1) B € PSPACE
2) Forall A € PSPACE, A <p B

If B is PSPACE-complete and B € P then P = PSPACE. PSPACE-complete —~

Check-in 18.1 NP-complete

Knowing that TQBF is PSPACE-complete, ;i:ﬁii;
what can we conclude if TQBF € NP?
Check all that apply.

(a) P=PSPACE
(b) NP = PSPACE
(c) P=NP

(d) NP =coNP

Think of complete problems as the “hardest”
in their associated class.

Check-in 18.1

TQBF is PSPACE-complete

Recall: TQBF = {(¢)| ¢ is a QBF that is TRUE}

Examples: ¢; =Vx3Ay [(x Vy)A(xVy)] € TQBF [TRUE]
¢, =3y Vx[(xVY)A(XxVYy)] € TQBF [FALSE]

Theorem: TQBF is PSPACE-complete
Proof: 1) TQBF € PSPACE v
2) Forall A € PSPACE, A <p TQBF
Let A € PSPACE be decided by TM M in space n.
Give a polynomial-time reduction f mapping A to TQBF.
f: X* > QBFs
f(W) = (¢M,W>

w € A iff ¢y, is TRUE

Plan: Design ¢y ,, to “say” M accepts w. ¢y, simulates M on w.

Constructing ¢y ,,: 1% try

Tableau for M on w

k

>

<

n

qo

W3 cen

Wn

—

—

a

Recall: A tableau for M on w represents
a computation history for M on w

when M accepts w.
Rows of that tableau are configurations.

M runs in space nk its tableau has:
- n* columns (max size of a configuration)

- d™) rows (max number of steps)
Constructing ¢y, ,,. Try Cook-Levin method.
Then ¢, will be as big as tableau.

But that is exponential: n*xd ("),
Too big! ®

Constructing ¢ps,,: 2" try

b
For configs ¢; and ¢; construct ¢Ci, cj,b which “says” ¢; — C;j recursively.

¢Ci, Cj,b — 3CIIlid [¢Ci, Cmid, b/2 A ¢Cmid» Cj b/2]

3x1,X%5,, C
as in Cook-Levin

EICmid[¢,,b/4 A ¢,,b/4] 3Cmid[¢,,b/4 A ¢,,b/4]

Check-in 18.2 / \

rystouwebe ries | defined asnCooklevin§ 36mal® o0

(a) We can’t define a QBF by
using recursion.

Size analysis:
Each recursive level doubles number of QBFs.

k
t = dn") Number of levels is log d(®*) = 0(nk).
- Size is exponential. @

, ¢M:W _ ('bcstartr Cacceptr U
It doesn’t use V anywhere.

(c) We know that TQBF €& P.

Check-in 18.2

Constructing ¢y ,,: 3" try

¢ci, Cj,b = dCmid [¢c,;, Cmid, b/2 A ¢cmid, cj,b/2]

\ J
Y

V(Cg' Ch) = { (Ci' Cmid)) (Cmid: Cj) } [¢cg, Ch, b/2] VixeS)[y]

is equivalent to
. vx[(x €S) — ¢]

Puw = Pegrare, Caccept t ¢ 1 defined as in Cook-Levin
t = d(nk)

Check-in 18.3

Size analysis: Would this construction still work if M were
Each recursive level adds O (n*) to the QBF. nondeterministic?

Number of levels is log d) = O(n""). (a) Yes.
> sizeis 0(nkxnk) = 0(n2k) © (b) No.

Check-in 18.3

Quick review of today

1. LADDERyp € PSPACE
2. Savitch’s Theorem: NSPACE(f(n)) < SPACE(f?(n))
3. TQBF is PSPACE-complete

MIT OpenCourseWare

18.404) / 18.4041) / 6.840) Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

