
 

   
   

 

    
 

 
   

 
 

   

18.404/6.840 Lecture 17 

Last time: 
- Cook-Levin Theorem: !"# is NP-complete 
- 3!"# is NP-complete 

Today: (Sipser §8.1 – §8.2) 
- Space complexity 
- SPACE % & , NSPACE % & 
- PSPACE, NPSPACE 
- Relationship with TIME classes 
- Examples 
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An NTM ' runs in space !(%) if all branches halt and each branch uses at
most !(%) tape cells on all inputs of length %. 

Defn: SPACE ! % = {,| some deterministic 1-tape TM ' decides ,
and ' runs in space . ! % }

NSPACE ! % = {,| some nondeterministic 1-tape TM ' decides ,
and ' runs in space . ! % }

PSPACE = ⋃1 SPACE(%1) “polynomial space”

NPSPACE = ⋃1 NSPACE(%1) “nondeterministic polynomial space”

SPACE Complexity 

Defn: Let !: ℕ → ℕ where ! % ≥ %. Say TM ' runs in space !(%) if ' 
always halts and uses at most !(%) tape cells on all inputs of length %. 

Check-in 17.1 
We define space complexity for multi-tape TMs by 
taking the sum of the cells used on all tapes. 

Do we get the same class PSPACE for multi-tape TMs? 

(a) No. 

(b) Yes, converting a multi-tape TM to single-tape 
only squares the amount of space used. 

(c) Yes, converting a multi-tape TM to single-tape 
only increases the amount of space used by a 
constant factor. 

Check-in 17.1 
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Relationships between 
Time and SPACE Complexity 

Theorem: For ! " ≥ " 
1) TIME ! " ⊆ SPACE ! " 

2) SPACE ! " ⊆ TIME 2& ' ( 

= ⋃+ TIME ,' ( 

Proof: 
1) A TM that runs in !(") steps cannot use more than !(") tape cells. 
2) A TM that uses !(") tape cells cannot use more than ,' ( time 

without repeating a configuration and looping (for some ,). 

Corollary: P ⊆ PSPACE 

Theorem: NP ⊆ PSPACE [next slide] 
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NP ⊆ PSPACE 

Theorem: NP ⊆ PSPACE 
Proof: 
1. "#$ ∈ PSPACE 
2. If # ≤' ( and ( ∈ PSPACE then # ∈ PSPACE 

PSPACE 
Defn: coNP = # # ∈ NP}
*#+,#$* ∈ coNP 

coNP NP$#-$./.01 = 2 all assignments satisfy 2} ∈ coNP 

coNP ⊆ PSPACE (because PSPACE = coPSPACE) 
Or possibly: P 

P = PSPACE ? Not known. 
P = NP = coNP = PSPACE 
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TRUE
FALSE

Example: !"#$ 

Defn: A quantified Boolean formula (QBF) is a Boolean formula 
with leading exists (∃&) and for all (∀&) quantifiers. All variables 
must lie within the scope of a quantifier. 

A QBF is TRUE or FALSE. 
Check-in 17.2 Examples: () = ∀& ∃+ & ∨ + ∧ & ∨ + 

(. = ∃+ ∀& & ∨ + ∧ & ∨ + How is 23! a special case of !"#$? 
(a) Remove all quantifiers. Defn: !"#$ = ( ( is a QBF that is TRUE} 
(b) Add ∃ and ∀ quantifiers. 

Thus () ∈ !"#$ and (. ∉ !"#$. (c) Add only ∃ quantifiers. 

Theorem: !"#$ ∈ PSPACE (d) Add only ∀ quantifiers. 
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!"#$ ∈ PSPACE 

Theorem: !"#$ ∈ PSPACE 
Proof: “On input 〈'〉 

1. If ' has no quantifiers, then ' has no variables 
so either ' = True or ' = False.  Output accordingly. 

2. If ' = ∃+ , then evaluate , with + = TRUE and + = FALSE recursively. 
Accept if either accepts. Reject if not. 

3. If ' = ∀+ , then evaluate , with + = TRUE and + = FALSE recursively. 
Accept if both accept. Reject if not.” 

Space analysis: 
Each recursive level uses constant space (to record the + value). 
The recursion depth is the number of quantifiers, at most . = | ' |. 

So !"#$ ∈ SPACE(.) 
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Example: Ladder Problem 

A ladder is a sequence of strings of a common length where WORK
consecutive strings differ in a single symbol. PORK 
A word ladder for English is a ladder of English words. PORT 

SORTLet ! be a language. A ladder in ! is a ladder of strings in !. 
SOOT 

Defn: "!##$%DFA = *, ,, - * is a DFA and "(*) contains SLOT 
a ladder 01, 02, … , 04 where 01 = , and 04 = -}. PLOT 

Theorem: "!##$%DFA ∈ NPSPACE PLOY 
PLAYPLAY 
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!"##$%DFA ∈ NPSPACE 

Theorem: !"##$%DFA ∈ NPSPACE 
Proof idea: Nondeterministically guess the sequence from * to +. 

Careful- (a) cannot store sequence, (b) must terminate. 
Proof: “On input ,, *, + 

1. Let . = * and let 0 = |*|. 
4 WORK

2. Repeat at most 2 times where 2 = Σ . 

≤ 2 

PORK
3. Nondeterministically change one symbol in .. PORT 
4. Reject if . ∉ !(,). SORT 

SOOT5. Accept if . = +. 
SLOT6. Reject [exceeded 2 steps]. 

* 
8 

:(8) 

˽ ˽ PLOT 
PLOY 
PLAY

Space used is for storing . and 2.
!"##$%DFA ∈ NSPACE(8). + . 2 

Theorem: !"##$%DFA ∈ PSPACE (!) 
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WORK

PLAY

@AAAAAAABAAACAAADAAAZAABAAABBABLE

recurse

recurse

⁄G ,

⁄G ,

!"##$%DFA ∈ PSPACE 

Theorem: !"##$%DFA ∈ SPACE(+,) 
Proof: Write . 

/ 0 if there’s a ladder from . to 0 of length ≤ 2. 

Here’s a recursive procedure to solve the bounded DFA ladder problem: 

3456#$#-!"##$%DFA = 3, ., 0, 2 3 a DFA and . 
/ 0 by a ladder in !(3)} 

3-! = “On input 3, ., 0, 2 Let : = . = |0|. 
1.  For 2 = 1, accept if ., 0 ∈ !(3) and differ in ≤ 1 place, else reject. 
2.  For 2 > 1, repeat for each > of length |.| 

Check-in 17.3 

3. Recursively test . 
//, > and > 

//, 0 [division rounds up] 
Find an English word ladder 

4. Accept both accept. 
connecting MUST and VOTE. 

5. Reject [if all fail].” 
(a) Already did it. B

Test 3, ., 0 ∈ !"##$%DFA with 3-! procedure on input 3, ., 0, @ for @ = Σ 
(b) I will. 

Space analysis: 

Each recursive level uses space 4 + (to record >). 

Recursion depth is log @ = 4 : = 4(+). 
Total space used is 4(+,). 
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Quick review of today 

1. Space complexity 

2. SPACE ! " , NSPACE ! " 

3. PSPACE, NPSPACE 

4. Relationship with TIME classes 

5. $%&' ∈ PSPACE 

6. )*++,-DFA ∈ NSPACE(") 
7. )*++,-DFA ∈ SPACE("3) 
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