18.404/6.840 Lecture 17

Last time:

- Cook-Levin Theorem: SAT is NP-complete
- 3SAT is NP-complete

Today: (Sipser §8.1 —§8.2)

- Space complexity

- SPACE(f (n)), NSPACE(f(n))

- PSPACE, NPSPACE

- Relationship with TIME classes
- Examples

SPACE Complexity

Defn: Let f: N - N where f(n) = n. Say TM M runs in space f(n) if M
always halts and uses at most f (n) tape cells on all inputs of length n.

Check-in 17.1

We define space complexity for multi-tape TMs by
taking the sum of the cells used on all tapes.

Do we get the same class PSPACE for multi-tape TMs?

(a) No.

(b) Yes, converting a multi-tape TM to single-tape
only squares the amount of space used.

(c) Yes, converting a multi-tape TM to single-tape
only increases the amount of space used by a
constant factor.

Check-in 17.1

Relationships between
Time and SPACE Complexity

Theorem: Fort(n) =>n
1) TIME(t(n)) < SPACE(¢t(n))
2) SPACE(t(n)) € TIME(20(¢())
= U, TIME(ct™)
Proof:
1) ATM that runsin t(n) steps cannot use more than t(n) tape cells.

2) A TM that uses t(n) tape cells cannot use more than ct™ time
without repeating a configuration and looping (for some c).

Corollary: P € PSPACE
Theorem: NP € PSPACE [next slide]

NP © PSPACE

Theorem: NP € PSPACE

Proof:

1. SAT € PSPACE

2. IfA <p B and B € PSPACE then A € PSPACE

Defn: coNP = {A| A € NP}

HAMPATH € coNP
TAUTOLOGY = {{¢)] all assignments satisfy ¢p} € coNP

coNP € PSPACE (because PSPACE = coPSPACE)
Or possibly:

P = PSPACE ? Not known.
P = NP =coNP = PSPACE

Example: TQBF

Defn: A guantified Boolean formula (QBF) is a Boolean formula
with leading exists (3x) and for all (Vx) quantifiers. All variables

must lie within the scope of a quantifier.

A QBF is TRUE or FALSE.

Examples: ¢, =Vx3Ay[(xVy)A(xVy)]
¢, =3y Vx [(xVy) A (xVY)]

Defn: TQBF = {(¢)| ¢ is a QBF that is TRUE}
Thus ¢, € TQBF and ¢, & TQBF.
Theorem: TQBF € PSPACE

Check-in 17.2

How is SAT a special case of TQBF?
(a) Remove all quantifiers.

(b) Add 3 and V quantifiers.

(c) Add only 3 quantifiers.

(d) Add only V quantifiers.

Check-in 17.2

TOQBF € PSPACE

Theorem: TQBF € PSPACE
Proof: “Oninput (¢)
1. If ¢ has no quantifiers, then ¢ has no variables
so either ¢ = True or ¢ = False. Output accordingly.
2. If ¢ = Jx Y then evaluate Y with x = TRUE and x = FALSE recursively.
Accept if either accepts. Reject if not.
3. If = Vx 1 then evaluate Y with x = TRUE and x = FALSE recursively.
Accept if both accept. Reject if not.”

Space analysis:
Each recursive level uses constant space (to record the x value).
The recursion depth is the number of quantifiers, at most n = |(¢)|.

So TQBF € SPACE(n)

Example: Ladder Problem

A ladder is a sequence of strings of a common length where
consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladderin A is a ladder of strings in A.

Defn: LADDER g, = {{(B,u,v)| B isa DFA and L(B) contains
a ladder y4,y,, ..., Yx Where y; = u and y,, = v}.

Theorem: LADDERpg, € NPSPACE

LADDER 4 € NPSPACE

Theorem: LADDERpp, € NPSPACE
Proof idea: Nondeterministically guess the sequence from u to v.
Careful- (a) cannot store sequence, (b) must terminate.
Proof: “On input (B, u, v)
. Lety =uandletm = |ul.
. Repeat at most t times where t = |Z|™.

Reject if y & L(B).
Acceptify = v.
6. Reject [exceeded t steps].

1
2
3. Nondeterministically change one symbol in y.
4
5

Space used is for storing y and t.
LADDER g, € NSPACE(n).

Theorem: LADDERpg, € PSPACE (!)

LADDER, € PSPACE

Theorem: LADDERpg, € SPACE(n?)
b

Proof: Write u — v if there’s a ladder from u to v of length < b.
Here’s a recursive procedure to solve the bounded DFA ladder problem:

b
BOUNDED-LADDERpgs = {(B,u,v,b)| B aDFAand u — v by a ladder in L(B)}

B-L = “Oninput (B,u,v,b) Let m = |u| = |v|.
. For b = 1, accept if u,v € L(B) and differin < 1 place, else reject.

. For b > 1, repeat for each w of length |u|
. b/2 b/2 L
Recursively test u — w and w — v [division rounds up]

Accept both accept.
. Reject [if all fail].”

Test (B, u, v) € LADDERpgs With B-L procedure on input (B, u, v, t) for t = |Z|™

Space analysis:
Each recursive level uses space O(n) (to record w).
Recursion depthislogt = O0(m) = 0(n).

Total space used is 0(n?).

Check-in 17.3

Find an English word ladder
connecting MUST and VOTE.

(a) Already did it.
(b) 1 will.

Check-in 17.3

Quick review of today

Space complexity
SPACE(f(n)), NSPACE(f(n))
PSPACE, NPSPACE
Relationship with TIME classes
TQBF € PSPACE

LADDERpp, € NSPACE(n)
LADDERpg, € SPACE(n?)

MIT OpenCourseWare

18.404) / 18.4041) / 6.840) Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

